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Abstract. We study large deviations in interacting quantum liquids with the

polytropic equation of state P (ρ) ∼ ργ , where ρ is density and P is pressure. By

solving hydrodynamic equations in imaginary time we evaluate the instanton action

and calculate the emptiness formation probability (EFP), the probability that no

particle resides in a macroscopic interval of a given size. Analytic solutions are

found for a certain infinite sequence of rational polytropic indexes γ and the result

can be analytically continued to any value of γ ≥ 1. Our findings agree with (and

significantly expand on) previously known analytical and numerical results for EFP

in quantum liquids. We also discuss interesting universal spacetime features of the

instanton solution.

1. Introduction

Large deviations statistics in many-body systems has been a subject of the rapidly

growing research efforts [1, 2, 3, 4] due to recent precision measurements of particle

number fluctuations in ultra cold quantum gases [5, 6, 7]. Emptiness formation

probability (EFP) is perhaps the most iconic and widely studied example of such large

deviation. It is accessible through the Bethe ansatz [8] in certain integrable models

[9, 10, 11, 12] and serves as the litmus test for validity of approximate non-perturbative

techniques, such as the instanton calculus [13].

The EFP, PEFP(R), is the probability that no particles are found inside the space

interval [−R,R] in the ground state of e.g. a one-dimensional (1D) many-body system

PEFP(R) =
N∏
i=1

∫
|xi|≥R

dxi |ΨGS(x1, x2, ..., xN)|2. (1)
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Here ΨGS(x1, x2, ..., xN) is the normalized ground state wave function of the N-particle

system. Even in cases where ΨGS is known exactly (e.g. for free fermions, or through

the Bethe Ansatz), it is still a formidable task to perform the multiple integrals over

the restricted interval. The first discussion of such problem goes back to the random

matrix theory (RMT) [14], where the probability that no eigenvalues are located within

a certain energy interval was studied for different ensembles [15, 16].

Going beyond free fermions and random matrices, integrable spin-1/2 chains are

probably the most studied systems in the context of EFP. The later is defined as the

probability of measuring l aligned “up” spins in the ground state. Via the Jordan-

Wigner transformation the problem becomes equivalent to the absence of quasiparticles

on l consecutive sites [17] and EFP was found in terms of Fredholm determinants

[9, 18, 17, 19]. The closed analytic expressions for EFP are available only in a few

isolated cases in the parameter space [17, 20].

With few exceptions [21, 4] most studies have been focused on the asymptotic regime

of large R, where EFP is exponentially small. This makes EFP suitable for semiclassical

instanton approach, where − lnPEFP(R) is given by classical action evaluated along

a stationary trajectory of the imaginary time Euler-Lagrange equations [13]. Such

trajectory is specified by imposing boundary conditions both in the distant “past”

and “future”, when the system is undisturbed, and at the observation time, when the

rare fluctuation develops. Similar setup also shows up in studies of rare events in

classical stochastic systems [22, 23, 24]. Even for classically integrable equations (such

as eg. via inverse scattering technique) these problems are notoriously difficult to handle

(for a very recent progress in this direction see Refs. [25, 26]). Although reasonably

effective numerical methods has been developed [27, 28, 29], their applications still

require significant time and computer resources.

In this paper, we focus on 1D polytropic liquid which is characterized by equation of

state: P (ρ) ∼ ργ, where P (ρ) is the pressure and the exponent γ is called the polytropic

index. The value of γ is determined by the underlying microscopic model. For example,

γ = 3 stands for non-interacting fermions and the corresponding analytic solution of

the hydrodynamic equations was found by Abanov [30]. Weakly interacting bosons,

described by γ = 2, were recently numerically studied in Ref. [31]. For the quasi-1D

fermions, i.e. 3D fermions confined to 1D by a transverse harmonic trap, one finds

γ = 7/5 [32]. Moreover, EFP in Calogero-Sutherland integrable model [33, 34, 35] was

studied [36]. The leading term in its equation of state has the polytropic index γ = 3

[37, 38, 30, 39], conforming with the corresponding hydrodynamic solution ‡.
The goal of this work is to go beyond the above listed examples and find EFP in a

1D polytropic liquid with an arbitrary index. The classical hydrodynamics of polytropic

liquids has been attracting attention of mathematicians since 1980’s [41, 42, 43], when

certain instances of classical integrability were discovered. Some techniques has been

developed for initial condition problems [44, 45] However, the analytical closed form

‡ From the hydrodynamic perspective, the difference between the free fermions and the Calogero-

Sutherland model is in renormalization of the sound velocity by the interaction parameter, λ, [40].
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Figure 1. Universal function f(γ). The black dashed line is Eq. (5), the red symbols

are numerical results for γ = 7/5, 5/3, 2, 3. The numerical results for γ = 2 is taken

from Ref. [31].

solution was achieved only for some values of γ [46]. Here we utilize these techniques to

construct instanton solutions of EFP for an infinite sequence of rational indexes. This

solution appears in a closed algebraic form, admitting a unique analytic continuation to

an arbitrary value of γ ≥ 1.

The sought instanton solution of the hydrodynamic equations of motion involves

distortion of the density in the spatial region of the size of the emptiness, ∼ R. This

distortion persists for the time of the order R/vs, where vs is the hydrodynamic sound

velocity in the liquid. Therefore the instanton action, equal to the negative logarithm

of EFP, is expected to be proportional to R2/vs. These considerations motivate the

scaling form of the leading EFP exponent:

lim
R→∞

− lnPEFP(R)

R2
=
ρ0
ξ
f(γ), (2)

where the equilibrium density of the 1D liquid ρ0 and the quantum correlation length

ξ = ~/(mvs) provide the correct dimensional prefactor in front of dimensionless function

f(γ). The speed of sound in this expression is determined from the equation of state by

the thermodynamic relation,

mv2s = ∂ρP (ρ)
∣∣∣
ρ=ρ0

. (3)

where P (ρ) is the hydrodynamic pressure and m is mass of the particles. The polytropic

equation of state with an exponent γ may thus be parametrized as

P (ρ) =
mv2s
γργ−10

ργ. (4)

The analytic expression for the universal function f(γ) in Eq. (2) is the main result

of this paper. We found:

f(γ) =
π 2

γ−5
γ−1

[
Γ
(
γ+1
γ−1

)]2
Γ
(

3γ−1
2γ−2

) [
Γ
(
γ+1
2γ−2

)]3 . (5)
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Figure 2. The edge of emptiness region for γ = 3 (blue solid line), γ = 5/3 (red

dashed line) and γ = 7/5 (green dotted line), as given by Eqs. (63), (64) and (65). The

asymptotic behaviors are given by Eq. (7) and (6).

where γ ≥ 1. Figure 1 shows function f(γ) along with numerical results for several values

of γ. In particular, the free fermion point is given by f(3) = π/2 (and mvs = ~πρ0 = pF
- the Fermi momentum), which agrees with the RMT [15, 14] and hydrodynamic [30]

results. For the weakly interacting bosons f(2) = 16/(3π) ≈ 1.698, which agrees well

with the numerical estimate f(2) = 1.70(1) of Ref. [31]. Away from these points f(γ) is a

monotonically decreasing function with the asymptotic limits f(1) = 2 and f(∞) = 4/π.

The appropriate instanton solution exhibits the empty interval which nucleates near

x = 0 at some instance of the imaginary time τ = −τc ∝ R/vs. It then develops into the

macroscopic interval |x| ≤ R at τ = 0 and closes up again at τ = +τc at x = 0. In the

free fermion case, γ = 3, the emptiness region in (x, τ) plane is bounded by an astroid

(x/R)2/3 + (τ/τc)
2/3 = 1 [30]. For other γ’s the exact analytical shape of the empty

region is more complicated. We found that for τ . |τc| and |x| � R, the emptiness

nucleates in the same way as for the free fermions

τ − τc ∼ |x|2/3. (6)

for any γ ≥ 1. However, the other corner of the emptiness region at |x| . R and |τ | � τc
is not universal and is described by a γ-dependent exponent:

R− x ∼ |τ |(γ+1)/(2γ). (7)

The boundaries of the emptiness region on the (x, τ) plane for some specific values of γ

are depicted in Fig. 2.

The remainder of the paper is organized as follows: in Section 2 we formulate

the instanton approach for calculation of EFP for polytropic liquids and construct a

systematic method to solve hydrodynamic equations. Analytic solutions for a sequence

of rational γ’s are constructed in Section 3. Conclusions and discussions are presented

in Section 4. Some technical details are delegated to Appendices.
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2. Instanton solution for Polytropic Liquids

2.1. Instanton Calculus

The hydrodynamic instanton approach to the emptiness formation, developed in

Refs. [47, 48, 30, 49, 36], is justified in the regime of a macroscopic emptiness, R� ρ−10 .

A state of the system is characterized by hydrodynamic degrees of freedom: the local

particle density, ρ(x, t), and the local current, j(x, t). The two are constrained by the

continuity equation,

∂tρ+ ∂xj = 0. (8)

The real time action, that yields proper hydrodynamic equations as its extremal

conditions, is given by

S[ρ, j] =

∫∫
dxdt

[
mj2

2ρ
− V (ρ)

]
. (9)

It consists of the liquid’s kinetic, mj2/(2ρ), and internal, V (ρ), energy densities. The

internal energy density is related to the pressure through the thermodynamic relation

P (ρ) = ρ∂ρV (ρ) − V (ρ). For the polytropic liquid with the pressure, given by Eq. (4)

with γ > 1, the internal energy density is thus

V (ρ) =
mv2sρ0
γ − 1

[
1

γ

(
ρ

ρ0

)γ
− ρ

ρ0

]
. (10)

The linear in ρ term is −µρ with the chemical potential µ = mv2s/(γ − 1). It fixes the

average density to be ρ0 through the condition ∂ρV (ρ)|ρ=ρ0 = 0 and does not affect the

equation of state. For γ = 1 one finds

V (ρ) = mv2sρ [log(ρ/ρ0)− 1] . (11)

Since we are only interested in the leading term (− lnPEFP ∼ R2) in EFP, we neglect

higher gradient terms such as quantum pressure in the equation of state (10). Including

gradient terms results in sub-leading contributions in ξ/R� 1.

Variation of the action (9) over ρ and j with the continuity constraint, Eq. (8),

yields classical Euler equation of the hydrodynamic flow [50]. The emptiness formation

does not come from the dynamics of this equation, since the emptiness is a large quantum

fluctuation (similar to tunneling), which is outside of the classically allowed region of the

phase space. In the instanton approach, the path integral
∫
DρDj eiS[ρ,j]/~ δ(∂tρ+ ∂xj),

with proper boundary conditions, determines the quantum transition amplitude. One

has to deform the fields into the complex plane to go through a classically forbidden

stationary configuration, corresponding to the emptiness. Such a deformed stationary

point may be found at a purely imaginary current, j, and a real density, ρ (similarly

to the quantum mechanics, where tunneling trajectories correspond to an imaginary

momentum and a real coordinate). One notices then that redefining j → ij and
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t→ −iτ (known as the Wick rotation), the stationary point equations may be brought

to the purely real form. Finally, we pass to dimensionless coordinates and fields:

x→ Rx, τ → (R/vs)τ, ρ→ ρ0ρ and j → (ρ0vs)j, to write the corresponding Eucledian

action as

i

~
S[ρ, j] = −ρ0R

2

ξ

∫∫
dxdτ

[ j2
2ρ

+ V (ρ)
]
; (12)

V (ρ) =
1

γ − 1

[
ργ

γ
− ρ
]
. (13)

The Planck constant is suppressed below. The internal energy density V (ρ) changes

sign (cf. Eq. (9)) similarly to the inverted potential in the tunneling problem. The

dimensionless equations of motion in the imaginary time are

∂τρ+ ∂x(ρv) = 0; (14)

∂τv + v∂xv = ργ−2∂xρ, (15)

where the velocity field, v(x, τ), is defined as v = j/ρ. The fact that the dimensionless

equations of motion and the boundary conditions (see below) depend only on γ and no

other parameters, justifies the scaling form (2) of EFP.

One should notice that the right hand side of the Euler equation (15) contains the

negative pressure. This is a consequence of the Wick rotation and the “wrong” sign in

front of the internal energy in Eq. (12). As a result, the equilibrium configuration, ρ = 1,

j = 0, is an unstable solution of Eqs. (14), (15). It spontaneosly develops deformations,

which keep growing in (imaginary) time. Our goal is to find a very specific solution,

which develops a deformation growing into the empty region, ρ = 0 for |x| < 1, at the

observation time τ = 0. The probability of such rare event is P ∝ |eiSinst/~|2, where the

classical action along the proper (i.e. instanton) trajectory, iSinst, cf. Eq. (12), is real

and negative.

Apart from the emptiness formation, the polytropic hydrodynamic equations (14)

and (15) appear in a variety of distinct fields across physics. From early studies

of Cauchy (initial condition) problem of unstable media [51] and large-N limit of

matrix model [52] to the recent works on large deviation in classical stochastic systems

[53, 54, 55, 56].

2.2. Riemann Invariants and Hodograph Transformation

Following Ref. [46], Eqs. (14) and (15) may be reformulated to simplify their solution.

First, one introduces the Riemann invariant, λ(x, t), and the complex “velocity”, w(x, t),

as

λ = v + i 2
γ−1ρ

γ−1
2 , (16)

w = v + iρ
γ−1
2 . (17)
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In terms of these quantities the equations of motion (14), (15) acquire a more symmetric

form:

∂τλ+ w∂xλ = 0, (18)

∂τλ+ w∂xλ = 0, (19)

where λ and w are complex conjugates of λ and w. Notice that for γ = 3, λ = w = v+iρ,

which reduces the problem to finding an analytic function λ(x, τ) which can be done in

a relatively straightforward way [30].

To proceed in the general case we employ the so-called Hodograph transformation

(See Appendix A). The idea is to find x(λ, λ) and τ(λ, λ) as functions of Riemann

invariants. Under the Hodograph transformation Eqs. (18) and (19) become

∂λx− w∂λτ = 0, (20)

∂λx− w∂λτ = 0. (21)

Now, one can solve these equations of motion by adopting the ansatz

x− wτ = ∂λV , (22)

x− w̄τ = ∂λV , (23)

where the real function V(λ, λ̄) depends only on λ and λ. After substituting this ansatz

into the equations of motion (20) and (21), one obtains the equation for the function

V(λ, λ̄),

∂λ∂λV =
n

λ− λ
(∂λV − ∂λV) , (24)

where n is defined as

n = −1

2

γ − 3

γ − 1
; γ =

2n+ 3

2n+ 1
. (25)

The Riemann invariant in terms of n is

λ = v + i(2n+ 1)ρ1/(2n+1). (26)

The main idea of this mathematical manipulation is to map the original hydrodynamic

equations, (14) and (15), onto an electrostatic-like problem of finding a solution for the

2D “potential” V in the complex λ plane. The emptiness condition only partially fixes

the density at τ = 0, i.e. ρ(|x| < 1, τ = 0) = 0, but the velocity is left unspecified at

τ = 0. This seems to provide insufficient information to find the potential. However,

in terms of Riemann invariants, both density and velocity are combined together. The

boundary conditions for the density is actually also constraining the velocity as well by

requiring analyticity of the potential in the plane of Riemann invariants.

The method of Riemann invariants has been known for a while, (see Ref. [44]

and references there) and it is a powerful tool. It was deployed in e.g. recent studies
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of Bose liquid [57] and relativistic fluid [58]. It was noticed by Kamchatnov [46] that

Eq. (24) admits a closed form analytic solution if n is a non-negative integer. Employing

this approach along with the relation, found by Abanov [30], between EFP and the

asymptotic behavior of the density at x → ∞ and τ = 0, the EFP may be calculated

exactly for the discrete sequence of the rational polytropic indices, Eq. (25). Finally,

this result allows for the unique analytic continuation to find EFP for any γ ≥ 1.

2.3. Instanton solution for integer n

Let’s first examine the simplest case, n = 0, where the right hand side of Eq. (24)

vanishes. Therefore V is given by the sum of two arbitrary analytic functions

V = F0(λ) +G0(λ), for n = 0. (27)

For n 6= 0, the right hand side of Eq. (24) complicates the solution by introducing

coupling between λ and λ. The structure of Eq. (24) with integer n suggests to look

for its solution in the form of a series expansion [46]

V =
F0(λ) +G0(λ)

(λ− λ)n
+
∞∑
m=1

Vm, (28)

where {Vm} are to be determined order by order. By substituting it into Eq. (24), one

finds

n(n− 1)
F0(λ) +G0(λ)

(λ− λ)n+2
+
∞∑
m=1

[
∂λ∂λVm −

n

λ− λ
(∂λVm − ∂λVm)

]
= 0. (29)

In order to cancel the term with (λ− λ)−(n+2), one requires V1 to have the form

V1 = a1
F1(λ)−G1(λ)

(λ− λ)n+1
, (30)

where a1 is an overall coefficient and F1 and G1 are analytic functions. The requirement

of cancellation of (λ − λ)−(n+2) term leads to the recurrence relation: a1 = −n(n − 1),

F0 = ∂λF1 and G0 = ∂λG1. Now, Eq. (24) becomes

a1(n+ 1)(n− 2)
F1(λ)−G1(λ)

(λ− λ)n+3
+
∞∑
m=2

[
∂λ∂λVm −

n

λ− λ
(∂λVm − ∂λVm)

]
= 0, (31)

where the term with (λ − λ)−(n+3) is left to be cancelled by a proper choice of V2.
By repeating the corresponding cancellation procedure, subsequent {Vm} are recovered

order by order.

The series expansion terminates if n is an integer. For example, for n = 1, a1 = 0

and thus

V =
F0(λ) +G0(λ)

λ− λ
, for n = 1, (32)
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which can be verified by a direct substitution in Eq. (24). For a positive integer n, there

are exactly n terms of series expansion in terms of (λ− λ), as follow

V =
F0(λ) +G0(λ)

(λ− λ)n
+

n−1∑
m=1

am
Fm(λ) + (−1)mGm(λ)

(λ− λ)n+m
, (33)

where all the {Fm} functions only depend on λ and all the {Gm} functions only depend

on λ. The {am} are the coefficients of series expansion. The recurrence relations for Fm
and Gm functions are

Fm−1 = ∂λFm, (34)

Gm−1 = ∂λGm, (35)

and for the coefficients

a1 = −n(n− 1), (36)

am = − 1

m
am−1(n+m− 1)(n−m). (37)

The series terminates since am = 0 for m ≥ n.

The specific form of {Fm} and {Gm} functions is to be determined from the

boundary conditions. To find the boundary conditions for V one needs to go back to

the original hydrodynamic variables and discuss the boundary conditions for the density

and the velocity. For simplicity, let us focus on x > 0 in the following. Solutions at

x < 0 can be obtained by spatial inversion: ρ(x, τ) = ρ(−x, τ) and v(x, τ) = −v(x, τ).

The instanton solution evolves from a uniform state at a distant past, τ = −∞, to a

state with the emptiness, i.e. zero density for |x| < 1, at the observation time, τ = 0.

At τ = 0, the density diverges at x = 1 since the displaced particles accumulate on the

emptiness boundary. In terms of Riemann invariants, |λ| → ∞ at x = 1 and τ = 0 and

from (22) we have

∂λV
∣∣∣
|λ|→∞

= 1, (38)

which fixes the boundary of emptiness x = 1. Far away from the emptiness, the

density decays to the average density and the velocity approaches zero. In general,

the density decays like (ρ− 1) ∝ 1/x2 as x→∞ [30]. In terms of Riemann invariants,

λ → i 2
γ−1 = i(2n + 1) as x → ∞. Substituting this condition into Eq. (22), one finds

the other boundary condition:

∂λV
∣∣∣
λ→i(2n+1)

∼ 1√
λ2 + (2n+ 1)2

, (39)

where the square root divergence on the right hand side comes from the 1/x2 behavior

of the density. The requirement of zero density is encoded in the boundary conditions

(38) and (39). Indeed, they imply that the solution has a branch point at x = 1 for

τ = 0 so that λ becomes a purely real function at x < 1, τ = 0 corresponding to ρ = 0.
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With the boundary condition (38) and (39) and the recurrence relations (34) and

(35) one can construct all the {Fm} and {Gm} functions as long as the last terms Fn−1
and Gn−1 are specified. For the special case, n = 0,

F0 =
√
λ2 + 1, G0 = F 0, (40)

where the fact that V is a real function is employed. For a positive integer n, the series

of V terminates at the term with Fn−1, which must be taken as

Fn−1 =
λ

n!

[
λ2 + (2n+ 1)2

] 2n−1
2
, (41)

Gn−1 = (−1)nF n−1, (42)

where the coefficient 1/n! results from Eq. (38). Finally, one may find all

{Fm} functions, {Gm} functions and coefficient {am} from the recurrence relations,

Eqs. (34),(35),(36),(37).

2.4. Emptiness formation probability

We are now at the position to calculate EFP. The semiclassical transition amplitude

is given by eiSinst(R). Since EFP is a probability of the fluctuation with respect to the

ground state, we need to normalize this amplitude by dividing it by eiS0 , where S0 is

the action evaluated at the static ground state solution, ρ = ρ0 and j = 0. This results

in the EFP of the form

− lnPEFP(R) = 2Im [Sinst(R)− S0] =
ρ0R

2

ξ
f(n), (43)

where the second equality used the rescaled action Eq. (12) and f(n) is a function

depending on n only.

Following Ref. [30], one may connect EFP with the asymptotic behavior of the

density at large x at τ = 0. We rederive this relation in Appendix B and here only

quote the result

i∂ρ0 [Sinst − S0] =
πR2α

ξ
, (44)

where α is a coefficient in the following generic asymptotic expansion of the density,

ρ(x→∞, τ = 0),

ρ(x, 0) = 1 +
α

x2
+O

(
1

x4

)
. (45)

For polytropic liquids, the correlation length depends on the average density as 1/ξ ∝
ρ
(γ−1)/2
0 = ρ

1/(2n+1)
0 . After integrating over ρ0, one finds

i [Sinst(R)− S0] =
πρ0R

2

ξ

2n+ 1

2n+ 2
α. (46)
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To determine the n dependence of the coefficient α, we employ the instanton solution

for positive integer n. According to Eq. (22), (41) and (42), the solution for any

n can be explicitly written down. The leading term at x → ∞ comes solely from

∂λF0(λ) = ∂nλFn−1(λ) due to the boundary condition (39) and the recurrence relation

(34). This way one arrives at

x− wτ =
1

(λ− λ)n
∂nλ

{
λ

n!

[
λ2 + (2n+ 1)2

] 2n−1
2

}
+ ..., (47)

where the sub-leading terms are omitted. To satisfy the boundary condition (39) and

thus generate the [λ2 + (2n+ 1)2]
−1/2

term, all n derivatives should act on the square

bracket term in this expression. As a result one finds

x− wτ =
(2n− 1)!!

n!

λn+1

(λ− λ)n
√
λ2 + (2n+ 1)2

+ .... (48)

At τ = 0, take the limit: x → ∞, ρ → 1, λ→ i(2n+ 1)ρ1/(2n+1)

and λ → −i(2n + 1)ρ1/(2n+1), as in Eq. (26); and [λ2 + (2n+ 1)2] = (2n+ 1)2

×(1− ρ2/(2n+1)) ≈ −2(2n+ 1)(ρ− 1). Therefore

x ≈ (2n+ 1)!!

2nn!

1√
2(2n+ 1)(ρ− 1)

. (49)

Accordingly, the coefficient α in Eq. (45) is given by

α =
1

2(2n+ 1)

[
(2n+ 1)!!

2nn!

]2
, (50)

and EFP is found with the help of Eqs. (43) and (46) as

− lnPEFP(R) =
ρ0R

2

ξ

π

2n+ 2

[
(2n+ 1)!!

2nn!

]2
. (51)

Finally, the function f(n) may be written using the gamma-function representation of

the factorials:

f(n) =
πΓ2(2n+ 2)

24n+1Γ(n+ 2)Γ3(n+ 1)
. (52)

This expression can be extended to real n due to the uniqueness of the analytic

continuation of the gamma function according to Bohr-Mollerup theorem [59].

Converting n into γ with the help of Eq. (25), one arrives at Eq. (5).

To illustrate the validity of Eq. (44), we numerically calculate f(n) by substituting

the instanton solutions for n = 0, 1 and 2 into Eq. (12) and performing Monte Carlo

integration. The numerical results are summarized in Table. 1.
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n = 0 (γ = 3) n = 1 (γ = 5/3) n = 2 (γ = 7/5)

f(n) 1.56 ± 0.02 1.76 ± 0.02 1.85 ± 0.02

Eq.(52) π/2 ≈ 1.571 9π/16 ≈ 1.767 75π/128 ≈ 1.841

Table 1. Numerical value of function f(n) for n = 0, 1, 2.

3. Shape of the empty region

Having found the systematic way to construct analytic solutions for polytropic fluid,

we now explicitly write them down for n = 0, 1 and 2. The n = 0 case corresponds

to the free fermions (γ = 3) and is the simplest case of the polytropic fluid since the

Riemann invariants λ equals to its complex “velocity” w. In other words, Eq. (18) and

(19) become a pair of complex conjugate Hopf equations whose closed form solution is

a generic analytic function [30]. This property can be understood from Eq. (24), where

the right hand side vanishes at n = 0 and V(λ, λ) consists of two analytic functions: one

depends only on λ and the other – only on λ. Therefore,

V = F0 +G0, F0 =
√
λ2 + 1, (53)

where G0 = F 0, since V is real. For n = 1 the corresponding solution is

V =
F0 +G0

λ− λ
, F0 = λ

√
λ2 + 9, (54)

where G0 = −F 0. For n = 2:

V =
F0 +G0

(λ− λ)2
− 2

F1 −G1

(λ− λ)3
, F1 =

λ

2
(λ2 + 25)3/2, (55)

where F0 = ∂λF1 and G0,1 = F 0,1.

The imaginary time evolution of the density for these three cases is shown in Fig.

3. It is determined by numerically solving algebraic Eqs. (22) and (23) with the above

explicit expressions for V . The fluid evolves from the uniform density into the emptiness

profile in Fig. 3. There is an empty region in the (x, τ) plane, where the density is zero.

To find the boundary of this region we note that for ρ = 0 the Riemann invariants are

degenerate, λ = λ̄ = v and our solution represents an equation for v(x, t). For n = 0, 1, 2

we have

x− vτ =
v√
v2 + 1

, (56)

x− vτ =
3v

2
√
v2 + 9

− v3

2(v2 + 9)3/2
, (57)

x− vτ =
15v

8
√
v2 + 25

− 5v3

4(v2 + 25)3/2
+

3v5

8(v2 + 25)5/2
. (58)

Generally speaking the velocity v is a multi-valued function of coordinate x parametrised

by τ . The ends of the emptiness interval for a given τ are real values x = x±(τ) where



Emptiness Formation in Polytropic Quantum Liquids 13

τ=-�

τ=-�

τ=-���

τ=-����

τ=�

��� ��� ��� ��� ���
�

�

�

�

�

�

�

�

ρ

τ=-�

τ=-���

τ=-���

τ=-����

τ=�

��� ��� ��� ��� ���
�

�

�

�

�

�

�

�

ρ

τ=-�

τ=-�����

τ=-���

τ=-����

τ=�

��� ��� ��� ��� ���
�

�

�

�

�

�

�

�

ρ

Figure 3. Time evolution of the density ρ(x, τ) for n = 0 (upper left), n = 1 (upper

right) and n = 2 (bottom). The density evolves from the uniform value, ρ = 1, at large

negative τ towards the emptiness within |x| < 1 at τ = 0.

two branches of v meet. In other words x± are maximum and minimum value of x as

function of v at given τ obtained from Eqs. (56),(57),(58). Such real points exist only

within the interval −τc < τ < τc (e.g., τc = 1 for n = 0). Outside this interval the

branch points move away from the real axis of x.

Figure 4. A 2D surface of Eq. (56). The red (solid) curve on the surface shows

the local maximum (minimum) value of x which indicates the boundary of the empty

region. After τ = −1, v is a multi-valued function. The red (dashed) curve shows the

projection onto (x, τ) plane is described by Eq. (63).
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To visualize this construction the n = 0 case (56) is plotted in Fig. 4. The red solid

curve on the surface in Fig. 4 are the collection of these local minima and maxima. The

emptiness boundary is the projection of the red solid curve onto the space-time plane

along the v axis, depicted by the red dashed curve in Fig. 4. For other values of n the

emptiness boundary is obtained by the same procedure and is plotted in Fig. 2.

Let’s examine the time around the beginning of the emptiness formation, where

one can do small v expansion for Eq. (56), (57) and (58). For any n the solutions can

be approximated by a cubic polynomial:

x ≈ (τ − τc)v − bnv3, (59)

where bn is a positive constant depending on n. From Eq. (59) it follows that v is multi-

valued and x has local maximum and minimum for τ > τc. The power law behavior

of the emptiness boundary is determined from the position of the local minimum and

maximum of x on (x, τ) plane. According to Eq. (59), one finds

τ − τc ∝ |x|2/3. (60)

This explains the universal power law exponent 2/3 at the start of the emptiness as

a consequence of an underlying cubic equation. This scenario of emptiness formation

can be described as a cusp catastrophe in the catastrophe theory [60], where the cusp

catastrophe is classified as A3 group and the cusp has the exponent 2/3 [61]. Moreover,

the Burgers’ equation features the same exponent 2/3 in the shock wave formation [62].

Focusing now on the vicinity of τ = 0 and point x = 1, one can perform large v

expansion for Eq. (56), (57) and (58), since v diverges there. This leads to:

τ ≈ x− 1

v
+

cn
v2n+3

, (61)

where cn is a positive constant depending on n. The linear term in 1/v shows that the

empty region terminates at x = 1. Unlike Eq. (59), the highest power of the approximate

polynomial equation is now depending on n and this leads to the n-dependent power law

of the emptiness boundary. One can again solve for the position of the local maximum

and minimum of τ on (x, τ) to find

1− x ∝ |τ |(2n+2)/(2n+3). (62)

Although Eq. (62) is based on discrete value of n, we expect that the solution is deformed

continuously with the polytropic index γ leading to Eq. (7). The power law exponent

is linear when γ → 1 and square root when γ →∞.

Since the analytic instanton solutions are available for non-negative integer n, we

are only able to write down the analytic expressions of the whole emptiness boundary
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for these n. Here we show the results for the emptiness boundary for n = 0, 1 and 2

x = (1− τ 2/3)3/2, (63)

x =
[
1− (2τ)2/5

]3/2[
1 +

3

2
(2τ)2/5

]
, (64)

x =
[
1−

(
8τ

3

)2/7 ]3/2[
1 +

3

2

(
8τ

3

)2/7

+
15

8

(
8τ

3

)4/7 ]
. (65)

These results are summarized in Fig. 2. Equation (63) is called the astroid curve:

x2/3 + τ 2/3 = 1. For a general n we have a family of astroid-like curves, like Eqs. (64),

(65).

Having established the shape of the empty region, we now look at the behavior of

the density profile immediately outside of the empty region. The density grows from

zero as a positive power of the distance from the boundary when τ 6= 0 and diverges at

τ = 0, Fig. 3. The emptiness boundary is the branch point of the Riemann invariants λ

and λ. The exponent of the power law can be determined from the degree of this branch

point. Denoting the boundary of the empty region as x0 = x0(τ), Eqs. (63)–(65), one

finds

ρ ∝ (x− x0)1/(γ−1), x > x0, (66)

for τ 6= 0 and

ρ ∝ (x− 1)−2/(γ+1), x > 1, (67)

for τ = 0.

4. Conclusions and Discussion

Perhaps the most interesting application (besides previously well established fermion

case with γ = 3) is the weakly interacting Bose gas. Within the Gross-Pitaevskii

approximation, its internal energy may be written as [64] (in dimensionless form)

V (ρ) =
1

2
ρ2 − ρ+

ξ2

R2

(∂xρ)2

8ρ
, (68)

where the last term constitutes the so-called quantum pressure. In the limit of the

large emptiness, R � ξ, it is clearly sub-leading and the weakly interacting Bose gas

is well approximated by the polytropic expression (13) with γ = 2. It is interesting to

note that it corresponds to the non-integer value n = 1/2, which does not allow for an

analytic solution of the hydrodynamic equations. Nevertheless we are able to deduce

EFP through the analytic continuation procedure, resulting in

− lnPBose
EFP (R) =

ρ0R
2

ξ

16

3π
+O (log(R/ξ)) , (69)
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where ξ � ρ−10 depends on the interaction strength. The logarithmic correction

originates from the quantum pressure term in Eq. (68). This should be compared with

the free fermion-RMT result [65, 66] for γ = 3:

− lnPFermi
EFP (R) =

ρ0R
2

ξ

π

2
+

1

4
log(R/ξ), (70)

where ξ = (πρ0)
−1. Our calculations were performed in the regime ξ, ρ−10 � R and give

the coefficient of the leading term for all γ ≥ 1. The coefficient of the first sub-leading

term, ∝ ρ0R, is not known in general. In few examples [17, 19, 63] where it is known

analytically or numerically in models with local interactions, including Eqs. (69), (70,

it appears to be zero. It is thus tempting to conjecture that the first non-vanishing

correction to our result (2) is of the form O
(

log(R/ξ)
)
.

It is worth noticing that Eq. (69) and (70) are the two limiting cases of the integrable

Lieb-Liniger model [67], for which the ground state wave function, ΨGS(x1, x2, ..., xN),

is known explicitly through the Bethe Ansatz. The Bose and Fermi polytropic liquids

represent its weak and strong interaction limits, correspondingly. While the correlation

length, ξ, is known for any interaction strength, the coefficient multiplying ρ0R
2/ξ so far

is only available in the two extreme limits. For intermediate interactions the equation

of state of the Lieb-Liniger model is not polytropic. In fact, it interpolates between

γ = 3 at small density and γ = 2 at large density. An appropriate solution of the

hydrodynamic equations is not known for such equation of state. Nothing is known

about the coefficient in front of the logarithmic correction, besides Tonks fermion limit,

Eq. (70), either.

In weakly interacting systems with vs � vF ≡ πρ0/m, there is another

parametrically wide regime: ρ−10 � R � ξ. In this regime the leading contribution

is linear in R, while quadratic term is subleading: − lnPEFP(R) = 2ρ0R + O
(
ρ0R

2/ξ
)

[31], The coefficient 2 in the leading term here reflects property of non-interacting Bose

gas. The interaction-dependent sub-leading term in this expression was not evaluated

analytically to the best our knowledge.

There is an intriguing relation between imaginary time hydrodynamic for n = 0,

γ = 3 and the density of states (DOS) in disordered superconductors with magnetic

impurities [68, 69, 70]. The superconducting gap closes gradually with increasing

concentration of the magnetic impurities. It turns out that the energy dependence

of DOS is identical to spatial profile of the density in the top panel of Fig. 3, with

magnetic impurity concentration playing the role of time. The details of this relation

and its possible generalizations to n > 0 are discussed in Appendix C.

Another possibility to observe the spacetime shape of the emptiness arises naturally

in the context of the well known mapping of (1+1)D quantum field theory onto 2D

statistical models. The instanton solution of the former corresponds to stationary

configuration dominating some statistical mechanics models such as random tilings

and crystal surfaces, subject to proper boundary conditions [71, 72]. In fact, there

is a one to one correspondence between random tilings and crystal surface heights on
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the one hand and world lines of free fermions in imaginary time on the other hand,

which was established via transfer matrix representation of the partition function of

these statistical models. It is interesting to find statistical models with coarse grained

properties described by polytropic equation of state with γ 6= 3.

To conclude, we have developed a systematic way to construct analytic emptiness

formation solution of hydrodynamic equations for polytropic liquids with the polytropic

index γ = (2n + 3)/(2n + 1), where n is a non-negative integer. We evaluate the EFP

and analytically continue the result to access EFP in polytropic liquid with an arbitrary

γ ≥ 1. In particular, it yields a novel result for weakly interacting bosons, which may

be experimentally verified in cold atom systems.
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Appendix A. Hodograph Transformation

We want to go from spacetime (x, τ) to Riemann invariants (λ, λ) as new coordinates.

Following chain rules, partial derivatives with respect to λ and λ can be expressed in

terms of x and τ (
∂λ
∂λ

)
=

(
∂λx ∂λτ

∂λx ∂λτ

)(
∂x
∂τ

)
. (A.1)

Let’s invert this equation,(
∂x
∂τ

)
=

1

J

(
∂λτ −∂λτ
−∂λx ∂λx

)(
∂λ
∂λ

)
, (A.2)

J = ∂λx∂λτ − ∂λτ∂λx, (A.3)

where the Jacobian J and is assumed to be nonzero. This is called Hodograph

transformation. With Eq. (A.2), Eq. (18) and (19) become

∂λx− w∂λτ = 0, (A.4)

∂λx− w∂λτ = 0. (A.5)

These are the Eq. (20) and (21).

Appendix B. Relation between EFP and the density asymptotic

The following derivation is based on unpublished notes of A. Abanov. The exponent of

EFP is related to the instanton action

− lnPEFP = 2Im [Sinst − S0] . (B.1)
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The factor of two in front the action allows to extend imaginary time integration to run

from −∞ to +∞. The solutions at τ > 0 is determined from time reversal symmetry:

ρ(x, τ) = ρ(x,−τ) and j(x, τ) = −j(x,−τ). The action can be formulated as a space-

imaginary time integral

2i(Sinst − S0) =

∫ ∞
−∞

∫ ∞
−∞

dxdτ

[
mj2

2ρ
+ V (ρ)− V (ρ0)

]
, (B.2)

where we consider the polytropic equation of state V (ρ) from Eq. (10). By performing

the variation of action with respect to ρ, j and ρ0, one gets

2iδ(Sinst − S0) =∫ ∞
−∞

∫ ∞
−∞

dxdτ

{
mj

ρ
δj +

[
−mj

2

2ρ2
+ ∂ρV (ρ)

]
δρ+

[
∂ρ0V (ρ)− ∂ρ0V (ρ0)

]
δρ0

}
, (B.3)

However ρ, j and ρ0 are not independent of each other. They are constrained by the

continuity relation. Introducing the displacement field u, as

ρ = ρ0 + ∂xu, j = −∂τu, (B.4)

allows to automatically resolve the continuity constraint. The variation of action now

takes the form

2iδ(Sinst − S0) =

∫ ∞
−∞

∫ ∞
−∞

dxdτ

{
−mj

ρ
∂τδu+

[
−mj

2

2ρ2
+ ∂ρV (ρ)

]
∂xδu

+

[
−mj

2

2ρ2
+ ∂ρV (ρ) + ∂ρ0V (ρ)− ∂ρ0V (ρ0)

]
δρ0

}
. (B.5)

After integration by parts, one arrives

2iδ(Sinst − S0) =

∫ ∞
−∞

∫ ∞
−∞

dxdτ

{[
∂τ

(
mj

ρ

)
− ∂x

(
−mj

2

2ρ2
+ ∂ρV (ρ)

)]
δu

+

[
−mj

2

2ρ2
+ ∂ρV (ρ) + ∂ρ0V (ρ)− ∂ρ0V (ρ0)

]
δρ0

}
, (B.6)

where the first square bracket is zero on the equation of motion (15), with the velocity

field v = j/ρ. The boundary term is discarded since it vanishes at infinity. Only the

second square bracket contributes to the variation of the action. Then one substitutes

the equation of state (10) into integral and notices the sound velocity depending on

ρ0: vs ∝ ρ
(γ−1)/2
0 . By rescaling the variables to dimensionless coordinates and fields:

x → Rx, τ → Rξmτ, ρ → ρ0ρ and j → (ρ0/mξ)j, the action taken derivative with

respect to average density is

2i∂ρ0(Sinst − S0) =
R2

ξ

∫ ∞
−∞

∫ ∞
−∞

dxdτ

[
−v

2

2
+
ργ−1 − 1

γ − 1
− (ρ− 1)

]
, (B.7)
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The goal is to massage this space-imaginary time integral into a integration on the

boundary at infinity. The first step is integration by parts in x

−v
2

2
= xv∂xv − ∂x

(
xv2

2

)
. (B.8)

Using equation of motion (15) for v,

−v
2

2
= −∂τ (xv) + xργ−2∂xρ− ∂x

(
xv2

2

)
, (B.9)

the integral becomes

2i∂ρ0(Sinst − S0) =

R2

ξ

∫ ∞
−∞

∫ ∞
−∞

dxdτ

[
−∂τ (xv) + xργ−2∂xρ− ∂x

(
xv2

2

)
+
ργ−1 − 1

γ − 1
− (ρ− 1)

]
. (B.10)

The terms with density can be absorbed into a total spatial derivative

xργ−2∂xρ+
ργ−1 − 1

γ − 1
− (ρ− 1) = ∂x

(
x
ργ−1 − 1

γ − 1
− u
)
, (B.11)

where u is the dimensionless displacement field, ∂xu = (ρ − 1). Now, one can apply

Stokes’ theorem

2i∂ρ0(Sinst − S0) =
R2

ξ

∮ [
(xv)dx+

(
x
ργ−1 − 1

γ − 1
− u− xv2

2

)
dτ

]
. (B.12)

On the boundary at the infinity, v ≈ −∂τu and (ργ−1−1) ≈ (γ−1)(ρ−1) = (γ−1)∂xu.

The v2 term decays too fast to give contribution in the integral. The boundary integral

is further simplified as

2i∂ρ0(Sinst − S0) =
R2

ξ

∮ [
(−x∂τu)dx+ (x∂xu− u)dτ

]
. (B.13)

By defining complex variable, z = x + iτ , the integral is performed on the complex

z-plane

2i∂ρ0(Sinst − S0) =
R2

ξ

∮ [−i
2

(
(z + z) ∂zu− u

)
dz + c.c.

]
. (B.14)

In general, the asymptotic of density at infinity is given by

ρ ≈ 1 +
α

2

(
1

z2
+

1

z2

)
, (B.15)

where α is some constant depending on polytropic index γ. At τ = 0, it becomes the

Eq. (45). The corresponding displacement field u at infinity is given by

u ≈ −α
2

(
1

z
+

1

z

)
. (B.16)

Substituting asymptotic of u into the integral and performing integration in polar

coordinates: z = r exp(iθ) and z = r exp(−iθ), one arrives at Eq. (44):

i∂ρ0(Sinst − S0) =
R2

ξ

α

2

2π∫
0

(1 + cos 2θ)dθ =
πR2α

ξ
. (B.17)
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Appendix C. Emptiness Formation and Superconductor with magnetic

impurity

The action of the disordered superconductor with broken time reversal invariance, eg.

by magnetic impurities, can be represented by the non-linear sigma model [70] as

iS[Q] ∝ Tr
{
−η

2
[σz, Q]2 + 4iε(σzQ) + 4i∆(iσyQ)

}
, (C.1)

where σx,y,z are the Pauli matrices in the Nambu space, η is the magnetic impurities

concentration, ε is the energy and ∆ is the superconducting order parameter. The

gradient terms is neglected in the action under the assumption that vector potential

varies slowly on the scale of superconducting correlation length. The Green function,

Q, is the Nambu (and Keldysh) matrix constrained by Q2 = 1. Its retarded component

may be parametrized in the Nambu space as

Q =

(
cosh θ sinh θ

− sinh θ − cosh θ

)
, (C.2)

where θ is the complex Nambu angle and the density of states (DOS) is given by ρ(ε, η)

= Re[cosh θ]. Performing variation over θ, one obtains the saddle point equation

ε = ∆ coth θ − iη cosh θ, (C.3)

which describes how DOS, Re[cosh θ], changes with the magnetic impurity strength η.

Back to the hydrodynamics at n = 0, γ = 3, Riemann invariants, λ and λ, are

decoupled. Solution of Eq. (24) with the boundary condition that density is zero within

|x| < R at τ = 0 is

x− λτ = R
λ√
λ2 + 1

, (C.4)

where R is the size of emptiness. Changing variables as λ = i cosh θ this solution can

be formulated as

x = R coth θ + iτ cosh θ. (C.5)

One can establish correspondence between Eq. (C.3) and (C.5) by identifying coordinate

x as energy ε, emptiness size R as superconducting order parameter ∆ and imaginary

time−τ as magnetic impurities concentration η. This indicates that DOS of a disordered

superconductor is equivalent to the density of the 1D liquid with n = 0, forming

the emptiness. The observation moment τ = 0 corresponds to the BCS time-reversal

invariant case without magnetic impurities, where the gap is given by ∆. Away from

this limit the gap is suppressed by the magnetic impurities until one reaches a gapless

state at some critical ηc. The shape of the gap on the (ε, η) plane is given by the astroid

(ε/∆)2/3 + (η/ηc)
2/3 = 1 [68].



Emptiness Formation in Polytropic Quantum Liquids 21

One may wonder if there are non-linear sigma model representations of the

polytropic liquids with n > 0, such that their densities coincide with DOS of

corresponding superconductors. To this end we parametrize the velocity field as

v = i(2n+ 1) cosh θ. (C.6)

The equations Eq. (57) and (58) for n = 1, 2 become

x = R

(
3

2
coth θ − 1

2
coth3 θ

)
+ 3iτ cosh θ, (C.7)

x = R

(
15

8
coth θ − 5

4
coth3 θ +

3

8
coth5 θ

)
+ 5iτ cosh θ. (C.8)

One can construct the corresponding non-linear sigma models, leading to such saddle

point equations (with the identification x→ ε, R→ ∆ and τ → η).

For n = 1,

iS[Q] ∝ Tr

{
− 3

16
η[σz, Q]4 + iε

(
1

3
(σzQ)3 − 3(σzQ)

)
+ i∆

(
1

3
(iσyQ)3 − 3(iσyQ)

)}
.

(C.9)

And for n = 2,

iS[Q] ∝ Tr

{
− 5

16
η[σz, Q]6 + iε

(
3

10
(σzQ)5 − 5

2
(σzQ)3 + 15(σzQ)

)
+ i∆

(
3

10
(iσyQ)5 − 5

2
(iσyQ)3 + 15(iσyQ)

)}
. (C.10)

However, the underlying microscopic models for these non-linear sigma models are yet

to be identified.
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