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Abstract 
Photoactivated localization microscopy (PALM) produces an array of localizationordinates by means 
of photoactivatable fluorescent proteins. However, observations are subject to fluorophore multiple-
blinking and each protein is included in the dataset an unknown number of times at different 
positions, due to localization error. This causes artificial clustering to be observed in the data. We 
present a “model-based correction” (MBC) workflow using calibration-free estimation of blinking 
dynamics and model-based clustering to produce a corrected set of localization coordinates 
representing the true underlying fluorophore locations with enhanced localization precision, 
outperforming the state-of-the art. The corrected data can be reliably tested for spatial randomness 
or analyzed by other clustering approaches, and descriptors such as the absolute number of 
fluorophores per cluster are now quantifiable, which we validate with simulated data and 
experimental data with known ground truth. Using MBC, we confirm that the adaptor protein, LAT, 
is clustered at the T cell immunological synapse. 
 

Introduction 
Single molecule localization microscopy (SMLM) methods, such as PALM, circumvent the diffraction 
limit of light by separating fluorophore detections in time through stochastic activation and 
photobleaching, and then localizing the resulting sparse distribution of point spread functions1. The 
resulting point-pattern is a purported realization of the underlying ground truth positions of the 
fluorophores, but is corrupted by a number of artefacts resulting from the photophysical behavior of 



the probes as well as the imaging and localization steps. Most problematic is the multiple appearance 
(multiple-blinking) problem whereby fluorophores undergo multiple on-off cycles before 
permanently bleaching, making a single flourophore appear as several localizations. This issue 
combined with the discretization effects that result from observing fluorescent signals on discrete 
camera frames2. The multiple-blinking problem produces data sets that are artificially clustered and 
overly populated (Figure 1a). As such, quantitative cluster analysis of SMLM data, including testing 
for spatial randomness of the underlying fluorophores, remains a challenge.  
The most commonly employed method for correction of the multiple-blinking problem is to merge 
events that appear close in space and time3-6, which we refer to as Dark Time Thresholding (DTT). 
Such methods require a means of determining the best spatial and temporal thresholds for merging. 
This determination typically relies on heuristic methods, since the blinking behavior of the 
fluorescent probes is often unknown. Apart from the challenges involved in determining optimal 
thresholds, these methods have variable performance, depending on the underlying protein 
organization and fluorophore blinking characteristics. Instead of attempting to produce a corrected 
version of the data which can then be used for any subsequent analysis, other approaches have 
looked to correct specific spatial statistics to account for multiple-blinking. For example, it is possible 
to use calibration data to estimate a multiple-blink corrected pair-correlation curve7,8. However this 
cannot then be used to find a cluster map. 
Here, we present a new method for correction of multiple-blinking artefacts in PALM data, which 
estimates, directly from the sample data set, the parameters of a realistic model of fluorescent protein 
photophysics9. Cluster analysis of the spatial (x,y), temporal (t) and precision (σ) data set then allows 
computation of the marginal likelihood of any given blink-merge proposal, under a full generative 
model for the data. We select the most likely of several proposals generated using a customized 
hierarchical clustering algorithm. Finally, each blink cluster is consolidated into a single position, 
now free from multiple-blinking. As with other correction methodologies5, an added benefit of this 
consolidation step is to improve localization precision. The overall effect is to convert the set of raw 
x,y,t,σ localisation data into a new set, x,y,σ, with enhanced resolution. 
We evaluate the method on simulated PALM data, varying both the ground-truth organization and 
photophysical properties of the fluorescent proteins. In each case, we compare to the state-of-the-art 
method of Bohrer et al10., and DTT, outperforming alternatives in speed and accuracy. Our method 
allows for testing the completely spatially random (CSR) hypothesis at the correct significance level, 
whereas DTT fails to do so. We also validate the method on experimental data in which a notion of 
ground truth is available, namely nuclear pore complex (NPC) data in which the number of proteins 
per complex is known to be 32.  
PALM is increasingly used in the biological sciences and owing to the properties of commonly used 
total internal reflection fluorescence (TIRF) illumination, the distributions of membrane proteins 
have been especially well studied. Despite this, because of artificial clustering resulting from 
multiple-blinking, the question of whether membrane proteins are randomly distributed or not has 
become increasingly contentious11. Using our validated method combined with subsequent testing 
of the corrected protein locations, we show that the adaptor protein Linker for Activation of T cells  
is clustered in the plasma membrane of T cell immune synapses12,13. 
 

Results 



Description of the algorithm 
We work with the space-time localizations and uncertainties that result from localization software 
(here ThunderSTORM16) that is run on the raw microscope data. We apply drift correction, but 
otherwise no pre-processing is used. The data points are then modeled as a collection of independent 
and identically distributed fluorophore blinking clusters, with times following a realistic 4-state 
model17,18, discretized by the camera frames. The spatial locations for each cluster are independently 
drawn from a spherical Gaussian distribution of fixed center (the true molecule position) and 
variable but known standard deviation (the localization uncertainty). The centers are given a uniform 
prior over the region of interest (ROI).  
We refer to our algorithm as model-based correction (MBC), and a schematic of its workflow is shown 
in Figure 1b. We first estimate the temporal rates governing the switching behavior of fluorescent 
proteins under the 4-state model9, and the fraction of background noise points. This is done directly 
using the experimental data, requiring no additional calibration experiments. A recently developed 
mathematical technique extracts a component from the empirical mark and pair correlation 
functions which depends only on the spatio-temporal dynamics of the multiple-blinking process, and 
not the underlying protein distribution. The parameters of the 4-state model drive the theoretical 
shape of this component, and so they can be optimized to best fit the empirical version9. The rate 
estimates allow computation of the marginal likelihood of a sequence of timepoints posited to 
correspond to one multiple-blinking fluorescent protein, and further yields an estimate on the total 
number, N, of proteins and noise points in the ROI. Using a custom agglomerative hierarchical 
clustering (HC) algorithm19, we split the data in the ROI into partitions with N categories. HC takes as 
input a dissimilarity matrix and a linkage criterion. The dissimilarity matrix determines the distances 
between pairs of points, and the linkage criterion determines the way to generalize this distance to 
pairs of clusters. To favor groups likely to correspond to multiple-blinking clusters, we first scale the 
temporal dimension by a time-dilation hyperparameter, S, and then compute the sum of Euclidean 
distances in space and in time. For linkage, we choose Ward’s Minimum Variance Method20, which is 
well-suited for Gaussian clusters, and consistently resulted in the most likely partitions across all 
tested linkage criteria. By varying S, we obtain a large sequence of blinking cluster proposals, and 
evaluate the marginal likelihood of each. Finally, using the best partition and the localization 
uncertainties, we optimally merge the clusters down to their estimated centers, using inverse-
variance weighted averages, and update the uncertainty associated with that center (example shown 
in Supplementary Figure 1 and 3D rotatable version in Supplementary Data).  
 
PALM data simulation setup 
For a given set of protein positions, corresponding PALM data were generated as follows. We 
simulated fluorescent protein time traces according to the 4-state switching model (see Figure 1a), 
and the continuous signals were discretized to emulate a camera operating at 25 frames per second 
(40 ms integration time). This was done for 2 different sets of rates (given in Supplementary Table 
1), with the light blinking resulting in 5.36 appearances per protein on average, and the heavy 
blinking resulting in 14.94 appearances. These were selected to approximate real blinking behavior 
of fluorescent proteins such as mEos2. For each of these appearances, the observed spatial 
coordinates were simulated by adding Gaussian localization noise to the ground-truth position of the 
associated fluorescent protein, with standard deviation following a Gamma distribution with mean 



30 nm and standard deviation 13.4 nm, emulating the localization uncertainties that can be observed 
in real PALM data12.  
 
Recovery of the ground truth 
We begin by comparing MBC to the method of Bohrer et al., which we take to be the state of the art 
at the task of recovering protein positions without calibration data. We will conduct this comparison 
with simulated data from regular (529 fluorescent proteins were regularly positioned on a ~3000 
nm x 3000 nm grid), CSR (500 proteins were placed at random in a noiseless 3000 nm x 3000 nm 
ROI), and clustered distributions. For the latter, 500 ground-truth proteins were placed in a 3000 nm 
x 3000 nm ROI, with either 10 clusters of 10 molecules each, overlaid with 400 CSR molecules (light 
clustering) or 10 clusters of 40 molecules each, overlaid with 100 CSR molecules (heavy clustering).  
The metrics used for the comparison are Wasserstein distance, image error, and counting error. The 
Wasserstein distance can be thought of as the cost of transporting a standardized mass between two 
sets of points and is also known as the earth mover's distance. For a perfectly reconstructed dataset 
this distance is zero, whereas under a model in which each molecule was observed exactly once with 
localisation error drawn from the Normal-Gamma distribution above, this distance would be roughly 
37 nm. In this way, whenever we report a Wasserstein distance below 37 nm, we can conclude that 
we have exploited, rather than suffered from, the multiple-blinking artefact. Relevant plots show this 
37 nm benchmark. The image error measures the protein count error in 100 nm x 100 nm pixels, 
whereas the counting error refers to the total number of proteins per ROI, calculated as (corrected-
truth)/truth. 
In the main text we show results at the two extremes, regular (Figure 2) versus heavy clustering 
(Figure 3), with the two other conditions shown in Extended Data Figure 1. Our method is always 
superior in Wasserstein distance and image error, in counting error for heavy blinking, and never 
substantially worse. Our gains are most substantial under heavy clustering with heavy blinking, 
where Bohrer et al.’s method overcounts proteins by a factor of at least two (Figure 3). Our method 
is also much faster, taking one or two minutes per ROI on a standard desktop versus several hours.  
As an alternative to Bohrer et al, we also consider an idealized version of DTT, in which points are 
considered to have come from the same fluorophore if they were separated by at most r in space and 
T in time, chosen to minimize either the counting error (iDTT_N) or Wasserstein distance (iDTT_W). 
The reason we consider this choice, which is unavailable in practice, is to cover all possible methods 
for choosing r and T, including those involving calibration data. Results are shown for regularly 
distributed data under light and heavy blinking in Extended Data Figure 2 respectively. Our method 
is always superior on Wasserstein distance and image error (even when compared to iDTT_W), and 
superior in counting error when compared to iDTT_W.  
 
To test MBC in dense scenarios, we repeat all experiments with five times the density, chosen to 
mimic the maximum density observed in any of the experimental data analyzed in this paper (2500 
proteins per 3000 nm x 3000 nm ROI). When it comes to denser scenarios, Bohrer et al’s method can 
take ten days per ROI, and optimizing over space and time thresholds to perform iDTT is also 
computationally demanding. However, MBC is still functional, and its performance is compared to 
DTT across all conditions and metrics in Extended Data Figures 3-4. For DTT, we use parameters r 
equal to 4 times the mean localization uncertainty in space, and T determined for each ROI using the 



method of Annibale et al4. For each of four scenarios; regular and CSR (Extended Data Figure 3) and 
light clustering and heavy clustering (Extended Data Figure 4), MBC substantially outperforms DTT 
in all three metrics (Wasserstein distance, image error and counting error).  
 
Having established that MBC outperforms Bohrer et al.’s method and iDTT for recovery of ground 
truth in all conditions, at an extremely reduced computational cost, we proceed with comparing our 
method only to DTT due to its simplicity, speed, and wide uptake (including in commercial software). 
 
Testing for complete spatial randomness 
We first evaluate our algorithm for testing for complete spatial randomness of the underlying 
ground-truth proteins. In each run (n = 30 per condition), 500 proteins were placed at random in a 
noiseless 3000 nm x 3000 nm ROI. For each ROI, we compute the function L(r)-r (Figure 4b), where 
L is Besag’s L function21, testing its maximum (Figure 4c) under a CSR null hypothesis. The standard 
DTT correction method was unable to recover the ground-truth functions and resulted in rejection 
of the CSR null hypothesis in 24 and 30 out of the 30 regions, for light and heavy blinking respectively. 
On the other hand, MBC resulted in the CSR null hypothesis being rejected for 2 and 4 of the regions 
for light and heavy blinking respectively. These numbers are within the expected range at a 5% 
confidence level. Thus, we were able to reliably test the CSR hypothesis using MBC, but not using 
DTT. The estimated total number of fluorescent proteins in each ROI is shown in Figure 4d. Under 
CSR, DTT tends to overestimate the number of proteins in the ROI whereas MBC closely recovers the 
ground truth.  
 
Cluster analysis 
In this experiment, we demonstrate that a clustering algorithm can extract correct cluster 
descriptions from underlying clustered ground truth protein distributions when coupled with MBC, 
and we compare performance with DTT. We simulated data from protein distributions exhibiting 
light and heavy clustering (n = 30 per condition), as described in the recovery of ground truth section 
(Figure 5a). We used Bayesian cluster analysis14 for detection of clusters in MBC and DTT corrected 
data sets. Only under MBC could we consistently recover the 10 clusters under varying degrees of 
blinking severity (Figure 5b). The failure of DTT to recover the correct number of clusters is even 
more evident in the case of heavy clustering (Figures 5c and d). 
 
Determining optimal imaging conditions 
As a final test using known ground-truth simulated data, we used Virtual-SMLM22 to simulate raw 
camera frames. This allowed us to test the effect of varying both the camera frame rate and the 
intensity of the 405 nm activation laser on the performance of MBC. A ground truth of CSR fluorescent 
proteins were simulated (Extended Data Figure 5a), imaged using the virtual microscope and output 
analysis with ThunderSTORM. The camera integration time was set to either 10 ms or 40 ms and the 
405 nm laser intensity either kept constant, or ramped to maintain a constant density of point spread 
functions (PSFs) per frame over the course of the acquisition. Raw localizations (Extended Data 
Figure 5a) were then corrected using MBC (Extended Data Figure 5b). The Wasserstein distance 
shows marginally superior performance of the reconstruction when using constant 405 nm laser 
power and when using longer, 40 ms frames. We attribute this to the lower density of PSFs per frame 



in the constant-405 case leading to fewer overlapped PSFs during localization and to the increased 
localization precision offered by the longer frames (Extended Data Figure 5c, d). The performance of 
MBC itself is only weakly dependent on the imaging conditions, and in each condition we were able 
to recover the ground truth number of molecules to within around 10% error (Extended Data Figure 
5e). We conclude therefore that when using MBC, PALM imaging conditions should be chosen to 
maximize conventional notions of data quality — low density of PSFs and high signal-to-noise ratio. 
Because of this, we also conclude that MBC is also backwards compatible with all historically acquired 
PALM data.  
 
Model validation 
MBC is based on a statistical model for multiple blinking, camera discretization, localization error, 
and a Bayesian prior distribution on the protein positions. In this section we address concerns about 
model misspecification. First, we test our method on simulated data in which the multiple-blinking 
process follows a different model. Second, we test our method on nuclear pore complex data in which 
there is a notion of ground truth, showing accurate recovery in a situation where the blinking 
dynamics have all the complexities of real fluorophores. 
For the first experiment, the multiple blinking follows the 3-dark-state photokinetic model shown in 
Jensen et al9 with parameters rF = 0.005, rB = 2.5, rD1 = 4, rR1 = 0.25, rD2 = 4, rR2 = 1, rD3 = 4 and rR3 = 10 
(the numeric part of the subscript indicates the dark-state number). Overall, this produces slightly 
more total blinks than our previous heavy blinking case. Extended Data Figure 6 shows the results of 
MBC on regularly distributed data perturbed by this multiple blinking process. MBC still performs 
well when the blinking shows the extra complexity of multiple dark-states, still clearly outperforming 
DTT in this scenario. We believe the method should be robust, more generally, to misspecification of 
the blinking model as long as two assumptions can be made: first, the blinking behavior of different 
fluorophores is independent, and second, the process governing the blinking state switching is time-
homogeneous. 
 
Despite the performance on simulated data showing complex photoblinking behavior, real 
fluorophores in cells and experimental procedures such as imaging and localization have the 
potential to introduce many more complexities than we could simulate. We therefore investigate the 
performance of MBC on experimental reference data. We consider real biological cells from a recently 
developed cell line23 expressing the nucleoporin Nup96, which forms nuclear pore complexes (NPC). 
These complexes have a well-characterized ring shape, composed of 32 Nup96 positioned into 8 
identical corners. Knowing that each ring holds 32 proteins allows us, in principle, to compare 
corrected counts to a ground truth value. 
 
We consider 16 independent recordings of cells expressing the fluorophore Nup96-mMaple, as 
available on the BioImage Archive. Following Thevathasan et al., 201923, we first filter out emitters 
of poor quality using the SMAP software24. In addition to filtering, SMAP also detects and segments 
out the NPCs present in each cell, and estimates the effective labeling efficacy (pele), the probability 
that a Nup96-mMaple is detected in the recording. For a given pele, which will vary for each recording, 
we can thus expect the number of detectable Nup96-mMaple in an NPC (NNPC) to have a binomial 
distribution NNPC ~ Bin(32, pele).  



 
After running MBC on each dataset, we cluster the corrected localizations into NPCs according to the 
closest NPC center. For each corrected NPC, we compute the number of localizations and divide by 
the pele relevant to that cell, to obtain a standardized count. Under an unbiased correction method 
this standardized count will have a mean value of 32 for all cells, allowing us to analyze and visualize 
all 16 cells simultaneously, see Extended Data Figure 7. By comparison to the theoretical distribution 
of ground-truth standardized counts (corresponding to perfect recovery) we see that MBC is closely 
emulating this optimal distribution. The percentage error on the mean number of proteins per NPC 
between MBC and the idealized case is only 1.1%, showing that MBC exhibits minimal bias. Our 
standard deviation is 6.16 and the ideal case is 4.6 (Bohrer et al. reported 11). Overall, experimental 
data acquired with a known ground truth show that MBC is accurate and unbiased in correcting 
multiple-blinking even through the full complexity of real fluorophore photophysics confounded by 
potential imaging and localization artefacts.  
 
Analysis of experimental data 
Nanoscale clustering is posited to play a role in regulating protein-protein interactions and therefore 
the efficiency of signaling propagation along pathways25. T cell microclusters of proximal signaling 
molecules have been widely documented by conventional microscopy26,27. Many have recently been 
studied by SMLM and shown to also cluster on the nanoscale12,13,28,29. This has proved controversial 
however, with counter-proposals that, in some circumstances, proteins may in fact be randomly 
distributed on the cell surface, with observed clustering attributed to multiple-blinking artefacts11. 
For PALM data, MBC should enable researchers to navigate this controversy. 
We analysed the distribution of the adaptor protein LAT30 in the plasma membrane of the Jurkat 
CD4+ Helper T cell line at an artificial immune synapse formed against an activating, antibody coated 
coverslip (see Online Methods). To assess the role of intracellular phosphorylation in maintaining 
this distribution, we also mutated intracellular tyrosine residues to phenylalanine (YF LAT). Both 
wild-type (WT) LAT and YF LAT were fused to the photoconvertible fluorescent protein mEos3.2 
with cells imaged under TIRF illumination. Raw localizations were obtained using ThunderSTORM 
and then corrected using MBC, with the average localization uncertainty across experiments reduced 
by 40.52%. The resulting corrected localizations were then tested for spatial randomness using the 
L-function, and any regions found to be clustered subjected to Bayesian cluster analysis14 (using 
default parameters).  
Figure 6 shows WT and YF LAT-mEos3.2 from representative regions (from n = 12 - 25 ROIs from 3-
6 cells) acquired from the central regions of the cell synapse and from the synapse periphery, both 
before (Figure 6a) and after (Figure 6b) correction using MBC. Clearly, the large, dense clusters 
evident in the uncorrected data in all conditions are reduced in the corrected regions. However, by 
analysing the L-function curves from the ROIs (Figure 6c) and extracting the maximum value of those 
curves (Figure 6d), we were able to perform significance testing on whether the LAT distributions 
were truly CSR. For the two WT LAT conditions, the null hypothesis that LAT is randomly distributed 
was rejected in most regions. Therefore, it is likely that WT LAT was clustered in most analyzed WT 
ROIs. This was not true for the YF mutant however, with the null hypothesis of randomly distributed 
LAT not rejected in the majority of peripheral regions (Figure 6d). This therefore may point to a role 
of intracellular tyrosine phosphorylation in maintaining LAT clustering. 



For all regions where the CSR null hypothesis was rejected we then further interrogated the data 
using Bayesian cluster analysis. For WT LAT, the data showed no statistically significant difference 
in cluster membership between central and peripheral regions. However, the YF mutant showed a 
significant decrease in the number of molecules per cluster in peripheral regions, both when 
compared to YF central regions (p = 0.026) and WT peripheral regions (p = 0.001) (Figure 6e). Other 
outputs from the cluster analysis are shown in Extended Data Figure 8, with p-values summarized in 
Supplementary Table 2. The decrease in cluster membership and, in some ROIs, the loss of clustering 
altogether, in peripheral regions of the T cell synapse resulting from the YF mutation, is a strong 
indication that intracellular tyrosine phosphorylation is involved in maintaining LAT signaling 
clusters. Signaling phosphorylation events are known to originate in the synapse periphery and it is 
therefore consistent that the effect of the mutation is most pronounced there, compared to the central 
region where signaling is terminated31. 
 

Discussion 
Super-resolution fluorescence microscopy by SMLM, such as PALM, results in a pointillist dataset 
representing an attempted realization of the underlying ground-truth fluorophore locations1. A 
common goal in the biological sciences is to test whether such underlying distributions are clustered 
or randomly distributed and, if clustered, to determine their clustering properties. Achieving this has 
proved difficult however, because the generated localizations are corrupted by artefacts, principally 
the repeated localization of the same fluorophore due to multiple-blinking2. This has led to 
controversy about whether proteins are truly clustered in cells, hindering our understanding of the 
causes and function of nanoscale protein clustering.  
Here, we develop an algorithm, MBC, for correcting multiple-blinking that requires no user input, no 
additional calibration data, and is not limited to a specific analysis goal. We show that it can be used 
to reliably test for spatial randomness or recover other clustering properties from the ground truth. 
A number of methods have been put forward to test for spatial randomness in SMLM data. These 
include methods based on varying the labelling density and observing the effects on specific cluster 
analysis outputs32 or by labeling the same species with two different fluorophores allowing a cross-
comparison to be made33. These, however, require multiple sample preparation rounds and are 
therefore more complex and time-consuming. Correction can also be made by measuring blinking 
behavior in a separate sample of well-isolated fluorophores8, but this again adds complexity and 
experimental effort and requires the assumption that probe photophysics are maintained between 
the sample and the calibration. It is also possible to measure or simulate multiple-blinking using 
realistic photophysical models and use these to derive new CSR confidence intervals for the L-
function curves34. It should be noted however that none of these methods produces a new set of 
corrected positions.  
An approach with the same goal as ours is the method of Bohrer et al10. We perform a comprehensive 
comparison to this approach, showing MBC achieves superior accuracy at a fraction of the 
computational cost. Performance gains are often substantial in both measures, e.g., the method of 
Bohrer et al. can overcount the number of proteins by up to a factor of two, and can take more than 
a week per ROI (where our method takes 2 minutes). MBC demonstrates a sufficiently accurate 
recovery of ground truth to reliably test the CSR hypothesis. MBC therefore represents a new 



capability - of obtaining a set of corrected ground-truth locations of sufficient quality that any 
subsequent statistical analysis can be conducted with assurance.  
The limitations of MBC are as follows. The method is only applicable to photophysical models typical 
of PALM acquisitions, and therefore cannot be used to correct dSTORM or other SMLM modalities. 
Performance of the correction will decrease as the clustering of the ground-truth increases, however, 
it tested favorably with realistic and heavily clustered scenarios. The method also adds 
computational time to any analysis pipeline. For a 3000 nm x 3000 nm ROI containing 500 ground-
truth proteins, we estimate the MBC step to take 2-4 minutes per ROI on a standard desktop 
computer. Of course, as it results in fewer points per ROI, subsequent analysis will typically be 
accelerated. While here the correction is limited to 2D data, it can in principle be adapted to 3D (x,y,z) 
coordinates. In this case, the algorithm would need to take account of the differing localization 
precision in z and potentially the lower detection efficiency of proteins deeper into the sample. Of 
course, there are many other sources of potential error in SMLM other than multiple-blinking. These 
include low detection efficiency35,36, endogenous expression, overlapped PSFs, drift, etc which are not 
addressed by MBC. The resulting point patterns generated by MBC should therefore still be 
interpreted with these in mind. 
In conclusion, MBC allows for accurate recovery of ground-truth fluorophore positions, with 
enhanced precision, from PALM data sets subjected to multiple-blinking artefacts. Corrected sets are 
of sufficient quality to allow accurate cluster analysis and the statistical testing for complete spatial 
randomness. We therefore believe that PALM combined with MBC will be an invaluable tool for 
addressing questions on the existence, determinants and functions of protein nanoscale clustering. 
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Figure legends 
Figure 1: Illustration of the MBC workflow. a) During PALM image acquisition and subsequent 
localisation steps, the ground-truth protein positions are corrupted by multiple-blinking in 
combination with discretisation by the camera frames and scrambling by the localisation uncertainty, 



resulting in a data set which is over-populated and over-clustered. b) Our algorithm (MBC) takes as 
input x,y,t,σ data and estimates the rate parameters of a 4-state photophysical model, from which it 
derives the total number of molecules in the ROI. This is then used as input to a hierarchical clustering 
step (experimental data shown with colours representing the clusters found), after which clusters 
are merged to their centres, creating a new dataset free from multiple-blinking and with enhanced 
localisation precision. 
 
Figure 2: Comparison of MBC with the state-of-the-art, with molecules on a fixed grid. a) 
Representative ground truth, blinking and corrected data (from one of n = 50 realisations). b,c,d) 
Wasserstein distances (b), image error (c), counting error (d), between corrected data and ground 
truth. In b), the dashed horizontal line shows the 37nm benchmark and c,d) the dashed horizontal 
line shows the optimal value 0. The columns show different blinking conditions (LB: light blinking, 
HB: heavy blinking) and correction methods (MBC: our method, Boh: Bohrer et al.’s method). Our 
method has superior or comparable performance on all metrics. Box plots show median, 25th and 75th 
percentiles and min, max.  
 
Figure 3: Comparison of MBC with the state-of-the-art, with heavily clustered molecules. a) 
Representative ground truth, blinking and corrected data (from one of n = 30 realisations). b,c,d) 
Wasserstein distances (b), image error (c), counting error (d), between corrected data and ground 
truth. In b), the dashed horizontal line shows the 37nm benchmark and c,d) the dashed horizontal 
line shows the optimal value 0. The columns show different blinking conditions (LB: light blinking, 
HB: heavy blinking) and correction methods (MBC: our method, Boh: Bohrer et al.’s method). Our 
method has superior performance on all metrics. Box plots show median, 25th and 75th percentiles 
and min, max. 
 
Figure 4: Testing for spatial randomness. a) Representative simulated data of ground-truth CSR 
points with light or heavy blinking (LB or HB) either corrected by MBC or DTT as a comparison (n = 
30 simulations). b) L(r)-r (mean in solid line) with pointwise 95% quantile bands (dashed line). c) 
max(L(r)-r) derived from these functions. Points in red correspond to ROIs that were rejected as CSR 
in a Monte-Carlo test (p < 0.05). Note that DTT often (and sometimes always) incorrectly rejects the 
CSR null hypothesis, whereas MBC does not. d) Number of molecules per ROI (log-scaled) showing 
superior correction of MBC compared to DTT in light and heavy blinking cases. Box plots show 
median, 25th and 75th percentiles and min, max. p-values calculated based on one-sided Monte-Carlo 
test using 10,000 CSR simulations. 
  
Figure 5: Testing on clustered ground-truth data sets. a) Low levels of clustering with either light 
or heavy blinking, corrected by MBC or DTT (n = 30 simulations). b) Number of detected clusters 
(true number of clusters in dashed line) by Bayesian analysis. c) High levels of clustering with either 
light or heavy blinking, corrected by MBC or DTT. d) Number of detected clusters (true number of 
clusters in dashed line) by Bayesian analysis. MBC has superior performance in all cases except heavy 
clustering/light blinking, where results are comparable. Box plots show median, 25th and 75th 
percentiles and min, max. 
 



Figure 6: Cluster analysis of LAT-mEos3.2 at the T cell immunological synapse.  a) 
Representative, raw 3000 nm x 3000 nm ROIs from each of the 4 conditions (WT Centre (n = 16 
regions), WT Periphery (n = 19 regions), YF Centre (n = 12 regions) and YF Periphery (n = 25 
regions)). b) Representative MBC-corrected ROIs, on which analysis was conducted. c) L(r)-r (mean 
in solid line) with pointwise 95% quantile bands (dashed line). d) max(L(r)-r) derived from these 
functions. Points coloured in red correspond to ROIs where the CSR null hypothesis was rejected in 
a Monte Carlo test (p < 0.05). These ROI were then retained for subsequent Bayesian cluster analysis. 
e) Number of proteins per cluster detected by Bayesian analysis. Box plots show median, 25th and 
75th percentiles and min, max. p-values calculated based on one-sided Monte-Carlo test using 10,000 
CSR simulations. 
 
 
Editor’s summary 
 
A model-based correction (MBC) algorithm offers fast and accurate correction of multiple-blinking 
artifacts in PALM data. MBC outperforms other algorithms in both speed and accuracy and improves 
quantitative downstream image analysis.  
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Methods 
 
Sample preparation 
For LAT images, Jurkat E6.1 cells (ECACC 88042803) expressing LAT-mEos3.2 (wild-type, WT LAT, 
or signalling deficient mutant, YF LAT) were introduced to anti-CD3 (at 2 μg/ml; eBioscience clone 
OKT3, 16-0037-81) and anti-CD28 (at 5 μg/ml; RnD Systems, clone CD28.2, 16-0289-85) coated 
glass-bottomed chamber slides (#1.5 glass, ibidi μSlides) at 50 × 10³ cells/cm² in warm HBSS and 
incubated at 37°C for 5 minutes to allow for synapse formation. The chamber wells were gently 
washed with warm HBSS and then fixed in 3% paraformaldehyde in phosphate-buffered saline (PBS) 
for 20 minutes at 37°C. Fixed cells were washed five times in PBS and used immediately for PALM 
imaging. 
 
Imaging 
PALM image sequences were acquired on a Nikon N-STORM system in a TIRF configuration using a 
100 × 1.49 NA CFI Apochromat TIRF objective for a pixel size of 160 nm and running NIS Elements 
software v4.6. Samples were continuously illuminated with 561 nm laser light at approximately 2 
kW/cm² and 405 nm laser light (to induce photo-conversion) at approximately 2 W/cm². Images 
were recorded on an Andor IXON Ultra 897 EMCCD with an electron multiplier gain of 200 and pre-
amplifier gain profile 3 to a centered 256 × 256 pixel region at 40 ms per frame for 5,000 to 15,000 
frames. 
 
Virtual microscope simulations 
Raw camera frames were generated using Virtual-SMLM22 operating in PALM mode (i.e., using a 4 
state photophysical model). The frame rate was set to 25 or 100 frames per second. The activation 
laser (i.e. initial state transition) was either fixed or ramped up over the acquisition. In the first case, 
the number of fluorophores emitting per frame decreases over time. In the second case, it remains 
constant over the acquisition. Emission traces were generated independently for each fluorophore 
and imaging continued until all fluorophores had been imaged and bleached. All other state transition 
probabilities and photophysics properties were fixed to mimic mEos blinking characteristics. The 
PSFs were recorded on a virtual EMCCD camera, with an EM gain fixed at 300. Virtual-SMLM took as 
input ground truth maps of mEos2 positions. 5556 mEos proteins were placed randomly over a 
10000 nm x 10000 nm 2D area. Generated camera frames were then analysed using ThunderSTORM 
and the data cropped into non-overlapping 3000 x 3000 nm regions.  
 
Localisation 
Localisation of fluorophore coordinates were reconstructed using ThunderSTORM16 and corrected 
for sample drift using cross-correlation of images from 5 bins at a magnification of 5. No further post-
processing was performed. 
 
Mathematical details 
 

1. Marginal likelihood of clusters 



We represent the observed process by a series of localisations (𝑋 , 𝑌 ) ∈ 𝑅 with associated ‘blink’ 
times 𝑇 , … , 𝑇 , and localisation uncertainties 𝜎 , … , 𝜎 , where 𝑅 = [𝑥 , 𝑥 ] × [𝑦 , 𝑦 ] is the region of 
interest. 
For a given partition of the localisations into groups, we compute the marginal likelihood of the data 
as follows. Consider a group comprising the observations 1, … , 𝑚, with 1 ≤ 𝑚 ≤ 𝑛, posited to 
correspond to one, distinct molecule. In particular, we defer until later the treatment of background 
noise. 
The independence assumptions set out in the main article result in the following marginal likelihood 
factorisation: 
 

𝑝{(𝑋 ) , (𝑌 ) , (𝑇 ) } = 𝑝{(𝑋 ) }𝑝{(𝑌 ) }𝑝{(𝑇 ) }. 
 
Denoting by 𝜇 = (𝜇 , 𝜇 ) the true position of the molecule, the spatial components above have 
likelihood (given only for (𝑋 ) ) 
 

𝑝{(𝑋 ) |𝜇 } = 2𝜋𝜎 exp −
1

2

𝑋 − 𝜇

𝜎

= (2𝜋) / 𝜎 exp −
1

2
𝜂 (𝑋 − 𝜇 ) , 

 
where 𝜂 = 1 𝜎⁄ . Defining the weighted mean 
 

𝑋 =
∑ 𝜂 𝑋

∑ 𝜂
 

We find 
 

𝑝{(𝑋 ) |𝜇 } = (2𝜋) / 𝜎 exp −
1

2
𝜂 𝑋 − 𝑋 ×  exp −

∑ 𝜂

2
𝜇 − 𝑋 . 

 
Placing a uniform prior on 𝜇 , we find 
 

𝑝{(𝑋 ) |𝜇 } = (2𝜋) / 𝜎 exp −
1

2
𝜂 𝑋 − 𝑋

× (𝑥 − 𝑥 ) exp −
∑ 𝜂

2
𝜇 − 𝑋 𝑑𝜇

= (2𝜋) / 𝜎 exp −
1

2
𝜂 𝑋 − 𝑋

× (𝑥 − 𝑥 ) 2𝜋 𝜂
/

Φ
𝑥 − 𝑋

∑ 𝜂
− Φ

𝑥 − 𝑋

∑ 𝜂
. 

 
The temporal component has likelihood 
 



𝑝((𝑇 ) ) = 𝑝(𝑢)𝑝(𝑇 ) 𝑝(𝑓 ) 𝑝(𝑑 ), 

 
where each term is computed as follows. The blink times 𝑇 , … , 𝑇  are not typically observed exactly, 
and instead one has access only to associated frame numbers 𝐹 , … , 𝐹 , taken to represent (small) 
windows of time containing them, We therefore consider a visit to the fluorescent state to be a block 
of 𝐿 ≥ 1 contiguous fluorescent frames (or consecutive frame numbers), and impute the length ofthis 
visit to be the time elapsed over 𝐿 − 1 frames, to obtain auxiliary quantities 
 

𝑓 ∶ time spent in fluorescent state (kth visit). 
 
Up to discrete approximation error, each 𝑓  represents the minimum of two exponential random 
variables with respective rates 𝑟  and 𝑟 , with likelihood contribution 
 

𝑝(𝑓  ) = (𝑟 + 𝑟 )𝑒 ( ) . 
 
Similarly, let 𝑑  denote the time elapsed over the kth interval between non-contiguous frames, taken 
to represent 
 

𝑝(𝑑 ) = 𝑟 𝑒
𝑟

𝑟 + 𝑟
. 

 
The initial switch of the fluorophore to the activated state happens at time 𝑇 , computed simply as 
the minimum 𝑇  value, and this contributes 
 

𝑝(𝑇 ) = 𝑟 𝑒 , 
 
to the likelihood. 
Finally, let 𝑢 denote the time since the last blink (a period during which it is unknown whether the 
process has entered a dark or bleached state). The final contribution is 
 

𝑝(𝑢) =
𝑟

𝑟 + 𝑟
𝑒 +

𝑟

𝑟 + 𝑟
 

 
To finalise calculations, one must account for background noise (in the case of 𝑚 = 1). Such points 
are assumed to be uniform in spacetime. The complete marginal likelihood is 
 

𝜋((𝑋 ) , (𝑌 ) , (𝑇 ) ) =  
(1 − 𝛼)𝑝((𝑋 ) , (𝑌 ) , (𝑇 ) )

𝛼𝑉 + (1 − 𝛼)𝑝((𝑋 ) , (𝑌 ) , (𝑇 ) )
       

𝑚 > 1
𝑚 = 1

 

 
where 𝑉 = 𝑇(𝑥 − 𝑥 )(𝑦 − 𝑦 ), 𝑇 is the length pf the period of observation, and 𝛼 is the background 
probability. 
 



2. Identifying and summarising clusters 
For both MBC and DTT clustering, an expected number of clusters, N, is first estimated, and a version 
of agglomerative hierarchical clustering (AHC) is then used to partition the dataset into N clusters. In 
AHC, each point is initially considered to be a distinct cluster. Using a user-specified metric and a 
linkage criterion, a stepwise greedy merging of the closest clusters is repeated until a partition with 
a predetermined number of clusters is obtained, or until no more clusters can be merged with a 
distance less than some specified number. The metric determines the distances between pairs of 
points, and the linkage criterion generalises these to a distance between clusters. Once the final 
partition has been identified, we merge each cluster down to its estimated centre, and the uncertainty 
of the centre is computed. In the following, we use the notation 
 

𝐿 = (𝑋, 𝑌) 

𝑑 (𝐿 , 𝐿 ) = (𝑋 − 𝑋 ) + (𝑌 − 𝑌 )  
𝑑 (𝑇 , 𝑇 ) = |𝑇 − 𝑇 | 

 
3. MBC clustering 

 
For MBC, the number of desired clusters, N, is an output of the rate-estimation step, and is thus 
decoupled from the clustering problem. For the AHC step, we use the family of metrics 
 

𝑑 (𝐿 , 𝑇 ), (𝐿 , 𝑇 ) =
𝑑 (𝐿 , 𝐿 )

(𝜎 + 𝜎 )
+ 𝑆 ⋅ 𝑑 (𝑇 , 𝑇 ) 

 
For 𝑆 ≥ 0, which is simply the sum of the Euclidean distance between the locations and (scaled) 
times. For the linkage criterion we chose Ward’s Minimum Variance Method, as implemented via the 
Lance-Williams formula37, as it tends to find homogeneous clusters of spherical shape. 
By varying S along a grid, we obtain a sequence of partitions, each slightly different but all chosen to 
have N clusters. By evaluating the marginal likelihood for the partitions obtained at each value of S, 
we then pick the most likely partition among those considered. 
 
 

4. DTT clustering 
 
DTT, or dark time thresholding, is a general idea in SMLM blinking correction literature, but 
implementation details are rarely discussed. The general principle is to merge locations that are close 
in space and time, with hard thresholds on the maximally allowed bridging distances in space and 
time. As a way to implement this idea in the AHC framework, we define the distance between two 
observations as 
 

𝑑 , (𝐿 , 𝑇 ), (𝐿 , 𝑇 ) = 𝑑 (𝐿 , 𝐿 ) + 𝑑 (𝑇 , 𝑇 ) + ∞ ⋅ 1 𝑑 (𝐿 , 𝐿 ) > 𝜏  𝑜𝑟 𝑑 (𝑇 , 𝑇 ) > 𝜏   
 
where ∞ ⋅ 0 = 0. Although not strictly a metric, this distance measure allows us to implement the 
dark time thresholding idea. We use the single-linkage criterion for cluster merging, which considers 
the distance between two clusters to be the smallest pairwise distance between them. Combined with 
our metric, this means that the clustering algorithm is allowed to merge points and clusters, so long 
as they can be combined via paths that do not violate the hard thresholds. Finally, a clustering is 
achieved by continuing to merge clusters until only infinite distances between clusters remain (no 



more legal merges can be made). For 𝜏 , we used 4 times the mean localisation uncertainty. The 
temporal threshold, 𝜏 , was determined as follows. First, the method of Annibale et al was used to 
determine N4. Next, 𝜏  was increased incrementally until the AHC algorithm produced a partition with 
N clusters, or as close to N as possible. 
 

5. Cluster centres and uncertainty 
 
Let (𝑋 , 𝑌 )  be the coordinates of an arbitrary cluster with centre 𝜇. Once a particular clustering is 
given, it makes sense to treat the cluster centres as fixed parameters to be estimated. Thinking 
therefore of 𝜇 as fixed, the maximum likelihood estimator, �̂�, maximises the likelihood of the cluster 
coordinates 
 

log(𝑝){(𝑋 , 𝑌 ) } = −
∑ 𝜂

2
𝜇 − 𝑋 + 𝜇 − 𝑌 + 𝐶 

 
Where C does not depend on 𝜇 and it follows immediately that 
 

�̂� = 𝑋, 𝑌 =
∑ 𝜂 𝑋

∑ 𝜂
,
∑ 𝜂 𝑌

∑ 𝜂
. 

 
Using �̂�, we can estimate the position of the molecule associated with a given cluster. As the 
coordinates of �̂� are i.i.d., the covariance matrix of �̂� is given as 
 

𝕍[�̂�] = 𝜎 𝐼  
 
where 𝐼 is the 2 × 2 identity matrix, and 
 

𝜎 =  𝕍[𝑋] =
∑ 𝜂 𝜎

∑ 𝜂
=

1

∑
1

𝜎

 

 
And the updates localisation uncertainty is then simply the associated standard deviation 
 

𝜎 =
1

∑
1

𝜎

 

 
Justification of optimisation strategy 
It may seem wasteful to correct the localisations in two steps, rather than a more integrated 
approach. However if, in a single step, we optimise the model likelihood for blinking parameters and 
data partitions simultaneously, the maximum likelihood clustering overfits in a catastrophic way, 
giving each position its own cluster, and fitting a degenerate blinking model (infinite bleach rate). A 
more sophisticated attempt would be to take a fully Bayesian approach, with priors on the blinking 
dynamics, but this has two disadvantages: the first is added and potentially catastrophic sensitivity 



to model misspecification, for example, multiple dark states; second, this approach introduces 
substantial computational issues, which can only be addressed by further layers of approximation 
(e.g. Monte Carlo, or variational inference) and analysis parameters (burnin, runtime, step-size, etc). 
The convergence of Markov Chain Monte Carlo is highly uncertain in any Bayesian clustering 
problem: to quote an influential source, “Although we may be somewhat presumptuous, we consider 
that almost the entirety of MCMC samplers implemented for mixture models has failed to 
converge!”38.  
We now demonstrate that, once the blinking parameters are estimated and held fixed, a) the 
likelihood does not overfit the data partition, and b) our simple search strategy gets close to the 
optimum. To do this, we implement a more flexible clustering approach, Bayesian hierarchical 
clustering (BHC), in which clusters are greedily merged according to the largest increase in 
likelihood. Despite an efficient implementation, e.g. exploiting the Lance-Williams update, this 
algorithm is too time costly to be suggested for general use, but it provides a benchmark for the 
performance that could be obtained with a more involved approach and more computational power. 
In Supplementary Figure 2, we show the likelihood obtained by BHC in a range of different conditions, 
noting that the algorithm starts with a partition separating all points and ends with all points in one 
partition (so obtains a likelihood for every possible number of clusters). We observe that a) the 
highest likelihood partition found by BHC does not routinely overfit (overestimate the number of 
clusters) and b) the likelihood of the MBC and BHC solutions are close. MBC and BHC are also 
comparable in terms of other metrics (e.g. each wins roughly half the time in Wasserstein distance).  
 
Significance testing 
The p-values reported in Table 1 are based on a two-sided permutation test of the absolute difference 
of means, using 10,000 simulations.  
 
Data availability 
A data simulator to recapitulate simulated data conditions and raw experimental data (point clouds) 
are available at https://github.com/Louis-Jensen/MBC-for-PALM. Raw experimental data (camera 
frames) available upon request. 
 
Code availability 
MBC code is available as Supplementary Material together with installation instructions and example 
simulated data sets. MBC code is also available at https://github.com/Louis-Jensen/MBC-for-PALM. 
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