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1 Introduction

The modeling of various classes of constrained optimization problems via Riemannian manifolds has

gained increasing attention in the recent years in both the academic and business community as, in some

sense, it outperforms the Euclidean counterpart. Besides the purely theoretical motivations and interests,

it aims to obtain practical tools for supporting efficient computational implementations of algorithms for

solving such problems. A point that deserves to be highlighted is that endowing the set of constraints of

the problem with a suitable Riemannian metric, it allows us to explore its intrinsics algebraic and geo-

metric structures and then significantly reduce the cost of obtaining solutions of the problem in question.

For example, a non-convex Euclidean problem can be seen as a convex Riemannian one (as we show in

Section 5.2), whose optimization methods for solving it have much less inherent computational complex-

ity, see for instance [24, Example 13.4.1] and [5, 6]. It is worth noting that the concepts of convexity of

sets and functions in the Riemannian optimization context is a topic that is of interest in itself, see for

example [16, 23, 29, 35].

The hyperbolic space is a non-Euclidean smooth manifold of negative constant sectional curvature,

see for example [1, 25]. A concise introductory note on hyperbolic spaces can be found in [3]. Over the

recent years several theoretical and practical applications of the hyperbolic space have emerged. Although

we are not concerned with practical issues at this time, we emphasize that practical applications appear

whenever the natural structure of the data is modeled as an optimization problem on the hyperbolic space.

For instance, several problems in machine learning, artificial intelligence, financial networks, as well as

procrustes problems and many other practical questions can be modeled in this setting. Papers dealing

with these subjects include, for machine learning [20], for artificial intelligence [19], for neural circuits

[26], for low-rank approximations of hyperbolic embeddings [13, 28], for procrustes problems [27], for

financial networks [14], for complex networks [15, 18], for embeddings of data [32] and the references

therein. We also mention that there are many related papers on strain analysis, see for example, [30, 33].
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The aim of this paper is to study some concepts related to the convexity of sets and functions on

the hyperbolic space in an intrinsic way. Although some of these concepts have already been studied in

general Riemannian manifolds, we revisit them in this specific context in order to present some explicit

formulas and new properties. To this end, among the various existing models of hyperbolic geometry, we

choose the hyperboloid model (also called Lorentz model), see [1, 3]. We first study important properties

of the intrinsic distance, for instance, we present the spectral decomposition of its Hessian. Next, we

study the concept of convex sets and the intrinsic projection onto these sets. We also study the concept of

convex functions and present the first and second order characterizations for these functions. Finally, we

present an extensive study of the hyperbolically convex quadratic functions.

The structure of this paper is as follows. In Section 1.1, we recall some notations and basic results. In

Section 2, we recall some notations, definitions and basic properties about the geometry of the hyperbolic

space used throughout the paper. In Section 2.1 we present some properties of the intrinsic distance

from a fixed point. In Section 3 we present a characterization of convex sets in the hyperbolic space

and in Section 4 we study properties of the projection onto convex sets. In Section 5 we study the basic

properties of convex functions on the hyperbolic space and in Section 5.2 we study hyperbolically convex

quadratic functions. In Section 6 we present some concepts of optimization related to hyperbolically

convex functions. We conclude this paper by making some final remarks in Section 8.

1.1 Notation and Basics Results

Let Rm be the m-dimensional Euclidean space. The set of all m×n matrices with real entries is denoted

by Rm×n and Rm ≡Rm×1. For M ∈Rm×n the matrix M> ∈Rn×m denotes the transpose of M and λmin(M)

and λmax(M) stands for the minimum and maximum eigenvalue of the matrix M, respectively. If x ∈ Rm,

then diag(x) ∈ Rm×m denotes a diagonal matrix with (i, i)-th entry equal to xi, i = 1, . . . ,n. The matrix I
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denotes the n×n identity matrix. The following characterizations of symmetric positive definite matrices

can be found in [12, Theorem 7.2.5, pp. 404].

Lemma 1.1 Let M ∈ Rn×n be symmetric. Then, M is positive definite if and only if detMi > 0, for i =

1, . . . ,n, where Mi stands for the principal submatrix M determined by the first i rows and first i columns.

For a given M ∈ R(n+1)×(n+1), consider the following decomposition:

M :=

 M̄ b

b> θ

 , M̄ ∈ Rn×n, b ∈ Rn×1, θ ∈ R. (1)

Using the decomposition (1) we have the following characterizations of positive definite matrices and

positive semidefinite matices, for the proof see [11, Propositions 16.1 and 16.2].

Lemma 1.2 Let M = M> ∈ R(n+1)×(n+1). Consider the decomposition of M in the form (1).

(i) M is positive definite if and only if θ > 0 and M̄− 1
θ

bb> is positive definite;

(ii) If θ > 0, then M is positive semidefinite if and only if M̄− 1
θ

bb> is positive semidefinite;

(iii) If M̄ is positive definite, then M is positive semidefinite if and only if θ −b>M̄−1b≥ 0.

Now, assume that M̄ is invertible. In this case the determinant of M is given by the formula of the next

lemma, see [12, Section 0.85, pp. 21].

Lemma 1.3 Let M ∈ R(n+1)×(n+1). Consider the decomposition of M in the form (1). Then, det(M) =

(θ −b>M̄−1b)detM̄.

Next we present a version of the S-lemma which can be found for example in [22, Theorem 2.2].

Lemma 1.4 Let A,B ∈ Rn×n be symmetric matrices. Assume that x̂>Bx̂ < 0 for some x̂ ∈ Rn×n. Then the

following two statements are equivalent.

(i) If x>Bx≤ 0, then x>Ax≥ 0;

(ii) There exists a β ≥ 0 such that A+βB is positive semidefinite.
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We end this section by stating a version of Finsler’s lemma, see [10]. A proof of it can be found, for

example, in [17, Theorem 2].

Lemma 1.5 Let M,N ∈ Rn×n be two symmetric matrices. If x>Nx = 0 implies x>Mx > 0, then there

exists λ ∈ R such that M+λN is positive definite.

2 Basics Results About the Hyperbolic Space

In this section we recall some notations, definitions and basic properties about the geometry of the hy-

perbolic space used throughout the paper. They can be found in many introductory books on Riemannian

and Differential Geometry, for example in [1, 25], see also [2].

Let 〈·, ·〉 be the Lorentzian inner product of x := (x1, . . . ,xn,xn+1)
> and y := (y1, . . . ,yn,yn+1)

> on

Rn+1 defined as follows

〈x,y〉 := x1y1 + · · ·+ xnyn− xn+1yn+1. (2)

For each x ∈ Rn+1, the Lorentzian norm (length) of x is defined to be the complex number

‖x‖ :=
√
〈x,x〉. (3)

Here ‖x‖ is either positive, zero, or positive imaginary. In order to state the inner product (2) in a conve-

nient form, we take the diagonal matrix J defined by

J := diag(1, . . . ,1,−1) ∈ R(n+1)×(n+1). (4)

By using (4), the Lorentz inner product (2) can be stated equivalently as follows

〈x,y〉 := x>Jy, ∀x,y ∈ Rn+1. (5)

Throughout the paper the n-dimensional hyperbolic space and its tangent hyperplane at a point p are

denoted by

Hn :=
{

p ∈ Rn+1 : 〈p, p〉=−1, pn+1 > 0
}
, TpHn :=

{
v ∈ Rn+1 : 〈p,v〉= 0

}
, (6)
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respectively. It is worth noting that the Lorentzian inner product defined in (2) is not positive definite in

the entire space Rn+1. However, one can show that its restriction to the tangent spaces of Hn is positive

definite; see [2, Section 7.6]. Consequently, ‖v‖> 0 for all v∈ TpHn and all p∈Hn with v 6= 0. Therefore,

〈·, ·〉 and ‖ · ‖ are in fact a positive inner product and the associated norm in TpHn, for all p ∈Hn. Next

we present a basic lemma used in the sequel.

Lemma 2.1 Let p,q ∈Hn. Then, 〈p,q〉 ≤ −1 and 〈p,q〉=−1 if and only if p = q.

Proof Since p,q ∈Hn, we have 〈p, p〉=−1, pn+1 > 0, 〈q,q〉=−1 and qn+1 > 0. Thus, we have pn+1 =

√
u>u and qn+1 =

√
v>v, where u = (p1, . . . , pn,1)> and v = (q1, . . . ,qn,1)>. Hence, it follows from (2)

that 〈p,q〉 = p1q1 + · · ·+ pnqn−
√

u>u
√

v>v. On the other hand, by taking into account that Cauchy’s

inequality in the Euclidean space implies that
√

u>u
√

v>v ≥ u>v and the equality holds if and only if

u = v, the result follows. ut

Therefore, (2) actually defines a Riemannian metric on Hn, see [3, pp. 67]. The Lorentzian projection

onto the tangent hyperplane TpHn is the linear mapping defined by

I+ pp>J : Rn+1→ TpHn, ∀p ∈Hn, (7)

where I ∈ R(n+1)×(n+1) is the identity matrix.

Remark 2.1 The Lorentzian projection (7) is self-adjoint with respect to the Lorentzian inner product (2).

Indeed, 〈(I+ pp>J)u,v〉 = 〈u,(I+ pp>J)v〉, for all u,v ∈ Rn+1 and all p ∈ Hn. Moreover, we also have

(I+ pp>J)(I+ pp>J) = I+ pp>J, for all p ∈Hn.

The intrinsic distance on the hyperbolic space between two points p,q ∈Hn is defined by

d(p,q) := arcosh(−〈p,q〉). (8)

It can be shown that (Hn,d) is a complete metric space, so that d(p,q)≥ 0 for all p,q∈Hn, and d(p,q) =

0 if and only if p = q. Moreover, (Hn,d) has the same topology as Rn. The intersection curve of a plane
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though the origin of Rn+1 with Hn is called a geodesic. Moreover, each geodesic segment γ : [a,b]→Hn

is minimal, i.e., its arc length is equal to the intrinsic distance `(γ) = arcosh(−〈γ(a),γ(b)〉) between its

end points. We say that γ is a normalized geodesic if ‖γ ′‖ = 1. If p,q ∈ Hn and q 6= p, then the unique

geodesic segment from p to q is

γpq(t) =

(
cosh t +

〈p,q〉sinh t√
〈p,q〉2−1

)
p+

sinh t√
〈p,q〉2−1

q, ∀t ∈ [0, d(p,q)].

The exponential mapping expp : TpHn→Hn is defined by expp v = γv(1), where γv is the geodesic defined

by its initial position p, with velocity v at p. Hence, expp v = p for v = 0, and

expp v := cosh(‖v‖) p+ sinh(‖v‖) v
‖v‖

, ∀v ∈ TpHn \{0}.

It is easy to prove that γtv(1) = γv(t) for any values of t. Therefore, for all t ∈ R we have

expp tv := cosh(t‖v‖) p+ sinh(t‖v‖) v
‖v‖

, ∀v ∈ TpHn/{0}. (9)

We will also use the expression above for denoting the geodesic starting at p∈Hn with velocity v∈ TpHn

at p. The inverse of the exponential mapping is given by logp q = 0, for q = p, and

logp q :=
arcosh(−〈p,q〉)√
〈p,q〉2−1

[
I+ pp>J

]
q, q 6= p. (10)

It follows from (8) and (10) that

d(p,q) = ‖ logp q‖, p,q ∈Hn.

Let Ω ⊆ Hn be an open set and f : Ω → R a differentiable function. The gradient on the hyperbolic

space of f is the unique vector field Ω 3 p 7→ grad f (p) ∈ TpM such that d f (p)v = 〈grad f (p),v〉,

see [2, Proposition 7-5, p.162]. Therefore, we have

grad f (p) :=
[
I+ pp>J

]
J ·D f (p) = J ·D f (p)+ 〈J ·D f (p), p〉 p, (11)

where D f (p) ∈ Rn+1 is the usual gradient of f at p ∈Ω . A vector field on Ω ⊆Hn is a smooth mapping

X : Ω → Rn+1 such that X(p) ∈ TpHn. The covariant derivative of X at p ∈Ω is map ∇X(p) : TpHn→
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TpHn given by

∇X(p) :=
[
I+ pp>J

]
DX(p),

where DX(p) denotes the usual derivative of the vector field X at the point p, see [2, Formula (7.62),

p.162]. The Hessian on the hyperbolic space of a twice differentiable function f : Ω → R at a point

p ∈Ω is the mapping ∇grad f (p) := Hess f (p) : TpHn→ TpHn given by

Hess f (p) :=
[
I+ pp>J

][
J ·D2 f (p)+ 〈J ·D f (p), p〉I

]
, (12)

where D2 f (p) is the usual Hessian (Euclidean Hessian) of the function f at a point p, see [2, Proposi-

tion 7.6, p.163]. Let I ⊆ R be an open interval, Ω ⊆ Hn an open set and γ : I→ Ω a geodesic segment.

Since f : C → R is a differentiable function and γ ′(t) ∈ Tγ(t)Hn for all t ∈ I, equality (11) implies

d
dt

f (γ(t)) =
〈
grad f (γ(t)),γ ′(t)

〉
=
〈
J ·D f (γ(t)),γ ′(t)

〉
, ∀ t ∈ I. (13)

Moreover, if the function f is twice differentiable then it holds that

d2

dt2 f (γ(t)) =
〈
Hess f (γ(t))γ ′(t),γ ′(t)

〉
=
〈
J ·D2 f (γ(t))γ ′(t),γ ′(t)

〉
+ 〈J ·D f (γ(t)),γ(t)〉

〈
γ
′(t),γ ′(t)

〉
, ∀ t ∈ I. (14)

For each p,q ∈ Hn the covariant derivative induces the linear isometry relative to the Lorentzian in-

ner product 〈·, ·〉, Ppq : TpHn → TqHn defined by Ppqv = V (t), where V is the unique vector field on

the geodesic segment γ : [0,1]→ Hn from p to q, i.e., γ(0) = p and γ(1) = q such that ∇V (t)γ ′(t) =

∇γ ′(t)V (t) = 0 and V (0) = v, the so-called parallel transport along the geodesic segment γ joining p to q.

The explicitly formula of Ppq is given by

Ppq(v) := v−
〈v, logq p〉

arcosh2(−〈p,q〉)
(
logq p+ logp q

)
.

By using (10), after some algebraic manipulation, the last inequality becomes

Ppq(v) :=
[

I+
1

1−〈p,q〉
(p+q)q>J

]
v.
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Note that for all geodesic segment γ : [a,b]→ Hn we have γ ′(t) = Ppq(γ
′(a)), for all t ∈ [a,b] or equiv-

alently that γ ′′(t) = 0, for all t ∈ [a,b]. Next we give two standard notations. We denote the open and

closed ball of radius δ > 0 and center p ∈ Hn by Bδ (p) := {q ∈ Hn : d(p,q) < δ} and B̂δ (p) := {q ∈

Hn : d(p,q)≤ δ}, respectively.

Let us recall the Lorentz group GL , preserving the norm (3) and metric (5), defined by

GL :=
{

Q ∈ R(n+1)×(n+1) : Q>JQ = J
}
. (15)

Note that |detQ|= 1, for all Q ∈ GL . Moreover, Q−1,Q> ∈ GL , for all Q ∈ GL .

Example 2.1 We exhibit two examples of matrices Q ∈ GL . For the first example, take u ∈ Rn+1 such

that ‖u‖ > 0. Thus, Q = I− (2/‖u‖2)uu>J ∈ GL . For the second example, take u,w ∈ Rn+1 such that

‖u‖= 1 and ‖w‖= 1. Therefore, Q = I+2wu>J− (1/(1+u>Jw))(u+w)(u+w)>J ∈ GL .

We end this section by remarking that the Lorentz group (15) preserves geodesics of Hn.

Remark 2.2 First note that for a given Q ∈GL , we have ‖Qv‖= ‖v‖. Moreover, p ∈Hn and v ∈ TpHn if

and only if Qp ∈Hn and Qv ∈ TpHn, i.e., v ∈ TpHn \{0} if and only if Qv ∈ TQpHn \{0}. Consequently,

it follows from (9) that

Qexpp tv = expQp tQv, ∀v ∈ TpHn \{0}.

Therefore, the Lorentz group preserves the geodesics of Hn.

2.1 Properties of the Intrinsic Distance on the Hyperbolic Space

In this section, we present some important properties of the intrinsic distance from a fixed point on the

hyperbolic space. In particular, we present the spectral decomposition of the Hessian of the intrinsic

distance. The intrinsic distance function on the hyperbolic space from the fixed point q ∈ Hn is the

mapping dq : Hn→ R defined by

dq(p) := arcosh(−〈p,q〉). (16)
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The intrinsic distance from q, denoted by dq , is twice differentiable at p ∈ Hn\{q}. By combining (11)

and (16), we can see that the gradient of the distance from q at p is given by

graddq(p) :=
−1√
〈p,q〉2−1

[
I+ pp>J

]
q, q 6= p. (17)

Moreover, by using (12) and (16), we obtain that the Hessian of the distance from q at p is given by

Hessdq(p) :=
〈p,q〉√
〈p,q〉2−1

[
I+ pp>J

][ 1
〈p,q〉2−1

qq>J− I
]
, q 6= p. (18)

Before presenting the spectral decomposition of the Hessian of intrinsic distance from a fixed point on

the hyperbolic space, we need the following elementary result.

Lemma 2.2 Let p,q ∈ Hn with q 6= p. Then dim(TpHn∩TqHn) = n− 1 and 〈q+ 〈p,q〉p,v〉 = 0, for

all v ∈ TpHn ∩TqHn. As a consequence, taking an orthonormal basis of the subspace TpHn ∩TqHn, say

{v1, . . . ,vn−1} and defining vn = (q+ 〈p,q〉p)/‖q+ 〈p,q〉p‖, the set {v1, . . . ,vn−1,vn} is an orthonormal

basis of TpHn.

In the next lemma we present a spectral decomposition of the Hessian of the intrinsic distance from a

fixed point on the hyperbolic space. The results in this lemma and the next one are closely related to [9],

see also its counterparts on the sphere in [4, Lemma 2, Lemma 3].

Lemma 2.3 Take q ∈Hn and let Hessdq(p) : TpHn→ TpHn be the Hessian of the intrinsic distance from

q at the point p ∈Hn\{q}. Then,

Hessdq(p) (q+ 〈p,q〉p) = 0, Hessdq(p)v =
−〈p,q〉√
〈p,q〉2−1

v, ∀v ∈ TpHn∩TqHn. (19)

Moreover, λ1 = 0 and λ2 = −〈p,q〉/
√
〈p,q〉2−1 > 0 are the unique eigenvalues of Hessdq(p), with

algebraic multiplicity 1 and n−1, respectively. Moreover, the Hessian Hessdq(p) is positive semidefinite.

Proof Since p 6= q, Lemma 2.1 implies that 〈p,q〉 6= −1 and from (18) the Hessian is well defined. As

qT Jq =−1, simple calculations give[
1

〈p,q〉2−1
qqT J− I

]
(q+ 〈p,q〉p) =−〈p,q〉p.
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On the other hand, [I+ pp>J](−〈p,q〉p) = 0, which combined with the latter equality and (18), implies

the first equality in (19), and we also have that λ1 = 0 is an eigenvalue of the Hessian. For proving the

second equality in (19), note that the definitions in (6) imply that

〈p,v〉= 0, 〈q,v〉= 0, ∀v ∈ TpHn∩TqHn.

Thus, the second inequality in (19) follows from (18) and the last two equalities. In particular, the Hessian

is a multiple of the identity in the subspace TpHn∩TqHn. Moreover, due to dimTpHn = n, we conclude,

using Lemma 2.2, that the eigenvalues λ1 and λ2 have algebraic multiplicity 1 and n− 1, respectively,

proving the first statement. For proving the second statement, let {v1, . . . ,vn−1} be an orthonormal basis

of the subspace TpHn ∩TqHn. Since 〈p,q〉 6= 1, we can define vn = (q+ 〈p,q〉p)/‖q+ 〈p,q〉p‖. Hence,

Lemma 2.2 implies that {v1, . . . ,vn−1,vn} is an orthonormal basis of TpHn. Therefore, given u ∈ TpHn,

there exist a1, . . . ,an−1,an ∈R such that u = a1v1 + · · ·+an−1vn−1 +anvn, which, by using the first state-

ment, entails 〈Hessdq(p)u,u〉= λ2(a2
1 + · · ·+a2

n−1), completing the proof of the second statement. ut

Take q ∈Hn and define ρq : Hn→ R as

ρq(p) :=
1
2

d2
q(p). (20)

By using the definition of ρq in (20) and (12), it is easy to conclude, after some algebra, that

Hessρq(p) = dq(p)Hessdq(p)+ [I+ pp>J]J ·Ddq(p)Ddq(p)T , (21)

where Ddq(p) is the usual derivative of dq at the point p.

Lemma 2.4 Take q ∈ Hn and define Hessρq(p) : TpHn → TpHn as the Hessian of ρq at the point p ∈

Hn\{q}. Then the following equalities hold:

Hessρq(p) (q+ 〈p,q〉p) = q+ 〈p,q〉p, Hessρq(p)v =
−〈p,q〉arcosh(−〈p,q〉)√

〈p,q〉2−1
v, (22)

for all v ∈ TpHn ∩ TqHn. As a consequence, µ1 = 1 and µ2 = 〈p,q〉arcosh(−〈p,q〉)/
√
〈p,q〉2−1 are

the unique eigenvalues of Hessρq(p), with algebraic multiplicity 1 and n−1, respectively. Moreover, the

Hessian Hessρq(p) is positive definite.
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Proof First note that taking into account that Ddq(p) =−(Jq)/
√
〈p,q〉2−1, we have

J ·Ddq(p)Ddq(p)T =
1

〈p,q〉2−1
qqT J. (23)

Due to qT Jq =−1, it follows from the last equality that J ·Ddq(p)Ddq(p)T (q+ 〈p,q〉p) = q. On the other

hand, [I+ pp>J]q = q+ 〈p,q〉p. Hence, we obtain that

[I+ pp>J]J ·Ddq(p)Ddq(p)T (q+ 〈p,q〉p) = q+ 〈p,q〉p.

Therefore, combining the last equality, equation (21) and the first equality in (19), we get that

Hessρq(p)(q+ 〈p,q〉p) = q+ 〈p,q〉p,

which is the first equality in (22). For proving the second one, note first that the definition of TqHn implies

that qT Jv = 0 for all v ∈ TpHn∩TqHn. Then, by using (23), we have

[I+ pp>J]Ddq(p)Ddq(p)T v = 0, ∀v ∈ TpHn∩TqHn.

Hence, equation (21) implies that Hessρq(p)v = dq(p)Hessdq(p)v for all v ∈ TpHn ∩ TqHn. Thus, by

using the second equality in (19) and the definition of dq(p) in (16), the second equality in (22) follows.

The remainder of our proof requires similar arguments to those in the proof of Lemma 2.3 (note that in

the final part of the proof we must invoke the fact that arcosh(−〈p,q〉) > 0 and 〈p,q〉 < 0, which holds

by applying Lemma 2.1 together with p 6= q). ut

3 Convex Sets on the Hyperbolic Space

In this section we present some properties of the convex sets of the hyperbolic space. It is worth to

remark that the convex sets on the hyperbolic space Hn are closely related to convex cones belonging to

the interior of the Lorentz cone

L :=
{

x ∈ Rn+1 : xn+1 ≥
√

x2
1 + · · ·+ x2

n

}
. (24)
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Definition 3.1 The set C ⊆Hn is said to be hyperbolically convex if for any p, q ∈ C the geodesic seg-

ment joining p to q is contained in C .

For each set A ⊆Hn, let KA be the cone spanned by A , namely,

KA := {t p : p ∈ A, t ∈ [0,+∞)} . (25)

Clearly, KA is the smallest cone which contains A and belongs to the interior of the Lorentz cone L .

In the next result we relate a hyperbolically convex set with the cone spanned by it.

Proposition 3.1 The set C ⊆Hn is hyperbolically convex if and only if the cone KC is convex.

Proof Assume that C ⊆Hn is a hyperbolically convex set. Let x,y ∈KC . For proving that KC is convex,

it suffices to show that

z = x+ y ∈KC . (26)

The definition of KC implies that there exist p,q ∈ C and s, t ∈ [0,+∞) such that x = sp and y = tq.

Hence, due to z = sp+ tq with p,q ∈ C ⊆Hn, (26) and 〈p,q〉 ≤ −1 imply that 〈z,z〉 ≤ −(t + s)2, which

is equivalent to 0 < t + s≤
√
−〈z,z〉. Now we take

γpq(t) =
(

cosh t +
〈p,q〉sinh t√
〈p,q〉2−1

)
p+

sinh t√
〈p,q〉2−1

q, ∀t ∈ [0, d(p,q)]. (27)

the normalized segment of geodesic from p to q. To proceed we first need to prove that

d (p,az)≤ d(p,q), γpq (d(p,az)) = az, (28)

where a := 1/
√
−〈z,z〉. Since the function [0,+∞]3 τ 7→ arcosh(τ) is increasing, it follows from (8) that

to prove the inequality in (28) it suffices to show that −〈p,az〉 ≤ −〈p,q〉 or the equivalent inequality

0≤ 〈p,az〉−〈p,q〉. (29)

Due to z = sp+ tq and 〈p, p〉 = −1, direct calculations yield 〈p,az〉− 〈p,q〉 = a(−s+ t〈p,q〉)−〈p,q〉.

Thus, taking into account that 〈p,q〉 ≤ −1 and s+ t ≤
√
−〈z,z〉= 1/a , we conclude that

〈p,az〉−〈p,q〉 ≥ a(s〈p,q〉+ t〈p,q〉)−〈p,q〉= a(−〈p,q〉)(1/a− s− t)≥ 0,
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which implies that (29) holds and consequently the inequality in (28) also holds. Our next task is to prove

the equality in (28). Thus, by using (27), we have to show that

γpq(d(p,az)) =
(

coshd(p,az)+
〈p,q〉sinhd(p,az)√

〈p,q〉2−1

)
p+

sinhd(p,az)√
〈p,q〉2−1

q = az. (30)

It follows from (8) that coshd(p,az) =−a〈p,z〉, which implies that sinhd(p,az) =
√

a2〈p,z〉2−1. Thus,

considering that a2〈z,z〉=−1 and z = sp+ tq with p,q ∈ C ⊆Hn and t ∈ [0,+∞), we have

sinhd(p,az) =
√

a2〈p,z〉2−1 = a
√
〈p,z〉2 + 〈z,z〉= at

√
〈p,q〉2−1 (31)

and coshd(p,az) = −a〈p,z〉 = as−at〈p,q〉. Hence, substituting the last equality and (31) into (30) and

taking into account that z = sp+ tq, we obtain that

γpq(d(p,az)) =

(
as−at〈p,q〉+ 〈p,q〉at

√
〈p,q〉2−1√

〈p,q〉2−1

)
p+

at
√
〈p,q〉2−1√
〈p,q〉2−1

q = asp+atq = az.

which concludes the proof of the equality in (28). Since C is a hyperbolically convex set and d(p,az)≤

d(p,q) we obtain that γpq(d(p,az))∈C , which together with (25) and (28) implies that z=(1/a)γpq(d(p,az))∈

KC . Thus, KC is convex.

Now, assume that the cone KC is convex. First note that C = KC ∩Hn. Take p,q ∈ C with q 6= p.

We must prove that the geodesic segment from p to q is contained in C . As p,q ∈KC and KC ⊆L , we

conclude that q 6=−p. Thus, 〈p,q〉<−1 and d(p,q)> 0. Let

[0, d(p,q)] 3 t 7→ γpq(t) = α(t)p+β (t)q

be the normalized geodesic segment from p to q, where

α(t) := cosh t +
〈p,q〉sinh t√
〈p,q〉2−1

, β (t) :=
sinh t√
〈p,q〉2−1

.

Since γpq(t)∈Hn, p,q∈KC and KC is a convex cone, for proving that γpq(t)∈C for all t ∈ [0, d(p,q)],

it suffices to prove that α(t) ≥ 0 and β (t) ≥ 0 for all t ∈ [0, d(p,q)]. Due to sinh t ≥ 0 for all t ≥ 0 we

conclude that β (t) ≥ 0 for all t ∈ [0, d(p,q)]. We proceed to prove that α(t) ≥ 0 for all t ∈ [0, d(p,q)].
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For that, we first note that due to hyperbolic tangent being an increasing function, coshd(p,q) =−〈p,q〉

and sinhd(p, p) =
√
〈p,q〉2−1, we have

tanh t ≤ tanhd(p,q) =
sinhd(p, p)
coshd(p,q)

=

√
〈p,q〉2−1
−〈p,q〉

, t ∈ [0, d(p,q)].

Hence, taking into account that cosh t ≥ 0 for all t ∈ R and 〈p,q〉<−1, we conclude that

α(t) = cosh t

(
1+

〈p,q〉√
〈p,q〉2−1

tanh t

)
≥ 0, t ∈ [0, d(p,q)],

which completes the proof. ut

Remark 3.1 The hyperbolically convex sets are intersections of the hyperboloid with convex cones which

belong to the interior of L . Indeed, it follows easily from Proposition 3.1, that if K ⊆ int(L ) is a convex

cone, where L is the Lorentz cone, then C = K ∩Hn is a hyperbolically convex set and K = KC .

Remark 3.2 Let C ⊆Hn and Q ∈GL . First note that QC := {Qp : p ∈Hn}. It follows from Remark 2.2

and Definition 3.1 that C is hyperbolically convex if and only if QC is hyperbolically convex.

4 Intrinsic Projection Onto Hyperbolically Convex Sets

In this section we present some properties of the intrinsic projection onto hyperbolically convex sets on

hyperbolic spaces. Let C ⊆Hn be a closed hyperbolically convex set and p ∈Hn. Consider the following

constrained optimization problem

min
q∈C

d(p,q). (32)

The minimal value of the function C 3 q 7→ d(p,q) is called the distance of p from C and it is denoted

by dC (p), i.e., dC : Hn→ R is defined by

dC (p) := min
q∈C

d(p,q).

Since (Hn,d) is a complete metric space, we have the following results.
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Proposition 4.1 Let C ∈ Hn be a nonempty subset. Then, |dC (p)− dC (q)| ≤ d(p,q), for all p,q ∈ Hn.

In particular, the function dC is continuous.

Note that due to C being a closed set and the distance function continuous, the problem (32) has a

solution. The solution of the problem (32) is called metric projection, it was first studied in [31]. In the

next proposition we explicitly give an important property of the metric projection.

Proposition 4.2 Let C ⊆Hn be a closed hyperbolically convex set and p ∈ Hn. A point yp ∈ C is a

solution of the problem (32) if and only if

〈(
I+ yp(yp)>J

)
p,
(

I+ yp(yp)>J
)

q
〉
≤ 0, ∀q ∈ C . (33)

Furthermore, the solution of problem (32) is unique.

Proof First we assume that yp is a solution of (32). If p ∈ C i.e., p = yp, then the inequality trivially

holds. Assume that p /∈ C , i.e., p 6= yp. Take q ∈ C such that q 6= yp and

[0,1] 3 t 7→ expyp(t logyp q) = cosh(td(yp,q))yp +
sinh(td(yp,q))

d(yp,q)
logyp q (34)

be the geodesic segment from yp to q. Thus, due to C being a hyperbolically convex set, it follows that

d(p,yp)≤ d(p,expyp(t logyp q)), for all t ∈ [0,1]. Hence, using (8) and (34), we conclude that

arcosh(−〈p,yp〉)≤ arcosh
(
−
〈

p,cosh(td(yp,q))yp +
sinh(td(yp,q))

d(yp,q)
logyp q

〉)
,

for all t ∈ [0,1]. Since 1≤−〈p,yp〉, for all p ∈ C , and the function [1,+∞] 3 s 7→ arcosh(s) is increasing,

we obtain from (34) that

〈
p , cosh(td(yp,q))yp +

sinh(td(yp,q))
d(yp,q)

logyp q
〉
≤ 〈p,yp〉, ∀ t ∈ [0,1].

After some algebra, we conclude from the previous inequality that

sinh(t(yp,q))
td(yp,q)

〈
p, logyp q

〉
≤ 1− cosh(td(yp,q))

td(yp,q)
d(yp,q)〈p,yp〉, ∀ t ∈ [0,1].
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Letting t go to zero in the last inequality we have 〈p, logyp q〉 ≤ 0, which, in view of (10), yields

arcosh(−〈yp,q〉)√
〈yp,q〉2−1

〈
p,
(

I+ yp(yp)>J
)

q
〉
≤ 0.

Thus, due to arcosh(−〈yp,q〉)> 0, we have
〈

p,
(
I+ yp(yp)>J

)
q
〉
≤ 0. Since

〈
yp(yp)>Jp,

(
I+ yp(yp)>J

)
q
〉
= 0,

the desired inequality (33) follows. To establish the converse we assume that yp satisfies (33). Direct

computations show that (33) is equivalent to

〈p,q〉+ 〈p,yp〉〈yp,q〉 ≤ 0, ∀q ∈ C . (35)

Since 〈yp,q〉 ≤ −1 and 〈p,yp〉 ≤ −1, we have 〈p,yp〉〈yp,q〉 ≥ −〈p,yp〉. Thus, (35) implies that

1≤−〈p,yp〉 ≤ −〈p,q〉, ∀q ∈ C .

Due to the function [0,+∞] 3 t 7→ arcosh(t) being increasing, the last inequality implies that

arcosh(−〈p,yp〉)≤ arcosh(−〈p,q〉), ∀q ∈ C ,

or equivalently that d(p,yp)≤ d(p,q), for all q ∈ C . Therefore, yp is a solution of (32) and the converse

is proved. For the uniqueness, let p, p̂ ∈PC (p). Since yp, ŷp ∈ C and 〈yp, ŷp〉 ≤ −1 (see Lemma 2.1) ,

by the first statement, it follows from the equivalence of (33) and (35) that

〈p, ŷp〉 ≤ −〈p, ŷp〉〈yp, ŷp〉= 〈p, ŷp〉|〈yp, ŷp〉|,

which implies that 〈p, ŷp〉 ≤ 〈p, ŷp〉〈yp, ŷp〉2. Due to 〈p, ŷp〉 ≤ −1, we obtain that 1 ≥ 〈ŷp, ŷp〉2. Hence,

taking into account that 〈ŷp, ŷp〉 ≤ −1, we conclude that 〈yp, ŷp〉 = −1. Therefore, from Lemma 2.1 we

conclude that yp = ŷp and the solution set of the problem (32) is a singleton set, which concludes the

proof. ut
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It follows from Proposition 4.2 that the projection mapping PC : Hn→ C given by

PC (p) := argmin
q∈C

d(p,q) (36)

is well defined. Moreover, (36) is equivalent to the following inequality

〈(
I+PC (p)PC (p)T J

)
p,
(
I+PC (p)PC (p)T J

)
q
〉
≤ 0, ∀q ∈ C , ∀p ∈Hn. (37)

Considering that Lemma 2.1 implies that for all p,q ∈Hn we have 〈PC (p),q〉 ≤ −1, we conclude from

(10) that (37) can be equivalently stated as follows

〈logPC (p) p, logPC (p) q〉 ≤ 0, ∀q ∈ C , ∀p ∈Hn, (38)

see [8, Corollary 3.1]. Furthermore, since that the function [0,+∞] 3 τ 7→ arcosh(τ) is increasing, it

follows from (8) that (36), (37) and (38) are also equivalent to

PC (p) := argminq∈C (−〈p,q〉). (39)

An immediate consequence of (39) is the montonicity of the projection mapping, stated as follows:

Proposition 4.3 Let C ⊆Hn be a nonempty closed hyperbolically convex set. Then

〈PC (p)−PC (q), p−q〉 ≥ 0, ∀ p,q ∈ C .

Proof Take p,q∈Hn. Since PC (p), PC (q)∈C , it follows from (39) that−〈p,PC (p)〉≤−〈p,PC (q)〉

and −〈q,PC (q)〉 ≤ −〈q,PC (p)〉. Hence, 〈p,PC (p)−PC (q)〉 ≥ 0 and 〈−q,PC (p)−PC (q)〉 ≥ 0.

Therefore, summing the last two inequalities the desired inequality follows. ut

Proposition 4.4 Let C ⊆Hn be a nonempty closed hyperbolically convex set. Then PC is continuous.

Proof Let {pk} ⊆ Hn be such that limk→+∞ pk = p. Since Proposition 4.1 implies that dC is continuous

and taking into account that (36) implies

d
(

pk,PC

(
pk
))

= dC

(
pk
)
, (40)
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we conclude that
(
d
(

pk,PC

(
pk
)))

k∈N is a bounded sequence. Consequently, considering that

d
(

p,PC

(
pk
))
≤ d

(
p, pk

)
+d
(

pk,PC

(
pk
))

,

we also have that
(
PC

(
pk
))

k∈N is also bounded. Let q ∈ C be a cluster point of
(
PC

(
pk
))

k∈N and let(
pk j
)

j∈Nbe such that lim j→+∞ PC

(
pk j
)
= q. Hence, using (40) we have dC

(
pk j
)
= d

(
pk j ,PC

(
pk j
))

, for

all j ∈N. Thus, letting j goes to +∞ and using Proposition 4.1 we have dC (p) = d(p,q), which due to the

second part of Proposition 4.2 implies that q = PC (p). Consequently,
(
PC

(
pk
))

k∈N has only one cluster

point, namely, PC (p). Thus, limk→+∞ PC

(
pk
)
= PC (p) and the proof is concluded. ut

5 Hyperbolically Convex Functions

In this section we study the basic properties of convex functions on the hyperbolic space. In particular,

for differentiable convex functions, the first and second order characterizations will be presented.

Definition 5.1 Let C ⊆Hn be a hyperbolically convex set and I ⊆R an interval. A function f : C →R is

said to be hyperbolically convex (respectively, strictly hyperbolically convex) if for any geodesic segment

γ : I→ C , the composition f ◦ γ : I→ R is convex (respectively, strictly convex) in the usual sense.

In the following remark we state some general properties of hyperbolically convex, which follow directly

from Definition 5.1.

Remark 5.1 It follows from Definition 5.1 that f : C →R is a hyperbolically convex function if and only

if the epigraph epi f := {(p,µ) : p ∈ C , µ ∈ R, f (p)≤ µ}, is convex in Hn×R. Moreover, if f : C →R

is a hyperbolically convex function, then the sub-level sets {p∈C : f (p)≤ a} are hyperbolically convex

sets, for all a ∈ R. Furthermore, if f , f1, · · · fn : Hn → R are hyperbolically convex in C , then ζ f and

f1 + · · ·+ fn are hyperbolically convex in C , for all ζ ≥ 0.

The next proposition follows from Remark 2.2 and Remark 3.2, Definition 3.1 and Definition 5.1.
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Proposition 5.1 Let C ⊆ Hn be a hyperbolically convex set, Q ∈ GL and D := {Q−1 p : p ∈ C }. The

function f : C →R is hyperbolically convex if and only if f ◦Q : D →R defined by f ◦Q(q) := f (Qq) is

hyperbolically convex.

5.1 Characterization of Hyperbolically Convex Functions

In this section we present first and second order characterization for hyperbolically convex functions on

hyperbolic spaces.

Proposition 5.2 Let C ⊆ Hn be an open hyperbolically convex set and f : C → R be a differentiable

function. The function f is hyperbolically convex if and only if f (q) ≥ f (p)+ 〈grad f (p), logp q〉, for all

p,q ∈ C and q 6= p, or equivalently,

f (q)≥ f (p)+
arcosh(−〈p,q〉)√

1−〈p,q〉2
〈
[I+ pp>J]J ·D f (p) , q

〉
, ∀ p,q ∈ C , q 6= p,

where D f is the usual gradient of f .

Proof By using (13), the usual characterization of scalar convex functions implies that, for all minimal

geodesic segment γ : I→ C , the composition f ◦ γ : I→ R is convex if and only if

f (γ(t2))≥ f (γ(t1))+
〈
J ·D f (γ(t1)),γ ′(t1)

〉
(t2− t1), ∀ t2, t1 ∈ I.

Note that if γ : [0,1]→ C is the geodesic segment from p = γ(0) to q = γ(1), then it may be represented

as γ(t) = expp t logp q. Moreover, γ ′(0) = logp q and γ ′(1) =− logq p. Therefore, the first inequality of the

proposition is an immediate consequence of the inequality above, Definition 5.1 and equation (10). For

concluding the proof, note that equations (11) and (10) together with Remark 2.1 imply the equivalence

between the two inequalities of the lemma. ut

Proposition 5.3 Let C ⊆Hn be an open hyperbolically convex set and f : C → R a differentiable func-

tion. The function f is hyperbolically convex if and only if grad f satisfies the inequality 〈grad f (p), logp q〉+
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〈grad f (q), logq p〉 ≤ 0, for all p,q ∈ C and q 6= p, or equivalently,

〈J ·D f (p)− J ·D f (q), p−q〉− (〈p,q〉+1) [〈J ·D f (p), p〉+ 〈J ·D f (q),q〉]≥ 0, ∀ p,q ∈ C , q 6= p,

where D f is the usual gradient of f .

Proof Using (13), the usual first order characterization of convex functions implies that, for all minimal

geodesic segments γ : I→ C , the composition f ◦ γ : I→ R is convex if and only if

[〈
J ·D f (γ(t2)),γ ′(t2)

〉
−
〈
J ·D f (γ(t1)),γ ′(t1)

〉]
(t2− t1)≥ 0, ∀ t2, t1 ∈ I.

Note that if γ : [0,1]→C is the segment of geodesic from p= γ(0) to q= γ(1), then it may be represented

as γ(t) = expp t logp q. Moreover, γ ′(0) = logp q and γ ′(1) =− logq p. Therefore, the first inequality of the

proposition follows by combining the previous inequality with Definition 5.1 and (10). For concluding

the proof, note that equations (11) and (10) imply the equivalence between the two inequalities of the

lemma. ut

Proposition 5.4 Let C ⊆Hn be an open hyperbolically convex set and f : C →R be a twice differentiable

function. The function f is hyperbolically convex if and only if the Hessian Hess f on the hyperbolic space

satisfies the inequality 〈Hess f (p)v,v〉 ≥ 0, for all p ∈ C and all v ∈ TpHn, or equivalently,

〈
J ·D2 f (p)v,v

〉
+ 〈J ·D f (p), p〉〈v,v〉 ≥ 0, ∀ p ∈ C , ∀v ∈ TpHn,

where D2 f (p) is the usual Hessian and D f (p) is the usual gradient of f at a point p ∈ C . If the above

inequalities are strict then f is strictly hyperbolically convex.

Proof By using (14), the usual second order characterization of hyperbolically convex functions implies

that, for all minimal geodesic segment γ : I→ C , the composition f ◦ γ : I→ R is convex if and only if

〈
J ·D2 f (γ(t))γ ′(t),γ ′(t)

〉
+ 〈J ·D f (γ(t)),γ(t)〉

〈
γ
′(t),γ ′(t)

〉
≥ 0, ∀ t ∈ I.

If the last inequality is strict then f ◦ γ is strictly convex. Therefore, the result follows by combining

the above inequality with Definition 5.1. For concluding the proof, note that equation (12) together with

Remark 2.1 imply the equivalence between the two inequalities of the lemma. ut
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Example 5.1 Fix q ∈ Hn. The function dq(·) : Hn → R is hyperbolically convex. In general, taking a

hyperbolically convex set C ⊆ Hn, the function dq(·) : C → R is hyperbolically convex. Indeed, the

hyperbolic convexity of dq(·) follows by combining Lemma 2.3 with Proposition 5.4.

Example 5.2 Fix q ∈ Hn. The function ρq : Hn :→ R defined as ρq(p) := 1
2 d2

q(p) is strictly hyperboli-

cally convex. In general, taking a hyperbolically convex set C ⊆ Hn, the function ρq : C → R is strictly

hyperbolically convex. Indeed, the result follows by combining Lemma 2.4 with Proposition 5.4.

Example 5.3 Take p̃ = (0, · · · ,0,1) ∈ Rn+1 and the hyperbolically convex set C = {p ∈ Hn : p1 >

0, . . . , pn > 0}. The function ψ : C → R defined by ψ(p) =− ln(−1−〈p̃, p〉) is hyperbolically convex.

Indeed, considering that D f (p) =−(1+〈p̃, p〉)−1J p̃ and D2 f (p) = (1+〈p̃, p〉)−2J p̃p̃>J, the hyperbolical

convexity of ψ follows by combining Lemma 2.1 and Proposition 5.4.

5.2 Hyperbolically Convex Quadratic Functions

In this section we study the hyperbolic convexity of the quadratic function f (p) = p>Ap, for A = A> ∈

R(n+1)×(n+1). We begin with a general characterization.

Corollary 5.1 Let A = A> ∈ R(n+1)×(n+1) and f : Hn → R defined by f (p) = p>Ap. The function f is

hyperbolically convex if and only if

v>Av+ p>Ap≥ 0, ∀p,v ∈ Rn+1 with p>Jp =−1, v>Jv = 1, p>Jv = 0.

Proof Considering that D f (p) = 2Ap, D2 f (p) = 2A and JJ = I, we conclude that

〈
J ·D2 f (p)v,v

〉
+ 〈J ·D f (p), p〉〈v,v〉= 2v>Av+2p>Ap〈v,v〉 .

Thus, it follows from Proposition 5.4 that f is hyperbolically convex in Hn if and only if v>Av+ p>Ap≥

0, for all p ∈Hn, all v ∈ TpHn such that v>Jv = 1. Considering that v ∈ TpHn with p ∈Hn if and only if

v>Jv = 1 and p>Jv = 0 with p ∈Hn, the result follows. ut
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Next, we use the Lorentz group (15) to present some examples of hyperbolically convex quadratic func-

tions. Before that, we need the following result.

Corollary 5.2 Let A = A> ∈ R(n+1)×(n+1) and Q ∈ GL . Then, f : Hn → R defined by f (p) = p>Ap is

hyperbolically convex if and only if g : Hn→ R defined by g(q) = q>(Q>AQ)q is hyperbolically convex.

Proof Since g(q) = f (Qq), the equivalence follows from Proposition 5.1. ut

As an application of Corollaries 5.1 and 5.2 in the following we present an example of a hyperbolically

convex quadratic function.

Example 5.4 Take a diagonal matrix D ∈ R(n+1)×(n+1) denoted by D = diag(d1, . . . ,dn,dn+1). Assume

that dmin + dn+1 ≥ 0, where dmin := min{d1, . . . ,dn}. Then, for each Q ∈ GL , the function g : Hn → R

defined by g(p) = p>Q>DQp is hyperbolically convex. Indeed, take q,u ∈ Rn+1 such that q>Jq = −1,

u>Ju = 1 and p>Jv = 0. Thus, we have q2
n+1 = ∑

n
i=1 q2

i +1 and u2
n+1 = ∑

n
i=1 u2

i −1. Hence, since dmin +

dn+1 ≥ 0, we obtain that

u>Du+q>Dq =
n

∑
i=1

(di +dn+1)u2
i +

n

∑
i=1

(di +dn+1)q2
i ≥ (dmin +dn+1)

( n

∑
i=1

u2
i +

n

∑
i=1

q2
i

)
≥ 0.

Thus, Corollary 5.1 implies that f :Hn→R defined by f (p)= p>Dp is hyperbolically convex. Therefore,

applying Corollary 5.2 we conclude that g is hyperbolically convex.

To continue with our study of hyperbolic convexity of quadratic functions, we denote the boundary of the

Lorentz cone (24) by

∂L :=
{

x ∈L : x>Jx = 0
}
.

In order to simplify notations, for a given x ∈ Rn+1, we consider the following decomposition:

x = (x̄>,xn+1) ∈ Rn+1, x̄ := (x1, . . . ,xn)
> ∈ Rn, xn+1 ∈ R. (41)

Lemma 5.1 Let x,y ∈ ∂L . The following three statements are equivalent:

(i) x>Jy 6= 0;
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(ii) y 6= αx, for all α ∈ R;

(iii) x>Jy < 0.

Proof First, we prove (i) is equivalent to (ii). Assume (i) holds. If there exists α ∈ R such that y = αx,

then x>Jy = x>J(αx) = αx>Jx = 0, which contradicts x>Jy 6= 0. Hence, y 6= αx, for all α ∈ R, and (ii)

holds. For the converse, assume (ii) holds. By contradiction, assume that x>Jy = 0. Since y,z ∈ ∂L , by

using the notation introduced in (41), we have yn+1 =
√

ȳ>ȳ and zn+1 =
√

z̄>z̄. Thus, due to yT z = 0, we

have ȳT z̄ =−yn+1zn+1, or equivalently

ȳ>z̄ =−
√

ȳ>ȳ
√

z̄>z̄.

Hence, Cauchy’s inequality implies that there exists a α ≥ 0 such that ȳ =−α z̄. Furthermore,

yn+1 =
√

ȳ>ȳ = α

√
z̄>z̄,

which gives yn+1 = αzn+1. Thus, we conclude that y = −αJz, which implies y = αx and we have a

contradiction. Therefore, x>Jy 6= 0 and (i) holds.

Now, we prove (i) is equivalent to (iii). Assume (i) holds. Since L is a closed and convex cone, and

x,y ∈ ∂L ⊆L , we have x+ y ∈L . Thus,

0≥ (x+ y)>J(x+ y) = x>Jx+2x>Jy+ y>Jy = 2x>Jy.

Hence, x>Jy 6= 0 implies x>Jy < 0. Therefore, the item (iii) holds. Conversely, (iii) implies (i) is imme-

diate, which concludes the proof. ut

If we make some transformations in Corollary 5.1 , we will obtain the following result.

Lemma 5.2 Let A = A> ∈ R(n+1)×(n+1). The following three conditions are equivalent:

(i) The function f : Hn→ R defined by f (p) = p>Ap is hyperbolically convex;

(ii) x>Ax+ y>Ay≥ 0, for all x,y ∈ Rn+1 with x,y ∈ ∂L and x>Jy =−1;

(iii) z>Az+w>Aw≥ 0, for all z,w ∈ Rn+1 with z,w ∈ ∂L and z>Jw < 0.
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Proof First we prove the equivalence between (i) and (ii). For that it is convenient to consider the follow-

ing invertible transformations

p =
1√
2
(x+ y), v =

1√
2
(x− y) if and only if x =

1√
2
(p+ v), y =

1√
2
(p− v), (42)

where x,y, p,v ∈ Rn+1. By using the first two equalities in (42), after some calculations, we have

2p>Jp = x>Jx+2x>Jy+ y>Jy,

2v>Jv = x>Jx−2x>Jy+ y>Jy, (43)

2p>Jv = x>Jx− y>Jy.

On the other hand, by using the last two inequalities in (42) we obtain the following three equalities

2x>Jx = p>Jp+2p>Jv+ v>Jv,

2y>Jy = p>Jp−2p>Jv+ v>Jv, (44)

2x>Jy = p>Jp− v>Jv.

Moreover, the equalities in (42) also imply that

v>Av+ p>Ap = x>Ax+ y>Ay. (45)

First we prove (i) implies (ii). Take x,y ∈ ∂L and x>Jy = −1, and consider the transformation (42).

Thus, by using (43), we conclude that p>Jp =−1, v>Jv = 1 and p>Jv = 0. Hence, item (i) together with

Corollary 5.1 implies that v>Av+ p>Ap≥ 0. Therefore, by using (45), we conclude that x>Ax+y>Ay≥ 0

and item (ii) holds.

Next we prove that (ii) implies (i). Assume that the item (ii) holds, and take p,v ∈Rn+1 with p>Jp =

−1, v>Jv= 1 and p>Jv= 0, and consider (42). Hence, by using (44) we have x (or−x)∈ ∂L , y (or−y)∈

∂L and x>Jy=−1, and item (ii) implies that x>Ax+y>Ay≥ 0. Thus, (45) implies that v>Av+ p>Ap≥ 0,

which implies that item (i) holds.
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We proceed to prove the equivalence between (ii) and (iii). Assume that item (ii) holds and take

z,w ∈ ∂L and z>Jw < 0. Since z>Jw < 0 we define

x =
z√
−z>Jw

, y =
w√
−z>Jw

. (46)

Thus, considering that z,w ∈ ∂L and z>Jw < 0, some calculations show that x,y ∈ ∂L and x>Jy =−1.

Therefore, using (46) together item (ii), we conclude that

z>Az+w>Aw =−z>Jw
(

x>Ax+ y>Ay
)
≥ 0,

and item (iii) holds. Finally, (iii) implies (ii) is immediate, which concludes the proof. ut

In the following theorem we present a characterization for hyperbolically convex quadratic functions in

term of the matrix defining it. In particular, we show that the study of hyperbolically convex quadratic

functions reduces to the study of their behavior on the boundary of the Lorentz cone.

Theorem 5.1 Let A = A> ∈ R(n+1)×(n+1). The following four conditions are equivalent:

(i) The quadratic function f : Hn→ R defined by f (p) := p>Ap is hyperbolically convex;

(ii) The matrix A is ∂L -copositive, i.e., x>Ax≥ 0 for all x ∈ ∂L ;

(iii) There exists α ∈ R such that A+αJ is positive semidefinite;

(iv) The function f is bounded from below, i.e., there exist an α ∈ R such that f (p)≥ α , for all p ∈Hn.

Proof We first prove that (i) implies (ii). Assume that f is hyperbolically convex. Let x ∈ ∂L such that

x 6= 0. Take y ∈ ∂L not parallel to x, i. e., such that y 6= αx, for all α ∈ R. Define the sequence
(
yk
)

k∈N,

where yk := (1/k)y, for all k ∈ N. Since y ∈ ∂L and y 6= αx for all α ∈ R, we also have yk ∈ ∂L and

yk 6=αx, for all α ∈R and all k∈N. Thus, by using Lemma 5.1, we conclude that x>Jyk < 0, for all k∈N.

Hence, considering that x,yk ∈ ∂L and x>Jyk < 0, for all k ∈N, and f is hyperbolically convex, by using

Lemma 5.2, we obtain that x>Ax+
(
yk
)>Ayk ≥ 0, for all k ∈ N. Therefore, owing to yk := (1/k)y, for all

k ∈ N, we have

x>Ax+
1
k2 y>Ay≥ 0, k ∈ N.
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Therefore, taking the limit in the latter inequality, we obtain that x>Ax ≥ 0. In conclusion, A is ∂L -

copositive.

Next we prove that (ii) implies (iii). Assume that A is ∂L -copositive. Thus, for all x ∈ Rn+1 with

x>Jx = 0 we have x>Ax ≥ 0. Consequently, for all x ∈ Rn+1 with x>Jx = 0 and x 6= 0 we have x>(A+

(1/k)I)x > 0, for all k ∈ N. Hence, by Lemma 1.5, there exists αk ∈ R such that A+ (1/k)I+αkJ is

positive definite, for all k ∈N. We claim that the sequence (αk)k∈N is bounded. Indeed, assume by absurd

that (αk)k∈N is unbounded. Since A+(1/k)I+αkJ is positive definite, for each x ∈ Rn+1 with x 6= 0 we

conclude that

1
αk

x>Ax+
1

kαk
x>x+ x>Jx > 0,

for all k ≥ k̄ and some k̄ ∈ N. Hence, by taking the limit in the last inequality as k goes to infinity,

we conclude that x>Jx ≥ 0 for all x ∈ Rn+1, which is absurd. Therefore, the claim is proved. Since the

sequence (αk)k∈N is bounded, we can take a subsequence (αk j) j∈N and α ∈ R such that lim j→∞ αk j = α .

On the other hand, considering that A+(1/k)I+αkJ is positive definite for all k ∈ N, we have

x>
(

A+
1
k j

I+αk j J
)

x > 0,

for all x ∈ Rn+1 such that x 6= 0. Therefore, by taking the limit in the last inequality as k goes to infinity,

we have x>(A+αJ)x≥ 0, for all x ∈ Rn+1, which implies that A+αJ is positive semidefinite.

Next we prove that (iii) implies (i). Assume that there is an α ∈ R such that A + αJ is positive

semidefinite. Due to A+αJ being positive semidefinite and v>Av+ p>Ap = v>Av+α + p>Ap−α , some

calculations show

v>Av+ p>Ap = v>(A+αJ)v+ p>(A+αJ)p≥ 0, (47)

for all p,v ∈Rn+1 with p>Jp =−1, v>Jv = 1 and p>Jv = 0. Therefore, by using (47) and Corollary 5.1,

we conclude that f is hyperbolically convex.
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Next we prove that (iii) implies (iv). Assume that there exists α ∈ R such that A+αJ is positive

semidefinite. Hence, p>Ap+α p>Jp = p>(A+αJ)p ≥ 0, for all p ∈ Rn. Since p ∈ Hn implies p>Jp =

−1, we conclude that p>Ap≥ α , for all p ∈Hn. Therefore, f is bounded from below on Hn.

Finally, to conclude the proof, we prove that (iv) imply (iii). Assume that f is bounded from below

on Hn. Thus, there exists an α ∈ R such that f (p)≥ α , for all p ∈Hn, or equivalently,

pT (A+αJ)p≥ 0, ∀p ∈Hn. (48)

In order to apply Lemma 1.4, we will first prove the statement: if x>Jx ≤ 0, then x>(A+αJ)x ≥ 0. Let

x∈Rn such that x>Jx≤ 0. Take a sequence (xk)k∈N ∈Rn such that limk→+∞ xk = x and xk
>Jxk < 0. Define

yk =
xk√
−xk

T Jxk
, k ∈ N. (49)

Since xk
>Jxk < 0, by using (49), we conclude that yk>Jyk = −1. Thus, yk ∈ Hn and (48) implies that(

yk
)>

(A+αJ)yk ≥ 0. Using, again (49) we obtain that xk
>(A+αJ)xk ≥ 0, for all k ∈ N. Hence, by

letting k→ ∞, we conclude that x>(A+αJ)x≥ 0, which proves the statement. Therefore, after applying

Lemma 1.4, we conclude that there exists a β ∈ R such that A+(α +β )J is positive definite. Hence, by

Theorem 5.1, the function f is hyperbolically convex. ut

Example 5.5 Let A ∈R(n+1)×(n+1) be a positive semidefinite matrix and α ∈R. Since A = (A+αJ)−αJ

is a positive semidefinite matrix, by applying Theorem 5.1, we conclude that the function fα : Hn :→ R

defined by fα(p) := p>(A+αJ)p is hyperbolically convex.

For simplifying the statement and proof of the next results it is convenient to introduce the following

notation. For a given A ∈ R(n+1)×(n+1), consider the following decomposition:

A :=

 Ā a

a> σ

 , Ā ∈ Rn×n, a ∈ Rn×1, σ ∈ R (50)

and denote by Ī ∈ Rn×n is the identity matrix. For any α ∈ R, the decomposition (50) yields

A+αJ =

Ā+αI a

a> σ −α

 . (51)
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Proposition 5.5 Let A ∈ R(n+1)×(n+1) be a symmetric matrix and α ∈ R. Consider the decomposition

(50) and the following statements:

(i) The quadratic function f : Hn→ R defined by f (p) := p>Ap is hyperbolically convex;

(ii) The matrix A+αJ is positive definite;

(iii) The number α ∈ (−λmin(Ā),σ) and det(A+αJ)> 0;

(iv) The number α ∈ (−λmin(Ā),σ) and σ −α−a>
(
Ā+α Ī

)−1 a > 0.

Then (ii), (iii) and (iv) are equivalent and any of them implies item (i).

Proof We first prove the equivalence between (ii) and (iii). Assume that (ii) holds. Hence, by applying

Lemmas 1.1 and 1.2, and taking into account (51), we have det(A+αJ)> 0, the matrix Ā+σ I is positive

definite and σ −α > 0. Since Ā+σ I is positive definite, we obtain that α > −λmin(Ā). Therefore, we

conclude that α ∈ (−λmin(Ā),σ) and det(A+αJ)> 0. Hence, (iii) holds. Reciprocally, assume that (iii)

holds. Thus, we have α > −λmin(Ā), σ > α and det(A+αJ) > 0. Hence, the matrix Ā+σ Ī is positive

definite, σ−α > 0 and det(A+αJ)> 0. Therefore, by using Lemmas 1.1 and 1.2 and the decomposition

(50), we conclude that A+αJ is positive definite and (ii) holds.

Next, we prove the equivalence between (iii) and (iv). First note that, for any α ∈ (−λmin(Ā),σ), we

obtain that λmin(Ā)+α > 0. Thus, the matrix Ā+α Ī is positive definite, which implies that det
(
Ā+α Ī

)
>

0. In particular, the matrix Ā+α Ī is invertible. Thus, applying Lemma 1.3, we have

det(A+αJ) =
(

σ −α−a>
(
Ā+α Ī

)−1 a
)

det
(
Ā+α Ī

)
. (52)

Since under the assumption α ∈ (−λmin(Ā),σ) we have det
(
Ā+α Ī

)
> 0, it follows from (52) that

det(A+αJ) > 0 is equivalent to σ −α − a>
(
Ā+α Ī

)−1 a > 0. Therefore, (iii) is equivalent to (iv), and

the proof of the first statement of the proposition is concluded.

By using the implication (iii) =⇒ (i) in Theorem 5.1, the last statement of the proposition follows

from the first one.
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Consider the decomposition (50) of a symmetric matrix A ∈R(n+1)×(n+1). Then, it follows from Proposi-

tion 5.5 that we can decide if f (p) := p>Ap is hyperbolically convex by solving the following optimiza-

tion problem:

inf
{

σ −α−a>
(
Ā+α Ī

)−1 a : α ∈ (−λmin(Ā),σ)
}
.

By using decompositions (41) and (50), Corollary 5.1 can be stated equivalently in the following form.

Corollary 5.3 Let A = A> ∈ R(n+1)×(n+1) and f : Hn → R defined by f (p) = p>Ap. The function f is

hyperbolically convex if and only if

v̄>Āv̄+ p̄>Āp̄+2vn+1v̄>a+2pn+1 p̄>a+σv2
n+1 +σ

(
pn+1)2 ≥ 0, (53)

for all p,v ∈ Rn+1 with

p̄> p̄−
(

pn+1)2
=−1 v̄>v̄− v2

n+1 = 1, v̄> p̄− vn+1 pn+1 = 0. (54)

Example 5.6 Let A :=
(

a j
i

)
∈ R(n+1)×(n+1) and f : Hn→ R be defined by f (p) = p>Ap. If f is hyper-

bolically convex, then

1
n

n

∑
i, j=1

a j
i +σ ≥ 0. (55)

Indeed, take v̄ = (1/
√

n, . . . ,1/
√

n) ∈ Rn, vn+1 = 0 and p̄ = 0 ∈ Rn, pn+1 = 1. Thus, (53) becomes

v̄>Āv̄+ p̄>Āp̄+2vn+1v̄>a+2pn+1 p̄>a+σv2
n+1 +σ

(
pn+1)2

=
1
n

n

∑
i, j=1

a j
i +σ .

Since p = (p̄, pn+1) ∈ Rn+1, v = (v̄,vn+1) ∈ Rn+1 satisfy (54) and considering that f is hyperbolically

convex, the inequality (55) follows from applying Corollary 5.3.

Theorem 5.2 Let A ∈ R(n+1)×(n+1) and f : Hn → R be defined by f (p) = p>Ap. Then, considering

decompositions (41) and (50), the following statements hold:

(i) If f is hyperbolically convex, then λmin(Ā)≥−σ ;

(ii) If σ ≥−λmin(Ā) and a = 0, then f is hyperbolically convex;

(iii) If σ +λmin(Ā)> 2
√

a>a, then f is hyperbolically convex.
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Proof To prove (i), assume that f is hyperbolically convex and take any p,v∈Rn+1 with p̄= 0, pn+1 = 1,

vn+1 = 0, v̄>v̄ = 1. Then, conditions (54) in Corollary 5.3 are satisfied. Hence, it follows from (53) that

v̄>Āv̄≥−σ , for all v̄ ∈ Rn with v̄>v̄ = 1. Therefore, the result follows.

We proceed to prove (ii). Assume that λmin(Ā)≥−σ and a = 0. In this case, we have λmin(Ā+σ I)≥

0, where Ī ∈ Rn×n is the identity matrix. Hence, both matrices Ā+σ I and

A+σJ =

Ā+σ Ī 0

0 0


are positive semidefinite. Thus, by applying Proposition 5.5 with α = σ , the proof of item (ii) follows.

To prove item (iii), first we introduce the auxiliary quadratic polynomial g : R→ R defined by

g(t) = (σ − t)
(
λmin(Ā)+ t

)
−a>a.

The roots of the quadratic polynomial g are given by

µ =
1
2

(
σ −λmin(Ā)−

√[
σ +λmin(Ā)

]2−4a>a
)
,

η =
1
2

(
σ −λmin(Ā)+

√[
σ +λmin(Ā)

]2−4a>a
)
.

Since σ +λmin(Ā)> 2
√

a>a we have µ < η . Thus, take β ∈ (µ,η). Hence, g(β )> 0. Since

β > µ ≥ 1
2

(
σ −λmin(Ā)+

√[
σ +λmin(Ā)

]2)
=−λmin(Ā),

we obtain λmin(Ā)+β > 0. Thus, we conclude that Ā+β Ī is positive definite. It follows that

σ −β −a>
(
Ā+β Ī

)−1 a≥ σ −β −λmax
(
Ā+β Ī

)−1 a>a

= σ −β − 1
λmin(Ā)+β

a>a

=
g(β )

λmin(Ā)+β
> 0.

Therefore, by using Lemma 1.3, it follows from the positive definiteness of the matrix Ā+β Ī that

det(A+βJ) =
(

σ −β −a>
(
Ā+β Ī

)−1 a
)

det
(
Ā+β Ī

)
> 0. (56)
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Since Ā+β Ī is positive definite, combining Lemma 1.4 with (56), we conclude that A+βJ is positive

definite. Therefore, Proposition 5.5 implies that f is hyperbolically convex, and the proof of item (iii) is

concluded. ut

Corollary 5.4 Let A ∈ R(n+1)×(n+1) and f : Hn→ R be defined by f (p) = p>Ap. Consider the decom-

position (50) and assume that a = 0. Then, f is hyperbolically convex if and only if λmin(Ā)≥−σ .

Proof The proof is an immediate consequence of items (i) and (ii) of Theorem 5.2. ut

In the next proposition we present a characterization for the case a 6= 0 in (50), which completes the result

of Corollary 5.4.

Proposition 5.6 Let A ∈ R(n+1)×(n+1) be a symmetric matrix and the decomposition (50). If a 6= 0, then

the following statements are equivalent:

(i) The quadratic function f : Hn→ R defined by f (p) := p>Ap is hyperbolically convex;

(ii) There exists α ∈ R such that the matrix A+αJ is positive semidefinite;

(iii) There exists α ∈ R such that σ > α and the matrix Ā+α Ī− 1
σ−α

aa> is positive semidefinite;

Proof First we prove that (ii) and (iii) are equivalent. Since the matrix A+αJ is positive semidefinite, by

using the decompositions (51) and [12, Corollary 7.15, p. 398], we conclude that

(āii +α)(σ −α)≥ a2
i , i = 1, . . . ,n, (57)

where āii is the ii-entry of the matrix Ā and ai is the i-entry of the vector a. Considering that a 6= 0, and

all elements in the diagonal of a positive semidefinite matrix are nonnegative, it follows from (57) that

σ > α . Thus, applying item (iii) of Lemma 1.2 we conclude that items (ii) and (iii) are equivalent. The

equivalence of (i) and (ii) follows from the equivalence of (iii) and (i) in Theorem 5.1. ut

Proposition 5.7 Let A ∈ R(n+1)×(n+1) be a symmetric matrix and the decomposition (50). Consider the

following statements:
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(i) The quadratic function f : Hn→ R defined by f (p) := p>Ap is hyperbolically convex;

(ii) There exists α ∈ R such that Ā+α Ī is positive definite and A+αJ is positive semidefinite;

(iii) There exists α ∈ R such that Ā+α Ī is positive definite and σ −α−a>(Ā+α Ī)−1a≥ 0.

Then, items (ii) and (iii) are equivalent and any of them implies (i).

Proof It follows from item (iii) of Lemma 1.2 that items (ii) and (iii) are equivalent. The equivalence of

(i) and (ii) follows from the equivalence of (iii) and (i) in Theorem 5.1. ut

Proposition 5.8 Let A ∈ R(n+1)×(n+1) be a symmetric matrix and the decomposition (50). Consider the

following statements:

(i) The quadratic function f : Hn→ R defined by f (p) := p>Ap is hyperbolically convex;

(ii) There exists α ∈ R such that the matrix A+αJ is positive definite;

(iii) There exists α ∈ R such that σ > α and the matrix Ā+α Ī− 1
σ−α

aa> is positive definite.

Then, items (ii) and (iii) are equivalent and any of them implies item (i).

Proof The equivalence between items (ii) and (iii) follows by direct application of item (i) of Lemma 1.2.

By using the implication (iii) =⇒ (i) in Theorem 5.1, the last statement of the proposition follows from

the first one. ut

6 Optimization Concepts on the Hyperbolic Space

In this section we present some concepts of optimization related to hyperbolically convex function. In or-

der to do that, consider a differentiable function f : Hn→R and the following unconstrained optimization

problem

Minimizep∈Hn f (p). (58)

It follows from (11) that a necessary optimality condition for the unconstrained problem (58) is:

[
I+ pp>J

]
J ·D f (p) = 0. (59)
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Remark 6.1 If f is a hyperbolically convex function, then Proposition 5.2 implies that all points satisfying

(59) are global solutions of problem (58), i.e., (59) is also a sufficient optimality condition.

Let C ⊂Hn be a hyperbolically convex set and consider the constrained optimization problem:

Minimizep∈C f (p). (60)

In the following proposition we state the necessary optimality condition for the problem (60).

Proposition 6.1 It the point p̄ ∈ C is a solution of problem (60), then

〈
[I+ p̄p̄>J]J ·D f (p̄), p

〉
≥ 0, ∀ p ∈ C ,

where D f (p̄) ∈ Rn+1 is the usual gradient of f at p̄.

Proof Take p ∈ C and let p̄ ∈ C be a solution to (60). Let [0,1] 3 t 7→ γ p̄p(t) = expp̄(t logp̄ p), be the

geodesic from p̄ to p. Since C is hyperbolically convex and p, p̄ ∈ C , we conclude that γ p̄p(t) ∈ C for

all t ∈ [0,1]. Hence, as p̄ ∈ C is a solution to the problem in (60), we have ( f (γ p̄p(t))− f (p̄))/t ≥ 0, for

all t ∈ [0,1]. Thus, taking the limit when t tends to zero, we obtain, by using (13) and γ ′p̄p(0) = logp̄ p,

that 〈grad f (p̄), logp̄ p〉 ≥ 0. Therefore, the result follows from (10) and (11), by taking into account that

arcosh(−〈p̄, p〉)≥ 0. ut

Proposition 6.2 Let f be a hyperbolically convex function in C . The point p̄ ∈ C is a solution of the

problem in (60) if and only if

〈
[I+ p̄p̄>J]J ·D f (p̄), p

〉
≥ 0, ∀ p ∈ C ,

where D f (p̄) ∈ Rn+1 is the usual gradient of f at p̄.

Proof If the point p̄ ∈ C is a solution of (60), then the inequality follows from Proposition 6.1. Con-

versely, take p, p̄ ∈C , p 6= p̄ and assume that
〈
[I+ p̄p̄>J]J ·D f (p̄), p

〉
≥ 0. As f is hyperbolically convex

in C , we conclude from Proposition 5.2 that

f (p)≥ f (p̄)+
arcosh(−〈p̄, p〉)√

1−〈p̄, p〉2
〈
[I+ p̄p̄>J]J ·D f (p̄), p

〉
, ∀ p ∈ C , p 6= p̄.
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Since
〈
[I+ p̄ p̄>J]J ·D f (p̄), p

〉
≥ 0 and arcosh(−〈p̄, p〉)≥ 0, the latter inequality implies that f (p)≥ f (p̄),

for all p ∈ C . Therefore, p̄ is a global solution of the problem in (60). ut

Next we present an equivalent form for Proposition 4.2, whose proof follows by combining Proposi-

tion 5.4 with Lemma 2.4, Proposition 6.2 and (17),

Corollary 6.1 Let C ⊆Hn be a closed hyperbolically convex set and p̄ ∈ Hn. Consider the function

Hn 3 p 7→ ρp̄(p) := 1
2 d2

p̄(p) defined in (20). Then, PC (p̄) = argminp∈C ρ p̄(p) if and only if

〈(
I+PC (p̄)PC (p̄)>J

)
p̄, p
〉
≤ 0, ∀p ∈ C .

For f : Hn→ R and gi : Hn→ Rm, i = 1, . . . ,m differentiable hyperbolically convex functions and

C = {p ∈ Rn : gi(p)≤ 0, i = 1, . . . ,m}

a hyperbolically convex set, see Remark 5.1. Consider the following particular instance of the hyperboli-

cally convex optimization problem (60):

Minimizex∈C f (x). (61)

Proposition 6.3 Suppose that p̄ ∈ C and there exists µ = (µ1, . . . ,µm) ∈ Rm
+ such that

[
I+ p̄p̄>J

][
J ·D f (p̄)+

m

∑
i=1

µiJ ·Dgi(p̄)
]
= 0,

m

∑
i=1

µigi(p̄) = 0, (62)

where D f (p̄) ∈ Rn+1 is the usual gradient of f at p̄. Then p̄ is a solution of the problem (61).

Proof Since f ,gi : Hn → R are hyperbolically convex functions and µi ≥ 0, for i = 1, . . . ,m, it follows

that h : Hn→ R defined by

h(p) = f (p)+
m

∑
i=1

µigi(p)

is hyperbolically convex. Moreover, f (p) ≥ h(p), for all p ∈ C . Now, from the first equality in (62) we

obtain that
[
I+ pp>J

]
J ·Dh(p̄) = 0. Thus, since h is hyperbolically convex, we can apply Proposition 6.2

with f = h and C = Rn+1 to conclude that p̄ is a minimizer of h in Rn+1. Hence, from f (p) ≥ h(p),
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for all p ∈ C and the second equality in (62), we have f (p)≥ h(p)≥ h(p̄) = f (p̄), for all p ∈ C . Since

p̄ ∈ C , the last inequality implies that it is a solution of (61). ut

Remark 6.2 If p̄ is a solution of the problem (61), then under mild conditions on the problem (61) the

point p̄ satisfies (62), for details see [29, Section 9]; see also [34, Theorem 4.4].

7 Convexity on Others Model of Hyperbolic Geometry

There are several models of hyperbolic geometry, the four commonly used ones are the Klein model,

the Poincaré disk model, the Poincaré half-plane model and the Lorentz or hyperboloid model, see for

example [1,3,25]. Among them, we have chosen the hyperboloid model, because it has several similarities

with the Euclidean sphere. It is worth noting that we can choose any of the aforementioned models. Let

us recall the general concept of an isometry.

Definition 7.1 Let (N ,〈〈· , ·〉〉) and (M ,〈· , ·〉) be Riemannian manifolds. A mapping Φ : N →M

is called an isometry, if Φ is continuously differentiable, and for all q ∈N and u,v ∈ TqN , we have

〈〈u,v〉〉= 〈dΦqu,dΦqv〉, where dΦq : TqN → TΦ(q)M is the differential of Φ at q ∈N .

The next result is an important property of isometries, its prove is in [21, Proposition 5.6.1, p. 196].

Proposition 7.1 Let N , M be Riemannian manifold and Φ : N →M an isometry. If γ is a geodesic

in N , then Φ ◦ γ is a geodesic in M . Moreover, Φ preserve the Riemannian distance.

Straight combination of Definition 7.1 with Proposition 7.1 give us the following result.

Theorem 7.1 Let N , M be Riemannian manifolds and the function Φ : N →M be an isometry. The

function g : M → R is convex if and only if f : N → R defined by f (p) = (g◦Φ)(p) is convex.

It is well known that the Klein model, the Poincaré disk model, the Poincaré half-plane model and the

hyperboloid model are isometric to each other, see isometries between them in [1, Chapter A]. Therefore,

it follows from Theorem 7.1 that the concepts of convexity and consequently the results studied in the

previous sections have via isometries their counterparts in any model isometric to the hyperboloid model.
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8 Final Remarks

This paper is inspired by the papers [4, 7], where we studied some intrinsic properties of the spherically

convex functions and spherically quadratic functions, respectively. Despite some of our ideas being sim-

ilar with the ideas in the aforementioned papers, the convex functions in hyperbolic spaces turned out

to have a completely different structure. For example there is no constant globally convex function on

the whole sphere, but there are many such functions on the hyperbolic space, as shown in Section 5.2. A

related remark is that the class of convex functions on constant curvature manifolds is widening with the

decrease of the sign of the curvature. We also expect that the class of convex functions on a proper convex

subset of the hyperbolic space to be much more wider than the convex functions on the corresponding

proper convex subset of the sphere. This property has already been established for corresponding inter-

sections of the sphere and hyperbolic space with the positive orthant [7], but for other cones it needs

to be investigated. Although several applications of optimization in hyperbolic spaces have emerged, a

comprehensive study from this point of view of these spaces is still lacking. The results of this paper are

the first step in this direction. We foresee significant progress in this topic in the nearby future.

Finally, let us present some basics formulas similar to the ones in Section 2 for an n-dimensional

hyperbolic space with constant negative curvature −K < 0. For that, let us rescale the Lorentzian inner

product (2) as follows: Let K > 0 and 〈·, ·〉K be the K-Lorentzian inner product of x := (x1, . . . ,xn,xn+1)
>

and y := (y1, . . . ,yn,yn+1)
> on Rn+1 defined by

〈x,y〉K := Kx1y1 + · · ·+Kxnyn−Kxn+1yn+1. (63)

Note that 〈x,y〉K =K〈x,y〉. For each x∈Rn+1, the K-Lorentzian norm (length) of x is the complex number

‖x‖K :=
√
〈x,x〉K .

In order to state the inner product (63) in a convenient form, we take the diagonal matrix JK defined by

JK := diag(K, . . . ,K,−K) ∈ R(n+1)×(n+1). (64)
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By using (64), the Lorentz inner product (63) can be written equivalently as follows

〈x,y〉K := x>JKy, ∀x,y ∈ Rn+1.

By considering the K-Lorentzian inner product. 〈·, ·〉K defined in (63), we define the n-dimensional K-

hyperbolic space as follows

Hn
K :=

{
p ∈ Rn+1 : 〈p, p〉K =−1, pn+1 > 0

}
, K > 0.

It is worth noting that the n-dimensional K-hyperbolic space Hn
K can also be written as follows

Hn
K :=

{
p ∈ Rn+1 : 〈p, p〉=− 1

K
, pn+1 > 0

}
, K > 0. (65)

We know that Hn
K has sectional curvature−K. It follows from (65) that Hn

1 is the n-dimensional hyperbolic

space Hn. The tangent plane of Hn
K at a point p ∈Hn

K is given by

TpHn
K :=

{
v ∈ Rn+1 : 〈p,v〉K = 0

}
.

The intrinsic distance on the K-hyperbolic space Hn
K between two points p,q ∈Hn

K is given by

dK(p,q) :=
1√
K

arcosh(−〈p,q〉K).

If p,q ∈Hn and q 6= p, then the unique geodesic segment from p to q is given by

γ
K
pq(t) =

cosh(
√

Kt)+
〈p,q〉K sinh(

√
Kt)√

〈p,q〉2K−1

 p+
sinh(

√
Kt)√

〈p,q〉2K−1
q, ∀t ∈

[
0, dK(p,q)

]
.

The exponential mapping expK
p : TpHn

K →Hn
K at a points p ∈Hn

K is given by

expK
p v := cosh(‖v‖K) p+ sinh(‖v‖K)

v
‖v‖K

, ∀v ∈ TpHn
K \{0}.

If γK
v is the geodesic defined by its initial position p, with velocity v at p, then γK

v (t) = expK
p tv. The

inverse of the exponential mapping is given by logK
p q = 0, for q = p, and

logK
p q :=

1√
K

arcosh(−〈p,q〉K)
1√

〈p,q〉2K−1

[
I+ pp>JK

]
q, q 6= p. (66)
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It follows from (8) and (10) that dK(p,q)= ‖ logK
q p‖K , for all p,q∈Hn

K . The explicitly formula of parallel

transport PK
pq is given by

PK
pq(v) := v−

〈v, logK
q p〉K

arcosh2(−〈p,q〉K)
(
logK

q p+ logK
p q
)
=

[
I+

1
1−〈p,q〉K

(p+q)q>JK

]
v.

By rescaling the Lorentzian inner product (2) to (63), we can obtain similar results to the previous sec-

tions. It follows from a rescaled version of Theorem 5.1 that if a quadratic function is K0-hyperbolic

convex for a K0 > 0, then it is K-hyperbolic convex with respect to all K > 0 (where K-hyperbolic con-

vexity in Hn
K can be defined similarly to hyperbolic convexity in Hn). However, the only K-hyperbolocally

convex quadratic functions that remain convex when K→ 0 are the ones with A positive semidefinite. It

is interesting to study a similar question for more general functions.
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