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Abstract

Accurate wind speed forecasting is of great significance to ensure the safe utilization of wind power. However, the

randomness and volatility nature of wind speed give rise to an enormous challenge to the precision of wind speed

forecasting. Combining the data preprocess technology, feature selection method, forecasting model, optimization

algorithm and data postprocessing technology, the complete ensemble empirical mode decomposition with adap-

tive noise-least absolute shrinkage and selection operator-quantile regression neural network (CEEMDAN-LASSO-

QRNN) model is developed to preform multistep wind speed probabilistic forecasting. Within the proposed model,

CEEMDAN technology is firstly employed to decompose original wind speed timeseries into several subsequences.

For each subsequence, the explanatory variables constructed by a hybrid multistep forecasting strategy are selected

by LASSO regression. Subsequently, QRNN forecasting models are established to obtain multistep conditional

quantiles predictions for entire subsequences. Ultimately, the aggregated quantiles are served as the samples to fit

approximate distribution through kernel density estimation (KDE), thus obtaining the probability density function,

further achieving probabilistic predictions, interval predictions and point predictions. The case studies including

four real datasets are provided to validate the dependability and feasibility of the proposed model. Experimental

results indicate higher accuracy and robustness of the proposed model occur in multistep wind speed probabilistic

forecasting.

Keywords: wind speed forecasting, cooperative ensemble method, CEEMDAN decomposition, multistep

probabilistic forecasting

1. Introduction

As the most key aspect in wind research, wind speed prediction plays an important role in meteorological

forecast, meteorological disaster prevention, air pollution prediction, renewable energy utilization and so on[1, 2].

The stochastic and fluctuant nature of wind speed result in a great uncertainty in prediction process that is
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challenging to quantify through traditional deterministic forecasting methods [3]. Therefore, an increasing amount

of work has started to focus on probabilistic prediction for more comprehensive forecasting information [2–5]. The

probabilistic forecasting methods can better express the uncertainty, in the forms of probability density functions

(PDFs), cumulative distribution functions (CDFs), intervals and quantiles, discrete probabilities and moments of

probability distribution such as mean, variance and skewness [6]. More specifically, wind speed can be regarded as

a random variable to fit PDFs or CDFs, which is preferred most by decision maker in probabilistic forecasting. The

intervals and some noteworthy moments like mean, median, mode, can be derived from the PDFs [7].

Existing wind speed probabilistic prediction methods can be roughly divided into parametric methods and

nonparametric methods [8]. Relying on rational hypothesis and prior knowledge, parametric methods assume the

probability distribution of the future point in advance [9]. By estimating several parameters, the parametric meth-

ods are simple and efficient. However, the commonly used hypothesized distributions such as Gaussian distribution

[10] and Beta distribution [11] tend to deviate greatly from the real distribution of wind speed, thereby leading to

low prediction accuracy. Without a pre-defined distribution, the nonparametric methods make no assumptions [8].

Nonparametric methods relatively complicate the estimating process, but greatly improve accuracy and adaptabil-

ity in majority scenarios. Consequently, nonparametric methods are dominating current probabilistic forecasting

methods. Prediction intervals (PIs) can be estimated by Bootstrap [12], Bayesian [13] or other nonparametric meth-

ods. Compared with interval forecasting, the quantile form is capable of providing more insightful information.

Besides, as a kind of regression idea, quantiles regression (QR) can integrate with diverse forecasting methods to

obtian quantiles predictions. Thereinto, the integration of QR and diverse artificial intelligence (AI) methods have

become the mainstream in recent years[14, 15]. When it comes to probability density forecasting, the kernel density

estimation (KDE) is a critical role. Some predicted values of one point are treated as sample to fit its PDF by KDE.

For example, the quantiles predictions can be converted into probability density functions [16]. With aforemen-

tioned superiorities over intervals and quantiles, probability density forecasting has great advantages in revealing

predictive information, thereby mitigating the uncertainty, enhancing reliability and guaranteeing robustness.

Despite individual models have potential of exerting own value to an extreme in some particular scenarios and

conditions. Restricted by multifarious factors, these single models embrace poor adaptability and robustness. Fur-

thermore, prediction accuracy fails to be satisfied and amelioration is also limited to large degree in some situations.

Therefore, the attention paid on the ensemble forecasting methods is rising constantly for seeking precision and

stability. Ren et.al [17] reviewed the ensemble forecasting methods in wind forecasting field, and classified them into

two types: competitive ensemble methods and cooperative ensemble methods. The competitive ensemble meth-

ods create ensemble predictions constructed by different initial conditions, such as various predictors and different

parameters [18]. The forecasting results of all the models or the selected models after pruning are integrated eventu-

ally. The ways to generate ensemble predictions are various. Bootstrap method was exploited to generate different

training sample trained independently with back propagation neural network (BPNN), thereby obtaining different

forecasting results [19]. Ma et.al [20] proposed a model-free framework named randomly distributed embedding

(RDE), which achieves accurate predictions of short-term high-dimensional data. By randomly generating explana-

tory variables multiple times, the RDE framework can obtain ensemble predictions to fit probability distribution.
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Differently, the cooperative ensemble methods divide the prediction task into two subtasks: one is mast task to

complete forecasting and the other is auxiliary task in order to improve the prediction accuracy and consolidate the

prosperity ability [18]. Auxiliary task contains data pre-processing, feature selection, parameter optimization, error

correction, data post-processing and so on. The combination of various algorithms gives this method more room for

optimization and improvement. Especially, the application of decomposition in cooperative ensemble methods has

been greatly developed. The empirical wavelet transform (EWT) decomposition combined with cuckoo search (CS)

algorithm is developed to assist core forecasting model in [21], which is a kind of cooperative ensemble methods. A

novel hybrid architecture for multi-step electricity load forecasting is proposed in [22]. The complementary ensemble

empirical mode decomposition (CEEMD) collaborates with backpropagation neural network improved by particle

swarm optimization (PSO-BP) for forecasting, and the variational mode decomposition (VMD) and PSO-BP is

established for prediction of the subsequent error. In [23], a new hybrid wind speed forecasting model is developed,

which integrates long short-term memory neural network (LSTM), decomposition methods and grey wolf optimizer

(GWO).

In view of the rapid development of cooperative ensemble methods based on decomposition and the preponder-

ance of probabilistic forecasting, this paper focuses on the application of cooperative ensemble probabilistic methods

based on decomposition for wind speed forecasting. Like this method, quite a few have been proposed in literature.

Jiang et.al [2] proposed an innovative hybrid method consisting of EMD, VMD and conditional KDE. Cheng et.al

[24] developed a an ensemble model for probabilistic wind speed forecasting based on wavelet threshold denoising

(WTD), recurrent neural network (RNN) and adaptive neuro fuzzy inference system (ANFIS). More applications of

cooperative ensemble were summarized in [5]. The ideal of cooperative ensemble methods based on decomposition

was shown to have a superior probabilistic forecasting performance in rich literature. However, it inevitably brings

about some problems, summarized as follows.

(1) Traditional ensemble methods only utilize same algorithm to predict all the subsequences but ignore the fact

that different subsequences are comprised of different signal characteristics. How to select the optimal forecasting

model for specific subsequence is utterly important.

(2) The large fluctuations hidden in partial subsequences may negatively affect on overall prediction accuracy,

which is neglected by majority of ensemble forecasting methods. This issue can be avoided by reprocessing decom-

posed data sequences as a secondary processing step. The reprocessing could significantly improve accuracy.

(3) Considering that the traditional ensemble model only employs single optimization objective, the dilemma

of trapping into local optimization easily occurs. Exploiting appropriate objective functions for corresponding

forecasting forms can be a pivotal task in wind speed forecasting.

With the above issues in mind, a novel cooperative ensemble method for wind speed probabilistic forecasting

is presented in this paper. More specifically, the initial complicated wind speed time series are firstly decomposed

by CEEMDAN method to several subsequences with relative terseness and stabilization. Secondly, the selection

of vital variables by LASSO regression and the establishment of QRNN forecasting models are implemented re-

spectively for every subsequence. Then, the parameters of QRNN involved in each subsequence are optimized with

different objective functions under different prediction forms. Next, the predicted quantiles of each subsequence
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are aggravated at same quantile points. Finally, the integrated quantiles are treated as the samples to output an

approximate probability density function. The main contributions of this paper can be summarized as follows.

(1) Motivated by the advantages of cooperative ensemble probabilistic forecasting methods based on decompo-

sition, this paper ingeniously integrates master probabilistic forecasting model based on artificial intelligence and

several auxiliary methods, which contain a data decomposition technique, a feature selection method, parameter

optimization algorithms and a data postprocessing approach. All together form our novel cooperative ensemble

method CEEMDAN-LASSO-QRNN model for wind speed multistep probabilistic prediction aiming at better ac-

curacy and robustness.

(2)The massive and complex characteristics inherent in wind speed render an unsatisfactory prediction perfor-

mance. Data decomposition is an effective tool to dig up more valuable information. However, there are still some

subsequences with large randomness and volatility after the decomposition. Taking the historical wind speed data

into consideration as much as possible can help us tackle this issue. However, the high dimensional explanatory

variables may result in over-fitting and extra time consumption. Therefore, we make use of LASSO regression to

eliminate redundant information, so that the prediction accuracy and operational efficiency can be improved. The

QRNN can interpret intricate nonlinear relationship between wind speed data, and further combining with KDE,

it can fit the probability density function to obtain more comprehensive prediction information.

(3) Due to the large distinctions that the subseries may embrace from each other, the features selection and

forecasting procedures are established severally aiming at every subsequence. On one hand, the parameters in

LASSO regression for feature selection are optimized by GCV method. Different parameters for each subsequence

further lead to the disparities in the chosen variables. On the other hand, the parameters in QRNN forecasting

model for each subsequenceare are adjusted by the gird search method. By virtue of these independent modeling

processes, the prediction accuracy of all subsequences can be guaranteed, thus maximizing predictive performance.

(4) More in line with practical applications, a three-stage model is adopted in this paper, consisting of model

training, model validation as well as model testing. Compared with traditional two-stage model, the inclusion

of validation aims to tune parameters more sensibly. Meanwhile, for preventing local optimization, the objective

function changes with the prediction forms in the validation stage. The optimal parameters can thus be achieved

for each forecasting form.

(5) Case studies are carried out to examine the effectiveness of our proposed model including four real wind speed

datasets. For more convincing results, a multistep probabilistic wind speed forecasting is designed. In addition, the

interval and point predictions derived from the probability density function are also provided in this paper for full

verification.

The remaining parts of this paper are organized as follows. Section 2 introduces the relative methodologies

applied in the proposed model. The model training process is elaborated in Section 3. Section 4 demonstrates the

improvement of the proposed model in prediction accuracy and model robustness through case studies including

four datasets. Finally, further discussions and conclusions are given in Section 5.
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2. Methodologies

2.1. CEEMDAN Decomposition

Data preprocessing methods have been popular in wind speed forecasting in recent years, such as data recon-

struction, data decomposition, data transformation and other forms, which can effectively facilitate the prediction.

In particular, decomposition techniques have been the most widely developed and applied[25–27] Empirical mode

decomposition (EMD)[28], one of the most popular decomposition techniques, plays a crucial role in disposing intri-

cate timeseries. As the improvement of EMD, ensemble empirical mode decomposition (EEMD) [29] and complete

ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [30] were proposed to reduce the mode

mixing effect by adding Gaussian white noise. Compared to EEMD that has time consuming and residual noise

issues. CEEMDAN added Gaussian white noise adaptively based on EEMD, further cubing mode mixing phe-

nomenon and enhancing the algorithm convergency. A complete algorithm procedure for decomposing a timeseries

Y = {yi}i=1,2,...,I using CEEMDAN is described as follows.

Step 1: Add a set of Gaussian white noise {ωs}1,2,...,S , where ωs denoted the s− th Gaussian white noise series

with zero mean and unit variance. S new series are obtained and listed in Eq (1)

Y s = Y + ωs, s = 1, 2, . . . , S (1)

Step 2: Utilize EMD to decompose Y s to obtain the first subsequence cs1, and repeat it S times for each new

series to produce {cs1}s=1,2,...,S . As a result, the first intrinsic mode functions (IMF) c1 = 1
S

S∑
s=1

cs1 and residue

r1 = Y − c1 can be calculated.

Step 3: Add ωs to the residue for S times. The new sequences rs1 = r1 + ωs, s = 1, 2, . . . , S are decomposed by

EMD to obtain the first subsequence {cs2}s=1,2,...S .

Step 4: Repeat Step 3 until the residue becomes a monotonic function, at which time the residue cannot

be decomposed by EMD. Supposing that there are L IMFs {cl}l=1,2,...,L and a residue rL obtained, the original

timeseries is formulated as Eq (2).

Y =

L∑
l=1

cl + rL (2)

2.2. LASSO regression

In order to extract pivotal information, more explanatory variables tend to be kept in modeling, which un-

doubtedly results in low accuracy and high time consumption. LASSO regression is a variant of ridge regression

by substituting L2 regularization term with L1 [31], which explores the linear relationship between explanatory

variables X and response variables Y . In addition to alleviating over-fitting and multicollinearity problems, LASSO

regression is able to reduce the number of explanatory variables. The learning objective of LASSO can be formulated

as Eq (3).

min
β

{
∥Y −Xβ∥22 + λ∥β∥1

}
(3)

in which β represents the coefficient set of explanatory variables and λ is the nonnegative regularization parameter

to tune the shrinkage. The larger the value is, the greater the punishment intensity is.
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LASSO regression compresses the regression coefficients to exactly zero. Then, the variables with zero coefficient

are viewed as nonsignificant, which will be eliminated. Eq (3) can be transformed into an objective function along

with a constraint condition, presented as follows.

β̂LASSO = argmin
{
∥Y −Xβ∥22

}
s.t.∥β∥1 ≤ η

(4)

where β̂LASSO represents the estimator of independent variables in LASSO regression and the constraint parameter

η is negatively correlated with λ, which can be preset or optimized. As a quadratic programming problem, Eq (4)

cannot be solved by calculus. Therefore, least angle regression (LARS) is used instead.

2.3. Quantile regression neural network (QRNN)

QRNN [32] combines the advantages of quantile regression (QR) [33] and artificial neural networks (ANN) [34].

On the basis of QR theory and the standard multi-layer perceptron ANN, an estimate of the conditional τ quantile

of Y is expressed as the following formula.

QY (τ |X ) = F [X,H (τ) , O (τ)] (5)

in which Y = {yi}i=1,2,...,I is the response variable, X = {xi}i=1,2,...,I represents the explanatory variables in which

xi = {xi,j}j=1,2,...,J , H (τ) = {hj,k (τ)}j=1,2,...,J;k=1,2,...,K is assigned as the connection weight of input layer and

hidden layer and O (τ) = {ok (τ)}k=1,2,...,K denotes the weight to connect hidden layer with output layer. For a

particular sample [xi, yi], this nonlinear function F (·) can be expressed as follows.

F [xi,H (τ) , O (τ)] = f


K∑

k=1

ok (τ) g

 J∑
j=1

hj,k (τ)xi,j + bhi,j

+ boi

 (6)

where
{
bhi,j
}
i=1,2,...,I;j=1,2,...,J

is on behalf of the bias of hidden layer and {boi }i=1,2,...,I is the bias corresponding to

output layer. The two activation functions g (·) and f (·) are usually designated as a sigmoid function and a linear

model. The weight parameters H (τ) and O (τ) can be estimated by minimizing the following objective function.

min
[H(τ),O(τ)]

I∑
i=1

ρτ {yi − F [xi,H (τ) , O (τ)]}+ ξ

J∑
j=1

K∑
k=1

[hj,k (τ)]
2 (7)

in which ξ is positive constant that regulates the relative contribution of the weight decay term for avoiding over-

fitting and ρτ (v) represents an asymmetric loss function expressed in Eq (7). The confirmation of ξ and the

number of hidden layer nodes need to be predetermined or optimized. Suppose that there are T quantiles denoted

as {τt}t=1,2,...,T , a set of conditional quantiles
{
Q̂Y (τt |X )

}
i=1,2,...,T

estimators are obtained eventually.

ρτ (v) =

 τv v ≥ 0

(τ − 1) v v < 0
(8)
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2.4. Kernel density estimation

KDE is a non-parametric method that bridges quantiles forecasting and probability density forecasting without

assuming the form of the probability distribution [34]. The conditional quantiles
{
Q̂Y (τt |X )

}
i=1,2,...,T

are treated

as samples to fit an optimal estimator of actual distribution. The KDE method is defined as the following formula.

f̂d (q) =
1

TB

T∑
t=1

K

(
q − Q̂Y (τt |X )

B

)
(9)

in which B denotes the bandwidth. K(·) represents the Epanechnikov kernel function, which is defined as:

K (α) =

 3
4

(
1− α2

)
α ∈ [−1, 1]

0 α /∈ [−1, 1]
(10)

2.5. Direct-Recursive (DR) multistep forecasting strategy

Typically, the further the horizon we attempt to forecast, the more difficult the forecasting is, because of the

larger uncertainty. Therefore, several multistep forecasting strategies are introduced based on the recursive and

direct strategies in [35]. The recursive strategy is the most traditional multi-step forecasting method, in which the

first step needs to be trained at the beginning. Then, after which the first predicted value is treated as known

information for predicting the next one. When using the recursive training strategy, inaccuracy may accumulate as

the forecasting step moves on. The direct training strategy works differently, without intermediate forecasting. It

indicates that H-step ahead forecasting signifies H models to be established. Nevertheless, the independent learning

process neglects complicated correlations between variables, which may lead to a negative impact on prediction.

To combine the advantages of both strategies, a hybrid multi-step forecasting method is introduced denoted as

DR strategy. Concretely speaking, for H-step in a timeseries Y = {yi}i=1,2,...,I , an independent model fh is built

as follows.

yi+h = fh (yi+h−1, yi+h−2, . . . , yi−J+1) + θ (11)

in which i = J, J + 1, . . . , I − h, θ represents the error term. Therefore, the H-step ahead predictions are given by:

ŷI+h =

 f̂h (yI , yI−1, . . . , yI−J+1) if h = 1,

f̂h (ŷI+h−1, . . . , ŷI+1, yI , · · · , yI−J+1) if h ∈ {2, . . . , H}
(12)

in which
{
f̂h

}
h=1,2,...,H

denotes the multistep forecasting models.

3. The cooperative ensemble model based on CEEMDAN-LASSO-QRNN model

The cooperative ensemble model proposed in this paper, intergates CEEMDAN for data processing, LASSO

regression with GCV for feature selection, QRNN optimized by gird search for forecasting and KDE for postpro-

cessing. This ensemble model is named as CEEMDAN-LASSO-QRNN. In addition, a hybrid multistep forecasting

strategy is introduced for wind speed multistep probabilistic forecasting. For evaluating this model more compre-

hensively, the interval and point forecasting are provided except for the probabilistic forecasting. The flowchart of

the proposed model is depicted in Fig. 1. The details on how this ensemble model works are given in this section.
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Select features through LASSO regression

Complete quantiles forecasting with QRNN model

Data postprocess with KDE method

Data process with CEEMDAN technology

Collect wind speed time series

Construct candidate features and target variable

Select features with LASSO regression

Determine the parameter in LASSO regression

Optimate the parameters in QRNN model

IMF(1) IMF(2) IMF(L) Residual 

Establish QRNN forecasting model

Aggregate the predicted quantiles

Quantiles(1) Quantiles(2) Quantiles(L) Quantiles(L+1)

Obtain the final predictions

Realize multistep wind speed forecasting with DR strategy

Probabilistic predictions Interval predictions Point predictions

Fig. 1: The flowchart of CEEMDAN-LASSO-QRNN model
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3.1. Data preprocess with CEEMDAN

Wind speed time series often embrace complexity and irregularity. Data preprocessing is thus necessary for

accurate wind speed forecasting. For a given time series Y = {yi}i=1,2,...,I , CEEMDAN is employed to decompose

it into a cluster of IMF subsequences Y = {yi}i=1,2,...,I and a residue series rL. The samples of certain subsequences

cl are indicated as
{
yli
}
i=1,2,...,I

in which l = 1, 2, . . . , L, as
{
yL+1
i

}
i=1,2,...,I

for rL correspondingly. They all satisfy

the formula shown below.

yi =

L∑
l=1

yli + yL+1
i , i = 1, 2, . . . , I (13)

3.2. Select features through LASSO regression

Owing to the stochastic and irregularity nature in wind speed time series, it is very difficult to extract useful

information. Too many explanatory variables are constructed aiming to capture more comprehensive information.

However, it leads to high-dimensional data structure that makes modelling for wind speed modelling extremely

difficult. To solve the dilemma, the LASSO regression is applied for selecting significant features. For every

subsequence, LASSO regression is executed independently as follows.

3.2.1. Construct candidate features and target variables

For the l − th subsequence
{
yli
}
i=1,2,...,I

, in order to extract as much valid information from historical data as

possible, the previous J historical points
{
yli−j

}
j=1,2,...,J

are chosen as candidate features and the next points yli

are treated as the target variable through rolling one-step forecasting method.

3.2.2. Select features with LASSO regression

The linear relationship between the candidate features
{
yli−j

}
j=1,2,...,J

and the target variables yli is explored

by LASSO regression firstly. A multiple regression model estimated by LASSO method can be expressed as below.

yli = β̂LASSO,l
1 yli−1 + β̂LASSO,l

2 yli−2 + · · ·+ β̂LASSO,l
J yli−J (14)

where β̂LASSO,l =
{
β̂LASSO,l
j

}
j=1,2,...,J

are the estimated coefficients of independent variables. Through LASSO

regression, the coefficients of insignificant variables are compressed to zero. The features with zero coefficient

will be eliminated, and the remaining ones are treated as explanatory variables. Supposing that the dimension of

features vector is shrunk from J into J l, the explanatory variables are expressed as xl
i =

{
xl
i,j

}
j=1,2,...,Jl to facilitate

modeling. Remarkably, the shrinkage is adjusted by the parameter ηl, which is determined by the GCV method in

this paper. The parameters in all the subsequences varies from each other, thus leading to the difference between

the selected variables of each subsequence.

3.3. Complete quantiles forecasting with QRNN model

Because of the volatility and randomness in wind speed data, traditional linear probability density forecasting

methods cannot describe the intricate correlation between data. Therefore, based on the explanatory variables

xl
i =

{
xl
i,j

}
j=1,2,...,Jl and response variables yli for the l− th subsequence, the QRNN model are utilized to establish

the nonlinear relationship, further quantifying the nondeterminacy in forecasting process with the assistance of

KDE method.
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3.3.1. Establish QRNN forecasting model

Supposing that there are T conditional quantiles at quantile points {τt}t=1,2,...,T , the estimator of the conditional

τt-quantile of yli is expressed as follows.

Ql
yl
i

(
τt
∣∣xl

i

)
= f


Kl∑
k=1

olk (τt) g

 Jl∑
j=1

hl
j,k (τt)x

l
i,j

 (15)

where Kl represents the number of hidden layers of QRNN model in l− th subsequence. The estimators Ĥ l (τt) ={
ĥl
j,k (τt)

}
j=1,2,...,Jl;k=1,2,...,Kl

and Ôl (τt) =
{
ôlk (τt)

}
k=1,2,...,Kl can be calculated by solving the following objective

function and inequality constraint.

min
[Hl(τt),Ol(τt)]

I∑
i=1

ρτt

{
yli (τt)−Ql

yl
i

(
τt
∣∣xl

i

)}
+ ξl

Jl∑
j=1

Kl∑
k=1

[
hl
j,k (τt)

]2 (16)

where ξl represents the penalty parameter that corresponds to the l − th subsequence. Finally, the quantiles

forecasting Q̂l
yl
i

(
τt
∣∣xl

i

)
can be obtained.

3.3.2. Optimate the parameters in QRNN model

The number of hidden layer nodes and the penalty parameter are optimized by gird search in this paper. For each

subsequence, the two pivotal parameters Kl and ξl are tuned respectively at given ranges for the best forecasting

performance. Furthermore, the optimization objectives are derived from the evaluation indices corresponding to the

forecasting forms, which is designed for remaining optimal in their respective prediction forms. Within the optimal

parameters, the outputs of QRNN model are expressed as
{
q̂li,t
}
t=1,2,...,T

for l − th each subsequence.

3.4. Data postprocess with KDE

3.4.1. Aggregate the predicted quantiles

Based on the optimal conditional quantiles obtained for all the subsequences, denoted as
{
q̂li,t
}
t=1,2,...,T ;l=1,2,...,L+1

,

the final conditional quantiles {q̂i,t}t=1,2,...,T can be calculated by Eq (17).

{q̂i,t}t=1,2,...,T =

L+1∑
l=1

q̂li,t, t = 1, 2, . . . , T (17)

3.4.2. Obtain the final predictions

To bridge quantiles and probability density curves, KDE is used to convert the forecasting results from the

QRNN model into probability density functions. Specifically, the conditional quantiles {q̂i,t}t=1,2,...,T of the i− th

targeted prediction point are viewed as the samples of an unknown distribution. With an appropriate bandwidth

and a predetermined kernel function, the KDE method can fit approximate probability density functions for the

wind speed targeted points. The probabilistic forecasting is therefore completed, from which the interval and point

predictions can be obtained.
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3.5. Multistep wind speed forecasting with DR strategy

For a complete assessment of our proposed model, a hybrid multistep forecasting methods, DR strategy, is

applied in this paper. With regard to each subsequence, the H-step ahead forecasting model need to be established.

Notably, the DR strategy is embodied in the LASSO regression and QRNN model. Different forecasting horizons

possess different feature vectors constructed through the DR strategy. In the QRNN model, the predicted probability

means of subsequences will be served as the feature that will be utilized in the next forecasting step. Therefore,

the LASSO regression and QRNN model cooperate with DR strategy to complete the multistep forecasting for

each subsequence. Subsequently, the same forecasting procedure is repeated in all the subsequences, and the final

multistep wind speed probabilistic predictions can be obtained.

3.6. Evaluation indicators for different forecasting forms

3.6.1. Probabilistic predictions

Assuming that P points {wi,p}p=1,2,...,P that meet the inequation of wi,1 ≤ wi,2 ≤ · · · ≤ wi,P are extracted from

the probability density functions, corresponding probabilities {vi,p}z=1,2,...,P can be obtained concurrently. A series

of forecasting with corresponding probabilities can be regarded as probabilistic predictions.

The quantile score (QS) [36], a universally accepted assessment criteria for quantiles prediction, is proposed

based on pinball loss function defined by Eq (18). Aiming at each quantile and each forecasted point, the pinball

loss function need to be calculated, where their average is specified as the value of QS. A lower QS indicates a more

accurate quantiles prediction, which can be calculated by Eq (19).

φ (yi, q̂i,t, τt) =

 (1− τt) (q̂i,t − yi) yi < q̂i,t

τt (q̂i,t − yi) yi ≥ q̂i,t
(18)

QS =
1

IT

I∑
i=1

T∑
t=1

φ (yi, q̂i,t, τt) (19)

The continuous rank probability score (CRPS) is utilized to verify the capacity of the proposed model in

probability density prediction, which can be calculated by Eq (20) [37].

CRPS =
1

I

I∑
i=1

[
1

P

P∑
p=1

|wi,p − yi| −
1

2P 2

P∑
p=1

P∑
q=1

|wi,p − wi,q|

]
(20)

which rewards the predicted values clustered around actual values and punishes the deviations from it. Therefore,

the value of CRPS is negatively related with the precision of probability density forecasting.

3.6.2. Interval predictions

Taking the minimum and the maximum of the predictions {wi,p}p=1,2,...,P as the lower and upper bounds of

forecasting interval, the PIs [wi,1, wi,P ] can be obtained for the i − th target point. The assessment of interval

forecasting requires two indicators simultaneously, one for reliability and the other for sharpness. In order to satisfy

the two requirements, the prediction interval coverage probability (PICP) collaborates with the prediction interval

11



normalized averaged width (PIANW) to demonstrate the plausibility and validity of interval predictions, which the

formulas can be formulated as below [38].

PICP =
1

I

I∑
i=1

ωi (21)

ωi =

 1, yi ∈ [Wi,1,Wi,P ]

0, yi /∈ [Wi,1,Wi,P ]
(22)

PINAW =

I∑
i=1

Wi,P−Wi,1

ID
(23)

where D is the difference between the maximum and minimum of target forecasting value. A larger PICP reveals

more predicted values falling into the PIs, and a smaller PINAW reflects lower uncertainty in the PIs. From a

comprehensive point of view, coverage width-based criterion (CWC) proposed in [39] takes reliability and sharpness

into consideration for evaluating the interval predictions. It is defined as below.

CWC = PINAW {1 + γ (PICP ) exp [−ϕ (PICP − µ)]} (24)

in which ϕ and µ are two controlling parameters. They indicate the preset confidence level. ϕ is adopted to enlarge

any slight difference between the confidence level and PICP. As an indicator function, γ (PICP ) is equal to 0 when

PICP ≥ µ, else is 1. From a different point of view, PINAW plays a pivotal role in assessing PIs when the PICP

satisfies the preset confidence level. Accordingly, a lower CWC is preferred in the evaluation of interval forecasting.

3.6.3. Point predictions

Based on the probabilistic predictions {wi,p}p=1,2,...,P and corresponding probabilities {vi,p}p=1,2,...,P , the prob-

ability means served as point predictions can be calculated as the Eq (25) shows.

ŷmean
i =

P∑
p=1

wi,pvi,p

P∑
p=1

vi,p

(25)

The point predictions can be validated by two error criteria: mean absolute percentage errors (MAPE) and root

mean square errors (RMSE), defined as below [40].

MAPE =
1

I

I∑
i=1

∣∣∣∣yi − ŷmean
i

yi

∣∣∣∣ (26)

RMSE =

√√√√1

I

I∑
i=1

(yi − ŷmean
i )

2 (27)

MAPE and RMSE are negatively correlated with the prediction performance, which means a smaller value indicates

a more superior point forecasting performance.
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4. Case studies and result analysis

Case studies are designed to examine the effectiveness of the proposed multi-step forecasting model in practice.

Four datasets collected from actual wind farms and seven evaluation indicators are employed to adequately show

the superiorities of the proposed model over other five comparative models comprising single or hybrid models.

Multistep probabilistic wind speed forecasting is implemented in six models, in which probabilistic predictions,

interval predictions and point predictions are analyzed and compared in terms of the seven assessment criteria,

respectively.

4.1. Data collection

The wind speed data recorded in 1-h interval are collected from Sotavento wind farm in Spain [41], depicted as

Fig. 2. The wind speed has different characteristics in different seasons and months: data in March, July, October

and January are selected to form four datasets for verification, each of which represents a season. Each dataset

contains 744 samples, further partitioned into three datasets in the partition ratio at 20:4:7: the first 480 samples

are used as the training set, the subsequent 96 samples form the validation set and the last 168 samples form the

testing set.
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Fig. 2: Original hourly wind speed data of four seasons

4.2. The establishment of the proposed model

The decomposition technology CEEMDAN is first applied to the raw wind speed timeseries. 8 IMFs and a

residual are obtained as shown in Fig. 3 and Fig. 4, in which the 9-th subseries represents the residual. All the IMF

subsequences have a smaller magnitude and slighter variation than the original wind speed. These subsequences

will be used to model severally by the procedures elaborated in the above section.
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Fig. 3: The decomposition results with CEEMDAN in spring and summer

Fig. 4: The decomposition results with CEEMDAN in autumn and winter
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In order to extract as much information as possible from the historical data, the previous three days of wind speed

data are taken into consideration, and 72 explanatory variables are constructed. There are three hyper parameters

in LASSO regression and QRNN forecasting model. The constraint parameter ηl in LASSO regression is optimized

by GCV method in each subsequence. The optimal parameter values and the compressed dimension are listed in

Table. 1, from which it can be observed that the optimized results vary significantly with the subsequences. The

original dimensions of the explanatory variables are reduced from 72 to 8-51, improving the predictive efficiency to

some extent. It is worth noting that the number of hidden layer nodes and the penalty parameter are determined

by the grid search method. A validation dataset is established to search for the optimal. More detailed descriptions

about the optimal values of parameters and the corresponding objective functions are shown in the next section.

For each subsequence, the LASSO regression and QRNN model with the optimal parameters are implemented in

the testing set to verify the forecasting capacity of the proposed models.

The ultimate predictions aggregated by all forecasted conditional quantiles corresponding to each subsequence

serve as the samples to fit the approximate distributions through KDE. Consequently, probabilistic forecasting, in-

terval forecasting and point forecasting of one-step, two-step along with three-step for wind speed are accomplished.

Their specific predictions are presented by graphs in the next section.

4.3. Result comparison and analysis

There are six models established for case studies, consisting of five comparative models: QRNN, LASSO-

QRNN,CEEMDAN-QRNN, EMD-LASSO-QRNN and EEMD-LASSO-QRNN along with our proposed CEEMDAN-

LASSO-QRNN model. All the six models are denoted as Model 1-Model 6. All the models are preformed through

the same prediction pattern Given a subsequence, all the models are firstly trained on the training set. The trained

models are then executed on validation dataset in order to find the optimal parameters that corresponds to the

optimal solution of the objective functions in QRNN. The objective functions differ in three predictive forms: prob-

ability density predictions, interval predictions and point predictions. The models that possess the optimal solution

are then tested on the testing dataset as the final forecasting model. All the models are preformed in same operating

environment. The operating system is Windows 10 version, the CPU consists of Intel (R) Core (TM) i9-10900k

CPU @ 3.70 GHz, the experiment platform is R x64 4.0.3 and Rstudio

4.3.1. Probabilistic predictions

In probabilistic predictions, the CRPS is used to serve as the objective function. For the l-th subsequence, the

objective formula is expressed as below.

Objective: seek for the optimal solution set of Kl and ξl such to:

min
{
CRPS

(
Kl, ξl

)}
s.t. 1 ≤ Kl ≤ 5

1 ≤ ξl ≤ 5

(28)

The mutil-step ahead probabilistic predictions of the six models in spring dataset with the optimal parameters

are displayed in Figs. 5- 7. The probability density curves of the six models in the 3rd, 27th, 51st, 75th, 99th

15



Table 1: The optimized results in LASSO regression for each subsequence
Datasets Horizons Parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 Res

Spring

1-step
ηl 0.26 0.42 0.33 0.28 0.4 0.46 1 1 1

J l 19 35 29 43 42 50 13 14 23

2-step
ηl 0.26 0.43 0.33 0.32 0.36 0.39 1 1 1

J l 21 37 30 44 41 45 14 15 24

3-step
ηl 0.25 0.41 0.33 0.28 0.36 0.39 1 1 1

J l 20 37 28 41 44 45 14 14 19

Summer

1-step
ηl 0.17 0.37 0.34 0.31 0.3 1 1 1 1

J l 15 32 29 39 32 36 11 17 19

2-step
ηl 0.15 0.35 0.34 0.32 0.32 1 1 1 1

J l 13 31 28 38 34 33 11 17 15

3-step
ηl 0.16 0.35 0.34 0.32 0.38 1 1 1 1

J l 14 32 28 38 46 36 10 16 15

Autumn

1-step
ηl 0.31 0.2 0.36 0.31 0.43 1 1 1 1

J l 22 17 29 44 42 34 16 8 19

2-step
ηl 0.3 0.27 0.33 0.3 0.34 1 1 1 1

J l 22 33 30 41 33 31 15 9 17

3-step
ηl 0.3 0.27 0.37 0.27 0.48 1 1 1 1

J l 22 35 34 36 48 34 16 10 17

Winter

1-step
ηl 0.33 0.35 0.32 0.39 0.4 1 1 1 1

J l 28 34 24 38 41 43 9 17 19

2-step
ηl 0.35 0.37 0.31 0.5 0.34 1 1 1 1

J l 30 38 22 51 36 43 9 19 10

3-step
ηl 0.29 0.4 0.31 0.38 0.43 1 1 1 1

J l 23 40 24 38 46 42 11 17 12
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and 123rd future points are depicted in the same figure, from which it can be observed that the actual values

represented by the dotted lines all fall on the probability density curve. In general, the proposed model outperforms

the other models. The models without decomposition show a flatter probability density curves, while the others

show more concentrated around the actual value. It can be drawn that the decomposition technique has the capacity

of improving the accuracy of probabilistic predictions.
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Fig. 5: Partial one-step probability density curves of all the models in spring testing dataset

A more detailed comparison are shown in Table. 2. According to the two index values of the probabilistic

prediction, the models using CEEMDAN preform the best synthetically. The proposed model does not always

outperform the other models for all the horizons in the four datasets, but its performance is very close to the best.

Moreover, the average QS values of one-step, two-step and three-step occupy the minimum in the four datasets.

The average CRPS values are the lowest in autumn and winter datasets. Compared with model1, the QS values

of our proposed model reduce by 75.34%, 82.35%, 64.00% and 63.16%, respectively for the four datasets. Likewise,

the CRPS values of our proposed model in the autumn and winter datasets decrease by 56.44% and 46.58% than

Model1. Overall speaking, the proposed model presents the best probabilistic prediction performance.

4.3.2. Interval predictions

From the probability density function, the minimum and the maximum are extracted to be the upper and lower

bounds of the interval prediction. As a comprehensive evaluation index for interval predictions, CWC are selected

to be the objective function. The optimal solution can be calculated by using the following formula.
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Fig. 6: Partial two-step probability density curves of all the models in spring testing dataset
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Fig. 7: Partial three-step probability density curves of all the models in spring testing dataset
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Table 2: Multistep probabilistic prediction performance evaluations of all the models in four datasets

Datasets Models
One-step Two-step Three-step Average

CRPS QS CRPS QS CRPS QS CRPS QS

Spring

Model 1 1.53 0.61 1.56 0.76 1.77 0.82 1.62 0.73

Model 2 0.81 0.31 0.90 0.41 0.99 0.47 0.90 0.40

Model 3 0.38 0.14 0.44 0.20 0.48 0.22 0.43 0.18

Model 4 0.52 0.18 0.52 0.23 0.57 0.25 0.54 0.22

Model 5 0.38 0.12 0.47 0.20 0.51 0.23 0.45 0.18

Model 6 0.43 0.13 0.48 0.19 0.51 0.21 0.47 0.18

Summer

Model 1 0.86 0.42 1.89 1.02 2.86 1.61 1.87 1.02

Model 2 0.78 0.34 0.90 0.47 1.12 0.60 0.93 0.47

Model 3 0.42 0.17 0.45 0.21 0.48 0.23 0.45 0.21

Model 4 0.55 0.20 0.58 0.25 0.59 0.29 0.57 0.24

Model 5 0.39 0.14 0.43 0.19 0.48 0.23 0.43 0.19

Model 6 0.41 0.15 0.44 0.18 0.46 0.21 0.44 0.18

Autumn

Model 1 0.88 0.40 1.02 0.52 1.12 0.58 1.01 0.50

Model 2 0.84 0.34 1.01 0.48 1.06 0.53 0.97 0.45

Model 3 0.41 0.15 0.46 0.20 0.47 0.22 0.44 0.19

Model 4 0.61 0.24 0.65 0.27 0.68 0.34 0.65 0.28

Model 5 0.38 0.14 0.45 0.21 0.53 0.26 0.45 0.20

Model 6 0.41 0.15 0.44 0.19 0.48 0.21 0.44 0.18

Winter

Model 1 0.63 0.33 0.75 0.38 0.81 0.43 0.73 0.38

Model 2 0.63 0.24 0.79 0.32 0.83 0.36 0.75 0.30

Model 3 0.33 0.11 0.38 0.15 0.40 0.17 0.37 0.14

Model 4 0.44 0.14 0.49 0.19 0.53 0.27 0.49 0.20

Model 5 0.33 0.10 0.81 0.16 0.42 0.18 0.52 0.15

Model 6 0.36 0.11 0.38 0.15 0.41 0.16 0.39 0.14

The bolder ones mean the best forecasting performance in corresponding evaluation indicators.

19



Objective: seek for the optimal solution set of Kl and ξl such to:

min
{
CWC

(
Kl, ξl

)}
s.t. 1 ≤ Kl ≤ 5

1 ≤ ξl ≤ 5

(29)

in which the three parameters involved in CWC are set beforehand. ϕ and µ are 50 and 0.95 respectively. The

PINAW will dominate the solution when the PICP satisfies the preset confidence. The multi-step interval forecasting

results on the spring dataset are depicted in Figs. 8- 10. It can be concluded that the models using the decomposition

technique produce more narrower PIs, which reduces the uncertainty of the forecast. Except for the QRNN model

(Model 1), the interval width of the other models are close to each other, which indicates these models can eliminate

uncertainty to some extent. A more detailed comparison can only be made through the specific values of CWC.

One-step

0 20 40 60 80 100 120 140 160 180

Time(h)

-60

-40

-20

0

20

40

60

W
in

d 
sp

ee
d(

m
/s

)

Model1(PIs)
Model2(PIs)
Model3(PIs)
Model4(PIs)
Model5(PIs)
Model6(PIs)
Actual value

Fig. 8: The one-step interval predictions of all the models in spring testing dataset

When the value of PICP cannot satisfy the confidence level, the interval prediction is considered as a failure. It

can be concluded from Table. 3, the situations that PICP value may be inferior to 95% in the five comparative models

with the forecasting horizon become longer. However, in our proposed model, the PICP values is always superior to

95%. It fully attests the superiorities of the proposed model in terms of stability and adaptability. Despite failing

to perform best in entire assessment criteria, the proposed model embraces the most robust interval forecasting

performance. The CEEMDAN-QRNN model (Model3) possesses the lowest CWC value in the majority. While

in the spring dataset, it cannot meet the confidence level. The CEEMDAN-LASSO-QRNN (Model 6) overcomes

the dilemma, which presents reduction in forecasting uncertainty and contentment for confidence interval. When

priority is given to ensuring the success of interval prediction, the proposed model is the preferred most.
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Two-step
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Fig. 9: The two-step interval predictions of all the models in spring testing dataset

Three-step
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Fig. 10: The three-step interval predictions of all the models in spring testing dataset
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4.3.3. Point predictions

With regard to point predictions, MAPE is the most representative evaluation index to assess accuracy. There-

fore, through minimizing the value of MAPE, the optimal solution can be obtained.

Objective: seek for the optimal solution set of Kl and ξl such to:

min
{
MAPE

(
Kl, ξl

)}
s.t. 1 ≤ Kl ≤ 5

1 ≤ ξl ≤ 5

(30)

The probability mean can be calculated from the probability density functions, which is viewed as the point

prediction. We can observe from Fig. 11- 13 that he point predictions of all models in one-step forecasting distinguish

inconspicuously from each other. While in three-step forecasting, parts of comparative models such as Model1

and Model2 diverge from the actual value to a large extent. In conclusion, the increasing horizons generate more

indeterminacy, thereby bringing in more challenges in forecasting accuracy. However, the proposed model is performs

very well in coping with this challenge, together with the robustness.
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Fig. 11: The one-step point predictions of all the models in spring testing dataset

Which can be seen from Table. 4, the proposed model presents more superiorities over the other five models

in most cases. As the forecast period increases, its advantages in terms of robustness and reliability become more

significant. The average values of three steps assessment in the two indicators are minimum in all datasets, which

indicates a satisfactory forecasting performance. With regard to the spring dataset, the indices of RMSE and MAPE

of multistep average of our proposed model CEEMDAN-LASSO-QRNN are 0.65m/s and 8.99%, which is lessened by

64.09%, 72.79% than that of Model 1. Correspondingly for the remaining datasets, the rate of reduction all exceed

50%. The enhancement in multistep point forecasting effectively illustrates that the randomness and volatility can

be partly mitigated through the proposed model.

23



0 20 40 60 80 100 120 140 160 180

Time(h)

0

2

4

6

8

10

12

14
W

in
d 

sp
ee

d(
m

/s
)

Two-step

Model1
Model2
Model3
Model4
Model5
Model6
Actual value

Fig. 12: The two-step point predictions of all the models in spring testing dataset
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Fig. 13: The three-step point predictions of all the models in spring testing dataset
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Table 4: Multistep point prediction performance evaluations of all the models in four datasets

Datasets Models

One-step Two-step Three-step Average

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

(%) (%) (%) (%)

Spring

Model 1 1.39 23.04 1.79 32.73 2.24 43.35 1.81 33.04

Model 2 1.16 17.81 1.40 24.21 1.61 29.71 1.39 23.91

Model 3 0.53 6.48 0.76 10.40 0.82 11.81 0.70 9.56

Model 4 0.66 8.69 0.82 12.03 0.92 15.26 0.80 11.99

Model 5 0.44 5.61 0.72 9.92 0.81 12.04 0.66 9.19

Model 6 0.47 6.07 0.69 9.64 0.77 11.27 0.65 8.99

Summer

Model 1 1.68 35.22 1.92 46.36 2.08 54.00 1.89 45.19

Model 2 1.15 25.24 1.55 37.37 1.88 47.57 1.53 36.73

Model 3 0.63 11.58 0.79 15.89 0.85 18.60 0.76 15.36

Model 4 0.68 12.47 0.90 18.41 1.08 24.93 0.89 18.61

Model 5 0.54 10.57 0.74 15.37 0.92 18.19 0.73 14.71

Model 6 0.54 9.82 0.65 12.78 0.84 16.25 0.68 12.95

Autumn

Model 1 1.31 21.02 1.69 29.24 1.87 33.22 1.62 27.83

Model 2 1.26 20.14 1.65 28.45 1.80 32.26 1.57 26.95

Model 3 0.58 8.89 0.83 13.37 0.83 13.72 0.75 11.99

Model 4 0.86 13.07 0.99 15.19 1.17 18.79 1.01 15.68

Model 5 0.54 8.76 0.82 13.26 0.91 15.44 0.76 12.48

Model 6 0.54 8.19 0.74 11.97 0.75 12.62 0.68 10.93

Winter

Model 1 0.94 19.83 1.24 26.91 1.37 30.93 1.18 25.89

Model 2 0.84 18.16 1.11 25.62 1.26 30.04 1.07 24.61

Model 3 0.40 8.83 0.52 10.94 0.56 12.17 0.49 10.65

Model 4 0.49 9.73 0.72 13.31 0.88 17.98 0.69 13.67

Model 5 0.37 7.66 0.56 11.47 0.62 13.38 0.52 10.84

Model 6 0.39 7.99 0.52 10.79 0.58 12.49 0.50 10.42

The bolder ones mean the best forecasting performance in corresponding evaluation indicators.
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Each step ahead forecasting is independently optimized, and all the models mentioned above are optimized

by the same procedure for all the datasets. Because of the space limit, only the best outcome of the proposed

model is listed in Table. 5. Based on the analysis and discussion in three forecasting forms, all the six models

are demonstrated to be feasible and effective. The experimental studies of one-step, two-step and three-step wind

speed predictions show our proposed model performs the best. As a whole, CEEMDAN-LASSO-QRNN is effective

in forecasting wind speed series that fluctuates irregularly and variationally.

4.3.4. The comparison with advanced methods

The ensemble methods are discussed by the two categories of competitive ensemble methods and cooperative

ensemble methods in this paper. The proposed CEEMDAN-LASSO-QRNN multi-step wind speed probabilistic

forecasting belongs to the latter. It is proved to be effective and steady in predicting complex univariate time

series. There are many advanced ensemble forecasting frameworks, most of which can be classified as the former.

Randomly distributed embedding (RDE) was proposed in [20], which is a model-free ensemble forecasting framework.

By randomly generating explanatory variables multiple times to achieves accurate predictions of short-term high-

dimensional data. Multiple repeated experiments can generate the ensemble predictions, which are utilized to

fit probability distribution by KDE. For addressing complexity in dynamic interconnected systems, Ye et.al [42]

proposed a general approach called multiview embedding (MVE) that utilizes complexity to amplify information,

thus overcoming the limitations of short and multidimensional noisy time series. Compared with the above two

frameworks to forecast short-term high-dimensional data, the reservoir computing (RC) approach proposed in [43]

aims to overcome the forecasting of large spatial extent and attractor dimension.

Since univariate time series can be transformed into multi-dimensional time series through reconstruction, the

model proposed in this paper is compared with these three advanced prediction frameworks through experiments to

further illustrate the effectiveness of the model proposed in this paper on univariate complex time series. The three

comparative models: RDE, MVE and RC are performed in the same system environment with the proposed. Except

the running platform of RDE is MATLAB, the rest are R. The lag order is also set to 72. All the conditions are

consistent with the model CEEMDAN-LASSO-QRNN. More detailed parameters involved in the three frameworks

are represented in the Table. 6. Note that the RDE framework combined with KDE to obtain probability density

function, which can compare with the proposed model in three forecasting forms. The comparison results of

evaluation indicators are listed in the Table. 7. While the MVE and RC frameworks only compare in the point

forecasting, and the results are displayed in Table. 8.

The evaluation results of three-step wind speed forecasting show that the proposed model is demonstrated a

significant advantage at the univariate time series. Each forecaasting framework is suitable for different conditions

and scenarios. The RDE framework is appropriate for short-term and high-dimensional data; the MVE framework

is effective in complex interconnected systems with short and high-dimensional data; the RC framework can be

applied in the long and high-dimensional data. While, refer to the wind speed univariate time series, the proposed

model demonstrates its superiorities over the three advanced framework.
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Table 5: The optimal structure parameters of CEEMDAN-LASSO-QRNN model

Datasets Objectives Horizons
subsequence

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 Res

Spring

CPRS

1-step (1,5) (1,4) (1,5) (1,5) (1,1) (1,2) (1,3) (1,3) (3,5)

2-step (1,4) (2,3) (2,5) (2,3) (1,1) (1,2) (1,3) (1,3) (3,4)

3-step (1,3) (1,2) (2,2) (2,3) (1,1) (1,2) (1,3) (1,4) (2,3)

CWC

1-step (5,2) (2,1) (5,5) (2,5) (2,1) (3,4) (1,2) (1,3) (1,4)

2-step (5,4) (5,3) (2,5) (2,5) (2,1) (3,4) (2,1) (1,4) (1,5)

3-step (4,1) (1,2) (3,3) (2,5) (2,1) (3,4) (4,2) (2,1) (1,2)

MAPE

1-step (5,5) (5,4) (5,4) (5,3) (1,1) (1,1) (1,5) (1,4) (2,2)

2-step (3,2) (2,2) (4,1) (2,5) (1,3) (1,1) (1,5) (1,3) (2,2)

3-step (1,1) (2,2) (5,3) (5,3) (1,3) (1,1) (1,5) (1,3) (2,1)

Summer

CPRS

1-step (1,1) (1,1) (1,1) (1,1) (1,4) (1,3) (1,4) (1,4) (1,3)

2-step (1,1) (1,2) (1,5) (1,1) (1,5) (1,1) (1,4) (1,4) (1,5)

3-step (2,3) (1,4) (1,3) (1,1) (1,4) (1,3) (1,4) (1,1) (1,5)

CWC

1-step (5,5) (5,1) (2,3) (1,5) (1,2) (1,1) (1,1) (1,3) (1,1)

2-step (5,5) (5,3) (2,2) (1,5) (1,2) (1,1) (4,1) (1,2) (1,2)

3-step (5,1) (5,1) (2,2) (1,5) (1,2) (1,1) (4,1) (4,5) (3,4)

MAPE

1-step (5,1) (2,2) (3,5) (3,1) (1,5) (1,4) (1,4) (1,2) (1,3)

2-step (2,5) (4,1) (4,2) (2,1) (2,4) (1,1) (1,4) (1,1) (1,5)

3-step (5,1) (5,2) (2,5) (1,1) (3,4) (1,4) (1,4) (1,1) (1,5)

Autumn

CPRS

1-step (1,5) (4,5) (1,1) (1,1) (2,2) (1,4) (1,4) (1,5) (1,2)

2-step (1,1) (4,3) (2,1) (1,3) (3,1) (1,4) (1,4) (1,5) (1,4)

3-step (1,1) (1,1) (2,2) (1,1) (3,1) (1,4) (1,5) (1,5) (1,2)

CWC

1-step (4,1) (4,1) (5,1) (2,1) (1,1) (2,5) (2,4) (1,1) (1,3)

2-step (3,5) (3,4) (3,4) (2,1) (1,1) (2,5) (2,1) (1,2) (1,1)

3-step (4,1) (5,3) (2,3) (2,1) (1,1) (2,5) (2,1) (2,2) (3,4)

MAPE

1-step (3,4) (2,1) (5,3) (3,4) (3,2) (1,1) (1,2) (1,1) (1,1)

2-step (5,5) (5,2) (2,4) (1,2) (4,1) (1,1) (1,4) (1,1) (1,1)

3-step (3,2) (4,2) (5,3) (3,2) (3,4) (1,1) (1,3) (1,1) (1,2)

Winter

CPRS

1-step (1,1) (1,1) (1,5) (1,4) (1,2) (1,3) (1,1) (1,1) (1,5)

2-step (1,1) (1,1) (2,2) (4,5) (2,1) (1,3) (1,3) (1,3) (1,4)

3-step (1,1) (1,1) (4,3) (4,5) (2,1) (1,3) (1,2) (1,3) (1,4)

CWC

1-step (4,1) (4,1) (5,1) (2,1) (1,1) (2,5) (2,4) (1,1) (1,3)

2-step (3,5) (3,4) (3,4) (2,1) (1,1) (2,5) (2,1) (1,2) (1,1)

3-step (4,1) (5,3) (2,3) (2,1) (1,1) (2,5) (2,1) (2,2) (3,4)

MAPE

1-step (4,3) (5,2) (3,5) (3,3) (1,2) (1,2) (1,1) (1,3) (1,5)

2-step (3,5) (4,1) (5,1) (2,1) (4,3) (1,3) (1,1) (1,2) (1,5)

3-step (4,4) (3,4) (4,5) (1,4) (1,3) (1,3) (1,1) (1,3) (1,4)27



Table 6: The parameters of RDE, MVE and RC
Models Parameters Definition Vuale

RDE
S the number of non-delay embedding 200

L embedding dimension 6

MVE
E the embedding dimensions to use for time delay embedding 3

tau the lag to use for time delay embedding 1

RC

n.neurons the number of neurons in the reservoir 1000

density the density of connections in the reservoir 0.02

lambda the tuning parameter for ridge regression 10

5. Conclusion and discussion

With the increasing importance of wind energy worldwide, reliable and stable wind speed prediction is paid

more and more attention. In view of the randomness and uncertainty of wind speed prediction, this paper devel-

ops a cooperative ensemble method based on CEEMDAN-LASSO-QRNN for multi-step wind speed probabilistic

forecasting. In this method, CEEMDAN is utilized to decompose original wind speed time series; high dimensional

features are compressed by LASSO regression optimized by GCV method; QRNN is used to perform wind speed

quantiles forecasting, whose parameters are tuned by gird search; for more future information, the KDE method

is employed to estimate probability density functions, further producing probabilistic predictions, interval predic-

tions as well as point predictions. The experimental results show that the proposed model is superior to the other

eight comparative models in most cases. To be specific, compared with the model QRNN and LASSO-QRNN,

the models based on decomposition method have displayed more reliability and stability in multi-step wind speed

forecasting. Further comparison shows that the CEEMDAN-LASSO-QRNN model owns more robust performance

as the number of predicted steps increases. Therefore, for wind speed time series with strong fluctuations, the

proposed method can provide a reliable and stable multi-step probabilistic forecasting model.

The validity and practicability of the cooperative ensemble method for multistep wind speed probabilistic fore-

casting are exemplified clearly in case analysis. There are inevitably some shortcomings and problems in our method

that is worth further investigations. The most crucial issue is time consumption. In particular, the decomposition

technique increases the training time. In the future, we aim at developing more efficient models.
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Indices and parameters

i Index of samples, i = 1, 2, . . . , I

s Index of the adding Gaussian white noise, s = 1, 2, . . . , S

l Index of IMFs, l = 1, 2, . . . , L

j Index of explanatory variables or input nodes, j = 1, 2, . . . , J

k Index of hidden nodes, k = 1, 2, . . . ,K

t Index of quantile points, t = 1, 2, . . . , T

p Index of predicted values, p = 1, 2, . . . , P

h Index of forecasting horizons, h = 1, 2, . . . , H

λ The penalty parameter in LASSO regression

J l The number of explanatory variables after feature selection in l − th subsequence

η The constraint parameter corresponding to J l

ηl The constraint parameter in l − th subsequence

ξ The penalty parameter in QRNN

ξl The penalty parameter in l − th subsequence

ϕ The parameter in CWC

µ The preset confidence level

Variables

Y Original wind speed samples set

yi The i− th sample in Y

Y s The s− th timeseries added Gaussian white noise

ωs The s− th Gaussian white noise

csl The s− th series of the l − th IMF subsequence decomposed by EMD

cl The l − th IMF

yli The i− th value in cl

rl The l − th residue series

rsl The s− th residue series obtained by adding Gaussian white noise to rl

rL The final residue series

yL+1
i The i− th value in rL

X The explanatory variables samples set

xi The i− th sample in X

xi,j The i− th sample of the j − th explanatory variable in xi

β The coefficient set of explanatory variables

β̂LASSO The estimated coefficient set in LASSO regression

τ The quantile point set

τt The t− th quantile point in τ
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QY (τ |X ) The conditional quantile set

QY (τt |X ) The conditional quantile set at t− th quantile point

Q̂Y (τt |X ) The estimated conditional quantile set at t− th quantile point

H (τ) The weight between input nodes and hidden nodes at τ quantile point

hj,k (τ) The weight between j − th input node and the k − th hidden node in H (τ)

O (τ) The weight between hidden nodes and output node at τ quantile point

ok (τ) The weight between k − th hidden node and the output node in O (τ)

bhi,j The bias of i− th sample in i− th hidden layer

boi The bias of i− th sample in output layer

θ The error term in multistep forecasting strategy

B The bandwidth in KDE method

yli−j The j − th candidate feature of the l − th subsequence

β̂LASSO,l The estimated coefficient set in LASSO regression

β̂LASSO,l
j The estimated coefficient corresponding to the j − th candidate variable in β̂LASSO,l

xl
i The i− th sample of explanatory variables in the l − th subsequence

xl
i,j The j − th explanatory variables in xl

i

Q̂l
yl
i

(
τt
∣∣xl

i

)
The estimated conditional quantile set at t− th quantile point in l − th subsequence

Ĥ l (τt) The estimated weight of input and hidden nodes at τt quantile point in l − th subsequence

ĥl
j,k (τt) The estimated weight of the j − th input node and the k − th hidden node in Ĥ l (τt)

Ĥ l (τt) The estimated weight of hidden and output node at τt quantile point in l − th subsequence

q̂i,t The estimated quantiles at τt quantile at i− th sample

q̂li,t The estimated quantiles at τt quantile in l − th subsequence at i− th sample

wi,p The p− th predicted value of the i− th time point through KDE

vi,p The predicted probability corresponding to wi,p

q̂i,t The final predicted quantile of i− th time point

ŷmean
i The final predicted value of the i− th time point

wi,1 The lower bound of subinterval

wi,P The upper bound of subinterval

D The difference between the maximum and minimum of entire datasets

Functions

∥·∥1 L1 regularization

∥·∥2 L2 regularization

g (·) The activation function of hidden layer

f (·) The activation function of output layer

ρτt (·) The check function at quantile point

K (·) The kernel function
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fh (·) The h-step model

f̂h (·) The h-step estimated model
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