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Invasive plant species pose a significant threat to biodiversity and the economy, yet their management is
often resource-intensive and expensive, and further research is required to make control measures more
efficient. Evidence suggests that roads can have an important effect on the spread of invasive plant spe-
cies, although little is known about the underlying mechanisms at play. We have developed a novel
mathematical model to analyse the impact of roads on the propagation of invasive plants. The integro-
difference equation model is formulated for stage-structured population and incorporates a road sub-
domain in the spatial domain. The results of our study reveal, that, depending on the definition of the
growth function in the model, there are three distinct types of behaviour in front of the road. Roads
can act as barriers to invasion, lead to a formation of a beachhead in front of the road, or act as corridors
allowing the invasive species to invade the domain in front of the road. Analytical and computational
findings on how roads can impact the spread of invasive species show that a small change in conditions
of the environment favouring the invasive species can change the case for the road, allowing the invasive
species to invade the domain in front of the road where it previously could not spread.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Biological invasion is identified as one of the most serious envi-
ronmental problems currently facing society. Invasion of plant spe-
cies in various habitats across the world cause the damage to both
the ecosystem and economy, the losses being evaluated as billions
of dollars each year (Pimentel et al., 2000), at an increasing rate
(Sala et al., 2000).

The conditions for propagation of invasive species are different
in different landscapes and the influence of the surrounding land-
scape on the spread dynamics of invasive plants has been well
recognised (O’Reilly-Nugent et al., 2016; Vilà, 2011). Among other
important habitats, the problem of invasion of alien plants in for-
ests has received a lot of attention (e.g., see Essl et al., 2011;
Langmaier and Lapin, 2020; Sanderson et al., 2012). Invasive plant
species pose a significant threat to biodiversity in native forest
areas, yet their management is resource-intensive and expensive.
Any action to prevent or mitigate the consequences of biological
invasion in the forest is important as the environment and econ-
omy suffer from huge losses related to the spread of invasive spe-
cies into native forest areas (Holmes et al., 2009).

Forest roads are nowadays an essential part of the landscape
and they can play an important role in the spread of invasive plant
species. It has been debated that roads can serve as transport cor-
ridors for movement as well as providing prime habitat for estab-
lishment of invasive plants (Forman et al., 2002; Mortensen et al.,
2009; Tyser andWorley, 1992). However, the role of forest roads as
transport corridors for invasive plants is not completely under-
stood. Although it has been widely studied (Damschen et al.,
2014; Nathan et al., 2011) to what effect corridors increase the
movement of species, this debate is still ongoing (Travers et al.,
2021) and much of this work has been done from the view point
of conservation of species and connecting fragmented landscapes
to increase the chances of success of a given species (cf. Gilbert-
Norton et al., 2010; Haddad et al., 2003). Furthermore, the evidence
that roads facilitate plant invasion is controversial, and the study in
Hansen and Clevenger (2005) has shown that not all ecosystems
close to roads are invaded to the same extent.

In our paper, a mathematical and computational model of bio-
logical invasion in the heterogeneous landscape has been devel-
oped to predict how invasive plants will be spreading when the
forest area is fragmented by building a road. The model parameters
are determined to simulate the spatio-temporal dynamics of the
invasive plant and find threshold values responsible for spread
when a new landscape feature (a road) is introduced. It will be
shown in the paper that growth is a key factor determining the
propagation of the invasive species. Analysing both logistic and
Allee growth functions, our analytical and computational
findings on how roads can impact the spread of invasive species
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demonstrate that there are several distinct types of behaviour in
front of the road.

The paper is organized as follows. In the next section, we first
formulate a mathematical model of biological invasion used to
simulate spatio-temporal dynamics of the invasive species. The
model is stage-structured, where the reproduction and dispersal
stage are considered independently at each discrete time step,
and the dispersal stage is modelled by an integro-difference equa-
tion. We then explain in Section 2.2 how the model is modified to
include a road environment into it. In Section 3, we compare prop-
agation of the invasive plant species when its growth is controlled
by either the logistic growth function (Section 3.1) or the growth
function with the Allee effect (Section 3.2). It will be argued in
the paper that the road model with the logistic growth function
has two basic scenarios of propagation of the invasive species:
the ‘corridor’ regime and the ‘barrier’ regime. In the latter case,
the road prevents invasion completely, while in the former case,
the invasive species invades the domain in front of the road. The
spatio-temporal population dynamics observed in the ‘road’ model
is more complicated when the Allee effect is taken into account in
the definition of the growth function. In the case of the Allee
growth function, a new propagation regime labelled ‘beachhead’
appears, and we perform analytical and computational study of
the beachhead regime in Section 3.2. While our present study is
restricted by a 1� D spatial layout, the extension of our results
onto a 2� D system is briefly discussed in Section 4, where con-
cluding remarks are provided.

2. The model

2.1. The ‘no road’ model

We consider an invasive species described by its population
density N, where we assume that the life cycle of the invasive spe-
cies exhibits two distinctly different stages. The first one is the
demographic stage which can include the growth of juveniles, their
maturation, mating and reproduction, while the second stage is
dispersal. We are mainly interested in modeling invasive plant spe-
cies, and many plant species reproduce at certain time intervals
throughout the year, for example on a yearly cycle through seed
dispersal or pollination (Lewis et al., 2016).

The above biological settings are best taken into account by a
discrete time framework (Kot and Schaffer, 1986) where the popu-
lation density evolves from generation t to generation t þ 1, i.e. we
consider the discrete time with the increment dt ¼ 1. Let
N t; xð Þ � Nt xð Þ be the population density in generation t over con-
tinuous space x. For convenience of interpretation only, we assume
that the species first goes through the demographic stage and will
then disperse. The demographic stage is described aseNt xð Þ ¼ F Nt xð Þð Þ; ð1Þ
where Nt xð Þ is the species’ spatial distribution emerging after the
dispersal stage in the previous generation, and F Ntð Þ is the growth
function.

In our study, we consider two growth functions. The logistic
growth of the population density N is given by

F Nð Þ ¼ AN exp �Nð Þ; ð2Þ
where the growth parameter is A > 0. The steady states �N of a non-
spatial problem that corresponds to the demographic stage (1) are
given by

�Ntþ1 ¼ F �Nt
� �

; ð3Þ

where, apart from the trivial solution �N1 ¼ 0, we have a locally
stable steady state
2

�N2 ¼ ln Að Þ; ð4Þ
for the logistic growth function (2).

We also consider an example of the growth function with Allee
effect taken from Boukal and Berec (2002),

F Nð Þ ¼ qN2

Aþ N2 ; ð5Þ

where A > 0 and q > 0. The non-convex shape of the function (5)
means that the population growth is affected by a strong Allee
effect as the population declines at low densities. The non-spatial
problem (3) has a single equilibrium solution at �N1 ¼ 0 when
q < 2

ffiffiffi
A

p
(unconditional extinction regime), and there is

extinction-survival behaviour of the population N tð Þ in (3), when
qP 2

ffiffiffi
A

p
. A straight line

q ¼ 2
ffiffiffi
A

p
ð6Þ

is a boundary between the two regimes in the parametric plane
A;qð Þ. In the extinction-survival case we have the following steady
state solutions

�N1 ¼ 0; �N2 ¼ q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4A

p
2

; �N3 ¼ qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4A

p
2

; ð7Þ

where �N2 ¼ �N3 ¼ q
2 when q ¼ 2

ffiffiffi
A

p
. The non-trivial steady state

solution �N2 is locally unstable, while �N3 is a stable solution.
After the demographic stage of the given generation is com-

plete, the species enter the dispersal stage, which when finished,
produces the species’ spatial distribution in the next generation:

Ntþ1 xð Þ ¼
Z
X

eNt yð Þk x; yð Þdy; ð8Þ

where X is a dispersal domain whose definition is discussed later.
The dispersal kernel k x; yð Þ in (8) is the probability density function
of the event that an individual moves from position y to position x
after dispersal. The dispersal kernel satisfiesZ
X
k x; yð Þ dx ¼

Z
X
k x; yð Þ dy � 1: ð9Þ

In this paper, we consider the Gaussian dispersal kernel given
by

k x; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � jx� yj2
2r2

 !
; ð10Þ

where the standard deviation r is the parameter quantifying the
spatial scale of the dispersal (but see, e.g., Andersen, 1991 for fur-
ther discussion of the choice of a dispersal kernel).

Having substituted (1) into (8), we exclude the variable eNt and
obtain the following integro-difference equation for the population
density in generation t þ 1:

Ntþ1 xð Þ ¼
Z
X
F Nt yð Þð Þk x; yð Þdy: ð11Þ

We use the following initial condition to simulate the spatial
distribution N0 xð Þ of an invading population:

N0 xð Þ ¼ 1ffiffiffiffiffiffiffi
2p

p exp � x2

2

� �
: ð12Þ

The integro-difference Eq. (11), along with the definition of the
growth function (2) or (5) and the initial condition (12), is solved
numerically in a spatial domain X ¼ x : �L 6 x 6 Lf g. The fast
Fourier transform method is used to obtain the population density
distribution at time t þ 1; see Rodrigues et al. (2015) for further
explanation of the numerical method. We note that, since the dis-
persal kernel (10) is positive over the whole space, the population
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density in (11) is positive everywhere in space at any time t > 0.
However, very small densities are not biologically feasible and
therefore we apply an additional restriction on the population den-
sity in our numerical solution:

Ntþ1 xð Þ ¼ 0; if bNtþ1 xð Þ < �;bNtþ1 xð Þ; otherwise;

(
ð13Þ

where � is a selected small threshold value of the population
density.

Numerical solution of the integro-difference Eq. (11) requires
that the domain size L is large enough to provide an accurate
approximation of the solution in a finite spatial domain. In other
words, the numerical solution should not be sensitive to the condi-
tions at the domain boundaries, should any boundary condition be
required (Rodrigues et al., 2015). If L is chosen to be insufficiently
large, then ‘boundary forcing’ may occur, and the population
dynamics inside the domain may be affected by the boundary con-
ditions1. For the rest of this paper, we assume that the domain size L
is large enough to provide a correct numerical solution Ntþ1 xð Þ for
any time t þ 1 we are interested in.

2.2. The ‘road’ model

A generic model (11)–(12) introduced in the previous section is
referred to as the ‘baseline’ or ‘no road’ model further in the text.
We now expand the no road model to include the ‘road’ environ-
ment into it where we assume that the growth and dispersal con-
ditions are different in the ‘road’ spatial sub-domain (cf. Musgrave
et al., 2015). Consider a road subdomain XR � X and let us intro-
duce an additional dispersal stage over the road in our model as
the discrete time progresses from t to t þ 1. This is done by split-
ting the time interval from t to t þ 1 into two subintervals. We first
consider the no road case (11), but treat the solution as obtained at
time t þ 1

2, i.e., we have:

Ntþ1
2
xð Þ ¼

Z L

�L
F Nt yð Þð Þk x; yð Þdy: ð14Þ

Next, we identify the population density NR for the region of the
road, where additional dispersal will happen

NR
tþ1

2
xð Þ ¼ Ntþ1

2
xð Þ; if x 2 XR;

0; otherwise:

(
ð15Þ

We now apply an additional dispersal step to the road based on
the assumption that the population (e.g., seeds of an invasive
plant) cannot grow on the road and is taken away from the road
quickly (e.g., by the wind). We have

NR
tþ1 xð Þ ¼

Z L

�L
NR

tþ1
2
yð Þk x; yð Þdy: ð16Þ

This additional dispersal that moves the population away from
the road contributes to the population density distribution at time
t þ 1 as followsbNtþ1 xð Þ ¼ Ntþ1

2
xð Þ þ NR

tþ1 xð Þ; x 2 X: ð17Þ

Finally, we assume that the population we have across the road
after the additional dispersal step (16) dies out, i.e., we modify the
condition (13) as follows
1 For a detailed discussion of this issue see Rodrigues et al. (2015), where
recommendations have also been given on the choice of L required to keep the
solution error within the desired accuracy.

3

Ntþ1 xð Þ ¼ 0; if x 2 XR; or if bNtþ1 xð Þ < �;bNtþ1 xð Þ; otherwise;

(
ð18Þ

obtaining the population density distribution over the domain X at
time t þ 1. We will refer to the model (14)-(18) as the ‘road’ model
further in the text.

3. Results: comparison of the no road model and the road
model

For the sake of further discussion, we first briefly present the
results of the simulation in the no road model before we introduce
the road layout. For the rest of this paper, we set up r ¼ 0:1 in the
dispersal kernel (10) (unless it is explicitly defined) and the
domain length is always chosen as L ¼ 10. The threshold density
is � ¼ 10�7 in all computations.

The no road model (11)–(12) is well studied (e.g., see Kot et al.,
1996), and it is known that the invasive species will spread as a
travelling wave over the domain at a constant rate as time pro-
gresses. An example of propagation of the invasive species into
the space is shown in Fig. 1, where the logistic growth function
(2) has been used in simulation, and the height h of the travelling
wave is therefore defined from (4) as h ¼ ln Að Þ. Spatial distribu-
tions of the population density observed for the growth function
with the Allee effect are topologically very similar to those in
Fig. 1, and we do not show them here.

The constant spread rate of the travelling wave can be evaluated
based on linearisation of the growth function, e.g., see Lewis et al.,
2016. For the logistic growth function (2), we have

ctheor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2ln Að Þ

q
: ð19Þ

In our numerical experiments, we have seen a good agreement
with the theoretical result (19) and the spread rate c computed
directly from the numerical solution. In the latter case we have
identified the front position xf of the travelling wave at two con-
secutive moments of time t and t þ 1 to compute

c ¼ xf t þ 1ð Þ � xf tð Þ: ð20Þ
Given values ctheor and c, a difference between them has

been jctheor � cj � 10�3. A very small discrepancy between ctheor
and c confirms the accuracy of our numerical method to make
sure that the numerical results are free of any artifacts when
computation is made for a more numerically advanced road
model.

Next, we consider the road problem (14)-(18). Unlike the no
road case, the spatio-temporal dynamics are different when differ-
ent growth functions are employed in the problem.We first discuss
a simpler case of the logistic growth function (2).

3.1. The road model with the logistic growth function

Depending on the road width, there are two basic scenarios of
wave propagation that we label as the ‘corridor’ and ‘barrier’
regimes when the growth function (2) is used in the model. In
the former case, the population would cross the road and subse-
quently go on to invade the whole domain. In the latter case, the
road would act as a barrier to invasion and the invasive species
cannot cross the road. The examples of wave propagation in the
corridor and barrier cases are shown in Fig. 2 and Fig. 3,
respectively.

It is clear from comparison of the spatio-temporal dynamics in
Fig. 2 and Fig. 3 that a travelling wave passes through a narrow
road region without any transformation, while a wide road pre-
vents the population wave from further propagation entirely. Thus,



Fig. 1. The no road model: a travelling wave solution N x; tð Þ for the problem (11)–(12) with the growth function (2). The parameters are A ¼ 2 and r ¼ 0:1. (a) The initial
distribution (12) at time t ¼ 0, (b) The population density distribution Nt xð Þ at time t ¼ 25, (c) The invasive species spreads further into the space as time progresses, t ¼ 50.
Similar spatial distributions of the population density are observed when the growth function (5) is used in simulation.

Fig. 2. The road model: spatio-temporal dynamics of the population density N x; tð Þ in the problem (14)-(18) with the growth function (2), where A ¼ 2. The road region is
shown in red on the x-axis, where the road width d ¼ 0:12 results in the corridor case. (a) The initial distribution (12) at time t ¼ 0, (b) The population density distribution
Nt xð Þ at time t ¼ 25, as the invasive species propagates in front of the road, (c) The invasive species spreads further into the space in front of the road as time progresses,
t ¼ 50.

Fig. 3. The barrier regime in the problem (14)-(18) with the growth function (2). The road width is d ¼ 1:2, the other parameters are the same as in Fig. 2. (a) The initial
distribution (12) at time t ¼ 0, (b) The population density distribution Nt xð Þ at time t ¼ 25: the invasive species approaches the road yet it does not cross the road and does
not propagate in front of the road, (c) The invasive species can only propagate behind the road as time progresses, t ¼ 50.
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our next aim is to evaluate the critical width of the road where a
transition between the corridor regime and barrier regime occurs
for any given value of the growth parameter A in the function
(2). Let us assume that the travelling wave approaches the road
of width d positioned at XR ¼ b; bþ d½ � from the left at time t
(e.g., see Fig. 3b). We approximate the population density in the
travelling wave at time t as follows:
4

Nt xð Þ ¼ h; if x 2 a; b½ �;
0; otherwise;

�
ð21Þ

where the height h of the wave is given by (4) for the growth func-
tion (2). The population density at time t þ 1 is given by

Ntþ1 xð Þ ¼ Ntþ1
2
xð Þ þ NR

tþ1 xð Þ; ð22Þ



Fig. 4. Various propagation regimes in the road model (14)-(18) with the growth
function (2). The road width d is measured as a percentage of the domain size L.
Region I in the parametric plane A; dð Þ represents the extinction regime in the
spatial domain, region II is the barrier regime, where the road prevents propagation
of the invasive species, and region III is the corridor regime, where the invasive
population crosses the road and a travelling wave spreads in front of the road. The
boundary B2 between regions II and III determines the critical width of the road
required to stop propagation of the invasive species for a given value of the growth
parameter A.
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where at the dispersal stage with the kernel (10) we have

Ntþ1
2
xð Þ ¼

Z
X
F Nt yð Þð Þk x; yð Þdy

¼ F hð Þ
Z b

a

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp
�jx� yj2

2r2

 !
dy

¼ F hð Þ1
2

erf
b� x

r
ffiffiffi
2

p
� �

þ erf
x� a

r
ffiffiffi
2

p
� �� �

: ð23Þ

We now calculate the additional dispersal of the population
density NR

tþ1 xð Þ across the road. According to (15) and (16) in the
road model, we have

NR
tþ1 xð Þ ¼ F hð Þ1

2

Z bþd

b
erf

b� y

r
ffiffiffi
2

p
� �

þ erf
y� a

r
ffiffiffi
2

p
� �� �

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp
�jx� yj2

2r2

� �� �
dy: ð24Þ

We then use the approach in Tsay et al. (2013) to approximate
the integral in (24). We have

NR
tþ1 xð Þ ¼ F hð Þ1

2
1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p
Z bþd

b
exp �d1y2 þ d2yþ d3

� ��
� exp �d1y2 þ d4yþ d5

� ��
dy; ð25Þ

where coefficients di ¼ di xð Þ; i ¼ 1; . . . ;5 are calculated in Appendix
A. Substituting (23) and (25) into (22), integrating, and rearranging
terms we arrive at

Ntþ1 xð Þ ¼ F hð Þ/ x; dð Þ; ð26Þ

where the function / x; dð Þ is given by

/ x; dð Þ ¼ 1
4

1ffiffiffiffiffi
d1

p 1ffiffiffiffiffiffiffiffiffi
2r2

p exp
d2
2

4d1
þ d3

 !
erf

2d1 bþ dð Þ � d2

2
ffiffiffiffiffi
d1

p !  "

þ erf
d2 � 2d1b

2
ffiffiffiffiffi
d1

p !!
� exp

d2
4

4d1
þ d5

 !

� erf
2d1 bþ dð Þ � d4

2
ffiffiffiffiffi
d1

p !
þ erf

d4 � 2d1b

2
ffiffiffiffiffi
d1

p ! !!

þ 1
2

erf
b� x

r
ffiffiffi
2

p
� �

þ erf
x� a

r
ffiffiffi
2

p
� �� ��

: ð27Þ

If the population density at time t þ 1 is Ntþ1 xð Þ > � for
x 2 bþ d; L½ �, the population will grow in the spatial domain in front
of the road, i.e., we have the corridor regime as shown in Fig. 2.
Thus, to find the boundary between the corridor and barrier case
we have to solve

F hð Þ/ dð Þ ¼ �; ð28Þ

where the function / defined by (27) is considered at the point
x ¼ bþ d. We now require that F hð Þ ¼ h, substitute h ¼ ln Að Þ into
(28) and rearrange terms to arrive at

A ¼ exp
�

/ dð Þ
� �

: ð29Þ

The expression (29) defines the boundary curve separating the
barrier region from the corridor region in the A; dð Þ-plane. For
any given value of the demographic parameter A in the growth
function (2), a critical road width db required to prevent propaga-
tion of the invasive species in front of the road can be calculated
from (29). We note that for the logistics growth function (2), we
also have the boundary separating the extinction and survival
regions. Hence, there are two boundary curves in the parametric
plane A; dð Þ. The straight line B1 : A ¼ 1 is the boundary between
5

the extinction and survival regions, while the boundary
B2 : db ¼ db Að Þ defined from solving (29) separates the corridor
and the barrier regions; see Fig. 4.

We want to emphasise here that the existence of the barrier
regime in the problem is entirely due to the threshold density �
in (18). For any A > 1, the invasive species will always propagate
when we have � ¼ 0 in (28), no matter what the road width is. Con-
sider now the case when � increases, i.e., we have harsher growth
conditions in front of the road. Let the original threshold density be
� ¼ ��, and the new threshold density be ��� > ��. Consider a point
P ¼ A; d�b

� �
at the boundary B2 obtained for the threshold ��. Given

the same value of A, the position of P will change when the new
value of ��� is implemented in the problem. It follows from (29)
that

A ¼ exp
��

/ d�b
� � !

¼ exp
���

/ d��b
� � !

;

where d��b is the road width for which P ¼ A; d��b
� � 2 B2 when � ¼ ���.

Rearranging terms we obtain

���

��
¼ / d��b

� �
/ d�b
� � ;

and, since ���=�� > 1, we have / d��b
� �

> / d�b
� �

.
The graph of the function / dð Þ is shown in Fig. 5. It can be seen

from the graph that / dð Þ is a decreasing function of its argument
and therefore d��b < d�b, i.e., the point P moves down along the verti-
cal axis in Fig. 4. Hence, if the threshold density � increases, the
boundary B2 will go down in the parametric plane A; dð Þ to increase
the area of the barrier region. In other words, if environmental con-
ditions become harsher in front of the road, a more narrow road
can still prevent propagation of the invasive species. Conversely,
for smaller values of �, the boundary B2 will go up to make the cor-
ridor regime region larger in the parametric plane.

Our previous investigation has been performed for the fixed
value r ¼ 0:1 in the dispersal kernel (10). We now discuss briefly
how the critical value db of the road width responsible for the tran-
sition from the corridor regime to the barrier regime depends on
the parameter r in the dispersal kernel. Let us fix the parameters



Fig. 5. The function / x; dð Þ defined by (27) and considered at the right edge xr of the
road, xr ¼ bþ d, is a decreasing function of the argument d.
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A and � and vary r in the Eq. (28). The function / defined by (27) at
the point x ¼ bþ d becomes a function of variables r and d only,
and the Eq. (28) can be solved to obtain the curve Br : d ¼ d rð Þ
defining the boundary between the corridor and barrier regime.

The boundary curve Br is shown in Fig. 6a. We note that a semi-
analytical approach used to obtain the curve Br as explained above
does not require any upper bound for variables d and r in the def-
inition of the function / in (27). However, the choice of the large
parameter r	 1 results in a degenerate dispersal kernel, i.e., the
dispersal is so weak that any road width can be considered as a
barrier; see Fig. 6a. Hence, we also show a fragment of the bound-
ary curve Br obtained for small r in Fig. 6b. It can be seen from the
figure that an increase in rwithin the interval r 2 0;1½ � results in a
linear growth of the corridor domain, i.e., we have d ¼ jr, where
the slope j of a straight line in the figure can be approximated
as j � 7:38 for � ¼ 10�7 and A ¼ 3 used in computation.
3.2. The road model with the Allee effect growth function

The spatio-temporal population dynamics observed in the road
model is more complicated when the Allee effect is taken into
account in the definition of the growth function. We still have
the corridor and barrier regimes when the growth function (5) is
used in the model. Wave patterns of the population density
observed for those regimes are very similar to those presented in
Fig. 2 (the corridor case) and Fig. 3 (the barrier case), and we do
not show them here. Meanwhile, for the growth function (5), there
exists the range of the road width d 2 d1; d2½ � where we observe a
new regime in the spatio-temporal dynamics of the invasive spe-
cies. One example of this new regime labelled as ‘beachhead’ in
the model is shown in Fig. 7. It can be seen from the figure that,
while a spatial region in front of the road has been invaded, the
population in front of the road does not propagate further into
the space as time progresses.

The existence of the beachhead regime for the growth function
(5) is further illustrated by results in Fig. 8, where we show the rate
of spread c and the width W of a domain occupied by the popula-
tion in front of the road as functions of the road width d. It is seen
from the simultaneous analysis of the graphs in Fig. 8a and Fig. 8b
that the beachhead spatio-temporal dynamics appears in the prob-
lem when the road width is d 2 d1; d2½ �. The left boundary d1 is
shown in the graph c dð Þ in Fig. 8a. It can be defined as the mini-
mum road width that prevents further propagation of the popula-
tion wave, i.e., c d1ð Þ ¼ 0 and c dð Þ > 0 for any 0 < d < d1. The right
boundary d2 is shown in the graphW dð Þ in Fig. 8b, where it is iden-
tified as the minimum road width that results in the population
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extinction in front of the road, i.e., W dð Þ ¼ 0 for any d P d2. We
note that, for a given road width d, the width and height of the
beachhead depend on the parameters A and q of the growth func-
tion; see Fig. 9. The parameter range q;Að Þ required for formation
of the beachhead spatial domain is shown for a given road width
in Fig. 10.

Let us fix A in the definition of the growth function (5) and vary
another demographic parameter q in (5) and the road width d.
Based on the analysis above, we anticipate having several regions
in the q; dð Þ-plane that correspond to various spatio-temporal
dynamics regimes and we aim to find boundaries d ¼ d qð Þ between
those regions and identify the critical road width required for the
beachhead regime.

The curve that separates the extinction region in the q; dð Þ-
plane from the other regimes is defined directly from the analysis
of the growth function (5), i.e., we require that the population den-
sity behind the road is given by the stable steady state �N3 in (7)
which only exists when q P 2

ffiffiffi
A

p
. Thus, we define a boundary B1

of the extinction region in the parametric plane as B1 : q ¼ 2
ffiffiffi
A

p

for all values of d. The straight line B1 is shown in Fig. 11a where
it separates the extinction region I from the other regimes.

Consider now q > 2
ffiffiffi
A

p
and let the population density brought

to the front of the road from behind the road be below the thresh-
old density �. It follows from our discussion of the logistic growth
function (2) in the previous section, that the invasive species will
not spread in front of the road, i.e., we have the barrier regime.
The boundary B2 of the barrier region is given by the same condi-
tion (28) as for the logistic growth function. For the growth func-
tion (5), the condition (28) written at the stable steady state �N3

becomes

qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 4A

p
2

/ dð Þ ¼ �;

which we can rearrange for q to give the equation of the boundary
curve B2 in the parametric plane,

B2 : q ¼ A/2 dð Þ þ �2

/ dð Þ� : ð30Þ

The curve B2 shown in Fig. 11 bounds the region II which corre-
sponds to the barrier regime in the spatial domain.

Let us now investigate the beachhead regime where the popu-
lation density brought to the region in front of the road is fully
compensated by the negative growth at the demographic stage.
In our further analysis, we approximate the beachhead case by
the following condition

Ntþ1 bþ dð Þ ¼ Nt bþ dð Þ; for� < N < N2

�
; ð31Þ

i.e., we require that the population density remains constant at the
edge of the road in the beachhead regime.

The population density at time t þ 1 can be presented as

Ntþ1 ¼ Nt þ DN;

where the increment DN is brought to the edge of the road over
the dispersal stage. Since the travelling wave given by (21) has
the constant height h behind the road, the increment DN in the
population density remains constant at any time t for a given road
width d > 0, yet its value depends on d; see the discussion in
Section 3.1. This increment is then compensated by the negative
growth occurred when � < N < �N2 at the growth stage to meet
the condition (31).

It follows from the above consideration that the beachhead
regime is entirely related to the Allee effect, i.e., the negative
growth at the interval N 2 �;N2

	 

. This conclusion is further illus-

trated in Fig. 12 where the growth function F Nð Þ given by (5) is



Fig. 6. The propagation regimes in the road model (14)-(18) with the growth function (2) shown in the r; dð Þ-plane. The region Rc represents the corridor regime in the spatial
domain, the region Rb represents the barrier regime. (a) The boundary Br between regions Rb and Rc determines the critical width of the road db required to stop propagation
of the invasive species for any given value of the parameter r in the dispersal kernel (10); see further explanation in the text. (b) The boundary Br shown for r 2 0;1½ �. The
boundary curve can be approximated by a linear function Br : d ¼ jr, where the slope of the straight line has been computed as j � 7:38 for � ¼ 10�7 and A ¼ 3.

Fig. 7. The beachhead regime in the problem (14)-(18) with the growth function (5). The parameters are A ¼ 0:15;q ¼ 1:0. The road width is d ¼ 0:12 and the road region is
shown in red on the x-axis. (a) A travelling wave approaches the road at time t ¼ 50, (b) The population density distribution Nt xð Þ at time t ¼ 100. The beachhead region in
front of the road has been invaded, yet the invasive species does not propagate further into the space, (c) The population density distribution Nt xð Þ in front of the road remains
the same at time t ¼ 200 as in earlier times (cf. Fig. 7b).

Fig. 8. The problem (14)-(18) with the growth function (5). The rate of spread c and width W of the domain occupied by the population in front of the road are shown as
functions of the road width dmeasured as percentage of the domain size L. The parameters are A ¼ 0:15;q ¼ 1:0. (a) For any road width d > d1, the population does not spread
in front of the beachhead region. (b) For any road width d > d2, the road acts as a barrier that the invasive population cannot cross.
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Fig. 9. The population density distributions Nt xð Þ at time t ¼ 300 after the beachhead region has been invaded in front of the road. For the given road width d ¼ 0:12, the size
of the beachhead region depends on the parameters of the growth function (5). (a) The parameters are A ¼ 0:15;q ¼ 0:855, (b) A ¼ 0:18;q ¼ 1:0, (c) A ¼ 0:18;q ¼ 1:12. Only
the spatial subdomain x 2 0;3½ � is shown in the figure for the sake of better visualisation of the beachhead region.

Fig. 10. The spatial width of the beachhead region W as a function of the parameters q and A in the growth function (5). (a) The road width is d ¼ 0:12, (b) the road width is
d ¼ 0:19.

Fig. 11. Various spatio-temporal dynamics regimes in the road model (14)-(18) with the growth function (5). (a) The parametric plane q; dð Þ. Region I represents the
extinction regime in the spatial domain. Region II is the barrier regime, where the road prevents propagation of the invasive species. Region III is the beachhead regime, where
the population invades a spatial beachhead region in front of the road without further propagation. Region IV is the corridor regime, where the invasive population crosses the
road and a travelling wave spreads in front of the road to invade the entire domain as time progresses. (b) The parametric plane A; dð Þ. The notation used to mark different
regions is the same as in Fig. 11a.
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shown as a black solid line and a dashed line is the equilibrium line
F Nð Þ ¼ N. Let us draw a new growth function F Nð Þ þ DN, where
DN ¼ const, i.e., we move the graph of the function F Nð Þ along
the y-axis by the distance DN. For relatively small DN, this transfor-
mation results in a new stable steady state, i.e., formation of the
beachhead regime; see curve A in the figure, where DN1 < DNcr

and the new stable steady state is shown as a blue dot on the line
F Nð Þ ¼ N. As DN increases, the new steady state defining the
beachhead regime moves closer to the steady state N2 along the
equilibrium line F Nð Þ ¼ N, and the two steady states coincide when
DN ¼ DNcr (curve B in the figure). For any DN2 > DNcr , we have the
8

corridor regime only, as F Nð Þ þ DN > N and the population grows
in front of the road (curve C).

The increment DNcr defines the transformation of the beach-
head regime to the corridor regime. Since DN depends on the road
width, DN ¼ DN dð Þ, the boundary B3 between the beachhead
region and the corridor region in the parametric plane q; dð Þ can
be found from the condition

F N�ð Þ þ DNcr dð Þ ¼ N�; ð32Þ
where N� is defined from the requirement that the line F Nð Þ ¼ N is
the tangent line for the function F Nð Þ þ DN at point N�, i.e., we have



Fig. 12. The beachhead regime is produced by the Allee effect. The original Allee
growth function (5) (black solid line) has the only point of intersection N ¼ N2 with
the line F Nð Þ ¼ N (dashed line) in the interval N 2 �;N2

	 

. Another point of

intersection appears when F Nð Þ is raised by the value DN < DNcr (curve A, blue solid
line). The new stable steady state shown as a blue dot in the figure corresponds to
the beachhead distribution of the population density in the spatial domain. As DN
increases, the new steady state goes up along the line F Nð Þ ¼ N, while the unstable
steady state N2 goes down along the curve. At DN ¼ DNcr , the beachhead steady
state coincides with the unstable steady state; see curve B (orange solid line) in the
figure. For any DN > DNcr , the condition F Nð Þ þ DN > N holds and provides the
corridor regime (curve C, green solid line).
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F 0 Nð Þ ¼ 1 at N ¼ N�. Differentiating F Nð Þ and rearranging terms we
arrive at

N4 þ 2AN2 � 2AqN þ A2 ¼ 0; ð33Þ

where we require q > 2
ffiffiffi
A

p
and � < N < �N2. Let us fix the parameter

A in the growth function (5). The Eqs. (33) and (32) are then solved
for any given value of q to find the curve d ¼ d qð Þ. The boundary
B3 : d ¼ d qð Þ is shown in Fig. 11.

The position of the boundary curves in the parametric plane is
defined by parameters in (30) and (32). Consider, for example,
the boundary B2 shown in Fig. 13a, where the curve B2 is defined
from (30) for some baseline value of the threshold density � ¼ ��.
The boundary B2 will move down to make the barrier region larger
and the beachhead region more narrow when � increases to
��� > ��; see a dash-dotted line in Fig. 13a. Furthermore, it follows
from the analysis in Fig. 12 that the beachhead region between the
boundaries B2 and B3 will completely disappear in the extreme
case � > N�, where N� is defined by (33). Conversely, the boundary
B2 will move up to decrease the size of the barrier region when �
decreases to some �� � � < �� (see a dashed line in Fig. 13a). It also
follows from (6) and (32) that the boundaries B1 and B3 do not
move when we vary the threshold density �.

Consider now the boundary B3 that corresponds to the baseline
value of the demographic parameter A ¼ A� as shown in Fig. 13b.
Let us decrease A to some new value A��

< A�. The boundary B1 will
move to the left when A decreases, while the boundary B3 will
move up to increase the size of the corridor domain in the para-
metric plane (see dash-dotted lines in the figure). Conversely, let
the new parameter value be A� � �

> A�. It can be seen from
Fig. 13b that the corridor domain will shrink as the boundary B1

moves to the right and the boundary B3 moves down (see dashed
lines in the figure). These conclusions are similar to the case of
the logistic growth: if environmental conditions become harsher
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in front of the road, a more narrow road will be able to prevent
propagation of the invasive species.
4. Conclusions

In the present paper, we have developed a novel model that
allows one to take into account different dispersal and growth
behaviour of invasive plant species when a road is presented in
a spatial domain. A stage-structured population has been consid-
ered in the model where the condition of no growth in the road
sub-domain has been implemented at the growth stage, and the
dispersal stage has included sweeping the population from the
road.

The aim of our investigation has been to understand whether
roads can always be thought of as corridors to facilitate propaga-
tion of the invasive species. The rate of spatial spread of the alien
species is a quantity of high theoretical and practical importance,
and it has been a focus of numerous studies (Andow et al., 1990;
Clark et al., 2001; Fisher, 1937; Hastings et al., 2005; Kot et al.,
1996; Lewis and Pacala, 2000). The rate of spread is known to
depend strongly on the dispersal mode, so that the short-
distance dispersal normally results in the advance with a constant
speed, but the long-distance dispersal (described by a fat-tailed
kernel with a power-law decay) may lead to a spread with accel-
erating speed (Kot et al., 1996). The results we have obtained in
the 1-D spatial road model demonstrate that, in the case of the
short-distance dispersal, the growth function is a dominant factor
responsible for propagation of invasive species in front of the
road. Depending on the parameters of the growth function, inva-
sion into space may not be prevented by the road, yet the same
road may serve as a barrier stopping the spread of the invasive
species. The logistic growth function results in the corridor prop-
agation regime where the population advances at a constant
speed in front of the road and the barrier regime where no
population exist in front of the road. Those regimes are defined
by the road width d, and there exists a threshold value of d for
which the barrier regime turns into the corridor regime to result
in propagation of the invasive species in front of the road. It has
been explained in the paper how the threshold width of the road
depends on the growth parameter A in the definition of the
logistic growth function.

Meanwhile, between the two growth functions we have inves-
tigated in the paper, the growth with the Allee effect results in
more complex conditions of propagation in comparison with the
logistic growth. We have observed a beachhead propagation
regime when the growth function with the Allee effect has been
employed in the problem. In the latter case the population remains
constant in front of the road and does not spread into space in front
of the road as time progresses. The beachhead phenomenon inves-
tigated in the paper is similar to invasion pinning (see Keitt et al.,
2001 and references therein). It has been shown in Keitt et al.
(2001) that the Allee growth function can be responsible for inva-
sion pinning in the system with discrete space, and our results fur-
ther demonstrate the importance of the Allee effect in spatially
continuous models where spatial heterogeneity is present in the
landscape. Analysis of the parameters in the problem revealed that
the beachhead regime can be considered as the transition between
the corridor and barrier regimes. It has been argued in the paper
that a small change in conditions of the environment favouring
the invasive species, for example, due to climate change, can
change the propagation regime, allowing the invasive species to
invade the domain in front of the road where it previously could
not spread.

The results we present in the paper have been obtained in a
simple 1-D layout. In the 1-D problem, the ‘road’ can be thought



Fig. 13. The Allee growth function (5): domains in the parametric plane q; dð Þ corresponding to different spatio-temporal dynamics regimes when problem parameters are
varied. (a) The size of the barrier domain defined by the position of the boundary B2 increases when the value of the threshold density � increases from �� (the solid line B2 in
the figure) to ��� > ��; a new position of the boundary B2 is shown as a dash-dotted line in the figure. Conversely,the size of the barrier domain decreases when the threshold
density � decreases from �� to �� � � < �� (a dashed line in the figure). (b) The size of the corridor domain defined by the position of the boundaries B1 and B3 increases when
the value of the demographic parameter A decreases from A� (the solid lines B1 and B3 in the figure) to A��

< A�; new boundaries B1 and B3 are shown as dash-dotted lines in
the figure. Conversely, the size of the corridor domain decreases when the value of A increases from A� to A� � �

> A� (dashed lines in the figure).
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of as an open space in the fragmented forest landscape where the
conditions of growth are essentially different from the rest of the
spatial domain. Meanwhile, we expect that the model we have
considered can serve as a framework for a more realistic model
employed to study invasion in 2-D spatial domains. We notice that
in the case of the Gaussian dispersal kernel (10), the 2-D dispersal
in the isotropic environment is given by a product of two 1-D dis-
persal kernels simulating dispersal in the x- and y-directions.
Hence, in an isotropic environment, an intuitive extension of our
results onto the 2-D case is straightforward, and depending on
the parameters of the growth function, one can expect the same
propagation regimes as obtained in our 1-D model. These proper-
ties, however, may change if the 2-D environment becomes aniso-
tropic, e.g., if propagation of the invasive species along the road is
much faster than in the direction orthogonal to the road. The latter
condition leads to the requirement of incorporation of long-
distance dispersal into the model, as this type of dispersal is indeed
the primary dispersal type for many invasive plants (Kot et al.,
1996; Nathan et al., 2011; Straigytė et al., 2015; Thuiller et al.,
2006). Since the 2-D framework allows for more realistic mod-
elling, natural seed dispersal in the direction orthogonal to the
road (as given by the Gaussian dispersal kernel in the 1-D model)
will be complemented by dispersal through wind along the road
simulated by a different dispersal kernel. While our model is flex-
ible enough to deal with directional 2-D dispersal, the analysis of
long-distance dispersal is a more challenging issue, both from a
mathematical and computational viewpoint, and is reserved as a
topic of future work. Another possible direction of future research
is incorporation of seed banks into the model to take into account
seeds that may lie dormant for some time before germinating
(MacDonald and Watkinson, 1981). Integro-difference models
have been used successfully for study of populations with a frac-
tion of non-germinating seeds (Allen et al., 1996; Li, 2012; Mistro
et al., 2005) and combining the concepts of a seed bank and a
heterogeneous landscape in the model may contribute to better
understanding of invasive scenarios. Finally, we would be inter-
ested in more thorough investigation of the growing conditions
at road edges to understand how they may facilitate the spread
of invasive plant species (Hansen and Clevenger, 2005) beyond
the area adjacent to the road. The study of this topic may require
a more sophisticated definition of the growth function in our
model and we leave it for future work.
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Appendix A. The increment in the population density in front of
the road

We consider the approximation of (22) used to analyse various
propagation regimes in front of the road. While the calculation of
the Ntþ1

2
xð Þ term in (22) is straightforward, the calculation of the

second term, NR
tþ1 xð Þ, is more complicated. It has been shown in

Section 3.1 that additional dispersal of the population density
NR

tþ1 xð Þ across the road is given by

NR
tþ1 xð Þ ¼ F hð Þ1

2

Z bþd

b
erf

b� y

r
ffiffiffi
2

p
� �

þ erf
y� a

r
ffiffiffi
2

p
� �� �

� 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp
�jx� yj2

2r2

 ! !
dy: ð34Þ

Since we cannot calculate the integral in (34) analytically, we
use the following approximation of the error function erf xð Þ intro-
duced in Tsay et al. (2013) which is valid for x P 0,

erf xð Þ � 1� exp c1xþ c2x2
� �

; ð35Þ
where the coefficients c1 and c2 have been evaluated in Tsay et al.
(2013) as c1 ¼ �1:09599814703333, and c2 ¼ �0:75651138383854.
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Substituting this approximation into (34) and rearranging terms we
arrive at

NR
tþ1 xð Þ ¼ F hð Þ1

2

Z bþd

b
erf

b� y

r
ffiffiffi
2

p
� ��

þ erf
y� a

r
ffiffiffi
2

p
� ��

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp
�jx� yj2

2r2

 ! !
dy

¼ F hð Þ1
2

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p
Z bþc

b
exp �d1y2 þ d2yþ d3

� ��
� exp �d1y2 þ d4yþ d5

� ��
dy; ð36Þ

where the coefficients di; i ¼ 1; . . . ;5 are defined as follows:

d1 ¼ � c2 � 1
2r2

� �
;d2 ¼ 2xþ

ffiffiffi
2

p
rc1 � 2c2b
2r2

 !
;

d3 ¼ �
ffiffiffi
2

p
rc1bþ c2b

2 � x2

2r2

 !
;

d4 ¼ 2xþ
ffiffiffi
2

p
rc1 � 2ac2
2r2

 !
;

d5 ¼ �
ffiffiffi
2

p
rac1 þ a2c2 � x2

2r2

 !
: ð37Þ
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