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Abstract

Inflammasomes are assembled by innate immune sensors that cells
employ to detect a range of danger signals and respond with pro-
inflammatory signalling. Inflammasomes activate inflammatory
caspases, which trigger a cascade of molecular events with the
potential to compromise cellular integrity and release the IL-1b
and IL-18 pro-inflammatory cytokines. Several molecular
mechanisms, working in concert, ensure that inflammasome
activation is tightly regulated; these include NLRP3 post-
translational modifications, ubiquitination and phosphorylation, as
well as single-domain proteins that competitively bind to key
inflammasome components, such as the CARD-only proteins (COPs)
and PYD-only proteins (POPs). These diverse regulatory systems
ensure that a suitable level of inflammation is initiated to
counteract any cellular insult, while simultaneously preserving
tissue architecture. When inflammasomes are aberrantly activated
can drive excessive production of pro-inflammatory cytokines and
cell death, leading to tissue damage. In several autoinflammatory
conditions, inflammasomes are aberrantly activated with
subsequent development of clinical features that reflect the
degree of underlying tissue and organ damage. Several of the
resulting disease complications may be successfully controlled by
anti-inflammatory drugs and/or specific cytokine inhibitors, in
addition to more recently developed small-molecule inhibitors. In
this review, we will explore the molecular processes underlying
the activation of several inflammasomes and highlight their role
during health and disease. We also describe the detrimental
effects of these inflammasome complexes, in some pathological
conditions, and review current therapeutic approaches as well as
future prospective treatments.
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INTRODUCTION

Innate immune cells constitute the first line of
defence against invading pathogens, conferring
host protection through several multidimensional
non-specific molecular strategies. Activation of
these pathways normally occurs via detection of
danger-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs),
such as lipopolysaccharide (LPS), which is an
integral component of Gram-negative bacteria
outer membranes. LPS is recognised by several
different pattern-recognition receptors (PRRs),1

which induce a specific response to counteract
each individual situation and the particular
invading organism encountered. For instance,
phagocytes can detect opsonised molecules, via
their opsonic receptors, and these cells will
eventually phagocytose the targeted molecule. In
situations where the insult overcomes the initial
innate defence response, a more complex, robust
and damaging mechanism may be induced by
activating the inflammasome. The inflammasome
was first described, in 2002, by Martinon et al. as a
‘high molecular weight complex containing
NALP1, Pycard, and proinflammatory caspases’2; as
then several more studies have elucidated several
distinct inflammasomes that can be assembled
through activation of other cytosolic PRRs.3,4 In
general, inflammasomes are activated by two
consecutive signals; the first signal arises from Toll-
like receptors (TLRs) that are activated by a PAMP
such as LPS, which triggers the production of
inactive forms of two pro-inflammatory cytokines,
interleukin-1b (IL-1b) and interleukin-18 (IL-18),
known as pro-IL-1b and pro-IL-18.2 Cytokines such
as TNF or even IL-1 itself can also provide this first
signal.5 The second signal can arise from multiple
pathways (e.g. K+ efflux via P2X7 receptor
activation, endoplasmic reticulum stress) and
results in the activation of proinflammatory
caspases, which in turn proteolytically activateIL-1b
and IL-18 for secretion.6 Although caspase-1
activation is essential to the inflammasome-
mediated cleavage of both pro-IL-1b and pro-IL-18,
a number of different proteases, apart from
caspase-1, may also cleave the pro-forms of IL-1b
and IL-18 at different sites, thereby giving rise to

peptide/protein fragments with non-
inflammasome-related biological activity.6,7

Nevertheless, not all inflammasomes need the
priming signal to become fully activated and they
can induce the secretion of inflammatory
cytokines through other mechanism.

Several inflammasomes with a range of
different PRRs, functions and regulators are now
described.3,4 Generally speaking, ‘canonical’
inflammasomes can be classified according to the
three different categories of PRRs that nucleate
these protein complexes; these are NOD-like
receptors (NLRs), pyrin and AIM2-like receptors
(ALRs) (Figure 1). Inflammasome sensor activation
is usually followed by recruitment of the adaptor
molecule apoptosis-associated speck-like protein
containing a CARD (ASC).8 Finally, the effector
molecule, caspase-1, is recruited to the complex
by ASC to form the large multimeric
inflammasome complex.9 Inflammasomes usually
employ caspase-1 as their effector protein;
however, ‘non-canonical inflammasomes’ are also
described, which activate other caspases, such as
caspases-11/4/5.10 These specialised ‘non-canonical’
inflammasomes can detect intracellular LPS
inducing inflammatory responses and pyroptosis.11

While detection of PAMPs and DAMPs by
specific inflammasome sensor proteins is usually
followed by a pro-inflammatory response, two
other single-domain protein molecular families,
referred to as CARD-only proteins (COPs) and
pyrin-only proteins (POPs), have emerged as
negative regulators of inflammasomes12

(Figure 1). These short structures are important
inflammasome regulators and play a key role in
fine-tuning the inflammatory response.

Inflammasomes are vital innate immune defence
complexes, responsible for monitoring pathogenic
invasions and counteracting molecular insults.
Perturbations of their signalling mechanisms may
lead to immunological conditions13,14 and genetic
disorders.13,15 Autoinflammatory diseases, such as
tumor necrosis factor receptor-associated periodic
syndrome (TRAPS) and familial mediterranean
fever (FMF), have all been directly linked with
excessive production of IL-1b and IL-18,14 because
of heightened inflammasome responses. Therefore,
a selection of these conditions will also be
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discussed, from the molecular level to the clinical
picture, including current and potential future
treatments.

INFLAMMASOMES SIGNALLING
PATHWAYS

While inflammasome activation may vary in
character, depending on the inflammasome in
question, the activation process essentially involves
four key steps overall – priming, sensing,
oligomerisation and activation/release of
inflammatory cytokines16 (Figure 2). In the priming
step, PAMPs and/or DAMPs induce transcriptional
upregulation of specific components of the
inflammasome, such as caspases, pro-IL-1b and pro-
IL-18.17 This first priming step is a ‘get-ready’ signal
for the cell to be alert in case a specific
inflammasome requires activation. If the cell is
subject to a sensing signal, then inflammasomes
sense intracellular insults and this is followed by a
third step involving inflammasome assembly.
Finally, the whole process culminates in release of
pro-inflammatory cytokines through membrane
pores formed by the pore-forming protein,
gasdermin D (GSDMD), while simultaneously
inducing pyroptosis. While pyroptosis is a
consequence of inflammasome activation, other
types of cell death, such as apoptosis, necroptosis
and PANoptosis, have also been associated with

inflammasome activation16-18 (Figure 2). As an
example, the NLRP3 inflammasome activation is
shown, nevertheless other inflammasomes may
signal exactly like the NLRP3 and these will be
described in their sections. For example, LPS can
function as one of the first priming steps in certain
inflammasomes, by inducing the transcription of
inflammasome components, such as NLRP3,
caspase-1, pro-IL-1b and pro-IL-18. On subsequent
detection of specific DAMPs or PAMPs, such as ATP,
urate crystals, bacterial-, viral- or fungal- derived
components, oligomerisation of the NLRP3
inflammasome occurs with binding of NIMA-
related kinase 7 (NEK7) and subsequent recruiting
of ASC and caspase-1 to facilitate dimerisation,
cleavage and activation of caspase-1.16 Active
caspase-1 induces the cleavage of inflammasome-
specific cytokines, such as IL-1b and IL-18, and
directs their secretion via pores in the plasma
membrane generated by GSDMD, inducing
pyroptosis19,20 (Figure 2).

While the activation mechanism of the
inflammasomes aforementioned is well accepted
within the majority of them, several other
mechanisms exist that can induce inflammasome
assembly and caspase activation. For instance,
NLRP1 and CARD8 can undergo post-translational
autoproteolysis inducing inflammasome activation
and release of IL-1b and IL-18 ASC-
independently.21,22 Similarly, NLRC4 can directly

Figure 1. Domain structure of inflammasomes and regulators. Different types of inflammasomes are shown; Nucleotide-binding and

oligomerisation domain NOD-like receptors (NLRs): NLRP1, NLRP3, NLRP6, NLRC4 and NLRC5 all contain a central NACHT domain and a and C-

terminal leucine-rich repeats (LRRs) domain; NLRP1, NLRP3, NLRP6 encompass an N-terminal Pyrin domain (PYD); NLRP1, NLRC4 and NLRC5

contain a caspase recruitment domain (CARD); only the human NLRP1 contains a function-to-find domain (FIIND). Pyrin inflammasome consists of

a PYD, a B-box (BB), a coiled-coil (CC), and a B30.2 domain. The AIM2-Like Receptors (ALR) AIM2 and IFI16 are members of PYHIN family,

containing an N-terminal PYD and C-terminal HIN-200 domain. PYD-only proteins (POPs) and CARD-only proteins (COPs) are composed of PYD or

CARD domains, accordingly, with different amino acid (AA) composition. The adaptor protein ASC links inflammasome sensors and caspase-1 via

the PYD and CARD domains.
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interact with caspase-1 via its CARD domain,
causing protease activation and release of
proinflammatory cytokines.23 Furthermore, these
ASC-independent events induce caspase-1
activation, and these processes are enhanced by a
priming step which induces ASC and other caspase
substrates.23,24

NLRP1

The first inflammasome to be described contained
NOD-, LRR- and pyrin domain-containing protein
1 (NLRP1).2 This inflammasome contains a unique
function-to-find domain (FIIND), located after its
LRR domain (Figure 1). FIIND is a highly conserved
protein region present in the NLRP1 and CARD8,
and its function is still to be fully elucidated2,25;
however, a study has shown that FIIND is a type
of ZU5- and UPA-like domain contained in
autoproteolytic proteins, which undergo
autocleavage.26 The FIIND domain of NLRP1
interacts with dipeptidyl peptidases 8 and 9 (DPP8
and DPP9), suppressing NLRP1 activation.27 DPP8
and DPP9 are cytosolic prolyl peptidases, with the
ability to cleave proline bonds from the N-
terminus of substrates, important in the
regulation of immune cell functions. The NLRP1
and DDP9 proteins form a complex containing the
inhibited NLRP1 molecule and an active UPA-
CARD NLRP1 fragment28; the ZU5 domain is
essential for both, formation of the complex and
autoinhibition of NLRP1.28 NLRP1 haplotype

single-nucleotide polymorphisms (SNPs) (M1184V)
were associated with reduction of inflammasome
activation, via increased binding of DPP9 to the
mutated FIIND domain, and this was associated
with increased asthma severity.29 Another unique
characteristic of the NLRP1 inflammasome is the
location of its CARD domain in its C-terminal
region, where it activates caspase-1. Although the
NLRP1 inflammasome can be found in most cell
types and tissues, it appears to have a vital role in
epithelial barriers, particularly in the
integumentary and respiratory systems.30-32

The recently described CARD8 inflammasome,
containing a short N-terminal region, a FIIND, and
a CARD domain, can also trigger pyroptosis in
CD4+ and CD8+ T cells regulated by DPP9.33

Furthermore, CARD8 was shown to detect HIV-1
protease activity and induce CARD8-depedent
pyroptosis in infected T cells and macrophages.34

The NLRP1 and CARD8 inflammasomes are
repressed by DPP8/9 via different mechanisms.35 A
recent study shows that a small molecule named
CQ31 can specifically activate CARD8 via inhibition
of M24B aminopeptidases prolidase (PEPD) and
Xaa-Pro aminopeptidase 1 (XPNPEP1).35 This
inhibition leads to accumulation of proline-
containing peptides that repress DPP8/9 inducing
CARD8 activation.

NLRP1 detects multiple viral protease
activities36,37 in addition to detecting double-
stranded (ds) RNA, via its LRR domain, and
effectively sensing virus-associated nucleic acids.38

Figure 2. NLRP3 inflammasome activation. Danger-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs)

are able to induce the priming step inducing the transcriptional upregulation of inflammasome components. DAMPs or PAMPs are subsequently

sensed inducing oligomerisation of the inflammasome sensor, NLRP3. Caspase-1, NEK7, ASC and the NLRP3 all together form the NLRP3

inflammasome. The NLRP11bound to ASC is required for NLRP3 oligomerisation and ASC polymerisation. The inflammasome is activated and

active caspase-1 cleaves pro-IL-1b and pro-IL-18 to their mature forms IL-1b and IL-18 which get secreted through gasdermin D pores (GSDMD);

alternatively, IL-1b and IL-18 can be secreted via different mechanism avoiding GSDMD.
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Both human and mouse NLRP1 are cleaved in a
similar manner, leading to degradation of the N-
terminal fragment, with liberation of the C-
terminal fragment containing the CARD domain,
a potent activator of caspase-1.36,39 In this way,
NLRP1 is seen to be a potent inducer of IL-18 and
IL-1b, and fundamental to host protection against
certain viruses, mainly in epithelial barriers.

Germline mutations in NLRP1 have been
reported to be responsible for two overlying
monogenic skin disorders, multiple self-healing
palmoplantar carcinoma (MSPC) and familial
keratosis lichenoides chronica (FKLC).30 In that
particular study, the reported NLRP1 mutations
were gain-of-function mutations, predisposing
epithelial cells to NLRP1 inflammasome activation,
and augmenting the levels of IL-1b, which exerted
paracrine signalling effects leading to multiple
epithelium-associated clinical symptoms.30 MSPC
and FKLC both demonstrate classical features of
autoinflammation, with spontaneous activation of
inflammatory pathways which, in theory, could be
resolved by IL-1b inhibition. Moreover, a total of 23
NLRP1 SNPs have been associated with the vitiligo
phenotype with associated autoimmune and/or
autoinflammatory features.31 Intriguingly, only
gain-of-function mutations have been reported, so
far, in relation to the NLRP1 inflammasome, with
another study presenting two cases of juvenile-
onset recurrent respiratory papillomatosis, with
high levels of IL-18, but not of IL-1b, in patients’
serum.32 Discrepancies in IL-18 and IL-1b cytokine
profiles are observed in other autoinflammatory
disorders, with potential divergent roles regarding
the site of inflammation.40,41 These IL-18 and IL-1b
disparities can be clinically relevant for the selective
treatment of certain inflammatory symptoms
observed in some autoinflammatory conditions via
small-molecule drugs. Although NLRP1 was the first
inflammasome to be described, several questions
remain regarding its function and role in other
immune-related disorders.

NLRP3

The NOD-, LRR- and pyrin domain-containing
protein 3 (NLRP3) inflammasome plays a critical
role in host defence against microbial infections
and a multitude of other harmful stimuli in
response to endogenous stress. NLRP3 is tightly
regulated by post-transcriptional and post-
translational modifications and a variety of
endogenous modulators.42,43 Under aberrant

conditions, the NLRP3 inflammasome is associated
with many autoinflammatory and metabolic
disorders, including cryopyrin-associated periodic
syndromes (CAPS), myelodysplastic syndromes
(MDS), obesity, type-2 diabetes and Alzheimer’s
disease.44

It is generally thought that effective NLRP3
inflammasome function requires both ‘priming’
and activation, as described above (Figure 2);
however, a recent study found that a priming step
may be dispensable in human monocytes, but
essential in monocyte-derived macrophages.45,46

These findings are worth considering while
developing specific inflammasome inhibitors, for
the purpose of targeting specific steps in
inflammasome activation. NLRP3 inflammasome
activation involves TLR signalling to activate NF-jB
and induce pro-IL-1b and NLRP3 expression, and
subsequent activation of the NLRP3 inflammasome
by plasma membrane disruption (for bacterial
toxins) or by internalisation of particulate
activators, such as alum or monosodium urate
crystals by phagocytosis.43 NLRP3 undergoes
conformational changes upon activation, mediated
by RACK1 and binding to NEK7.47 This enables
oligomerisation, providing a platform for ASC
recruitment, via PYD-PYD interactions.47 ASC
subsequently polymerises to form large cytoplasmic
filaments called ASC specks, and recruits caspase-1
(through its CARD domain), which undergoes
dimerisation, self-cleavage at the interdomain
linker, and subsequent increase in caspase-1
catalytic activity.48 This domino effect results in
cleavage, maturation and secretion of IL-1b, IL-18,
as well as liberation of GSDMD’s N-terminal
domain, to initiate pyroptotic cell death (Figure 2).

Despite extensive NLRP3 inflammasome
characterisation, the precise mechanisms of
activation and regulation remain unknown:
nevertheless, potential therapeutic targets are
constantly emerging.49,50 The cGAS-STING pathway
was recently shown to recruit NLRP3 at the
endoplasmic reticulum upon HSV-1 infection, with
subsequent NF-jB and NLRP3 activation.51 Specific
blockade of the NLRP3 inflammasome, but not the
AIM2 or NLRC4 inflammasomes, by itaconate and its
derivative 4-OI, leads to modification of cysteine
548 in the NLRP3 molecule, thereby interfering with
NLRP3-NEK7 interactions.52 Itaconate is a potent
anti-inflammatory and anti-microbial metabolite,
produced by immune-responsive gene 1 (IRG1)
enzyme,52,53 and itaconate-depleted lrg1�/�

macrophages show increased NLRP3 activation.52
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There is increasing evidence of the NLRP3
inflammasome’s role in sensing bacterial toxins and
virulence factors and activating host Rho GTPases.
p21-activated kinases 1 and 2 (Pak1/2) and the
Pak1-mediated phosphorylation of Thr-659 of
NLRP3 were shown to essential for the NLRP3-Nek7
interaction in mice.54 In a different study carried
out in mouse and human macrophages,
recruitment of NEK7 to NLRP3 was controlled by
phosphorylation of Serine-803 (S803) in the LRR
domain of NLRP3 (S806 in humans).55 These
findings suggest an important regulatory
mechanism targetable by small molecules, to
disrupt NLRP3 inflammasome assembly.

The majority of stimuli that activate the NLRP3
inflammasome do not directly bind to NLRP356,57

and mitochondria have been proposed as the
missing link underlying this mechanism.
Mitochondria can be damaged by danger signals,
such as K+ efflux or changes in intracellular Ca2+,
resulting in mitochondrial DNA (mtDNA) release
into the cytosol, triggering reactive oxygen species
(ROS) and oxidisation of the mtDNA, which may
become an NLRP3 ligand.58,59In support of this
model of ROS-modified mtDNA as an NLRP3
activator, macrophages lacking mtDNA show
reduced IL-1b production58; however, questions
remain about the high concentration of ROS
inhibitors used, leading to potential artefacts or
inhibition of NLRP3 priming.43,60 Nevertheless, LPS
triggers MyD88 and TRIF signalling, and activates
IRF1-dependent transcription of CMPK2 (a
mitochondrial nucleotide kinase) to enable mtDNA
synthesis.61,62 This newly synthesised mtDNA is
particularly susceptible to oxidisation, and may
release fragments of ox-mtDNA into the cytosol to
co-localise with components of the NLRP3
inflammasome in macrophages.61 This co-
localisation of NLRP3 induced ASC-specks and ox-
mtDNA, however, is not observed with AIM2-
induced ASC specks.61 Associations between
circulating mtDNA and NLRP3 are also emerging,
with potential as biomarkers of NLRP3 activation
and increased levels of cell-free circulating mtDNA
have been linked to a poor prognosis in patients
with COVID-19.63 Indeed, coronaviruses have been
shown to activate the NLRP3 inflammasome, via
either indirect interaction with NLRP3 (SARS-CoV E
viroporin protein, viroporin 3a) or direct activation
with NLRP3 (SARS-CoV-2 N protein), resulting in
hyperinflammation and increased COVID-19
severity.64-66 Finally, guanylate-binding proteins
(GBPs), members of the GTPase family, are

associated in the regulation of several
inflammasomes.67 Increased levels GBPs have been
reported in certain inflammatory and autoimmune
disorders with important implications for the
NLRP3.68 In the context of NLRP3, human GBP5
binds the pyrin domain of the NLRP3 increasing
complex formation.69 Moreover, Gbp5�/� bone
marrow-derived macrophages show impaired
activation of the NLRP3 inflammasome, but not
NLRC4, with low levels of IL-1b and IL-18.69

NLRP 6 AND 7

The NLRP6 inflammasome has been implicated in
a number of different physiological processes,
including host defence against microbial
infections,70-73 maintenance of epithelial integrity73,74

and regulation of neuroinflammation.75,76 The
initial characterisation of NLRP6 identified it as
having a unique property among the NLRs in that it
activates both caspase-1 and NF-jB,77 although,
interestingly, it has also been shown to negatively
regulate NF-jB downstream of TLR signalling in a
mouse model.72

Evidence strongly suggests that NLRP6
assembles an inflammasome. NLRP6 co-localises
with ASC, both under steady-state conditions and
following bacterial infection in vitro.70,77,78 In vivo
studies showed reduced serum IL-18 levels in
Nlrp6�/� mice, both under steady-state conditions
and following dextran sulphate sodium (DSS)-
induced colitis than in WT mice,79,80 as well as
reduced IL-1b levels in bronchoalveolar lavage
fluid from Nlrp6�/� mice compared with WT
following MRSA infection.70 However, in these
same studies, IL-1b expression was increased in the
colon of Nlrp6�/� mice79 and both IL-1b levels and
caspase-1 activity were comparable between
Nlrp6�/� and WT mice following infection with
various bacteria,72 making it unclear whether
NLRP6 inflammasome assembly occurs during
systemic bacterial infection.

More recently, the NLRP6 inflammasome was
shown to be activated by Gram-positive bacteria,
including Staphylococcus aureus (MRSA) and
Listeria monocytogenes, leading to IL-1b and IL-18
maturation and pyroptosis.70,71,81 Lipoteichoic acid
(LTA) has been implicated in the initial ‘priming’
signalling event; it has been found to upregulate
NLRP6 and caspase-11 expression via type 1
interferon signalling,71 as well as activating the
NLRP6 inflammasome through the ASC-caspase-
11-caspase-1 signalling pathway.71
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The NLRP7 inflammasome is also incompletely
characterised, with evidence suggesting that to
recognises cell wall components and microbial
acylated lipopeptides, and promotes ASC-
dependent activation of caspase-1, with IL-1b and
IL-18 maturation to restrict intracellular bacterial
replication.82 Activation of this proposed
inflammasome following Staphylococcus aureus
infection has been suggested to require ATP
binding at the NLRP7 Walker A motif,83 as well as
being regulated by NLRP7 ubiquitination.84

Although further study defining the NLRP7
inflammasome is required, there is also substantial
evidence to support NLRP7 as a negative regulator
of inflammasome signalling. Reduced IL-1b release
has been observed in NLRP7 overexpression
studies in HEK293 cells77,85 and in peripheral
blood mononuclear cells (PBMCs) from patients
with disease-associated loss-of-function NLRP7
variants,86 whereas NLRP7 mutants that resulted
in truncated NLRP7 protein did not inhibit IL-1b
release.87,88 Various mechanisms have been
proposed for this regulation of IL-1b, including
direct interaction with and inhibition of
inflammasome components, and alteration of pro-
IL-1b transcription and subsequent trafficking and
release of the mature forms,89 although further
validation is required for this, as various reports
have also shown a lack of effect of NLRP7 on
inflammatory responses.77,82,84,90 Taken together,
these studies illustrate a multifaceted role for the
NLRP7 inflammasome in the regulation of
inflammatory responses. Taken together, these
studies illustrate a multifaceted role for the NLRP7
in the regulation of inflammatory responses,
wherein it may negatively regulate the
inflammasome in the resting state but assemble
an inflammasome following a stimulus such as
bacterial infection.

PYRIN

Similar to NLRP3, the pyrin inflammasome detects
intracellular pathogens and is tailored to
counteract bacterial toxins from different
species.91 The human pyrin protein is composed of
four main domains: an N-terminal PYD domain
which interacts with ASC with subsequent
activation of caspase-1: a B-box domain 60 to 280
amino acids long; a central helical scaffold (CHS)
connected to the B30.2 domain on its C-terminus
(Figure 1),92 and the B30.2 domain, where the
majority of pathogenic mutations are found in

humans, but this domain is absent in mice. The
Pyrin inflammasome sensor detects inhibition of
RhoA subfamily GTPases activity and is activated
by various RhoA inhibiting toxins, including TcdA
and TcdB from Clostridioides difficile (C. difficile)
RhoA is a member of the GTPases superfamily that
activates protein kinase N1 (PKN1) and PKN2,
thereby facilitating binding of the inhibitory
protein 14–3-3 to pyrin by phosphorylating pyrin
at Ser208 and Ser242, which results in the inactive
form of pyrin.91-93 This inflammasome is triggered
when bacterial toxins, such as C. difficile toxin A
or B,91 inactivate RhoA, reducing PKN1 and PKN2
activity, dissociating 14–3-3 from pyrin93 and fully
activating pyrin, to culminate in caspase-1
dimerisation and cleavage to caspase-1 and
production of mature forms of IL-18 and IL-1b.94

Aberrant actin depolymerisation can activate the
pyrin inflammasome inducing autoinflammation
driven by IL-18, but not IL-1b.95 Mice homozygous
for a hypomorphic allele of Wdr1 manifested
several cutaneous features which were similar to
those presented by patients with
autoinflammatory disorders. Finally, this unique
pyrin inflammasome activation, driven by aberrant
actin depolymerisation, was only observed in
monocytes and not in macrophages or neutrophils.

Several autoinflammatory disorders have been
linked, directly or indirectly, to the pyrin
inflammasome14,96 and will be discussed later
(Figure 3). Mutations in the MEFV gene, which
encodes pyrin in humans, are known to cause
FMF.97 Receptor-interacting serine/threonine-
protein kinase 3 (RIPK3) was recently shown to
influence pyrin activation by exerting an
inhibitory effect on the mammalian target of
rapamycin (mTOR), leading to transcription of
MEFV and pyrin inflammasome activation.98

Another study has demonstrated that while pyrin
dephosphorylation was not sufficient to induce its
activation in healthy individuals, the opposite was
the case in FMF patients, with inflammasome
activation, IL-1b secretion and pyroptosis in
monocytes.99 These molecular insights are of great
importance in several autoinflammatory disorders
and may form basis of new treatments for
patients harbouring disease-causing mutations.
Activation of the pyrin inflammasome can also be
induced by two microbiome-derived bile acid
metabolites, BAA485 and BAA473, revealing an
unexplored role of pyrin in the lower
gastrointestinal tract.100 Finally, while many MEFV
mutations cause FMF, a recent study also showed
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that certain MEFV mutations, such as
MEFV_p.M680I, confer protection against Y. pestis
infection by inducing high levels of IL-1b.
Therefore, it is proposed that perhaps Y. pestis
influenced evolutionary selection of some FMF-
associated mutations in certain human
populations.101

NAIP-NLRC4

The NLR family CARD domain-containing 4 (NLRC4)
inflammasome is activated by bacterial flagellin
and T3SS secretion system rod proteins and forms
an integral component of the immune response
against cytoplasmic Gram-negative bacteria.102 In
contrast to other inflammasomes, regulation by the
NLRC4 inflammasome is dependent on its
cooperative activity with NLR apoptosis inhibitory
proteins (NAIPs), an NLR subfamily of proteins that

act as cytosolic innate immune receptors for
specific bacterial ligands. Whilst the mouse
genome encodes NAIP1, NAIP2 and NAIP5/6,103-106

there is only one human NAIP and this recognises
the T3SS needle protein.107 Following detection of
the relevant ligands, NAIPs bind to NLRC4 to induce
a structural reorganisation from its autoinhibited
state to its active configuration,108 which in turn
recruits caspase-1109; NLRC4 can bind to caspase-1
directly via its CARD domain or indirectly via the
adaptor molecule ASC that functions as an
intermediary between NLRC4 and caspase-1.109

Caspase-1 activation leads to IL-1b and IL-18
release, with IL-1b stimulating the recruitment of
neutrophils to destroy extracellular bacteria.
Caspase-1 also initiates removal of intracellular
bacteria via pyroptotic cell death, releasing the
bacteria and exposing them to uptake and killing
by ROS in neutrophils.110,111

Figure 3. Inflammasome sensors, activators and related disorders. The NLRP1, NLRP3, pyrin, NLRC4 and AIM2/IFI16 with their current ligands

and intracellular mediators involved in activation of these molecules. NLRP1 detects lethal toxin Bacillus anthracis (B. anthracis), Shigella flexneri

(S. flexneri), Listeria monocytogenes (L. monocytogenes). NLRP3 is an overall sensor for several PAMPs and DAMPs (Figure 2) responding to

intracellular damage induced by pathogenic or sterile insults. Pyrin inflammasome is activated by bacterial toxins that modify RhoA GTPases. The

NLRC4 inflammasome detects bacterial proteins via NLR family-apoptosis inhibitory proteins (NAIPs) and can assemble an inflammasome with or

without ASC. Absent in melanoma 2 (AIM2) and IFNcinducible protein-16 (IFI16) detect dsDNA via their HIN-200 domains. When these sensors

are chronically activated or not properly regulated, inflammatory-related conditions are caused by these inflammasomes. MSPC, Multiple self-

healing palmoplantar carcinoma; FKLC, Familial keratosis lichenoides chronica; NAIAD, NLRP1-associated autoinflammation with arthritis and

dyskeratosis; MWS, Muckle–Wells syndrome; FCAS, familial cold autoinflammatory syndrome; MDS, myelodysplastic syndromes; neonatal-onset

multisystem inflammatory disease (NOMID)/chronic infantile neurological nutaneous and articular (CINCA); PAAND, pyrin associated

autoinflammation with neutrophilic dermatosis; FMF, familial mediterranean fever; PAPA, pyogenic arthritis, pyoderma gangrenosum, and acne;

MKD, mevalonate kinase deficiency; AIFEC, autoinflammation and infantile enterocolitis; NLRC4-MAS, NLRC4 macrophage activation syndrome;

CKD, chronic kidney disease.
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Pyroptotic bacterial clearance has led to further
investigation of the role of NLRC4 in PANoptosis,
an inflammatory programmed cell death
mechanism controlled by a multimeric protein
called the PANoptosome. This large complex
comprises molecules from the programmed cell
death pathways of pyroptosis, apoptosis and
necroptosis,112 and NLRC4 has been implicated in
caspase-mediated cleavage of the DNA damage
sensor poly (ADP-ribose) polymerase 1 (PARP1), a
hallmark of apoptosis.113 Furthermore, Salmonella
typhimurium (S. typhimurium) infection induces
both NLRC4 inflammasome activation and
alongside other forms of cell death in
macrophages.114 S. typhimurium clearance is also
dependent on either caspase-8 driven apoptotic,
pyroptotic or necroptotic pathways, demonstrating
cellular flexibility to protect against intracellular
infections.115 As long as caspase-1 or caspase-8 are
activated during S. typhimurium infection,
macrophages can undergo a form of cell death to
control S. typhimurium infection, which can be
driven by the NLRC4 or other unknown factors.115

Four clinical phenotypes of NLRC4
inflammasome-related diseases, because of gain-
of-function NLRC4 mutations, have been reported;
autoinflammation and infantile enterocolitis
(AIFEC), NLRC4 macrophage activation syndrome
(NLRC4-MAS), familial cold autoinflammatory
syndrome (FCAS) and chronic infantile neurological
cutaneous and articular (CINCA), also known as
neonatal-onset multisystem inflammatory disease
(NOMID).116 However, NOMID/CINCA is often more
associated with NLRP3 mutations. The severity of
symptoms range from AIFEC and NLRC4-MAS,
which require frequent hospitalisations for life-
threatening episodes, to FCAS4 with milder
phenotypes of urticarial rash and arthritis.117,118

However, progress in this field is slow as there are
relatively few known patients with pathogenic
NLRC4mutations.119

AIM2

Absent in Melanoma 2 (AIM2) is a cytosolic sensor
that recognises double-stranded DNA, binding
through its C-terminal domain HIN-200 domain,
and resulting in AIM2 inflammasome activation.120

Ongoing research shows that AIM2 is
multifunctional, acting as a host defence against a
range of pathogens, and also been implicated in a
multitude of diseases.120,121 Like the NLRP3
inflammasome, the AIM2 inflammasome pathway

involves AIM2 activation and oligomerisation, ASC
binding (through AIM2 and ASC PYDs), caspase-1
dependent cleavage and activation of IL-1b, IL-18
and GSDMD, and subsequent pyroptosis.121 The
assembly of AIM2-ASC has also been implicated in
caspase-8 and downstream caspase-9 activation
causing caspase-3 dependent, caspase-1
independent, apoptosis.122 AIM2 inflammasome
signalling has been shown to play a key role in
neurodevelopment and CNS homeostasis, through
its role in GSDMD regulation.123 AIM2 also has a
role in early brain injury, following subarachnoid
haemorrhage, as patients had significantly
increased cerebral spinal fluid (CSF) levels of AIM2,
and neuronal damage was reversed in AIM2 and
caspase-1 KO models.124 An additional role of
AIM2 has emerged, linked to a regulatory role of
pyrin and ZBP1, with the ability to induce
PANoptosis through multi-protein interactions of
AIM2, pyrin, ZBP1, ASC, caspase-1 and -8, RIPK-3
and -1 and FADD through pyroptosis, apoptosis
and necroptosis pathway interactions, following
herpes simplex virus 1 (HSV-1) and Francisella
novicida (F. novicida) infection.125 Despite AIM2’s
major role in cytosolic DNA detection and
inflammasome activation, this is dispensable in
human myeloid cells; instead, the cGAS-STING
pathway is the main perpetrator of lysosomal cell
death, by inducing NLRP3 activation, resulting
from upstream K+ efflux and initiating antiviral
immunity.126 Moreover, AIM2 senses radiation-
induced DNA damage, in intestinal epithelial and
bone marrow cells, thereby activating the
inflammasome with subsequent cellular death.127

This has therapeutic implications for AIM2
manipulation and control of inflammation.
Recently, AIM2 was shown to play an important
role in driving aldosterone-induced renal injury via
ER stress, with important implications in the
treatment of chronic kidney disease (CKD).128

High-mobility group box-1 (HMGB1) has been
implicated in AIM2-ASC inflammasome
activation.129 Circular RNA PPP1CC was recently
shown to stimulate Porphyromonas gingivalis LPS-
induced pyroptosis in vascular smooth muscle
cells, by AIM2 activation through the HMGB1/
TLR9/AIM2 pathway, also promoting
atherosclerosis.130 This study reported in vitro
siRNA knockdown of circPPP1CC in HUVEC cells,
resulting in pyroptosis decrease and reduced
levels of HMGB1, TLR9, AIM2 and caspase-1.
HMGB1 has been implicated in LPS-induced acute
lung inflammation by activating the TLR2, TLR4
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and RAGE/NF-jB pathways in mice, with AIM2
inflammasome activation and M1 macrophage
polarisation.131

GBP2 and GBP5 are important promoters of
AIM2 inflammasome activation by inducing
cytosolic bacteriolysis and DNA release during
F. novicida infection.132 F. novicida covered with
GBPs is targeted by immunity-related GTPase B10
(IRGB10) with further activation of AIM2.133

IRGB10 was also shown to contribute towards
activation of the caspase-11–NLRP3 inflammasome
in response to Gram-negative bacteria, other than
F. novicida.133

IFI16

In a similar manner to AIM2, IFNc-inducible
protein-16 (IFI16) is an intracellular innate sensor
that detects viral RNA, single and double-
stranded viral DNA.134-137 AIM2 and IFI16 are
members of the pyrin and HIN domain (PYHIN)
protein family, and these two are also known as
ALRs.135,138 IFI16 has been shown to detect herpes
simplex virus type 1 (HSV-1),135 Kaposi sarcoma-
associated herpesvirus,139 vaccinia virus,140 HIV,134

chikungunya virus141 and influenza A virus.136

Unlike AIM2, IFI16 contains two HIN-200 subunits,
HINa and HINb, that detect the nucleic acid in
question,135 or enhance the transcription of
retinoic acid-inducible gene-I (RIG-I).136,137

Activation of IFI16 through sensing nucleic acids
induces activation of the STING-TBK1 pathway,
which leads either to the induction of type I IFNs
through IRF3,142 IL-1b secretion by interactions of
its pyrin domain that interacts with caspase-1 and
ASC to form a functional inflammasome,139 or NF-
jB activation after nuclear DNA damage.143 IFI16
has also been associated with cervical cancer
progression by inducing the immune checkpoint
programmed cell death 1 ligand 1 (PD-L1) via
the STING/TBK1/NF-jB pathway.144 This could
be of high importance because of the
immunomodulatory effects of PD-L1 in several
cancers.145,146 Regarding inflammatory-related
disorders, the serum levels of IFI16, as well as anti-
IFI16 antibodies, were elevated in psoriatic
arthritis (PsA), which was more pronounced in
patients with high CRP levels.147 Moreover, STING
also negatively regulates IFI16 by recruiting the E3
ligase TRIM21, which degrades IFI16 through
ubiquitin-mediated proteasomal degradation,
thus preventing IFN-I overproduction.148 IFN
regulation is a fundamental cellular mechanism to

avoid autoinflammation, and a transcript isoform
of IFI16 (IFI16-b), inhibits the formation of the
AIM2-ASC complex.149 IFI16 is a key sensor of viral
nucleic acids, in regulating IFN and modulating
the inflammatory response.

COPS AND POPS

CARD-only proteins (COPs) and pyrin-only proteins
(POPs) are small, cytoplasmic endogenous
regulators of inflammasome assembly which are
present in humans but absent in the mouse and
rat genome.150

Pyrin-only proteins consist of the PYD alone and
are named POP1, POP2, POP3 and POP4.
Expression of POP1 and POP2 is induced by several
hours of TLR activation,151,152 following which
they interact with the PYD of ASC,153-155

seemingly binding competitively with this domain
to prevent ASC oligomerisation, IL-1b and IL-18
release and pyroptosis.152,156-158 Silencing of POP1
in human macrophages is reported to exacerbate
inflammation, whereas POP1 expression had a
robust anti-inflammatory effect in mice.151 POP2
has additionally been shown to inhibit
NF-jB152,154,155,158; however, elevated IFNc levels
were seen in POP2-expressing transgenic mice,
suggesting a mechanism by which POP2 heightens
immune responses.158 POP3 differs in that it binds
to the PYDs of the DNA sensors AIM2 and IFI16,
but not of ASC,159 and is stimulated by dsDNA
viruses.159 POP3 appears not to affect NF-jB and
MAPK signalling or inflammatory cytokine release
in response to NLR inflammasome agonists, but
instead selectively inhibit AIM2-like receptor
(ALR) inflammasomes and their downstream
inflammatory processes.159 Finally, POP4 is the
most recently discovered POP whose expression is
upregulated by LPS stimulation.160 It inhibits
NF-jB activity following TNF stimulation by
blocking TLR-induced RelA/p65 transactivation
and secretion of NF-jB-regulated cytokines, such
as TNF and IL-6.160

CARD-only proteins, in contrast, consist of a
CARD domain and comprise CARD16 (pseudo-IL-1b
converting enzyme (pseudo-ICE)/Cop), CARD17
(Inca), and CARD18 (Iceberg). The first of these,
CARD16, binds competitively with the caspase-1
CARD, preventing its dimerisation and reducing
the maturation and release of IL-1b.161-163 It also
interacts with the ASC CARD164 and may affect
NF-jB activation via the CARD-containing
kinase receptor-interacting-serine/threonine-protein
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kinase 2 (RIP2).161,162 Nevertheless, these studies
were mainly carried out in cell lines in which
CARD16 was transiently overexpressed,164 further
investigation in primary cells is required to support
the physiological relevance of these studies.
Similarly, CARD17 interacts with itself to form
dimers, also binding to other COPs and the CARD
of caspase-1.162,165 Its expression is upregulated by
pro-inflammatory stimuli, in particular IFNc.162 The
proposed mechanism of action of CARD17 is that it
binds specifically to the filamentous form of
caspase-1, localising at the tip of caspase-1 CARD
filaments to act as a cap, thereby preventing
caspase-1 CARD polymerisation and subsequent
inflammasome activity.165 In contrast to CARD16,
CARD17 does not affect TNF-induced NF-jB
activation,162,165 apparently specifically targeting
caspase-1 activation. CARD18 interacts with the
pro-caspase-1 CARD, as well as self-
aggregating,161,165,166 although the evidence
regarding its function is conflicting. CARD18 has
been implicated as acting in a negative feedback
mechanism to inhibit RIP2 binding to caspase-1
and disrupting existing RIP2/caspase-1 complex to
reduce IL-1b release.161,166 However, one study
found that CARD18 did not inhibit inflammasome
activation, despite being incorporated into
caspase-1.165 This may be because CARD18
expression is upregulated by LPS or TNF
stimulation over several hours, suggesting this
protein is produced slowly so that the beneficial
effects of inflammation can occur before the
process is halted.166 Further studies in relevant
cellular models are required to determine the role
of this protein.

NON-CANONICAL INFLAMMASOME

The one-step non-canonical inflammasome senses
the cytosolic presence of LPS derived from Gram-
negative bacteria, specifically by monocytes.167

LPS bind directly to caspase-4 (caspase-11 in mice)
and caspase-5, which initiates NLRP3-caspase-1-
dependent IL-18 and IL-1b cleavage and secretion,
as well as driving inflammatory cell death via
GSDMD-dependent pyroptosis.168,169 This
mechanism of inflammasome activation was first
reported by Kayagaki et al. in 2011 using genetic
depletion of caspase-11 in C57BL/6 mice.2 The
presence of a mutation in caspase-11 exon 5 in
mice, resulted in failure to induce macrophage
cell death and the absence of IL-18 and IL-1b in
the serum upon E. coli, C. rodentium and

V. cholerae infection. This study also elucidated
the role of caspase-11 in the induction of lethal
septic shock in mice.

Aberrant activation of non-canonical
inflammasome factors has been associated with a
range inflammatory pathologies; for instance, a
case of a 10-year-old girl diagnosed with Aicardi-
Gouti�eres syndrome (AGS), positive for
heterozygous IFIH1 mutation (c.2336G > A
(p.R779H)). The patient showed elevated
histological levels of caspase-4 and caspase-5
processing in intestinal tissue.170 This was
correlated with symptoms such as diarrhoea,
inflammatory cell infiltration and increased levels
of IL-6 and IFNa in serum, underlining the
importance of the non-canonical inflammasome in
clinical development of this case.

A Finnish family, presenting a gain-of-function
mutation (Arg219His) in the late myeloid
differentiation factor CCAAT enhancer-binding
protein epsilon (C/EBPe), developed an autosomal
recessive neutrophil-specific granule deficiency.171

Clinically, these patients present symptoms related
with autoinflammation, immunodeficiency and
neutrophil failure. Whole-transcriptome and qPCR
screening of patients’ granulocytes showed
upregulation of PRTN3, a regulator of both IL-1b
and IL-18. Canonical (NLRP3, IL-18) and non-
canonical inflammasome elements (CASP5) were
transcriptionally upregulated in macrophages.171

Indeed, histological examination of LPS-stimulated
macrophages derived from these patients revealed
a unique signal of caspase-5 but not caspase-1
cleavage, compared with healthy controls. This
study supports the functional relevance of the
non-canonical inflammasome in autoinflammatory
diseases.

Other studies have highlighted an important role
of the non-canonical inflammasome in senescence
biology. The senescence-associated secretory
phenotype (SASP) is partly controlled by activation
of the non-canonical inflammasome in vitro.172

Genetic depletion of caspase-5 reduced the
secretion of hallmark cytokine factors related to
SASP, such as of IL-1a, IL-6, IL-8 and MCP-1 factors
in fibroblasts.173 In a different study, augmented
expression levels and activation of caspase-4, via
cytosolic LPS, induced a senescence state and
pyroptotic cell death in IMR-90 fibroblasts.174 This
was reflected by raised levels of p16INK4a, p21CIP1
proteins, and increased activity of senescence-
associated-b-galactosidase. Moreover, in vivo
studies using NF-jB KO mice showed a correlation
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in the expression levels of caspase-11 with p21 in
lung epithelial cells. Finally, caspase-11 expression
also correlated with loci of telomere-associated
DNA-damage response, a hallmark of senescence,
in alveolar cells of 24-month aged mice. Overall,
these studies support the notion that induction of
non-canonical inflammasome pathways is relevant
to the biology of senescence and may present a
viable therapeutic opportunity for a variety age-
related diseases.

INFLAMMASOMES IN
AUTOINFLAMMATORY DISORDERS

TRAPS

TRAPS is a rare monogenic autosomal dominant
autoinflammatory disorder linked to mutations in
TNFRSF1A.175 Its clinical manifestations include
prolonged bouts of fever, associated with marked
left-shifted leukocytosis, skin rash, per-orbital
oedema, pleuritic chest pain and AA
amyloidosis.176,177 To date, over 100 pathogenic
variants of TNFRSF1A have been reported in
Infevers,178 and 97 of these are single-nucleotide
missense mutations within exons 2, 3 and 4, and
80% of the variants are located within the first
two cysteine-rich domains (CRD1, CRD2).

Our understanding of TRAPS pathophysiology
has been hindered by the marked heterogeneity
between each variant, and varying experimental
conditions, such as differences in cell lines, mutant
constructs for transfection and cell-type effects.179

Blood soluble TNFR1 levels are reduced by about
50% in people affected by TRAPS, and this
information was paramount to gene discovery.175

Thus, an initial hypothesis was that impaired
shedding of the receptor TNFR1 resulted in
reduced levels of circulating TNFR1 acting as a
TNF inhibitor.175 But shedding anomalies could
not be reproduced among all TNFR1 variants and
all cell types,179 and further data showed that
mutated TNFR1 subcellular traffic was disturbed,
leading to abnormal ER retention and reduced
cellular membrane expression.179,180 Mutated ER-
retained TNFR1 self-aggregates180 and probably
transduces inflammatory signals on its own,179-181

as TRAPS patients’ monocytes show ligand-
independent NF-jB activation,179 particularly as
mutated TNFR1 is often unable to bind TNF.181

TNFR1 variants also lead to increased
mitochondrial ROS (mtROS) production, a known
activator of the NLRP3 inflammasome.182

Inhibition of mtROS impedes pro-inflammatory
cytokine production in mouse embryonic
fibroblasts transfected with TNFRSF1A pathogenic
variants.182 Mutated variants of TNFR1 also induce
atypical ER stress and unfolded protein response
(UPR) transcriptomic signature.183 This is likely to
result in NLRP3 activation, as ER-retained TNFR1
can recruit the ER stress sensor, IRE1a, an essential
UPR effector184 whose inhibition prevents NLRP3
activation.185,186 Indeed, IRE1a can promote NLRP3
inflammasome assembly by damaging
mitochondria via caspase-2 and Bid activation.185

These molecular elements correlate quite well
with therapeutics. Indeed, TNF blockade is
inconsistently efficient in TRAPS,187 as
endocellular TNFR1 aberrantly signals
independently of its ligand. Meanwhile, IL-1
blockade is very effective in producing clinical
remission in selected patients,177,188 which
suggests that the NLRP3 inflammasome is
responsible for proinflammatory cytokine
secretion in TRAPS. If confirmed, NLRP3 inhibitors,
such as MCC950189 and OLT1177,190 could be
candidates for tailored treatment in TRAPS.

CAPS/NLRP3-AIDs

Cryopyrin-associated periodic syndromes also
known as NLRP3-associated autoinflammatory
diseases (NLRP3-AIDs) comprise a series of rare
monogenic autoinflammatory conditions which
range in severity from the mildest FCAS, to the
moderate Muckle–Wells syndrome (MWS), and
more severe CINCA/NOMID.191 These disorders are
caused by gain-of-function mutations in the
NLRP3 gene, with almost 100 known pathogenic
mutations.192 CAPS-related mutations are
associated with systemic inflammation, which may
lead to irreversible organ damage if untreated,
and symptoms including urticaria-like rash, cold-
induced fever and sensorineural hearing loss.191

The pathogenesis of these disorders stems from
the constitutive activation of the NLRP3
inflammasome and associated increase in caspase-1
activity, IL-1b and IL-18 release and pyroptosis.193,194

Monocytes and macrophages from CAPS patients
release a constitutively high level of IL-1b compared
with healthy controls,195-197 with IL-1b secretion
occurring much faster in monocytes from CAPS
patients.198 The NLRP3 inflammasome in monocytes
from FCAS patients can also be activated by mildly
hypothermic temperatures of 32°C.199 Monocytes
from CAPS patients and DCs from mice harbouring
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CAPS-related mutations also produce elevated IL-18,
and mouse models of CAPS have shown that IL-1b
and IL-18 drive the pathology at different disease
stages, with IL-18 contributing to early
inflammation and IL-1b to later systemic
inflammation.200 Furthermore, significant
inflammation was still observed when these mice
were bred onto an IL-1 receptor (IL-1R) and IL-18
receptor (IL-18R)-deficient background, indicating
that inflammation is not fully dependent on these
cytokines in mice. In contrast, caspase-1 and GSDMD
are both required for CAPS pathogenesis in mice, as
knockout of each of these proteins prevented
autoinflammatory symptoms in murine
models.197,200-202 Although further research is
required in human studies, at this stage, it would
seem that CAPS pathogenesis is primarily
dependent on caspase-1 and GSDMD, and on
hypersecretion IL-1b and IL-18 to a lesser extent.

The three IL-1 inhibitors currently used in
clinical practice to treat CAPS are anakinra
(Kineret), a recombinant version of the human IL-
1R antagonist protein (IL-1Ra) canakinumab
(Ilaris), a human monoclonal antibody which
targets IL-1b, and rilonacept (Arcalyst), a fusion of
the human IL-1R component (IL-1R1) and IL-1R
accessory-protein (IL-1RAcP) which potently binds
IL-1b and IL-1a.203 Potential future therapeutics
are also emerging, including two small-molecule
NLRP3 inhibitors related to the well-characterised
MCC950,204 Inzomelid (clinical trial identifiers
NCT04015076 and NCT04086602) and Somalix.
These inhibitors have completed phase 1 trials,
with Inzomelid completing phase 1b in CAPS
patients.205,206 Further potential treatments which
have completed phase 1 clinical trials include the
tryptophan analogue, Tranilast (NCT03923140), a
novel hybrid Fc-fused IL-1Ra (NCT02175056),207

and ATI-450, a small-molecule inhibitor of the
p38a mitogen-activated protein kinase (MAPK)/
MAPK-activated protein kinase 2 (MK2)
inflammatory signalling pathway,208 although the
COVID-19 pandemic has hindered recruitment for
phase 2 trials.

FMF and PAAND

FMF is a monogenic autosomal recessive
autoinflammatory disorder that was first described
clinically in the late 1940s.209,210 Patients with FMF
suffer from recurring bouts of fever, abdominal or
chest pain, arthritis, pseudo-erysipelas and they
may also be afflicted with AA amyloidosis and

mesothelioma. The disease was linked, in 1997, to
mutations in the MEFV gene corresponding to the
pyrin protein211,212 (Figure 3).

Mutations in patients with FMF generally
involve the C-terminal B30.2 domain of pyrin. This
domain does not exist in rodents, imposing a
significant caveat on the extrapolation of data
from murine models.213 Mutations in FMF do not
impede the interaction of pyrin with caspase-1
and pro-IL-1b214; however, they substantially
decrease the binding of pyrin to protein kinases N
(PKN) 1 and 2.93 PKNs are kinases belonging to
the protein kinase C superfamily and also RhoA
GTPase effectors. These enzymes phosphorylate
pyrin on serines-208 and -242, which enables 14–
3-3 protein to bind and inhibit pyrin activation.93

Thus, inactivation of RhoA triggers inflammation
by removing pyrin inhibition by PKN-dependent
phosphorylation and FMF mutations may decrease
PKN-mediated inhibition of pyrin.93

Colchicine, which inhibits microtubular
polymerisation,214 remains the cornerstone of FMF
treatment since the 1970s.215 In healthy
monocytes, pyrin activation depends on both
serines-208 and -242 dephosphorylation and
efficient microtubule assembly.99,216 Colchicine
inhibits this latter step without affecting the
former; however, colchicine is less effective
in vitro as an inhibitor of dephosphorylation-
dependent pyrin activation in FMF monocytes
than that in HC monocytes.99

Of note, an autosomal dominant disorder termed
pyrin-associated autoinflammation with
neutrophilic dermatosis (PAAND), clinically different
from FMF, is caused by specific mutations in pyrin
that abolish the 14–3-3 binding motif.217,218

Interestingly, FMF mutations do not seem to affect
14–3-3 binding.217 Serum levels of proinflammatory
cytokines may be tenfold higher in FMF than in
PAAND,99,217,218 implying that additional control
mechanisms, distinct from 14–3-3 binding, may be
intact in PAAND but absent in FMF.

Mutations in GSDMA, Gsdma3, GSDMB and
GSDME genes are associated with asthma,
systemic sclerosis, alopecia, hearing loss and
cancer219; while mutations in GSDMD are
generally associated with inflammation in certain
non-infectious conditions, normally driven by
pyroptosis.219 GSDMD has been linked with
several non-infectious human diseases, such as
autoimmune encephalomyelitis, Kawasaki disease,
kidney disease, FMF and NOMID/CINCA where
inflammation plays a crucial role in the
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pathophysiology of the disease.219-221 Ablation of
Gsdmd in FMF and NOMID/CINCA mouse models
protected the animals from the inflammatory-
related symptoms normally presented during
these conditions.220,221

Anti-IL-1 inhibitors acting downstream of
inflammasome activation, are a second-line
treatment for FMF,215,222 and the treatment of
choice in PAAND.14,217 Anti-TNF inhibitors could be
useful in certain patients with articular phenotypes,
while small-molecule caspase-1 inhibitors could
theoretically target FMF autoinflammation.

FINAL REMARKS

Molecular characterisation of inflammasomes has
revolutionised our understanding of several
immune-mediated inflammatory disorders. It is
clear that inflammasomes are key protectors of
tissues from pathogens, but, nevertheless, when
these mechanisms are dysregulated, this can lead
to autoinflammation. Inflammasome activity
requires tight regulation to avoid chronic
inflammation, and, as seen in several
autoinflammatory disorders, the smallest
modification in protein composition may lead to
autoinflammation. Understating these processes
has led us to the development of several
inhibitors which are essential to more effective
therapeutics. Although our understanding of the
intrinsic mechanisms underlying these disorders
has grown exponentially, several questions remain
regarding the pathogenesis of these disorders.
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This review explores the molecular processes underlying the activation of several inflammasomes and

highlights their role during health and disease. We describe the harmful effects of these molecular complexes,

in some autoinflammatory disorders, and review current therapeutic approaches as well as future prospective

treatments.
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