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Abstract

Significance: Bioluminescence imaging and tomography (BLT) are used to study biologically
relevant activity, typically within a mouse model. A major limitation is that the underlying opti-
cal properties of the volume are unknown, leading to the use of a “best” estimate approach often
compromising quantitative accuracy.

Aim: An optimization algorithm is presented that localizes the spatial distribution of biolumi-
nescence by simultaneously recovering the optical properties and location of bioluminescence
source from the same set of surface measurements.

Approach: Measured data, using implanted self-illuminating sources as well as an orthotopic
glioblastoma mouse model, are employed to recover three-dimensional spatial distribution of
the bioluminescence source using a multi-parameter optimization algorithm.

Results: The proposed algorithm is able to recover the size and location of the bioluminescence
source while accounting for tissue attenuation. Localization accuracies of <1 mm are obtained in
all cases, which is similar if not better than current “gold standard” methods that predict optical
properties using a different imaging modality.

Conclusions: Application of this approach, using in-vivo experimental data has shown that
quantitative BLT is possible without the need for any prior knowledge about optical parameters,
paving the way toward quantitative molecular imaging of exogenous and indigenous biological
tumor functionality.

© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JBO.27.6.066004]
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1 Introduction

Bioluminescent tomography (BLT) is a preclinical imaging technique used to recover the
three-dimensional (3D) spatial and intensity distribution of bioluminescent molecules using
two-dimensional (2D) images [bioluminescent imaging (BLI)] of light at the surface of an
animal.1 This is achieved through computational optimization algorithms that incorporate
models of the light transport through tissue, typically using the diffusion approximation of
the radiative transport equation.2 A number of issues arise when carrying out BLT, which has
to date, limited its preclinical use to surface weighted 2D BLI, with progress toward true
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tomography made over the last decade. A major challenge in BLT is nonuniqueness,3 which
is addressed through the use of multispectral data, increasing the experimental time needed,
as data is sequentially collected using filters.4 This has been addressed using, e.g., a hyperspec-
tral system5 based on compressive sensing, by utilizing random projections data as captured
using a spectrometer.

Often overlooked is the importance of having accurate computational models for the struc-
ture and the underlying optical parameters of the animal/tissue being imaged to allow accurate
three-dimensional (3D) imaging through optimization.6 Structural knowledge can be gained
through secondary modalities, such as MRI,7 CT,8 and ultrasound,9 which can be used to develop
an accurate model for optimization and 3D reconstruction, although often relying on estimated
tissue optical parameters. Heterogeneous models have been used6,10,11 to offer an alternative,
through registration with an atlas model, or by defining permissible regions to improve accu-
racy.12,13 Work targeted toward direct imaging of optical properties through the use of diffuse
optical tomography (DOT) have demonstrated promise, however, with increased imaging and
development cost.4

Recent reconstruction algorithms based on machine learning and deep learning have shown
great promise in diffuse optics-based applications,14 such as the detection of breast cancer using
MRI-guided near-infrared spectral tomography.15 In BLT, e.g., Bayesian learning method based
on K-nearest neighbor strategy, which is able to incorporate several types of a priori information,
including anatomical information, has shown good accuracy for tumor spatial positioning and
morphology reconstruction.16 A major challenge in the application of neural networks in BLT is
the available training data sets that rely not only on the unknown bioluminescence source loca-
tion but also on the unknown underlying optical properties, making it difficult to reconstruct the
patterns outside the training data sets. A recent self-training strategy has been proposed for BLT
where large-scale data can be generated with random target numbers, shapes, and sizes through
a random seed growth algorithm allowing the neural network to automatically self-train, which is
showing great promise for application in small animal studies.17

BLT in areas of research such as oncology has shown to be of benefit as a tool allowing high-
contrast image-guided radiation therapy.18,19 Specifically, to advance image-guided irradiation
for soft tissue targeting and treatment assessment, a unique multimodal system has been devel-
oped combining BLT with x-ray cone-beam CT (CBCT) for preclinical radiation research. The
system has been verified using an orthotopic glioblastoma (GBM) model18,20 and orthotopic
pancreatic ductal adenocarcinoma (PDAC) model,21 with accuracies of tumor location recovery
of ∼1 and 2 mm, respectively. Limitations, however, exist from the need for a trial-and-error
approach for optimizing the unknown optical parameters of the tissue, based on structural
a-priori knowledge from the CBCT.

A novel optimization algorithm allowing simultaneous recovery of optical parameters
directly from bioluminescence data has recently been proposed,22 but never applied, to biological
data. Here, the first-ever in-vivo application of an optimization algorithm, recovering both the
bioluminescence source and intensity as well as the tissue absorption (total hemoglobin content)
in small animal BLT system is presented.

The challenges and limitations as observed in commercial preclinical BLI/BLT systems will
be highlighted, using the example models of orthotopic GBM and self-luminous light source
implanted in pancreas to highlight the benefits of the proposed algorithm. Not only is it possible
to accurately recover the spatial distribution of a bioluminescence source, but also the potential
to recover biologically informative parameters such as hemoglobin content, without the need
for additional assumptions, allowing quantitative BLT.

2 Materials and Methods

2.1 Animal Welfare

All animal experimental procedures were carried out in accordance with the Johns Hopkins
University Animal Care and Use Committee under strict accordance with institutional guidelines
and regulations for the use of vertebrate animals.
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2.2 Orthotopic GBM Mouse Model

To establish the orthotopic GBM mouse model, a C57BL/6J mouse (female, 8-weeks-old;
Jackson Laboratory, Bar Harbor, Maine, United Stated) was immobilized on a stereotaxic instru-
ment (Catalog No. 51730; Stoelting, Wood Dale, Illinois, United States) at prone position. A
5- to 8-mm sagittal incision on the scalp was made. A 0.5-mm-diameter parietal burr hole at
20-mm anterior to the lambdoid suture and 2-mm left to the sagittal suture of the skull was made
with an electric bone drill (Catalog No. 51449; Stoelting, Wood Dale, Illinois, United States).
1.2 × 105 GL261-Luc2 cells in 2 μL of phosphate-buffered saline (PBS) were injected 3-mm
deep into the mice brain by utilizing a 10-μL Hamilton gas-tight syringe with 32-gauge blunt-
tip needle (Catalog No. 53485-1; Stoelting, Wood Dale, Illinois, United States). 1 μL of cell
suspension was injected and after waiting for 1 min these two steps were repeated until all
suspension was injected. After the injection was complete, the syringe was raised 1 mm and
after 1 min wait these two steps were repeated until the needle was completely moved out of
mouse head. The skull opening and incision were sealed with tissue adhesive (No. 1469SB;
3M VetbondTM/MC, St. Paul, Minnesota, United States).

2.3 Implantation of Self-Luminous Light Source into Mouse Pancreas

A self-luminous light source (cylinder, 0.9 mm in diameter, 2 mm in length) was surgically
implanted into the pancreas of albino C57BL/6J mouse (female, 8-weeks-old; Jackson
Laboratory, Bar Harbor, Maine, United States). The surgical site was located at the skin on the
mouse left flank, around spleen position, posterior to rib. An 8- to 12-mm transverse incision
was made on the skin at the surgical site, and another 8- to 12-mm transverse incision was made
on the peritoneum right under the skin incision. The spleen and pancreas were gently exteri-
orized, and the pancreas was spread out on the skin. A small pocket was created in the pancreatic
parenchyma, and the light source was inserted into the tissue pocket. A 7-0 suture (CC1107N-45;
AROSurgical™, Newport Beach, California, United States) was used to close the tissue pocket
of the pancreatic parenchyma. After placing the pancreas and spleen back into the abdominal
cavity, the incisions on the peritoneum and skin were closed using a 4-0 suture (E15A04L-45;
AROSurgical™, Newport Beach, California, United States).

2.4 BLT System

Two BLT systems in a similar configuration and equal performance were utilized in this study.
The first one is an in-house BLT system18 consisting of an optical assembly, a thermostatic sys-
tem, a transportable mouse bed, and a mobile cart. The optical assembly is driven by a motorized
linear stage to dock onto the mouse bed for imaging. The assembly contains a rotatable three-
mirror system (98% reflective, protected silver coating) with four light-emitting diodes mounted
at its corners for photo imaging, a filter wheel (Edmund Optics Inc., Barrington, New Jersey,
United States), a charge-coupled device (CCD, iKon-L936; Andor Technology, Belfast, United
Kingdom) mounted with a 50-mm f∕1.2 lens (Nikkor, Nikon Inc., Melville, New York, United
States), and a light-tight enclosure. The optical signal emitted from an imaged object was
directed by the three-mirror system, passing through the filter wheel and captured by the
CCD camera. The image taken at top of the mouse bed is labeled as 0-deg projection imaging.
The three-mirror system can rotate 180 deg (from −90 deg to 90 deg) around the imaged object
for multiprojection imaging. The focal plane was set at ∼11 mm above the mouse bed with the
three-mirror system placed at 0 deg. The pixel scale is the corresponding physical size of CCD
pixel at focal plane, which is 0.12 mm per CCD pixel. The optical path from the focal plane to the
front surface of the camera lens is 45 cm. Four 20-nm full-width-half-maximum (FWHM) band-
pass filters (Chroma Technology Corp., Bellows Falls, Vermont, United States) at 590, 610, 630,
and 650 nm were mounted in the filter wheel for multispectral imaging. The thermostatic system,
which is built in the light-tight enclosure (except for the heat gun) and consists of a resistor, a
thermocouple with monitor, seven fans, and a heat gun with heat transport pipeline linked to the
enclosure which was used to boost and maintain the temperature around the imaged object at
37°C. The transportable mouse bed allows the imaged object transferred from the optical system

Bentley et al.: Quantitative molecular bioluminescence tomography

Journal of Biomedical Optics 066004-3 June 2022 • Vol. 27(6)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 29 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



to CBCT system for CBCT imaging. Eight ball bearings (BBs; PTFE balls, 2.4-mm diameter;
McMaster-Carr, Santa Fe Springs, California, United States), which can be identified both in
optical photo image and in CBCT image, were attached on the bed as the fiducial markers for
registering the coordinates of optical and CBCT system. The in vivo data of GBM-bearing mouse
were acquired by the in-house BLT system.

Our team and our industrial partner Xstrahl Inc. developed the second BLT system, a com-
mercial configuration MuriGlo (Xstrahl Inc., Suwanee, Georgia, United States), built from the
same concept of the in-house system with improved capability of acquiring full 360-deg optical
projection. The 360-deg imaging acquisition is especially useful for abdominal imaging, such as
pancreas site, to obtain all the essential projections for BLT reconstruction. Optical signal emit-
ted from the animal is reflected from a three-mirror system to a fixed 45-deg mirror, passing
through filter and captured by a CCD camera (iKon-M 934; Andor Technology, Belfast, United
Kingdom). The three-mirror system supports the 360 deg multiple projection imaging. The fixed
mirror and iKon-M934 CCD allow for a compact configuration. The focal plane was set at
∼16 mm above the mouse bed with the three-mirror system placed at 0 deg, and the pixel scale
is 0.10 mm per CCD pixel. The optical path from the focal plane to the front surface of the lens is
40 cm. The in-vivo data of the mice implanted with light source in pancreas was acquired by the
MuriGlo system. Details of both systems utilized in this work, together with system characteri-
zation and evaluation have been outlined previously.18,21,23

2.5 Quantification of System-Specific Cell Spectrum

Because of the multispectral BLTapproach, it is important to quantify the optical system spectral
response and the emission spectrum of bioluminescent tumor cells. The measurement via
our optical systems includes spectral responses of the system and cell, and the resulted spectrum
is referred to as the system-specific cell spectrum. Therefore, the wavelength dependent BLIs
can be normalized to the measured spectrum weighting, used as the input data for the BLT
reconstruction.

The system-specific spectral weights of GL261-Luc2 cells at 590, 610, 630, and 650 nm in
petri dishes with cells >80% confluency at concentration of 0.75 mg of D-Luciferin per 1 mL of
PBS at 37°C as set by the in-house optical system were measured. To eliminate the change of the
in vitro spectral signal as function of luciferin incubation time, open field images without filters
were taken before and after each spectral BLI to quantify the in vitro signal variation over time.
The time point for each image was recorded and the open field images were used to generate an
in vitro time-resolved signal curve. The intensity of multispectral BLIs was corrected based on
time-variant data from the time-resolved curve. The measured spectrum of the GL261-Luc2 at
590, 610, 630, and 650 nm are 1, 0.916� 0.014, 0.674� 0.019, 0.389� 0.012 (n ¼ 20),
respectively. The same procedure was applied to measure the spectrum of the self-luminous light
sources. At 590, 610, 630, and 650 nm, the spectrum weights for the light sources in the mice [as
shown in Figs. 7(a) and 7(b)] are 0.942, 1, 0.893, 0.633, and 0.949, 1, 0.886, 0.626, respectively.
The spectral response of the in-house and MuriGlo system was also investigated and as the
difference is insignificant, the measured spectrum was applied to both systems.

2.6 In Vivo Bioluminescence Imaging

The GBM-bearing mouse was subject to multiprojection and multispectral bioluminescence im-
aging with the in-house optical system two weeks after the cell implantation. In preparation
for bioluminescence imaging session for GBM-bearing mouse, mouse hair was shaved with
a clipper, followed by hair depilation. D-Luciferin (125 μL, 30 mg∕mL for 25 g mouse to reach
150 mg∕kg, XenoLight D-Luciferin Kþ Salt, PerkinElmer Inc., Waltham, Massachusetts,
United States) was administrated via intraperitoneal injection. BL imaging was conducted 10 min
after the D-Luciferin injection. Mouse was anesthetized with 1% to 2% isoflurane (Fluriso, MWI
Veterinary Supply Co. Boise, Idaho, United States) in oxygen while imaging. Multiprojection
(0 deg, 90 deg, and −90 deg) and multispectral (590, 610, 630, and 650 nm) BLIs were acquired
at 8 × 8 binning (0.96 mm∕pixel at imaging plane), 4× preamplifier gain, and 1 MHz readout
rate. Because the in vivo signal at 590 nm was weak compared with those at other wavelengths,
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which would affect the stability of the BLT reconstruction, the images at 610, 630, and 650 nm
were only used for this study. Open field images were acquired before and after each spectral
image to build time-resolved curve for in vivo bioluminescence signal among different projec-
tions,18 which was used to quantify the bioluminescence signal change during the biolumines-
cence imaging course.

The mouse bearing self-luminous light source in pancreas was subject to multiprojection and
multispectral BLI (8 × 8 binning, 0.8 mm∕pixel at imaging plane) in MuriGlo one week after the
light source was implanted. The procedures of BLI acquisition for the pancreatic light source
study were similar to those used for the GBM study. Since the implanted light source is closer to
the surface of abdomen than that of dorsum, the supine position was chosen for the BLI acquis-
ition. Due to the location of light source, no or minimum signal was detected at 90-deg and
180-deg projections, only the 0 deg and −90 deg projections were chosen as the surface input
data for the BLT reconstruction. Images at multiple projections were taken to retrieve the BB
positions on mouse bed for mapping the BLI onto 3D mesh surface generated from the CBCT
imaging as the input data for BLT reconstruction.

2.7 CBCT Imaging

After the bioluminescence imaging, the mouse bed with an animal was transferred from the
optical system to the small animal radiation research platform (SARRP; Xstrahl Inc.,
Suwanee, Georgia, United States) designed for CBCT-guided irradiation study.18 CBCT image
was acquired by rotating the animal with a 4D robotic-controlled bed (3-axis translation and
360-deg rotation) between an amorphous silicon flat-panel detector and an x-ray source at
0.4-mm focal spot, 65 kVp and 0.7 mA with 1-mm-thick aluminum filter. Studied animal was
anesthetized with 1% to 2% isoflurane in oxygen during the animal transportation and imaging
course. The acquired SARRP CBCT image was used to provide anatomical structure of animals
to generate a computational model (tetrahedral mesh) for the BLT reconstruction. For the pan-
creatic mouse model, the mesh consisted of 43,580 nodes corresponding to 237,110 linear tetra-
hedral elements, whereas for the GBMmodel it consisted of 6294 corresponding to 32,704 linear
tetrahedral elements.

Contrast CBCTwas used to assess the actual volume of the in vivo GBM,18 and the center of
mass of the contrast-labeled tumor volume was calculated for BLT localization assessment. An
in-house high-resolution CBCT system,24 providing superior image contrast than that of SARRP
CBCT, was employed to identify the contrast-labelled GBM. The mouse was imaged 1 min after
the contrast injection at dose of 2 gI∕kg (Iodixanol, retro-orbital injection at 320 mgI/mL,
Visipaque, GE Health Care, Chicago, Illinois, United States).

2.8 Data Mapping for Multiprojection BLIs

Because SARRP CBCT imaging defines the coordinate used for BLT reconstruction, our geom-
etry calibration method was published in Refs. 18 and 25 were used to map the 2D BLIs acquired
at different projections onto the discretized mesh surface of the animal CBCT image. The
mapped BLIs were used as the input data for BLT reconstruction. The method has two steps:
(1) mapping the CBCT coordinate to the 3D optical coordinate with rigid transformation and
then (2) projecting the 3D optical coordinate to the 2D optical (CCD) imaging plane. After the
3D CBCT and 2D optical coordinates are registered, for a given projection, the surface BLI can
then be mapped to the CBCT image. The data mapping process requires knowledge of the geo-
metrical parameters of optical system. The BBs on the mouse bed can be located in both CBCT
and 2D optical images. An optimization routine with the constrained multivariable optimization
function (fmincon, MATLAB, The MathWork Inc., Natick, Massachusetts, United States) was
developed to retrieve the geometrical parameters by minimizing the difference between the cal-
culated and measured BB positions in the 2D optical coordinate; the BB positions in 2D images
were used as the measured positions, and the corresponding BB positions retrieved from the
optimization routine based on the optimized geometrical parameters and the BB positions in
3D CBCT were used as the 2D calculated positions. The geometric calibration was performed
for each animal imaging session to ensure accurate data mapping for BLT reconstruction.
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The BLIs were then mapped onto the 3D mesh surface of the imaged mouse generated from
the CBCT image. At the overlapped region on the mesh surface, for a given node between two
mapped images from different projections, the maximum value of the two images was chosen as
the value on that surface node. The mapped surface data larger than 10% of the maximum value
among all the surface points were used as input data for BLT reconstruction.

2.9 Algorithm

The final algorithm needed to complete the entire framework is one that calculates both the
optical properties, given the surface fluence rate data at multiple wavelengths, as well as the
location of the source within the subject. To resolve unknown optical properties, DOT is a com-
monly used imaging technique, known as named due to the fact that the transport of light through
tissue at wavelengths in the visible and near-infrared (NIR) bands become nearly isotropic, there-
fore is well defined by photon diffusion. The software package, NIR fluorescence and spectral
tomography (NIRFAST), was utilized to allow for the simulation of light propagation within
biological tissue using a finite element method (FEM), documented elsewhere.2 Within the pack-
age are a number of forward and inverse models, and a spectrally constrained case is utilized in
this work.26 The algorithm has been modified to take the estimated internal bioluminescence
source location and surface fluence data with the goal of directly estimating the concentrations
of total hemoglobin (cTHb) as well as scattering power and amplitude,26 where cTHb is the sum
of oxy-hemoglobin and deoxy-hemoglobin. The assigned chromophore concentrations can be
used to calculate the underlying wavelength dependent absorption coefficient of tissue through
the use of extinction coefficients of individual chromophores. This can similarly be done using
the scattering power and amplitude to obtain a corresponding reduced scattering coefficient at
each wavelength using Mie scattering theory. Using a continuous wave model, the Jacobian
(function to allow mapping of measured data to internal optical properties) is calculated and
then inverted using the Moore–Penrose generalized inverse, which is typically more suitable
toward underdetermined problems.27 The Moore–Penrose generalized inverse finds the “best
fit” or minimum norm solution to a system of linear equations, the implementation of which
has been extensively detailed elsewhere.2 From this an update in optical properties is calculated
and the whole process is repeated, new boundary data is simulated and compared with the origi-
nal data to calculate a projection error. This error is then used as a stopping mechanism for when
it is considered that convergence has occurred, typically within 2% change. Regularization is
used alongside the Moore–Penrose generalized inverse with a starting value of 0.1, which is the
standard value used as detailed elsewhere.2 All of the reconstruction parameters used for all the
data presented are consistent across all model, with the only variable being the initial estimate of
the optical properties.

Algorithm 1 outlines the steps for image reconstruction and is briefly summarized: First,
multispectral data are collected as described already, which are used with an initial “estimate”
of underlying optical properties to perform tomographic reconstruction of the spatial bio-
luminescence light distribution as achieved using a compressive sensing conjugate gradient
(CSCGNW) algorithm described elsewhere.29 The center of mass of the reconstructed biolumi-
nescence source is then defined as the “source position” and using the DOT algorithm and the
same dataset, the optical properties of the medium are calculated. From this, if the error con-
ditions have not yet been met, the optical properties are updated by the average value across the
entire model or of a particular predefined volume within. Using these new updated optical prop-
erties, the CSCGNWalgorithm is then used again to reconstruct the new spatial bioluminescence
light distribution and whole process is repeated iteratively. As with the inverse problem outlined
already, a stopping condition is put in place to stop the algorithm when it is considered to have
converged. The stopping criteria is the same as that used in the DOT algorithm whereby a pro-
jection error is calculated between the original and modelled data using the updated optical prop-
erties. The iterative process is continued until the change in projection error is below a tolerance
which is typically set to 2%. When modeling the new source location for the update of optical
parameters using the DOT algorithm, first the reconstructed bioluminescence source size and
location is represented as its FWHM and the distributed source (i.e., uniform intensity) at the
recovered FWHM is then set as the new update.
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3 Results and Discussions

Traditional biological preclinical studies that utilize bioluminescence imaging (BLI) typically
only use topographic data that is captured at the surface of an animal, taken at a determined
wavelength and view. This method allows for qualitative information about the underlying
source to be inferred from the intensity of light measured at the surface. Issues arise when
employing this method due to the spectral dependence on absorption and scattering of light
traveling through diffuse biological tissue. This implies that the intensity of light measured
at the surface of the animal will be different depending on the detected wavelength. Another
issue arises depending on the viewpoint of the animal used when imaging takes place whereby
the maximum and total intensity measured will change depending on the viewpoint used because
light propagation in space being dependent on the viewing angle.

These effects are visualized in Figs. 1 and 2, whereby surface fluence data has been measured
from the orthotopic GBMmodel outlined above, using three wavelengths, 610, 630, and 650 nm.
The top and side views of the surface fluence at each wavelength are shown in Fig. 1, where the
difference in measured intensity in each case is apparent. These differences are quantified using
the bar chart shown in Fig. 2, where the total and maximum intensity for each viewpoint and
wavelength are shown.

Because of the spectral and viewpoint dependency of light intensity measured when collect-
ing 2D topological fluence data, it is impossible to confidently infer the underlying light source
distribution. To counter this, through the collection of multiple viewpoints, it is possible to build
a 3D topological image of the light intensity at the surface of the animal. This provides the ability
to infer the underlying light distribution with more confidence, however, images still suffer
from the spectral variation of absorption and scattering properties found in biological tissue and
free-space light propagation. Figure 3 shows the same GBM data as before, however as a 3D
topological image. There are computational methods available that can be used to correct these
images for the spectral differences and emission of the bioluminescent source used, however, it is
still difficult to use the surface data alone to make any significant assumption about the size or
location of the source. This is due to nonuniqueness, meaning that a shallow weak source may
give the same intensity measurements as a deeper more intense source.

BLT takes BLI a step further, by using prior knowledge of the animal being imaged to recon-
struct the 3D spatial distribution of bioluminescent molecules located within the animal using
model-based data optimization. To do this a number of conditions need to be satisfied, the first
being the need for an accurate computation model of the animal. Additionally, traditional BLT
requires accurate knowledge of the underlying optical properties of the animal being imaged.

Algorithm 1 Outline of image reconstruction

• Set total hemoglobin concentration and scattering parameters (μ)

• Define termination criterion

• Repeat

• Reconstruct the spatial distribution of Bioluminescence source using boundary data using spectral
derivative method28

• Define “diffuse source” as all nodes >= full-width-half-max of reconstructed bioluminescence source

• Calculate center of mass of diffuse source, S

• Set location of diffuse source as S

• Calculate the Jacobian for diffuse source and all boundary data using the adjoint method2

• Update μ using the Jacobian and boundary data

• Calculate project error, χ

• Until kχk < termination criterion
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Fig. 2 Effect of using topographic bioluminescence images for quantification at different wave-
lengths and views for (left) maximum intensity and (right) total intensity.

Fig. 1 Top and side topographic views of bioluminescence signal for GBMmodel at 610, 630, and
650 nm. (a)–(c) Top views and (d)–(f) side views.

Fig. 3 3D surface fluence signal for GBM model.
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Furthermore, in order to address the issue of nonuniqueness, it is necessary to collect surface
fluence data at multiple wavelengths,3 due to the spectral dependence of the optical properties.
Finally, when carrying out tomographic model-based reconstructions, it is common to use the
raw intensity of light measured at each wavelength that has been corrected for the bioluminescent
emission spectrum of the molecules. Issues arise from doing this, which relate to the position and
shape of the animal being imaged, due to the Lambertian nature of light exiting a boundary of
diffuse media. To account for this, it is possible to use a free-space model,30 however this can be
time-consuming and complex. To overcome this problem, it was shown that by using spectral
derivative data, which utilizes the “logarithm of intensity,” it is possible to improve the quanti-
tative error of BLT from 49% to 4%, without the need to collect additional data or make any
modifications to existing imaging systems,28 which has been utilized in this work.

The importance of having accurate knowledge of the underlying optical properties to account
for light propagation in model-based optimization is shown in Figs. 4 and 5. Figure 4 shows
tomographic reconstructions using the surface fluence rate data of the same GBM model, using
two different assumed concentrations of total hemoglobin (cTHb) as the optical properties used
for model-based reconstruction. Reconstruction techniques are carried out using a spectral
derivative method and are then thresholded to half the maximum value present.

Figures 4(a)–4(c) represent tomographic reconstruction when an underestimation of optical
properties was used (cTHb ¼ 0.05 mM) with the results visually showing a larger, much deeper
reconstruction. Figures 4(d)–4(f) represent tomographic reconstruction when an overestimation
of optical properties was used (cTHb of 0.2 mM) with the results visually showing a larger and
more superficial reconstruction. Differences in the reconstructions are quantified in Fig. 5 using
four different metrics. The first metric used is localization error, which is the Euclidean distance
between center-of-mass (COM) of reconstruction and ground truth location which was measured
based on the contrast labeled GBM shown in the CBCT image. It can be seen that the localization
errors of the two assumed optical properties are vastly different, clearly demonstrating the under-
lying effect of the assumed optical properties. The second metric used is the FWHM distance,

Fig. 4 3D tomographic reconstructions (normalized) of bioluminescence GBMmodel using (a)–(c)
optical parameters using an underestimated assumption (0.05 mM cTHb) and (d)–(f) using an
overestimation of underlying optical parameters (0.2 mM cTHb). The blue contour shows contrast
labeled GBM.
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which is the largest distance between reconstructed points at half the maximum value. As can be
seen, both the under and overestimated reconstructions show an FWHM that is large, as visually
evident in Fig. 4. The third and fourth metrics used are maximum and total reconstructed inten-
sity. If using an underestimation of optical properties, it can be seen that the reconstruction has
a maximum and total intensity that is larger than that of an overestimation of optical properties.
All of these calculated metrics show the importance of using accurate optical properties when
carrying out tomographic imaging, as they all represent significant values that are taken into
account in biological studies.

To allow the use of BLT without the need to assume the underlying optical properties of
the animal through the use of a second imaging modality, the algorithm as discussed above
(Algorithm 1) used the knowledge of the emission spectrum of the bioluminescent source to
employ an iterative method of optimizing optical properties whilst simultaneously localizing
the source accurately. To show the benefit of applying this algorithm to real experimental data,
it is used on the same GBM mouse model, above.

The algorithm is initialized using starting “estimate” of cTHb of 0.05 and 0.2 mM, which
represents the under and overestimates in Fig. 4. Figures 6(a)–6(c) show the final iteration of the
algorithm when using either of the starting points. Figure 6(d) shows the projection error calcu-
lated at each iteration of the algorithm and it can be seen that both initial estimates converge to
the same error. Figure 6(e) shows the calculated localization error of the tomographic recon-
struction at each iteration and is shown that both starting points result in a localization error
of ∼0.87 mm, which is similar if not better than values stated in literature using “gold” standard
methods to obtain optical properties.18 Figures 6(f)–6(g) show the calculated FWHM and total
intensity recovered at each iteration, which converge on 2.8 mm and 9868 counts, respectively.
Finally, Fig. 6(h) shows the average concentration of total hemoglobin calculated at each iter-
ation. This calculated cTHb converges to 0.145 mM assuming 70% oxygen saturation across the
entire animal. Although the localization error and the FWHM can be quantitatively evaluated
with respect to the contrast labeled GBM, it is challenging to evaluate the accuracy of the recov-
ered total intensity and cTHb, but it is worth noting that using both initial estimates for the
reconstruction it converges to the same value.

To further, demonstrate the ability of the optimization algorithm on more complex models,
and to evaluate its accuracy in recovering total intensity, it was next applied to two mice with a
self-luminous light source implanted in the pancreas. The light sources are visible in CBCT
image, and thus are used as the ground truth to assess accuracy. Furthermore, in both cases,
as the same type of source is used, it is expected that the recovered total intensity to be similar,
regardless of the animal model used. These mice differ from the GBM example such that the
whole animal was imaged, resulting in a much larger reconstruction space (43,580 nodes) and

Fig. 5 Calculated values of localization error, FWHM, maximum intensity, and total intensity
based on differing assumptions of optical properties.
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Fig. 6 (a)–(c) Final reconstruction using the multivariant optimization algorithm. (d) Projection
error versus iteration for low and high initial cTHb, (e) COM localization error, (f) FWHM distance,
(g) total intensity, and (h) calculated cTHb of tissue.
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hence greater numbers of unknowns. Figure 7 represents the normalized topographic images
collected at 650 nm for each of the light source-implanted mice with each case the biolumines-
cent source being at a different depths and locations.

For each case, the surface fluence rate data was collected at three wavelengths (610, 630,
and 650 nm) and then processed through the optimization algorithm using an initial “estimate”
of 0.05 mM for cTHb. The algorithm ran for 50 iterations for each case and typically converged
to a solution before all iterations were complete. Figure 8 displays the tomographic reconstruc-
tions for the final iteration of each mouse.

To quantify the efficiency and accuracy of the reconstructions, the same metrics as used for
the GBM model were utilized and shown in Table 1. First, the localization error of each model
was calculated, as compared to the ground truth location, which was found to be <0.7 mm over
the two mice. The total and max intensities of each mouse were found to be ∼5400 and ∼285,
respectively, and strikingly similar, demonstrating consistency in recovering source strength.
The FWHM distance of the reconstructed sources across the two mice was <4.5 mm. The

Fig. 7 (a) and (b) Normalized 3D surface fluence rates at 650 nm for two mice with self-luminous
light source implanted in pancreas.

Fig. 8 3D tomographic final iteration reconstructions for two mice with light source implanted in
pancreas.
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calculated concentration of total hemoglobin across both mice was found to be 0.1121 and
0.1151 mM.

4 Conclusions

This work highlights the progression and historical advancements made in BLI and BLT, to
demonstrate the significance of a new proposed computational algorithm that accounts for the
unknown optical attenuation of biological tissue. BLI measures light fluence rates from a bio-
luminescent source at the surface of the animal to infer the size and location of a tagged source,
such as a tumor, within the animal. This is typically done using a single viewpoint and wave-
length to create a 2D image of the light measured at the animal surface but suffers from inac-
curacies due to poor localization and viewpoint dependence of light traveling through tissue.
These can be improved via multiple viewpoints to allow 3D images to be created, however,
source localization remains challenging due to the nonuniqueness of the problem; multiple
source size/location give rise to the same single wavelength data. To add quantitative accuracy
these 3D images can be used alongside optimization algorithms utilizing accurate models of light
propagation to tomographically reconstruct the 3D spatial distribution of the bioluminescent
source. Conventionally to achieve this a multimodal system is required to estimate the optical
properties of the animal (e.g., DOT), and structural information (e.g., CT or MRI). Multispectral
data are then required to overcome the non-uniqueness of the solutions as well as computational
models to account for the path of light in free-space (animal to detector), increasing data col-
lection and computational time. Advanced optimization algorithms use spectral derivative data,
to allow accurate reconstructions whilst not requiring a free-space model, as light at similar
wavelengths follow the same path. Finally, recent advancements in hardware and imaging sys-
tems have allowed quicker and cheaper collection of hyperspectral data, such as those based on
compressive sensing.

An algorithm was developed with the aim of achieving better source localization by simul-
taneously calculating and updating the underlying optical properties and iteratively recon-
structing the spatial light distribution, in 3D and shown to achieve good accuracy in
simulated data and a tissue-mimicking block phantom.22 This algorithm has, for the first time
been applied and validated in a set of in-vivo mouse models, including an orthotopic GBM
model and two mice with self-luminous light source implanted in pancreas. Utilizing data
from two different systems the algorithm has demonstrated robustness, further validating our
phantom and theoretical studies. It is shown that using this optimization algorithm, localization
accuracies of <1 mm is obtained on all cases, which is similar if not better than current “gold
standard” methods that use literature published optical properties18 or using a different imaging
modality.4 Application of this approach has shown that quantitative BLT is possible without the
need for any prior knowledge about optical parameters, whilst achieving good localization
accuracies. Simultaneously recovery of chromophore concentrations and optical parameters
from the same dataset is possible, with no prior information, other than the spectral absorption
spectrum of these absorbing molecules (oxy and deoxy hemoglobin), which can provide
important biological information in a vast number of preclinical research settings such as radi-
ation oncology, in guiding radiation and assessing treatment response for important orthotopic
tumor models. This proposed and validated algorithm can pave the way for true molecular

Table 1 Reconstructed cTHb, COM localization error, total intensity,
maximum intensity, and FWHM from the initial and final reconstruc-
tions for the mice with light source implanted in pancreas.

Mouse

THb
concentration

(mM)
Localization
error (mm)

Total
intensity
(AU)

Max
intensity
(AU)

FWHM
(mm)

1 0.1121 0.42 5461 287 3.8

2 0.1151 0.69 5327 286 4.5
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imaging of both exogenous and indigenous biological tumor characteristics and functionality
such as hypoxia.
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