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Abstract 

This paper investigates the simultaneous use of in-situ hydrologic measurements, such as 

discharge, temperature, precipitation and snowfall information derived from satellite imagery 

in combination with two different AI methods, namely, Adaptive Neuro Fuzzy Inference 

System (ANFIS) and Artificial Neural Network (ANN), for developing enhanced long-term 

streamflow forecasting models. To enhance the reliability of the proposed models’ outputs, the 

number of input data used for their training and testing is increased using a sub-basin method. 

Furthermore, to accelerate the training process and achieve more accurate handling of seasonal 

changes, a parameter representing seasonal variations is introduced. A regionalization 

approach is also proposed to overcome the problem of deficiency and inappropriate distribution 

of hydro-meteorological stations in poor data regions. To obtain the most principal input 

variable set to be used in developing the models, a gradual model development approach is 

proposed and followed. In summary 12 streamflow forecasting models based on ANFIS, ANN 

and using three different model structures and two forecast time intervals (monthly, seasonal) 

are developed. The models are applied to data collected from the mountainous Talezang basin 

located in the southwestern Iran, which consists of 14 years of monthly measurements 

including streamflow, precipitation, temperature, and snow water equivalent (SWE) records 

and snow cover area obtained from the Moderate Resolution Imaging Spectroradiometer 

(MODIS). The results indicate that the use of the sub-basin approach significantly improves 
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both models’ performances, as indicated by the improvement of the correlation coefficient 

index (R) from 0.44, to 0.77 in the testing phase. Moreover, it is deduced that including 

additional input parameters in the model structure, as well as using seasonal information and 

satellite data, has a great impact on the model’s performance and accuracy, evident by the 

reduction of the scatter index (SI) by 35% on average. Comparing the long-term flow forecasts 

of both models showed that ANFIS is superior to ANN. It is concluded that the ANFIS method, 

developed based on data from the proposed sub-basin method and seasonal parameter, is 

capable of providing high quality streamflow forecasts, particularly for rivers and streams 

located in data poor regions. 

Keywords: AI methods, regionalization approach, Satellite images, Seasonality index, 

Streamflow forecasting. 

1. Introduction 

Streamflow forecasting has an important role in water resources management activities 

including flood control, drought management and reservoir operation. Accurate streamflow 

estimation can theoretically be made by using the many hydrologic and climatologic variables 

(e.g., precipitation, evapotranspiration, initial moisture, temperature, discharge etc.) that are 

known to affect short and long-term streamflow predictions. The lead-time provided by these 

models creates an opportunity to adjust and change operating policies and management 

procedures in order to cope with near future contingent events, such as droughts and floods. 

Streamflow forecasting models are categorized according to their lead-time (extending from 

one hour to one year in length), forecasting time step (hourly to seasonal), dominant 

precipitation regime (rain and/or snow) and basin characteristics (e.g., land use and cover, 

topography, and slope). Due to the differences in these attributes, many different approaches 

have been followed to develop and improve streamflow forecasting models. 

The review of the literature indicates that a wide range of physical and conceptual models (e.g. 

Demirel et al., 2009; Noori and Kalin, 2016) have been used for developing streamflow 

forecasting models. Despite their advantages, e.g. ease of use and high-level understanding of 

the system, conceptually based streamflow models may not be suitable for application in large 

and complex basins. Therefore, alternative approaches are proposed to improve forecasting in 

such settings.  
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Many black box modeling approaches have been also used to develop streamflow forecasting 

models. These include regression-based methods (e.g. Phien et al., 1990; Liu et al., 2018), time 

series models (e.g. Jain et al., 2001), artificial neural networks (ANNs) (e.g. Sajikumar and 

Thandaveswara, 1999; Uysal and Şorman, 2017); Adaptive Neuro Fuzzy Inference System 

(ANFIS) (e.g. Chang and Chang, 2006; Rezaeianzadeh et al., 2014) and a combination of some 

of these methods (e.g. Pulido and Portela, 2007; Dariane and Azimi, 2016; Nourani et al., 2014; 

Yaseen et al., 2015). In general, appropriate performance in large and complex systems and 

having reliable and unbiased outcomes can be listed as the main advantages of black box 

methods. Many studies reported in the literature, including the ones listed above, indicate the 

superiority of black box-based flow forecasting models particularly in predicting peak flows. 

In the past two decades, methods based on ANNs have been adopted and proven to be more 

flexible, successful and dependable alternatives to regression methods for modeling nonlinear 

systems which include different parameter types such as watershed characteristics, hydrometric 

and climatic parameters at various lead times (daily, monthly) (e.g. see Prada-Sarmiento and 

Obregon-Neira, 2009; Choubin et al., 2016). Despite their numerous advantages, including the 

capability of parallel computation, capacity of fault tolerance, adaptive training ability and 

requiring no prior knowledge, the disadvantages of ANNs, such as disability in processing 

ambiguous data and difficulty in building a general purpose model for the inclusion of future 

changes in the system, have led to ANNs being combined with other techniques, such as Fuzzy 

inference systems (FISs), in order to improve their performance (e.g., Taormina and Chau, 

2015).  

 

Despite the merits of ANNs and FISs (linguistic description, human thinking and mathematical 

reasoning), both ANNs and FISs do have specific shortcomings. ANNs cannot be properly 

developed with insufficient and poor data, and on the other hand, if the knowledge (i.e. 

regarding observed data and parameters) is incomplete or contradictory, a fuzzy system should 

be tuned following a heuristic approach, which can be time consuming and error prone. Hence, 

combining these two methods, in order to benefit from the advantages of both methods in a 

complementary way, and overcome their disadvantages, will be advantageous. 

Among different hybrid models, Adaptive Neuro-Fuzzy Inference System (ANFIS) takes the 

advantage of the two methods in a complementary way. Due to its advantages, ANFIS has 
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attracted more attention and has been widely used in hydrologic modeling including reservoir 

inflow and streamflow forecasting (Karimi-Googhari and Lee, 2011; Azad et al., 2018). Talei 

et al., (2010) used neuro-fuzzy and Storm Water Management Model (SWMM) to forecast 

streamflow in the Kranji basin in Singapore. Analyzing statistical indices, such as relative Peak 

Error (EP), they concluded that ANFIS performs better than SWMM at peak flows. For 

example, average EP values for all events improves from 0.31 in SWMM to 0.26 in ANFIS. 

Although the discussed models are relatively successful in predicting streamflow in certain 

basins, due to some limitations, they are not generalizable to basins of other sizes and located 

in other geographical regions. These limitations are generally related to 1) not counting for 

bimodal climate, 2) not considering snowfall, and 3) being based on point data observations.  

In many regions of the world (e.g., tropical Atlantic and Pacific equatorial regions), climate is 

bimodal, meaning that there are two distinct seasonal patterns: in the winter months frontal 

rainfall associated with low evaporation occurs, and in summer months, climate is associated 

with convective rainfall and high evapotranspiration (ET). Since this trend repeats over a long 

period of time, black box methods which consider variations in seasonal climate are believed 

to enhance model accuracy and performance, in comparison with those that lump all seasons 

together (Garbrecht, 2006). In this study, a calendar month identification scheme is proposed 

to be used as an effective approach for capturing the effects of seasonal variations. 

Another important issue in hydrologic studies is the deficiency and inappropriate distribution 

of hydro-meteorological stations. This often leads to poor model accuracy, making them 

unsuitable, especially for long-term forecasting. Furthermore, in most previous studies, 

observed point data from stations have been used instead of areal estimates in forecasting 

models (e.g., Shiri and Kisi, 2010). Use of point data may be applicable in small basins, but it 

would introduce errors if the basin is large. This problem is intensified when several parameters 

(e.g., precipitation and temperature) are included in the model. To overcome this problem, in 

this study, the basin is divided into some sub-basins and the outflow data for each sub-basin is 

used as the response value of the system for those sub-basin areal data (i.e., precipitation, etc.). 

Finally, another important factor in accurate streamflow forecasting in mountainous basins is 

snowfall. Therefore, remote sensing knowledge derived from satellite imagery that help in 

estimating the amount of snow (coverage, depth and snow water equivalent) can be of great 

use in developing appropriate forecasting models. In recent decades, technological progresses 
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in the field of sensors and satellites along with easy and free accessibility to satellite images 

has been an important factor for advancements in snow-based streamflow forecasting models. 

There are some promising cases where satellite images have been successfully used in various 

hydrological studies and streamflow forecasting (e.g. Singh and Jain, 2003; Nagler et al., 2008; 

Cornwell et al., 2016). Here, it is proposed to use snow water equivalent (SWE) records and 

snow cover area from the Moderate Resolution Imaging Spectroradiometer (MODIS) in 

combination with in-situ measurements to develop enhanced models. 

This study aims to address the aforementioned shortcomings in streamflow forecasting, by 

developing accurate and robust models for use in poorly-gauged mountainous basins. The 

proposed models are based on two black box approaches (ANFIS, ANN) and are developed 

using a combination of remote sensing data with in-situ observations. The models are used to 

forecast monthly and seasonal streamflow in the mountainous Talezang basin, located in the 

southwestern Iran. In order to evaluate the effect of seasonal variations on the models, a 

parameter called seasonality parameter, is introduced and applied for long-term streamflow 

forecasting. In addition, it is shown that the use of areal data, using a regionalization 

approach, could enhance the results obtained by the models. 2. Background 

2.1. Artificial Neural Networks 

Artificial neural networks (ANNs) are based on the structure and functioning of the human 

brain and are composed of processing elements in each layer called neurons (Hagan et al., 

1996). The model is trained by adjusting the weights in an attempt to minimize the sum of 

squared errors between the model output and model target (observed data).  

The feed-forward neural network concept is the most common approach for forecast modeling. 

The hydrologic events are often classified as complex and nonlinear models, because of the 

non-linear characteristics of its variables. Therefore a Multilayer perceptron (MLP) feed-

forward neural network including one input layer, one output layer with a linear transfer 

function and two hidden layers with hyperbolic tangent sigmoid transfer function is commonly 

applied. The number of hidden layers is identified based on a trial-and-error method with the 

objective being the best model performance. The back-propagation (BP) algorithm, which is 

the main method for training networks used for prediction, is applied to adjust the weight 

vectors between layers with an objective to minimize the mean square error (MSE) between 

predicted and target values. This process consists of two steps: first, the input signal (discharge, 

rainfall, temperature, etc.) is propagated forward to compute the output (discharge). Then, a 
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backward step is used to adjust the weight vectors between layers with the objective to 

minimize the model’s error (Hagan et al., 1996). Moreover, for speeding up convergence, the 

Levenberg-Marquart algorithm (Moré, 1978), which is more powerful and faster than 

conventional techniques, such as gradient descent, is combined with the back-propagation 

algorithm. 

2.2. Adaptive Neuro Fuzzy Inference System (ANFIS) 

Novel architecture and learning procedure for Fuzzy inference systems (FISs) was first 

introduced by Jang (1993). This system is a multi-layer feed-forward network which uses a 

neural network learning algorithm for constructing a set of fuzzy if-then rules with appropriate 

Membership Functions (MFs) from the stipulated input-output pairs. This developed procedure 

of FIS using adaptive neural networks is called Adaptive Neuro Fuzzy Inference System 

(ANFIS). ANFIS has been used successfully for many hydrological studies (e.g. 

Rezaeianzadeh et al., 2014, Akil et al., 2007, Ozgür, 2006). 

Generally, the ANFIS model architecture consists of five layers (Figure 1). Selection of the 

FIS type based on the specific target system is important. In the current study the Sugeno first-

order fuzzy model (Sugeno and Kang, 1988) is used since the consequent part of the FIS model 

(pi, qi, ri) is a linear equation and the parameters can be calculated by a simple Least Square 

Error (LSE) method. 

 



7 
 

Figure 1. Basic structure of the ANFIS (Jang, 1993)   

For instance, consider that the FIS has two inputs (x, y) and one output as shown in Figure (1). 

For the first order Sugeno fuzzy model, a common rule set with two fuzzy if-then rules can be 

expressed as: 

Rule 1: if x is A1 and y is B1 then z1= p1x+q1y+r1 (1) 

Rule 2: if x is A2 and y is B2 then z2= p2x+q2y+r2 (2) 

where A and B are the semantic words and membership function of x and y, respectively. The 

output z is the weighted average of the individual rule outputs and pi, qi, ri are the consequent 

parameters, which are determined during the learning process. It should be noted that nodes at 

the same layer have similar functions. The 5 layers of ANFIS are be described as below: 

Layer 1: Every node i in this layer is an adaptive node with a node function. The output of the 

ith node at layer 1 is defined as O
i
1: 

O
i
1 = m

Ai
(x)  for i= 1, 2 (3) 

Or 

(4)   for i= 3, 4  O
i
1 = m

Bi-2
( y) 

where x (or y) is the crisp value of one of the input variables to the ith node and Ai (or Bi-2) is 

the linguistic label associated with this node function. O
i
1 is the membership function of Ai (or 

Bi-2) which is used to generate a membership grade. The membership function for A and B are 

usually described by a bell-shaped function with a maximum equal to 1 and minimum equal to 

0 such as: 

m
Ai

(x) =
1

1+ ((x - c
i
) / a

i
)2bi

 
(5) 

 

where (ai, bi, ci) are referred to as the premise parameters.  

Layer 2: every node in this layer is a fixed node labeled “П” that multiplies the incoming 

signals. Each output node represents the incentive intensity of a rule. For instance, 
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O
i
2 = w

i
= m

Ai
(x).m

Bi
( y),i = 1,2  (6) 

where w i  is the output of layer i. 

Layer 3: each node in this layer is a fixed node shown as N. The ith node in this layer, calculates 

the ratio of the ith rule’s incentive intensity to the sum of all rules’ incentive intensity and its 

output is called normalized incentive intensity. The ratio is found by:  

3

1 2

, 1, 2i
iiO i

ww
w w

= = =
+

 (7) 

Layer 4: node ith in this layer is an adaptive node. The output of every node can be computed 

through defuzzification process as follows: 

O
i
4 =w i fi =w i ( pix + qi y + ri ),i = 1,2  (8) 

where w i  is the output of layer 3, and (pi, qi, ri) is the parameter set referred to as consequent 

parameters. 

Layer 5: the single node in this layer is a fixed node labeled “Σ” that calculates the final output 

as the summation of all input signals which can be calculated by: 

2
5 1 1 2 2

1 1 2

ii i
i

f f
O f

w ww
w w=

+
= =

+
                                                                                                                       

(9) 

Finally, the overall output can be expressed as a linear combination of the consequent 

parameters: 

1 2
1 1 1 2 2 21 2 1 1 1 2 2 2

1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )z f f x p y q r x p y q r
w w w w w w w w

w w w w
= + = + + + + +

+ +  
(10) 

 

It is notable that the learning rule determines how the premise parameters (fixed parameters ai, 

bi and ci in  Layer 1) and consequent parameters (pi, qi and ri in Layer 4) should be updated in 

order to minimize the error using a least squares estimator. A hybrid learning algorithm, which 

combines backpropagation gradient descent and least-square methods, and consists of 2 steps, 

namely, forward and backward transmission, is commonly used. The least-squares method 

(forward transmission) leads to finding optimum consequence parameters (pi, qi, ri). The 
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gradient descent method (backward transmission) is applied immediately in order to optimally 

adjust the premise parameters (ai, bi, ci) (Raghupathi, 1996).   

Finally, the obtained consequent parameters are used to calculate the output of the ANFIS 

model. More details on ANFIS model are available in Jang (1997). 

3. Case study and data 

The Talezang basin, located in the central region of Zagros Mountains, SW Iran, was selected 

as the case study basin. This basin has a total area of just under 17000 km2 and maximum and 

minimum heights of 4049 and 492 meters above sea level, respectively, meaning that the basin 

is in a mountainous region. The basin has east-west slope and its spatial domain extends from 

32° 50' to 34° 00' Northern latitude and from 48° 30' to 50° 30' Eastern longitude. Two 

discharge stations (m3/sec), namely, the Sepiddasht and Tangepanj stations are located at the 

outlets of sub-basins on the Sezar and Bakhtiari rivers, respectively, and the Talezang station 

is located at the outlet of the basin downstream of the junction of these two rivers (Figure 2a). 

(a) (b) 

Figure 2. (a) Talezang case study basin overview, and the location of Talezang, Sepiddasht and Tangepanj 

streamflow stations, (b) location of rain, snow and temperature stations in the study site. 

The data used in this study consisted of: 
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 Digital Elevation Model (DEM) operated on Shuttle Radar Topography Mission 

(SRTM) with spatial resolution of 90 m. This information was used in the model to 

extract regional relations between parameters (discussed further in the methods 

section)  

 Monthly in-situ observations of hydrometrical and metrological variables. These 

consisted of monthly average streamflow measured at the outlet of each sub-basin 

(Figure 2a), monthly rainfall, monthly average temperature and monthly snow 

measurement stations (Figure 2b). 

 Processed images of TERRA-MODIS sensor (MOD10A2) corresponding to each 

forecasting month (months of December, January, February, March, April, May 

during 2002-2015). 

4. Methodology 

4.1. Snow-Cover Mapping using MODIS 

Snow has an undeniable effect on any hydrological event, but due to some issues, such as 

inappropriate distribution of in-situ observations, the use of snow data normally leads to error-

prone representation of hydrologic processes. It is, however, shown that outputs from optical 

sensors can be used to overcome this shortcoming in hydrological modeling (e.g. Immerzeel et 

al., 2009; Powel et al., 2011).  

To extract snow information for the study basin, the outputs from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) instruments were used, because of their accuracy, 

availability and high time and space resolution (Rittger et al., 2013). This instrument is 

operational on two Earth Observation System (EOS) spacecrafts: Terra (launched December 

1999, overpassing the equator at 10:30 a.m.) and Aqua (launched May 2002, overpassing the 

equator at 1:30 p.m.). More information on MODIS can be found in Hall et al., (2002).  

In this study, the data from the MODIS instruments on the Terra spacecraft were utilized to 

obtain snow maps and perform long-term stream forecasts. Among all MODIS products, 

maximum snow cover extent (MOD10A2) was adopted, because of its merits, which include 

better snow-mapping accuracy and better cover. MOD10A2 provides maximum snow cover 

extent during an eight-day period. It is generated by reading 8 days of 500 m resolution 
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MOD10A1 tiles, which provides daily gridded snow cover. If snow is observed in a cell on any 

day in the period, the cell is mapped as snow. If no snow is found, the cell is assigned with the 

clear-view observation that has been mostly reported for that cell (e.g. snow free land, lake, 

etc.). Cloud cover is only reported if the cell was cloud-obscured during the entire eight day 

period. Each cell's snow/no snow chronology is recorded using bit flags and provided as a 

separate variable. The maximum snow extent is where snow was observed on at least one day 

during the period (Hall and Riggs, 2015). All MODIS products are freely available to download 

from https://nsidc.org. 

In MODIS, the Normalized Difference Snow Index (NDSI) is introduced as a helpful criterion 

for identifying snow, ice and many precluding factors of snow cover acquisition (e.g., cumulus 

clouds). The NDSI snow-mapping index uses reflectance values in MODIS band numbers 4 

(0.545-0.565 μm) and 6 (1.628-1.652 μm) (Hall et al., 1998): 

)11( 
  NDSI =

Band4- Band6

Band4+ Band6
 

where Band4 and Band6 are the MODIS band 4 and band 6 reflectance values, respectively. A 

pixel in a non-densely forested region will be mapped as snow if NDSI ≥ 0.4.  

Additionally, for a pixel to be covered with snow, the reflectance of MODIS Band 2 (0.841- 

0.876 μm) should be more than 11%. Also, MODIS Band 4 reflectance is a useful criterion to 

separate real snow cover from spurious snow cover (e.g., spruce forests). Therefore, it is 

required that the MODIS Band 4 reflectance is greater than 10%. It is to be noted that all criteria 

should be met simultaneously for each pixel in order for that pixel to be mapped as a snow 

pixel (Hall et al., 1998).  

This output consisted of two types of pixels, non-snow and snow pixels, which were marked 

with black and white pixels, respectively, on images. This procedure was repeated on all 

satellite images from the study basing during 14 years from 2002-2015, and the findings were 

converted into snow and non-snow pixels. Finally, after extracting snow pixels, Snow Cover 

Area (SCA) for the sub-basin was calculated by adding the area of all snow-covered pixels.  

4.2. Sub-basin approach 
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Data based methods such as ANN and ANFIS require a sufficient amount of representative 

data to properly model the system and yield acceptable prediction accuracy. To overcome this 

problem, the number of input data can be increased through a sub-basin segmentation approach 

where the basin is simply divided into a number of sub-basins, determined based on appropriate 

distance and location from each other. It is notable that river’s length, catchment’s slope and 

ridges play important role in sub-basin formation (Fig. 2a).  

Following this approach, the mountainous and data poor Talezang study basin was divided to 

3 sub-basins as shown in Figure (2a). The outflow data for each sub-basin (Sepiddasht and 

Tengepanj), represents the response of the system to precipitation in that particular sub-basin. 

Therefore, using these new observations the data available for training and testing the models 

is tripled.  
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4.3. Regional relationships approach 

For basins, such as the selected study basin, where there is a lack of measurements in high 

altitude ranges and the distribution of stations is inappropriate, using point data for the entire 

basin is deemed erroneous and will lead to unreliable model outputs. A regional relations 

approach, derived from point data is proposed to overcome this problem. 

In this approach, first, regional relationships are established by regressing the pixel elevation 

of each station against separate in-situ records (e.g. temperature, precipitation and SWE) for 

each desired month. Once these regional relationships are derived for each parameter, their 

values in each pixel are computed and then averaged over the sub-basin to calculate an average 

parameter value in the corresponding month. SCA values at each sub-basin are calculated by 

applying the snow-mapping algorithm corresponding to each sensor. Therefore, the volume of 

SWE for each sub-basin can be obtained through multiplying corresponding SCA in average 

SWE values.  

4.4. Seasonal Parameter  

Historic data shows that measured streamflow in the basin has strong seasonality with 

significant annual cycle. Therefore, it was envisaged that a seasonal parameter would enhance 

the modeling if implemented in the development of the ANN and ANFIS forecasting models. 

To capture the effects of seasonal rainfall and runoff variations, calendar month identification 

was performed. To account for seasonal variability, two time series, representative of the cyclic 

12 months of the year, were added to the previous input  variable sets, i.e. temperature, 

precipitation and SWE. These two series are represented by a pair of oscillating sine and cosine 

curves. For each month, there is one unique data pair, thus, the entire annual cycle is 

represented by 12 cyclic pairs (Figure 3).  It is apparent from the two time series that the 

seasonal conditions of January follow those of December. 

4. 5. Model Development 

To develop ANN and ANSIF models for the data poor Talezang basin, first, the number of 

observed data from the system was increased by dividing the basin into three sub-basins as 

described in section 4.2.  
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Figure 3. Two time series representing the annual cycle 

 

Due to inappropriate distribution of stations and insufficient in-situ measurements particularly 

at higher altitudes, access to reliable data for the entire basin was challenging. Therefore, the 

regional relations approach, described in section 4.3, was followed to obtain reliable data. 

The data period used for training and testing consisted of 14 years of data (2002-2015). The 

first 10 years of data (nearly 75% of the whole dataset) was utilized for training the models and 

the remaining 4 years were kept for the testing phase. Forecasting was carried out for 6 months 

starting from January throughout June in each year. This period was selected based on the 

availability of snow cover in the basin in order to be used as input data. 

The set of input variables to be used in the models were obtained through a gradual 

development approach, by testing different variable combinations based on statistical indices 

including coefficient of correlation (R), Scatter Index (SI) and the partial auto-correlation 

function (PCF) of monthly streamflow data. In order to investigate the effect of each variable 

set on the model's performance, the model structure was gradually developed in three steps. In 

the first step, only hydrometric and meteorological data, such as discharge, rain, temperature 

were considered (model I, Eq.12.I). In the next step a combination of products from optical 

sensors and in-situ records, lumped in the volume of snow water equivalent (Vswe) was added 

to the variable set (model II, Eq.12.II). Finally, seasonal information as a month identification 

tool was added to the model structure (model III, Eq.12.III). As highlighted in section 4.4, these 
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two inputs are representative of the cyclic 12 months of the year, but in the present study these 

parameters are limited to the forecast period which start from January through June. The three 

model structures are: 

(12.I)
 

1 2 3 1 1( , , , , )t t t t t tQ f Q Q Q P T- - - - -=  

(12.II) 
1 2 3 1 1 1( , , , , , )t t t t t t tQ f Q Q Q P T Vswe- - - - - -=  

(12.III) 
1 2 3 1 1 1 1 2( , , , , , , , )t t t t t t tQ f Q Q Q P T Vswe t t- - - - - -=  

where Qt is the predicted streamflow in month t (m3/sec),  Qt-1 to Qt-3 are streamflows in the 

previous three months (m3/sec), Pt-1 is precipitation in the previous month (Million Cubic 

Meters, MCM), Tt-1 is the average temperature of the previous month (°C), Vswet-1 is the volume 

of snow water equivalent corresponding to the previous month (MCM) and t1, t2 are the pairs 

of seasonal information, derived from the annual cycle  (Figure 3).  

Different forecast intervals can be appropriate for assessing models in different situations. For 

example, longer predictions (e.g., seasonal, annual) are suitable for models where their 

predictions are used to design reservoir operation policies. In the present study, the focus is on 

predicting streamflow in two long-term intervals: monthly and seasonal. Seasonal forecasting 

is the process of forecasting in next three consecutive months. Since the architecture of the 

models developed and used in the study (e.g., ANFIS, ANN) are only based on one output, 

therefore, compulsively, the average values of streamflow for the next three months are 

computed and utilized as the output for the seasonal forecasting model.  

Selection of appropriate number of nodes in the hidden layer is of great importance; too many 

neurons may lead to over-fitting, and on the other hand, if too few neurons are considered, the 

network might be unable to describe the underlying functions adequately. Fletcher and Goss 

(1993) proposed a range for the suitable number of nodes in a hidden layer that extends from 

(2n1/2 + m) to (2n + 1), where n is the number of input nodes and m is the number of output 

nodes. Therefore, the number of neurons in each hidden layer is optimized by applying a trial-

and-error approach in a specified range considering the number of inputs in each model 

combination (models I, II and III). In summary, streamflow forecasting is performed by two 

methods (ANFIS, ANN), using three different model structures (models: I, II, III) and two 

forecast time intervals (monthly, seasonal). The statistical criteria deemed appropriate for 
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evaluating the models’ performance were chosen to be the coefficient of correlation (R), Root 

Mean Square Error (RMSE) and Scatter Index (SI), which is computed as the ratio of RMSE 

to mean observed streamflow Q0 : 

SI =
RMSE

Q
0

 (13) 

5. Results and discussions  

5. 1. ANN models 

First, ANN models were developed to forecast monthly and seasonal streamflow at the 

Talezang basin outlet. Table (1) shows the performance of the ANN models with different 

model structures (i.e. Models I, II, III). As it can be seen, the model’s performance for the test 

data is improved by adding new variables. For instance, the coefficient of correlation R in 

model (III) shows improvements of 7% in monthly and 16% in seasonal forecasting as 

compared to model (I). A similar trend is observed for the SI index. This improvement is logical 

since more variables can potentially better cover the characteristics and properties of the data, 

and thus, the more comprehensive model will be able to describe the underlying functions 

better. But it's also important that more variables can lead to overfitting. Therefore, considering 

a trade-off between more accuracy and avoidance of overfitting is necessary for having a robust 

and reliable model.  

Table 1. Comparison of the performances of ANN-based models for the test period (2012-2015). 

 ANN Model R SI RMSE   

M
on

th
ly

 

(I) 0.79 0.68 81.06  
(II) 0.80 0.74 87.23  
(III) 0.82 0.58 68.82   

S
ea

so
n

al
 

(I) 0.65 1.05 116.08  
(II) 0.63 0.85 94.39  
(III) 0.75 0.77 85.08   

 

It is hypothesized that the effect of parameters (precipitations, discharge, temperature and 

snow) on a model’s performance generally decreases with the selection of a larger forecasting 

time step, and therefore, it is expected that the model’s accuracy in seasonal predictions is 
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lower than its monthly predictions. Comparison between the results of monthly and seasonal 

streamflow predictions confirms this hypothesis. For example, the maximum values of R in 

monthly and seasonal predictions by model III are 0.82 and 0.75, respectively. A similar trend 

is observed for other statistical indices.  

5.2. ANFIS models 

Next, the performance of ANFIS-based streamflow forecast models were assessed in an 

approach identical to the one used for ANN models. The results (Table 2) indicate 

improvements in the ANFIS model performance in predicting both monthly and seasonal 

streamflow, as a more complete set of variables are used. For instance, the SI index for monthly 

forecast improved by about 29% in model (III) in comparison with that of model (I). It is also 

observed that there is considerable improvement in ANFIS results in predicting monthly 

streamflow in comparison with seasonal streamflow. This trend is identical to the trend 

observed for ANN models, and as mentioned before, it appears to be the result of decreased 

effect of parameters on the model outputs with increase in forecasting length.  

Table 2. Comparison of the performances of ANFIS-based models for the test period (2012-2015). 

 ANFIS Model R SI RMSE   

M
on

th
ly

 

(I) 0.79 0.67 80.80  
(II) 0.86 0.50 59.46  
(III) 0.84 0.48 57.25  

S
ea

so
n

al
 

(I) 0.70 1.03 114.46   
(II) 0.69 0.79 57.65  
(III) 0.76 0.71 78.55   

 

Looking at ANFIS and ANN streamflow prediction results, it can be concluded that adding 

input variables to the model structure improves the model performance and helps in better 

describing the observed trends. It should be noted that adding variables does not necessarily 

end up in evaluation index improvements for all considered statistical indices. In fact, 

sometimes a decline in these indices is found which is contradictory to the general trend. For 

instance, general improvements of the R index due to adding new variables is not seen in 

monthly forecasts of ANFIS model (III) in comparison with model (II).  
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As expected, the use of remote sensing knowledge was able to enhance model performance 

significantly, as evident by the results. For instance, for both models (ANN, ANFIS), model 

(II) outperforms model (I) in both monthly and seasonal predictions as indicated by all 

statistical indices. Therefore, it can be concluded that interfering snow in-situ records, 

especially when combined with remote sensing knowledge, is a necessary step in hydrologic 

modeling of streamflow in mountainous basins. Unfortunately, the use of satellite images is 

not common practice in hydrologic studies. The lack of using satellite images in forecast 

models maybe related to the difficulties in processing this kind of data and also time and 

computational burdens. But, considering the considerable improvement this can lead to in 

terms of model performance, inclusion of this kind of data seems necessary and makes the 

difficulties worthwhile. 

Results shown in Tables (1) & (2) also demonstrate that for both soft computing models (ANN, 

ANFIS) inclusion of seasonal information improved the model performance in both monthly 

and seasonal predictions. The obtained SI value in monthly ANN model (II) is 0.74, whereas 

this value is improved by about 20% to 0.58, when seasonality information is applied (model 

III). Moreover, a similar trend is observed in the other statistical goodness of fit measures 

(RMSE and R), for different cases. Based on the results, it becomes evident that using only 

previous streamflow data in conjunction with precipitation, temperature and snow records as 

inputs is not sufficient for accurate streamflow forecasting. It is necessary to include 

Information about the season and time of the year alongside in-situ observations to obtain an 

accurate model structure. 

Based on the three statistical criteria reported in Tables (1) & (2), it can be seen that the ANFIS 

model outperforms the ANN model in all settings. The superiority of the ANFIS model is more 

significant when the most sophisticated model structure (Model III), which considers all 

effective parameters in forecasting model, is considered. This ability stems from the structure 

of the ANFIS model, and also the simultaneous inclusion of the benefits of adaptive neural 

network and fuzzy logical systems.  

5.3. Effect of regional data on model performance 

Using point data in hydrologic studies has two major advantages over using non-point data. 

First, it avoids the extra work and calculations required for extracting regional parameters. 

Second, when point data is available, usually, there is sufficient number of observations from 
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the stations that can be used in the model. However, inefficiency in large basin and poor 

distribution of data can be listed as disadvantages of the point data approach. 

In most previous studies that have focused on using soft computing methods for developing 

black-box hydrologic models (e.g. Shiri and Kisi, 2010, Uysal and Şorman, 2017), station 

observations have been used instead of areal estimates. This is mainly due to the hope that the 

inherent flexibility in soft computing methods, as a result of appropriate adjustments of weight 

parameters during the calibration process, would take care of the insufficiency of poorly 

distributed in-situ measurements, especially in large basins. 

In this section, it is shown that the high inherent flexibilities assumed in black-box methods, is 

not entirely valid, and that the utilization of regional parameters would substantially improve 

the model’s performance. To this end, model combination (I), that entirely consists of in-situ 

recorded variables,  was re-developed using point data and its performance was compared to 

the results of the model developed using areal data (presented in sections 5.1 and 5.2). To apply 

point data in the Talezang basin, the average value of monthly rain and temperature stations in 

the entire basin and three previous monthly streamflow data were used as inputs to the forecast 

model. The final outlet (Talezang station at the corresponding month) for the basin was 

identified as the basin’s outlet discharge station and monthly forecasts covering 6 months 

(January- June) were used.  

The results of this comparison are presented in Table (3). As can be seen, the incremental 

improvements in using regional data over point station data are considerable in both black-box 

models (ANN and ANSIF).  

Table 3. Comparison of Model I’s performance developed based on point and regional data. 

Methods 
Areal data 

  
  

Station data 

R SI RMSE R SI RMSE 

ANN – Model I 0.77 0.68 81.06 0.44 0.84 106.32 

ANFIS - Model I 0.79 0.67 80.8 0.49 0.77 98.43 

 

The results for the test period indicate that when areal data is used, models’ performances are 

improved considerably. For instance, the correlation coefficient index R for ANFIS and ANN 

models using point station data is 0.49 and 0.44, whereas, these values are improved to 0.79 
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and 0.77, respectively, when areal data is used. A similar trend can be seen for other statistical 

goodness of fit measures. Therefore, it can be concluded that for the basin analyzed in this 

study, i.e. the Talezang basin, and possibly in many other cases, utilization of a multiple sub-

basin approach along with areal data could potentially enhance the results of black-box 

streamflow forecast models.  

6. Conclusions 

This paper presented a methodology for developing accurate long-term streamflow forecasting 

models using two soft computing methods, namely ANN and ANFIS. Historic records of in-

situ observation, including monthly streamflow, precipitation and temperature, a snow 

parameter, i.e. volume of snow water equivalent (SWE), and seasonal information were used 

as inputs for training and building streamflow forecasting models. A method was suggested for 

obtaining SWE values from MODIS satellite images. It was deemed that using seasonal 

information would increase model reliability, thus a parameter representing seasonality was 

introduced and considered in the model. Additionally, to enhance model training, a sub-basin 

approach was employed to increase the input data which had naturally reduced in number as 

result of regionalization. To assess the sensitivity of the models to the set of introduced input 

data and to select an appropriate model structure, model training was performed in three stages, 

where more variables were added at each stage. The methods were applied to the mountainous 

Talezang study basin in SW Iran and the following main results were obtained: 

 In general, and for all 3 investigated model structures, ANFIS models outperformed 

ANN in predicting streamflow. 

 Deriving a snow parameter such as SWE from satellite images, and using it alongside 

other in-situ observation records, improves the results of streamflow predictions in both 

ANN and ANSIF models. 

 For both ANN and ANSIF models, monthly forecast models are superior to seasonal 

models.  

 Rebuilding the model using point data and comparing the results, it was shown that 

utilizing regional data could substantially enhance the prediction of streamflow forecast 

models, particularly in mountainous poor data basins. 
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 It was also shown that using seasonal information as input parameter can enhance the 

results of ANN and ANFIS-based forecasting models.  

7. References 

Akil, M., Kita, I., Yano, A., Nishiyama, S., 2007. A comparative study of artificial neural networks and 
neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology 
337 (1–2), 22–34 . 

Azad, A., Farzin, S., Kashi, H., Sanikhani, H., Karami, H., Kisi, O., 2018. Prediction of river flow using 
hybrid neuro-fuzzy models. Arabian Journal of Geosciences (11), 718-732. 

Chang, F.J., Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in 
reservoir. Advances in Water Resources 29, 1-10 . 

Choubin, B., Khalighi-Sigaroodi, Sh., Malekian, A., Kisi, O., 2016. Multiple linear regression, multi-layer 
perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on 
large-scale climate signals, Hydrological Sciences Journal 61 (6), 1001-1009 . 

Cornwell, E., Molotch, N.P. and Mcphee, J., 2016. Spatio-temporal variability of snow water equivalent in 
the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed 
snow cover. Hydrology and Earth System Sciences 20 (1), 411-430 . 

Dariane, A. B., Azimi, Sh., 2016. Forecasting streamflow by combination of a genetic input selection 
algorithm and wavelet transforms using ANFIS models, Hydrological Sciences Journal 61 (3), 585-
600 . 

Demirel, M.C., Venancio, A., Kahya, E., 2009. Flow forecast by SWAT model and ANN in Pracanna 
basin, Portugal. Advances in Engineering Software 40, 467-473 . 

Fletcher, D., Goss, E., 1993. Forecasting with neural networks: an application using bankruptcy data. 
Inform. Manage. 24, 159-167. 

Garbrecht, J.D., 2006. Comparison of three alternative ANN designs for monthly rainfall-runoff 
simulation. ASCE, Journal of Hydrologic Engineering. 11 (5), 502-505 . 

Hagan, M.T., Demuth, H.B., Beale, M., 1996. Neural Network Design. PWS Publishing Company, 
Boston, MA . 

Hall, D.K., and Riggs, G.A. 2015, MODIS Snow Products  Collection 6 User Guide . 

Hall, D.K., Riggs, G.A., Salomonson, V.V., DiGirolamo, N.E., Bayr, K.J., 2002. MODIS    snow-cover 
products. Remote Sensing of Environment, 83, 181-194 . 

Hall, D.K., Tait, A., B., Riggs, G.A., Salomonson, V.V., 1998. Algorithm Theoretical Basis Documents 
(ATBD) for the MODIS Snow, Lake Ice and Sea Ice Mapping Algorithms. Version 4.0. 

Immerzeel, W.W., Droogers, P., de Jong, S.M., Bierkens, M.F.P., 2009. Large-scale monitoring of snow 
cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 
113, 40–49 . 



22 
 

Jain, A., Varshney, A., and Joshi, U. 2001. Short-term water demand forecasting modeling at IIT Kanpar 
using artificial neural networks. Water Resour. Manage., 15(5), 299-321 . 

Jang, J.-S.R., 1993. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE     Transaction on 
Systems, Man and Cybernetics. 23(3), 665-685 . 

Jang, J.S.R., 1997. Neuro-Fuzzy and Soft Computing. Prentice-Hall, New Jersey. Kaufman, G., 2003. A 
model comparison of karst aquifer evolution for different matrix-flow formulations. Journal of 
Hydrology 283, 281–289 . 

Karimi-Googhari, S. H., & Lee, T. S. (2011). Applicability of adaptive neuro-fuzzy inference systems in 
daily reservoir inflow forecasting. International Journal of Soft Computing, 6(3), 75–84. 

Legates, D.R., McCabe, G.J., 1999. Evaluating the use of goodness-of-fit measures in hydrologic and 
hydroclimatic model validation. Water Resour. Res. 35 (1), 233–241 . 

Liu, Y., Ye, L., Qin, H., Hong, X., Ye, Jiajun., Yin, Xingil., 2018. Monthly streamflow forecasting based 
on hidden Markov model and Gaussian Mixture Regression. Journal of Hydrology 561, 146-159 . 

Moré, J.J., 1978. The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (Ed.), 
Lecture Notes in Mathematics, vol. 630. Springer Verlag, Berlin-Heidelberg-New York, pp. 105–116 . 

Nagler, T., Rott, H., Malcher, P. and Muller, F., 2008. Assimilation of meterological and remote sensing 
data for snowmelt runoff forecasting. Remote Sensing of Environment 112, 1408-1420. 

Noori, N., Kalin, L., 2016. Coupling SWAT and ANN models for enhanced daily streamflow prediction.  
Journal of Hydrology 533, 141-151 . 

Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet- Artificial 
Intelligence models in hydrology: A review. J Hydrol 514:358–377. doi:10.1016/j.jhydrol.2014.03.057 

Ozgür, K., 2006. Suspended sediment estimation using neuro-fuzzy and neural network approaches. 
Hydrological Sciences Journal 50 (4), 683–696 . 

Phien, H.N., Huong, B.K., and Loi, P.D., 1990.Daily flow forecasting with regression analysis. Water SA 
16 (3) 179-184 . 

Phien, H.N., Huong, B.K., and Loi, P.D., 1990.Daily flow forecasting with regression analysis. Water SA 
16 (3) 179-184 . 

Powel, Cynthia, Blesius, Leonhard, Davis, Jerry, Schuetzenmeister, Falk, 2011. Using MODIS snow cover 
and precipitation data to model water runoff for the Mokelumne River Basin in the Sierra Nevada, 
California (2000–2009). Global Planet Change 77 (1-2), 77–84 . 

Prada-Sarmiento, F. and Obregon-Neira, N., 2009. Forecasting of Monthly Streamflows Based on 
Artificial Neural Networks, ASCE, Journal of Hydrologic Engineering, Vol. 14 (12), 1390-1395 . 

Pulido-Calvo, I., Portela, M. M., 2007.Application of neural approaches to one-step daily flow forecasting 
in Portuguese watersheds, Journal of Hydrology 332, 1-15. 

Raghupathi, W., 1996. Comparing neural network learning algorithms in bankruptcy prediction. J. 
International Journal of computational intelligence and organizations, 1(3): 179-187  . 

Rezaeianzadeh, M., Tabari, H., Arabi Yazdi, A., Isik, S., Kalin, L., 2014. Flood flow forecasting using 
ANN, ANFIS and regression models. Neural Computing and Applications 25 (1), 25-37 . 



23 
 

Rittger, K., Painter, T.H., and Dozier, J., 2013. Assessment of methods for mapping snow cover from 
MODIS. Advances in Water Resources 51, 367-380 . 

Sajikumar, N., Thandaveswara, B.S., 1999. A non-linear rainfall-runoff model using an artificial neural 
network. Journal of Hydrology 216, 32-55 . 

Shiri, J. and Kisi, O., 2010. Short-term and Long-term streamflow forecasting using a wavelet and neuro-
fuzzy conjunction model. Journal of Hydrology 394, 486-493 . 

Singh, P., and Jain, S.K., 2003. Modeling of stream flow and its components for a large Himalayan basin 
with predominant snowmelt yields. Hydrological Sciences 48(2), 257-276 . 

Sugeno, M., Kang, G.T., 1988.Structure identification of fuzzy model. Fuzzy Sets and Systems 28, 15-33 . 

Talei, A., Chua, L., H., C., Quek, C., 2010. A novel application of a neuro-fuzzy computational technique 
in event-based rainfall-runoff modeling.Expert Systems with Applications 37, 7456- 7468 . 

Taormina, R. & Chau, K.-w. 2015 Neural network river forecasting with multi-objective fully informed 
particle swarm optimization. Journal of Hydroinformatics 17, 99–113 . 

Uysal , G.,  Şorman , A. Ü ., 2017. Monthly streamflow estimation using wavelet-artificial neural network 
model: A case study on Çamlidere dam basin, Turkey. Procedia Computer Science 120, 237–244 

Yaseen ZM, El-shafie A, Jaafar O, et al., 2015, Artificial intelligence based models for stream-flow 
forecasting: 2000–2015. J Hydrol 530:829–84.doi:10.1016/j.jhydrol.2015.10.038 

Zadeh, L.A., 1965. Fuzzy sets. Information and Control 8, 338–353. 


