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Abstract
We study the stochastic cubic nonlinear wave equation (SNLW) with an additive noise
on the three-dimensional torus T

3. In particular, we prove local well-posedness of the
(renormalized) SNLW when the noise is almost a space-time white noise. In recent
years, the paracontrolled calculus has played a crucial role in the well-posedness study
of singular SNLW on T

3 by Gubinelli et al. (Paracontrolled approach to the three-
dimensional stochastic nonlinear wave equation with quadratic nonlinearity, 2018,
arXiv:1811.07808 [math.AP]), Oh et al. (Focusing �4

3-model with a Hartree-type
nonlinearity, 2020. arXiv:2009.03251 [math.PR]), and Bringmann (Invariant Gibbs
measures for the three-dimensional wave equation with a Hartree nonlinearity II:
Dynamics, 2020, arXiv:2009.04616 [math.AP]). Our approach, however, does not rely
on the paracontrolled calculus. We instead proceed with the second order expansion
and study the resulting equation for the residual term, using multilinear dispersive
smoothing.
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1 Introduction

1.1 Singular stochastic nonlinear wave equation

In this paper, we study the following Cauchy problem for the stochastic nonlinear
wave equation (SNLW) with a cubic nonlinearity on the three dimensional torus T

3 =
(R/(2πZ))3, driven by an additive noise:

{
∂2t u + (1 − �)u + u3 = φξ

(u, ∂t u)|t=0 = (u0, u1),
(x, t) ∈ T

3 × R, (1.1)

where ξ(x, t) denotes a (Gaussian) space-time white noise on T
3 × R with the space-

time covariance given by

E
[
ξ(x1, t1)ξ(x2, t2)

] = δ(x1 − x2)δ(t1 − t2)

and φ is a bounded operator on L2(T3). Our main goal is to present a concise proof
of local well-posedness of (1.1), when φ is the Bessel potential of order α:

φ = 〈∇〉−α = (1 − �)−
α
2 (1.2)

for any α > 0. Namely, we consider (1.1) with an “almost” space-time white noise.
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Given α ∈ R, let φ = φα be as in (1.2). Then, a standard computation shows that
the stochastic convolution:

(1.3)

belongs almost surely to C(R; W s,∞(T3)) for any s < α − 1
2 . See Lemma 3.1 below.

Here, we adopted Hairer’s convention to denote stochastic terms by trees; the vertex
in corresponds to the random noise φξ = 〈∇〉−αξ , while the edge denotes the

Duhamel integral operator:

I = (∂2t + (1 − �))−1, (1.4)

corresponding to the forward fundamental solution to the linear wave equation. Note
that when α > 1

2 , the stochastic convolution is a function of positive (spatial)
regularity α − 1

2 − ε.1 Then, by proceeding with the first order expansion:

and studying the equation for the residual term , we can show that (1.1) is
locally well-posed, when α > 1

2 . See [13,58] in the case of the deterministic cubic
nonlinear wave equation (NLW):

∂2t u + (1 − �)u + u3 = 0 (1.5)

with random initial data. Furthermore, by controlling the growth of the H1-norm of
the residual term v via a Gronwall-type argument, we can prove global well-posedness
of (1.1), when α > 1

2 .
2 See [13].

When α ≤ 1
2 , solutions to (1.1) are expected to be merely distributions of negative

regularity α − 1
2 − ε, inheriting the regularity of the stochastic convolution, and thus

we need to consider the renormalized version of (1.1), which formally reads

{
∂2t u + (1 − �)u + u3 − ∞ · u = 〈∇〉−αξ

(u, ∂t u)|t=0 = (u0, u1),
(1.6)

where the formal expression u3 − ∞ · u denotes the renormalization of the cubic
power u3. In the range 1

4 < α ≤ 1
2 , a straightforward computation with the second

order expansion:

1 In this discussion, we only discuss spatial regularities. Moreover, we do not worry about the regularity
of the initial data (u0, u1).
2 This globalization argument is the only place, where the defocusing nature of the nonlinearity plays a
role. See also Remarks 1.4 and 1.6. In particular, all the local-in-time results, including Theorem 1.1, also
hold in the focusing case.
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yields local well-posedness of the renormalized SNLW (1.6) (in the sense of Theo-

rem 1.1 below). Here, the second order process is defined by

where denotes the renormalized version of . See [51] for this argument in the
context of the deterministic renormalized cubic NLW (1.5) with random initial data.

We state our main result.

Theorem 1.1 Let 0 < α ≤ 1
2 . Given s > 1

2 , let (u0, u1) ∈ Hs(T3) = Hs(T3) ×
Hs−1(T3). Then, there exists a unique local-in-time solution to the renormalized cubic
SNLW (1.6) with (u, ∂t u)|t=0 = (u0, u1).

More precisely, given N ∈ N, let ξN = πN ξ , where πN is the frequency projector
onto the spatial frequencies {|n| ≤ N } defined in (1.13) below. Then, there exists a
sequence of time-dependent constants {σN (t)}N∈N tending to ∞ (see (1.16) below)
such that, given small ε = ε(s) > 0, the solution uN to the following truncated
renormalized SNLW :{

∂2t uN + (1 − �)uN + u3
N − 3σN uN = 〈∇〉−αξN

(uN , ∂t uN )|t=0 = (u0, u1)
(1.7)

converges to a non-trivial3 stochastic process u ∈ C([−T , T ]; Hα− 1
2−ε(T3)) almost

surely, where T = T (ω) is an almost surely positive stopping time.

Stochastic nonlinear wave equations have been studied extensively in various set-
tings; see [15, Chapter 13] for the references therein. In particular, over the last few
years, we have witnessed a rapid progress in the theoretical understanding of nonlinear
wave equations with singular stochastic forcing and/or rough random initial data; see
[12,19,20,25–27,45,47–51,53–57,66]. In [26], Gubinelli, Koch, and the first author
studied the quadratic SNLW on T

3:

∂2t u + (1 − �)u + u2 = ξ. (1.8)

By adapting the paracontrolled calculus [24], originally introduced by Gubinelli,
Imkeller, and Perkowski in the study of stochastic parabolic PDEs, to the dispersive
setting, the authors of [26] reduced (1.8) into a system of two unknowns. This system
was then shown to be locally well-posed by exploiting the following two ingredients:
(i) multilinear dispersive smoothing coming from a multilinear interaction of random
waves (see also [12,45]) and (ii) novel random operators (the so-called paracontrolled
operators) which incorporate the paracontrolled structure in their definition. These
random operators are used to replace commutators which are standard in the parabolic
paracontrolled approach [14,40].

3 Here, non-triviality means that the limiting process u is not zero or a linear solution. As we see below,
the limiting process u admits a decomposition , where the residual term v satisfies the
nonlinear equation (1.25). See Remark 1.4 (ii) on a triviality result for the unrenormalized equation. See
also [30,47,51,54] for related triviality results.
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More recently, Okamoto, Tolomeo, and the first author [48] and Bringmann [12]
independently studied the following SNLW with a cubic Hartree-type nonlinearity:4

∂2t u + (1 − �)u + (V ∗ u2)u = ξ, (1.9)

where V is the kernel of the Bessel potential 〈∇〉−β of order β > 0.5 In [48], the
authors proved local well-posedness for β > 1 by viewing the nonlinearity as the
nested bilinear interactions and utilizing the paracontrolled operators introduced in
[26]. In [12], Bringmann went much further and proved local well-posedness of (1.9)
for any β > 0. The main strategy in [12] is to extend the paracontrolled approach
in [26] to the cubic setting. The main task is then to study regularity properties of
various random operators and random distributions. This was done by an intricate
combination of deterministic analysis, stochastic analysis, counting arguments, the
randommatrix/tensor approach by Bourgain [9,10] and Deng, Nahmod, and Yue [18],
and the physical space approach via the (bilinear) Strichartz estimates due to Klain-
erman and Tataru [36], analogous to the random data Cauchy theory for the nonlinear
Schrödinger equations on R

d as in [2–4].
From the scaling point of view, the cubic SNLW (1.6) with a slightly smoothed

space-time white noise (i.e. small α > 0) is essentially the same as the Hartree SNLW
(1.9)with smallβ > 0.Hence, Theorem1.1 is expected to hold in viewofBringmann’s
recent result [12]. The main point of this paper is that we present a concise proof of
Theorem 1.1 without using the paracontrolled calculus. In the next subsection, we
outline our strategy.

Due to the time reversibility of the equation, we only consider positive times in the
remaining part of the paper.

Remark 1.2 The equations (1.1) and (1.6) indeed correspond to the stochastic nonlinear
Klein–Gordon equations. The same results with inessential modifications also hold
for the stochastic nonlinear wave equation, where we replace the linear part in (1.1)
and (1.6) by ∂2t u − �u. In the following, we simply refer to (1.1) and (1.6) as the
stochastic nonlinear wave equations.

Remark 1.3 Our argument also applies to the deterministic (renormalized) cubic NLW
on T

3 with random initial data of the form:

(uω
0 , uω

1 ) =
( ∑

n∈Z3

gn(ω)

〈n〉1+α
ein·x ,

∑
n∈Z3

hn(ω)

〈n〉α ein·x
)

,

4 In [12], Bringmann studied the corresponding deterministic Hartree NLW with random initial data.
5 We point out that the scope of the papers [12,48] goes much further than what is described here. The main
goal of [48] is to study the focusing problem, in particular the (non-)construction of the focusing Gibbs
measure associated to the focusing Hartree SNLW. They identified the critical value β = 2 and proved
sharp global well-posedness of the focusing problem (with a small coefficient in front of the nonlinearity
when β = 2). On the other hand, the main goal in [12] is the construction of global-in-time dynamics
in the defocusing case, where there was a significant difficulty in adapting Bourgain’s invariant measure
argument [8,9]. This is due to (i) the singularity of the associated Gibbs measure with respect to the base
Gaussian free field for 0 < β ≤ 1

2 [11,48] and (ii) the paracontrolled structure imposed in the local theory,
which must be propagated in the construction of global-in-time solutions. See the introductions of [12,48]
for further discussion.
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where the series {gn}n∈Z3 and {hn}n∈Z3 are two families of independent standard
complex-valued Gaussian random variables conditioned that gn = g−n , hn = h−n ,
n ∈ Z

3. In particular, Theorem 1.1 provides an improvement of themain result (almost
sure local well-posedness) in [51] from α > 1

4 to α > 0.

Remark 1.4 (i) The first part of the statement in Theorem 1.1 is merely a formal
statement in view of the divergent behavior σN (t) → ∞ for t 
= 0. In the next
subsection, we provide a precise meaning to what it means to be a solution to (1.6)
and also make the uniqueness statement more precise. See Remark 1.9.

(ii) In the case of the defocusing cubic SNLW with damping:

∂2t u + ∂t u + (1 − �)u + u3 = 〈∇〉−αξ,

a combination of our argument with that in [47] yield the following triviality result.
Consider the following truncated (unrenormalized) SNLW with damping:

{
∂2t uN + ∂t uN + (1 − �)uN + u3

N = 〈∇〉−αξN

(uN , ∂t uN )|t=0 = (u0, u1),

where ξN = πN ξ .Aswe remove the regularization (i.e. take N → ∞), the solution
uN converges in probability to the trivial function u∞ ≡ 0 for any (smooth) initial
data (u0, u1). See [47] for details.

Remark 1.5 (i) In our proof, we use the Fourier restriction normmethod (i.e. the Xs,b-
spaces defined in (2.8)), following [12,57].While it may be possible to give a proof
of Theorem 1.1 based only on the physical-side spaces (such as the Strichartz
spaces) as in [25–27], we do not pursue this direction since our main goal is to
present a concise proof of Theorem 1.1 by adapting various estimates in [12] to our
current setting. Note that the use of the physical-side spaces would allow us to take

the initial data (u0, u1) in the critical spaceH
1
2 (T3) (for the cubicNLWonT

3). See
for example [25].Onemay equally use the Fourier restriction normmethod adapted
to the space of functions of bounded p-variation and its pre-dual, introduced and
developed by Tataru, Koch, and their collaborators [28,31,37], which would also

allow us to take the initial data (u0, u1) in the critical space H 1
2 (T3). See for

example [3,46] in the context of the nonlinear Schrödinger equations with random
initial data. Since our main focus is to handle rough noises (and not about rough
deterministic initial data), we do not pursue this direction.

(ii) On T
3, the Bessel potential φα = 〈∇〉−α is Hilbert–Schmidt from L2(T3) to

Hs(T3) for s < α − 3
2 . It would be of interest to extend Theorem 1.1 to a general

Hilbert–Schmidt operator φ, say from L2(T3) to Hα− 3
2 (T3) as in [16,44,52].6

Note that our argument uses the independence of the Fourier coefficients of the
stochastic convolution but that such independence will be lost for a general
Hilbert–Schmidt operator φ.

6 Or a general γ -radonifying operator φ as in [21], where the authors proved local well-posedness of the
one-dimensional stochastic cubic nonlinear Schrödinger equation with an almost space-time white noise.
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Remark 1.6 (i) When α = 0, SNLW (1.6) with damping

∂2t u + ∂t u + (1 − �)u + u3 − ∞ · u = ξ (1.10)

corresponds to the so-called canonical stochastic quantization equation7 for the
Gibbs measure given by the�4

3-measure on u and the white noise measure on ∂t u.
See [60]. In this case (i.e. when α = 0), our approach and the more sophisticated
approach of Bringmann [12] for (1.9) with β > 0 completely break down. This
is a very challenging problem, for which one would certainly need to use the
paracontrolled approach in [12,26,48] and combine with the techniques in [18].

(ii) As mentioned above, when α > 1
2 , the globalization argument by Burq and

Tzvetkov [13] yields global well-posedness of SNLW (1.1) with φ as in (1.2).
When α = 0, we expect that (a suitable adaptation of) Bourgain’s invariant mea-
sure argument would yield almost sure global well-posedness once we could prove
local well-posedness of (1.10) (but this is a very challenging problem). It would be
of interest to investigate the issue of global well-posedness of (1.6) for 0 < α ≤ 1

2 .
See [27,66] for the global well-posedness results on SNLWwith an additive space-
time white noise in the two-dimensional case.

1.2 Outline of the proof

Let us now describe the strategy to prove Theorem 1.1. Let W denote a cylindrical
Wiener process on L2(T3):8

W (t) =
∑
n∈Z3

Bn(t)en,

where en(x) = ein·x and {Bn}n∈Z3 is defined by Bn(t) = 〈ξ, 1[0,t] · en〉x,t . Here,
〈·, ·〉x,t denotes the duality pairing on T

3 × R. As a result, we see that {Bn}n∈Z3 is
a family of mutually independent complex-valued Brownian motions conditioned so
that B−n = Bn , n ∈ Z

3. In particular, B0 is a standard real-valued Brownian motion.
Note that we have, for any n ∈ Z

2,

Var(Bn(t)) = E
[〈ξ, 1[0,t] · en〉x,t 〈ξ, 1[0,t] · en〉x,t

] = ‖1[0,t] · en‖2
L2

x,t
= t .

With this notation,wecan formallywrite the stochastic convolution
in (1.3) as

(1.11)

7 Namely, the Langevin equation with the momentum v = ∂t u.
8 By convention, we endow T

3 with the normalized Lebesgue measure (2π)−3dx .

123



Stoch PDE: Anal Comp

where 〈∇〉 = √
1 − � and 〈n〉 = √

1 + |n|2. We indeed construct the stochastic
convolution in (1.11) as the limit of the truncated stochastic convolution defined
by

(1.12)

for N ∈ N, where πN denotes the (spatial) frequency projector defined by

πN f =
∑

|n|≤N

f̂ (n) en . (1.13)

A standard computation shows that the sequence is almost surely Cauchy

in9 C([0, T ]; W α− 1
2−,∞(T3)) and thus converges almost surely to some limit, which

we denote by , in the same space. See Lemma 3.1 below.
We then define the Wick powers and by

(1.14)

and the second order process by

(1.15)

where I denotes the Duhamel integral operator in (1.4). Here, σN (t) is defined by10

(1.16)

Wepoint out that a standard argument shows that and converge almost surely to

in C([0, T ]; W 2α−1−,∞(T3)) and to in C([0, T ]; W 3α− 3
2−,∞(T3)), respectively,

but that we do not need these regularity properties of the Wick powers and in this
paper.

9 Hereafter, we use a− (and a+) to denote a − ε (and a + ε, respectively) for arbitrarily small ε > 0. If
this notation appears in an estimate, then an implicit constant is allowed to depend on ε > 0 (and it usually
diverges as ε → 0).
10 In our spatially homogeneous setting, the variance σN (t) is independent of x ∈ T

3.
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As for the second order process in (1.15), if we proceed with a “parabolic

thinking”,11 then we expect that has regularity12 3α − 1
2− = (3α − 3

2−) +
1, which is negative for α ≤ 1

6 . In the dispersive setting, however, we can exhibit
multilinear smoothing by exploitingmultilinear dispersion coming from an interaction
of (random) waves. In fact, by adapting the argument in [12] to our current problem,
we can show an extra ∼ 1

2 -smoothing for , uniformly in N ∈ N, and for the limit

and thus they have positive regularity. See Lemma 3.1.
As in [12,26], such multilinear smoothing plays a fundamental role in our analysis.

Let us now start with the truncated renormalized SNLW(1.7) and obtain the limiting
formulation of our problem. By proceeding with the second order expansion:

(1.17)

we rewrite (1.7) as

(1.18)

where we used (1.14). The main problem in studying singular stochastic PDEs lies in
making sense of various products. In this formal discussion, let us apply the following
“rules”:

• A product of functions of regularities s1 and s2 is defined if s1 + s2 > 0. When
s1 > 0 and s1 ≥ s2, the resulting product has regularity s2.

• A product of stochastic objects (not depending on the unknown) is always well
defined, possibly with a renormalization. The product of stochastic objects of
regularities s1 and s2 has regularity min(s1, s2, s1 + s2).

We postulate that the unknown v has regularity 1
2+,13 which is subcritical with

respect to the standard scaling heuristics for the three-dimensional cubicNLW. In order
to close the Picard iteration argument, we need all the terms on the right-hand side of
(1.18) to have regularity − 1

2+. With the aforementioned regularities of the stochastic
terms , , and and applying the rules above, we can handle the products on

the right-hand side of (1.18), giving regularity − 1
2+, except for the following terms

(for small α > 0):

(1.19)

11 Namely, if we only take into account the (uniformly bounded in N ) regularity 3α − 3
2− of and

one degree of smoothing from the Duhamel integral operator I without taking into account the product
structure and the oscillatory nature of the linear wave propagator.
12 By “regularity”, we mean the spatial regularity s of as an element in C([0, T ]; W s,∞(T3)), uni-
formly bounded in N ∈ N.
13 As for the unknown v, we measure its regularity in (the local-in-time version of) the Xs, 12+-norm.
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As for the first term , we first use stochastic analysis to make sense of

with regularity α − 1
2−, uniformly in N ∈ N, (see Lemma 3.3) and then interpret the

product as

Note that the right-hand side is well defined since the sum of the regularities is positive:
(α− 1

2−)+( 12+) > 0. The last product in (1.19) makes sense but the resulting

regularity is 2α − 1−, smaller than the required regularity − 1
2+, when α is close to 0.

As for the second term in (1.19), it depends on the unknown vN and thus the product
does not make sense (at this point) since the sum of regularities is negative (when
α > 0 is small).

Aswe see below, by studying the last two terms in (1.19) under theDuhamel integral
operator I, we can indeed give a meaning to them and exhibit extra ( 12+)-smoothing
with the resulting regularity 1

2+ (under I), which allows us to close the argument. By
writing (1.18) with initial data (u0, u1) in the Duhamel formulation, we have

(1.20)

where S(t)(u0, u1) = cos(t〈∇〉)u0 + sin(t〈∇〉)
〈∇〉 u1 denotes the (deterministic) linear

solution. Here, denotes the random operator defined by

(1.21)

and (as the notation suggests), the last term in (1.20) is defined by

(1.22)

(without a renormalization). By exploiting random multilinear dispersion, we show
that

• the random operator maps functions of regularity 1
2+ to those of regularity

1
2+ (measured in the Xs,b-spaces) with the operator norm uniformly bounded in

N ∈ N and converges to some limit, denoted by , as N → ∞. We study

the random operator via the random matrix approach [9,10,12,18,59].14 See
Lemma 3.5.

14 We also mention a recent preprint [61], where the random matrix approach is also used to prove proba-
bilistic local well-posedness of the Zakharov–Yukawa system on the two-dimensional torus T

2.
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• the third order process has regularity 1
2+ (measured in the Xs,b-spaces) with

the norm uniformly bounded in N ∈ N and converges to some limit, denoted

by , as N → ∞. See Lemma 3.4.

Wededuce these claims as corollaries toBringmann’swork [12]. In [12], the smoothing
coming from the potential V = 〈∇〉−β in the Hartree nonlinearity (V ∗ u2)u played
an important role. In our problem, this is replaced by the smoothing 〈∇〉−α on the
noise and we reduce our problem to that in [12], essentially by the following simple
observation:

k∏
j=1

〈n j 〉−γ � 〈n1 + · · · + nk〉−γ (1.23)

for any γ ≥ 0.

Remark 1.7 In the following, we also set

(1.24)

By carrying out analysis analogous to (but more involved than) that for studied

in Lemma 3.3 below, we can show that forms a Cauchy sequence in

C([0, T ]; W α− 1
2−,∞(T3)) almost surely, thus converging to some limit . In this

paper, however, we proceed with space-time analysis as in [12]. Namely, we study

in the Xs,b-spaces and show that it converges to some limit denoted by . See
Lemma 3.4.

Putting everything together, we can take N → ∞ in (1.20) and obtain the following

limiting equation for :

(1.25)

By the Fourier restriction norm method with the Strichartz estimates, we can then
prove local well-posedness of (1.25) in the deterministic manner. Namely, given the
following enhanced data set

(1.26)

of appropriate regularities (depicted by stochastic analysis), there exists a unique local-
in-time solution v to (1.25), continuously depending on the enhanced data set �. See
Proposition 3.7 for a precise statement.
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This local well-posedness result together with the convergence of and then
yields the convergence of in (1.17) to the limiting process

where v is the solution to (1.25).

Remark 1.8 In terms of regularity counting, the sum of the regularities in is
positive. In the parabolic setting, one may then proceed with a product estimate. In
the current dispersive setting, however, integrability of functions plays an important
role and thus we need to proceed with care. See Lemmas 2.7 and 3.6.

Remark 1.9 (i) By the use of stochastic analysis, the stochastic terms , , , ,

, and in the enhanced data set are defined as the unique limits of their trun-
cated versions. Furthermore, by deterministic analysis, we prove that a solution v to
(1.25) is pathwise unique in an appropriate class. Therefore, under the decomposition

, the uniqueness of u refers to (a) the uniqueness of and as the
limits of and and (b) the uniqueness of v as a solution to (1.25).
(ii) In this paper, we work with the frequency projector πN with a sharp cutoff
function on the frequency side. It is also possible to work with smooth mollifiers
ηδ(x) = δ−3η(δ−1x), where η ∈ C∞(R3; [0, 1]) is a smooth, non-negative, even
function with

∫
ηdx = 1 and supp η ⊂ (−π, π ]3 � T

3. In this case, working with

{
∂2t uδ + (1 − �)uδ + u3

δ − 3σδuδ = 〈∇〉−αηδ ∗ ξ

(uδ, ∂t uδ)|t=0 = (u0, u1),
(1.27)

we can show that a solution uδ to (1.27) converges in probability to some limit u in

C([−Tω, Tω]; Hα− 1
2−ε(T3)) as δ → 0. Furthermore, the limit uδ is independent of the

choice of a mollification kernel η and agrees with the limiting process u constructed
in Theorem 1.1. This is the second meaning of the uniqueness of the limiting process
u.

Remark 1.10 (i) From the “scaling” point of view, our problem for 0 < α � 1 is
more difficult than the quadratic SNLW (1.8) considered in [26], where the para-
controlled calculus played an essential role. On the other hand, for the proof of
Theorem 1.1, we do not need to use the paracontrolled ansatz for the remainder

terms thanks to the smoothing on the noise and the use of space-
time estimates, which allows us to place v in the subcritical regularity 1

2+.
Our approach to (1.6) and Bringmann’s approach in [12] crucially exploit vari-
ous multilinear smoothing, gaining ∼ 1

2 -derivative. When α = 0 (or β = 0 in
the Hartree SNLW (1.9)), such multilinear smoothing seems to give (at best) 1

2 -
smoothing and thus the arguments in this paper and in [12] break down in the
α = 0 case.
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(ii) In [26], Gubinelli, Koch, and the first author studied the quadratic SNLW on T
3

with an additive space-time white noise (i.e. α = 0):

∂2t u + (1 − �)u + u2 = ξ. (1.28)

With the Wick renormalization and the second order expansion ,
where , the remainder term satisfies

(1.29)

As observed in [26], the main issue in studying (1.29) comes from the regularity
1
2− of v, which is inherited from the regularity − 1

2− of . As a result, the
product in (1.29) is not well defined since the sum of the regularities of and
v is negative. As in (1.21), it is tempting to directly define the random operator

, using the random matrix estimates. However, there is an issue
in handling the “high × high → low” interaction and thus the random matrix
approach alone is not sufficient to close the argument. In [26], this issue was
overcome by a paracontrolled ansatz and an iteration of the Duhamel formulation.
We point out that the use of the paracontrolled ansatz in [26] led to the following
paracontrolled operator , which avoids the undesirable high
× high → low interaction. Instead of the paracontrolled calculus, one may use the
random averaging operator from [17] together with an iteration of the Duhamel
formulation. We, however, point out that due to the problematic high × high
interaction, the random averaging operator as introduced in [17] alone (without
iterating the Duhamel formulation) does not seem to be sufficient to study the
quadratic SNLW (1.28).

Organization of the paper In Sect. 2, we go over the basic definitions and lemmas from
deterministic and stochastic analysis. In Sect. 3, we first state the almost sure regularity
and convergence properties of (the truncated versions of) the stochastic objects in
the enhanced data set � in (1.26). Then, we present the proof of our main result
(Theorem 1.1). In Sect. 4, we establish the almost sure regularity and convergence
properties of the stochastic objects in the enhanced data set. In Appendix A, we recall
the counting lemmas from [12] which play a crucial role in Sect. 4. In Appendices B
and C, we provide the basic definitions and lemmas on multiple stochastic integrals
and (random) tensors, respectively.

2 Notations and basic lemmas

We write A � B to denote an estimate of the form A ≤ C B. Similarly, we write
A ∼ B to denote A � B and B � A and use A � B when we have A ≤ cB for
small c > 0. We also use a+ (and a−) to mean a + ε (and a − ε, respectively) for
arbitrarily small ε > 0.

When we work with space-time function spaces, we use short-hand notations such
as CT Hs

x = C([0, T ]; Hs(T3)).
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When there is no confusion,we simply use û orF(u) to denote the spatial, temporal,
or space-timeFourier transformofu, depending on the context.We also useFx ,Ft , and
Fx,t to denote the spatial, temporal, and space-time Fourier transforms, respectively.

We use the following short-hand notation: ni j = ni + n j , etc. For example, n123 =
n1 + n2 + n3.

2.1 Sobolev spaces and Besov spaces

Let s ∈ R and 1 ≤ p ≤ ∞. We define the L2-based Sobolev space Hs(T3) by the
norm:

‖ f ‖Hs = ‖〈n〉s f̂ (n)‖�2n

and set Hs(T3) to be

Hs(T3) = Hs(T3) × Hs−1(T3).

We also define the L p-based Sobolev space W s,p(T3) by the norm:

‖ f ‖W s,p = ∥∥F−1(〈n〉s f̂ (n))
∥∥

L p .

When p = 2, we have Hs(T3) = W s,2(T3).
Let φ : R → [0, 1] be a smooth bump function supported on

[ − 8
5 ,

8
5

]
and φ ≡ 1

on
[ − 5

4 ,
5
4

]
. For ξ ∈ R

3, we set φ0(ξ) = φ(|ξ |) and

φ j (ξ) = φ
( |ξ |
2 j

) − φ
( |ξ |
2 j−1

)
for j ∈ N. Note that we have

∑
j∈N0

φ j (ξ) = 1 (2.1)

for any ξ ∈ R
3. Then, for j ∈ N0 := N∪{0}, we define the Littlewood-Paley projector

P j as the Fourier multiplier operator with a symbol φ j . Thanks to (2.1), we have

f =
∞∑
j=0

P j f . (2.2)

Next, we recall the following paraproduct decomposition due to Bony [6]. See
[1,24] for further details. Let f and g be functions on T

3 of regularities s1 and s2,
respectively. Using (2.2), we write the product f g as

f g = f < g + f = g + f > g

:=
∑

j<k−2

P j f Pk g +
∑

| j−k|≤2

P j f Pk g +
∑

k< j−2

P j f Pk g. (2.3)

123



Stoch PDE: Anal Comp

The first term f < g (and the third term f > g) is called the paraproduct of g by f
(the paraproduct of f by g, respectively) and it is always well defined as a distribution
of regularity min(s2, s1 + s2). On the other hand, the resonant product f = g is well
defined in general only if s1 + s2 > 0.

We briefly recall the basic properties of the Besov spaces Bs
p,q(T3) defined by the

norm:

‖u‖Bs
p,q

=
∥∥∥2s j‖P j u‖L p

x

∥∥∥
�

q
j (N0)

.

Note that Hs(T3) = Bs
2,2(T

3).

Lemma 2.1 (i) (paraproduct and resonant product estimates) Let s1, s2 ∈ R and 1 ≤
p, p1, p2, q ≤ ∞ such that 1

p = 1
p1

+ 1
p2

. Then, we have

‖ f < g‖B
s2
p,q

� ‖ f ‖L p1 ‖g‖B
s2
p2,q

. (2.4)

When s1 < 0, we have

‖ f < g‖
B

s1+s2
p,q

� ‖ f ‖B
s1
p1,q

‖g‖B
s2
p2,q

. (2.5)

When s1 + s2 > 0, we have

‖ f = g‖
B

s1+s2
p,q

� ‖ f ‖B
s1
p1,q

‖g‖B
s2
p2,q

. (2.6)

(ii) Let s1 < s2 and 1 ≤ p, q ≤ ∞. Then, we have

‖u‖B
s1
p,q

� ‖u‖W s2,p . (2.7)

The product estimates (2.4), (2.5), and (2.6) follow easily from the definition (2.3)
of the paraproduct and the resonant product. See [1,39] for details of the proofs in the
non-periodic case (which can be easily extended to the current periodic setting). The
embedding (2.7) follows from the �q -summability of

{
2(s1−s2) j

}
j∈N0

for s1 < s2 and
the uniform boundedness of the Littlewood-Paley projector P j .

We also recall the following product estimate from [25].

Lemma 2.2 Let 0 ≤ s ≤ 1. Let 1 < p, q, r < ∞ such that s ≥ 3
( 1

p + 1
q − 1

r

)
. Then,

we have

‖〈∇〉−s( f g)‖Lr (T3) � ‖〈∇〉−s f ‖L p(T3)‖〈∇〉s g‖Lq (T3).
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Note that while Lemma 2.2 was shown only for s = 3
( 1

p + 1
q − 1

r

)
in [25], the

general case s ≥ 3
( 1

p + 1
q − 1

r

)
follows the embedding Lr1(T3) ⊂ Lr2(T3), r1 ≥ r2.

2.2 Fourier restriction normmethod and Strichartz estimates

Wefirst recall the so-called Xs,b-spaces, also known as the hyperbolic Sobolev spaces,
due to Klainerman-Machedon [34] and Bourgain [7], defined by the norm:

‖u‖Xs,b(T3×R) = ‖〈n〉s〈|τ | − 〈n〉〉bû(n, τ )‖�2n L2
τ (Z3×R). (2.8)

For b > 1
2 , we have Xs,b ⊂ C(R; Hs(T3)). Given an interval I ⊂ R, we define the

local-in-time version Xs,b(I ) as a restriction norm:

‖u‖Xs,b(I ) = inf
{‖v‖Xs,b(T3×R) : v|I = u

}
. (2.9)

When I = [0, T ], we set Xs,b
T = Xs,b(I ).

Next, we recall the Strichartz estimates for the linear wave/Klein–Gordon equation.
Given 0 ≤ s ≤ 1, we say that a pair (q, r) is s-admissible if 2 < q ≤ ∞, 2 ≤ r < ∞,

1

q
+ 3

r
= 3

2
− s and

1

q
+ 1

r
≤ 1

2
.

Then, we have the following Strichartz estimates.

Lemma 2.3 Given 0 ≤ s ≤ 1, let (q, r) be s-admissible. Then, we have

‖S(t)(φ0, φ1)‖Lq
T Lr

x (T3) � ‖(φ0, φ1)‖Hs (T3) (2.10)

for any 0 < T ≤ 1.

See Ginibre–Velo [23], Lindblad–Sogge [38], and Keel–Tao [32] for the Strichartz
estimates on R

d . See also [33]. The Strichartz estimates (2.10) on T
3 in Lemma 2.3

follows from those on R
3 and the finite speed of propagation.

When b > 1
2 , the Xs,b-spaces enjoy the transference principle. In particular, as a

corollary to Lemma 2.3, we obtain the following space-time estimate. See [35,64] for
the proof.

Lemma 2.4 Let 0 < T ≤ 1. Given 0 ≤ s ≤ 1, let (q, r) be s-admissible. Then, for
b > 1

2 , we have

‖u‖Lq
T Lr

x
� ‖u‖Xs,b

T
.

We also state the nonhomogeneous linear estimate. See [22].
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Lemma 2.5 Let − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1. Then, for 0 < T ≤ 1, we have

‖I(F)‖Xs,b
T

=
∥∥∥∥
∫ t

0

sin((t − t ′)〈∇〉)
〈∇〉 F(t ′)dt ′

∥∥∥∥
Xs,b

T

� T 1−b+b′ ‖F‖
Xs−1,b′

T
.

In the following, we briefly go over the main trilinear estimate for the basic local

well-posedness of the cubic NLW (1.5) inH 1
2+ε(T3).

Lemma 2.6 Fix small δ1, δ2 > 0 with 4δ2 ≤ δ1. Then, we have

‖I(u1u2u3)‖
X

1
2+δ1, 12+δ2
T

� T δ2

3∏
j=1

‖u j‖
X

1
2+δ1, 12+δ2
T

(2.11)

for any 0 < T ≤ 1.

Proof Recall that (q, r) = (4, 4) is 1
2 -admissible. Then, in view of Lemma 2.4, inter-

polating

‖u‖L4
T ,x

� ‖u‖
X

1
2 , 12+δ0
T

and ‖u‖L2
T ,x

= ‖u‖X0,0
T

(2.12)

with small δ0 > 0, we obtain

‖u‖
L

4
1+2δ1
T ,x

� ‖u‖
X

1
2−δ1, 12− 1

2 δ1
T

. (2.13)

Moreover, noting that
( 12
3−2δ1

, 12
3−2δ1

)
is

( 1
2 + 2

3δ1
)
-admissible, we obtain from

Lemma 2.4 that

‖u‖
L

12
3−2δ1
T ,x

≤ Cδ1,δ2‖u‖
X

1
2+ 2

3 δ1, 12+δ2
T

(2.14)

for any δ2 > 0.
Hence, from Lemma 2.5, duality, Hölder’s inequality, (2.13), and (2.14), we obtain

‖I(u1u2u3)‖
X

1
2+δ1, 12+δ2
T

� T δ2‖u1u2u3‖
X− 1

2+δ1,− 1
2+2δ2

= T δ2 sup
‖w‖

X
1
2−δ1, 12−2δ2

=1

∣∣∣∣
∫ T

0

∫
T3

u1u2u3wdxdt

∣∣∣∣
≤ T δ2 sup

‖w‖
X
1
2−δ1, 12−2δ2

=1

( 3∏
j=1

‖u j‖
L

12
3−2δ1
T ,x

)
‖w‖

L
4

1+2δ1
T ,x

� T δ2

3∏
j=1

‖u j‖
X

1
2+ 2

3 δ1, 12+δ2
T

,

provided that 0 < 4δ2 ≤ δ1 � 1. This proves (2.11). ��
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We conclude this part by establishing the following trilinear estimate, which will
be used to control the term in (1.25). See Proposition 8.6 in [12] for an analogous
trilinear estimate.

Lemma 2.7 Let δ1, δ2 > 0 be sufficiently small such that 8δ2 ≤ δ1. Then, we have

‖u1u2u3‖
X

− 1
2+δ1,− 1

2+2δ2
T

� ‖u1‖
L∞

T W
− 1
2+2δ1,∞

x

‖u2‖
X

1
2+δ1, 12+δ2
T

‖u3‖
X

1
2+δ1, 12+δ2
T

(2.15)

for any 0 < T ≤ 1.

Proof By applying the Littlewood-Paley decompositions, we have

LHS of (2.15)

≤
∞∑

j1, j23, j123=0

∥∥P j123

(
P j1u1P j23(u2u3)

)∥∥
X

− 1
2+δ1,− 1

2+2δ2
T

.

For simplicity of notation, we set N1 = 2 j1 , N23 = 2 j23 , and N123 = 2 j123 , denoting
the dyadic frequency sizes of n1 (for u1), n23 (for u2u3), and n123 (for u1u2u3),
respectively. We set vk = P jk uk . In view of n123 = n1 + n23, we separately estimate
the contributions from (i) N123 ∼ max(N1, N23) and (ii) N123 � max(N1, N23).
Case 1: N123 ∼ max(N1, N23).

By Hölder’s inequality and the L4-Strichartz estimate (2.12), we have

∥∥P j123

(
v1P j23(u2u3)

)∥∥
X

− 1
2+δ1,− 1

2+2δ2
T

� N
− 1

2+δ1
123 ‖v1P j23(u2u3)‖L2

T ,x

� N−δ1
123 ‖u1‖

L∞
T W

− 1
2+2δ1,∞

x

3∏
j=2

‖u j‖L4
T ,x

� N−δ1
123 ‖u1‖

L∞
T W

− 1
2+2δ1,∞

x

3∏
j=2

‖u j‖
X

1
2 , 12+δ2
T

.

This is summable in dyadic N1, N23, N123 ≥ 1, yielding (2.15) in this case.
Case 2: N123 � max(N1, N23).

In this case, we further apply the Littlewood-Paley decompositions for u2 and u3
and write

u2u3 =
∞∑

j2, j3=0

(P j2u2)(P j3u3).

Without loss of generality, assume N3 ≥ N2, where Nk = 2 jk , k = 2, 3. Then, we
have

N123 � N1 ∼ N23 � N3. (2.16)
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By duality and (2.13) (with δ1 = 4δ2), we have

‖P j u‖
X
0,− 1

2+2δ2
T

= sup
‖v‖

X
0, 12−2δ2

=1

∣∣∣∣
∫ T

0

∫
T3

(P j u)
(
(P j−1 + P j + P j+1)v

)
dxdt

∣∣∣∣
� 2( 12−4δ2) j‖P j u‖

L
4

3−8δ2
T ,x

. (2.17)

Then, from (2.17), (2.14), and (2.16) with 8δ2 ≤ δ1, we have

∥∥P j123

(
v1P j23(v2v3)

)∥∥
X

− 1
2+δ1,− 1

2+2δ2
T

� N
− 1

2+δ1
123 N

1
2−4δ2
123 ‖v1P j23(v2v3)‖

L
4

3−8δ2
T ,x

� N δ1−4δ2
123 N

1
2−2δ1
1 ‖v1‖

L∞
T W

− 1
2+2δ1,∞

x

‖v2‖
L

4
1−8δ2
T ,x

‖v3‖L2
T ,x

� N δ1−4δ2
123 N

1
2−2δ1
1 N

− 1
2−δ1

3

× ‖u1‖
L∞

T W
− 1
2+2δ1,∞

x

‖u2‖
X

1
2+8δ2, 12+δ2
T

‖u3‖
X

1
2+δ1,0
T

� N−4δ2
123 N−δ1

1 N−δ1
3 ‖u1‖

L∞
T W

− 1
2+2δ1,∞

x

3∏
j=2

‖u j‖
X

1
2+δ1, 12+δ2
T

.

This is summable in dyadic N1, N2, N3, N23, N123 ≥ 1, yielding (2.15) in this case.
��

2.3 On discrete convolutions

Next, we recall the following basic lemma on a discrete convolution.

Lemma 2.8 (i) Let d ≥ 1 and α, β ∈ R satisfy

α + β > d and α, β < d.

Then, we have

∑
n=n1+n2

1

〈n1〉α〈n2〉β � 〈n〉d−α−β

for any n ∈ Z
d .

(ii) Let d ≥ 1 and α, β ∈ R satisfy α + β > d. Then, we have

∑
n=n1+n2|n1|∼|n2|

1

〈n1〉α〈n2〉β � 〈n〉d−α−β

for any n ∈ Z
d .
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Namely, in the resonant case (ii),wedonot have the restrictionα, β < d. Lemma2.8
follows from elementary computations. See, for example, Lemmas 4.1 and 4.2 in [41]
for the proof.

2.4 Tools from stochastic analysis

We conclude this section by recalling useful lemmas from stochastic analysis. See
[5,43,62] for basic definitions. See alsoAppendixB for basic definitions and properties
for multiple stochastic integrals.

Let (H , B, μ) be an abstract Wiener space. Namely, μ is a Gaussian measure on
a separable Banach space B with H ⊂ B as its Cameron-Martin space. Given a
complete orthonormal system {e j } j∈N ⊂ B∗ of H∗ = H , we define a polynomial
chaos of order k to be an element of the form

∏∞
j=1 Hk j (〈x, e j 〉), where x ∈ B, k j 
= 0

for only finitely many j’s, k = ∑∞
j=1 k j , Hk j is the Hermite polynomial of degree k j ,

and 〈·, ·〉 = B〈·, ·〉B∗ denotes the B–B∗ duality pairing. We then denote the closure of
polynomial chaoses of order k under L2(B, μ) byHk . The elements inHk are called
homogeneous Wiener chaoses of order k. We also set

H≤k =
k⊕

j=0

H j

for k ∈ N.
Let L = �−x ·∇ be the Ornstein-Uhlenbeck operator.15 Then, it is known that any

element in Hk is an eigenfunction of L with eigenvalue −k. Then, as a consequence
of the hypercontractivity of the Ornstein-Uhlenbeck semigroup U (t) = et L due to
Nelson [42], we have the following Wiener chaos estimate [63, Theorem I.22]. See
also [65, Proposition 2.4].

Lemma 2.9 Let k ∈ N. Then, we have

‖X‖L p(�) ≤ (p − 1)
k
2 ‖X‖L2(�)

for any p ≥ 2 and any X ∈ H≤k .

The following lemma will be used in studying regularities of stochastic objects.
We say that a stochastic process X : R+ → D′(Td) is spatially homogeneous if
{X(·, t)}t∈R+ and {X(x0 + · , t)}t∈R+ have the same law for any x0 ∈ T

d . Given
h ∈ R, we define the difference operator δh by setting

δh X(t) = X(t + h) − X(t).

Lemma 2.10 Let {X N }N∈N and X be spatially homogeneous stochastic processes
: R+ → D′(Td). Suppose that there exists k ∈ N such that X N (t) and X(t) belong to
H≤k for each t ∈ R+.

15 For simplicity, we write the definition of the Ornstein-Uhlenbeck operator L when B = R
d .

123



Stoch PDE: Anal Comp

(i) Let t ∈ R+. If there exists s0 ∈ R such that

E
[|X̂(n, t)|2] � 〈n〉−d−2s0 (2.18)

for any n ∈ Z
d , then we have X(t) ∈ W s,∞(Td), s < s0, almost surely.

(ii) Suppose that X N , N ∈ N, satisfies (2.18). Furthermore, if there exists γ > 0
such that

E
[|X̂ N (n, t) − X̂ M (n, t)|2] � N−γ 〈n〉−d−2s0

for any n ∈ Z
d and M ≥ N ≥ 1, then X N (t) is a Cauchy sequence in W s,∞(Td),

s < s0, almost surely, thus converging to some limit
in W s,∞(Td).

(iii) Let T > 0 and suppose that (i) holds on [0, T ]. If there exists σ ∈ (0, 1) such
that

E
[|δh X̂(n, t)|2] � 〈n〉−d−2s0+σ |h|σ

for any n ∈ Z
d , t ∈ [0, T ], and h ∈ [−1, 1],16 then we have X ∈

C([0, T ]; W s,∞(Td)), s < s0 − σ
2 , almost surely.

(iv) Let T > 0 and suppose that (ii) holds on [0, T ]. Furthermore, if there exists
γ > 0 such that

E
[|δh X̂ N (n, t) − δh X̂ M (n, t)|2] � N−γ 〈n〉−d−2s0+σ |h|σ

for any n ∈ Z
d , t ∈ [0, T ], h ∈ [−1, 1], and M ≥ N ≥ 1, then X N is a Cauchy

sequence in C([0, T ]; W s,∞(Td)), s < s0− σ
2 , almost surely, thus converging to some

process in C([0, T ]; W s,∞(Td)).

Lemma 2.10 follows from a straightforward application of the Wiener chaos esti-
mate (Lemma 2.9). For the proof, see Proposition 3.6 in [41] and Appendix in [50].
As compared to Proposition 3.6 in [41], we made small adjustments. In studying the
time regularity, we made the following modifications: 〈n〉−d−2s0+2σ �→ 〈n〉−d−2s0+σ

and s < s0 − σ �→ s < s0 − σ
2 so that it is suitable for studying the wave equa-

tion. Moreover, while the result in [41] is stated in terms of the Besov-Hölder space
Cs(Td) = Bs∞,∞(Td), Lemma 2.10 handles the L∞-based Sobolev space W s,∞(T3).
Note that the required modification of the proof is straightforward since W s,∞(Td)

and Bs∞,∞(Td) differ only logarithmically:

‖ f ‖W s,∞ ≤
∞∑
j=0

‖P j f ‖W s,∞ � ‖ f ‖Bs+ε∞,∞ (2.19)

for any ε > 0. For the proof of the almost sure convergence claims, see [50].

16 We impose h ≥ −t such that t + h ≥ 0.
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3 Local well-posedness of SNLW,˛ > 0

In this section, we present the proof of local well-posedness of (1.25) (Theorem 1.1).
In Sect. 3.1, we first state the regularity and convergence properties of the stochastic
objects in the enhanced data set � in (1.26). In Sect. 3.2, we then present a deter-
ministic local well-posedness result by viewing elements in the enhanced data set as
given (deterministic) distributions and a given (deterministic) operator with prescribed
regularity properties.

3.1 On the stochastic terms

In this subsection, we state the regularity and convergence properties of the stochastic
objects in (1.26) whose proofs are presented in Sect. 4.

Lemma 3.1 Let α > 0 and T > 0.

(i) For any s < α − 1
2 , defined in (1.12) is a Cauchy sequence in

C([0, T ]; W s,∞(T3)), almost surely. In particular, denoting the limit by (for-
mally given by (1.11)), we have

for any ε > 0, almost surely.
(ii) Let 0 < α ≤ 1

2 . Then, for any s < α, defined in (1.15) is a Cauchy
sequence in C([0, T ]; W s,∞(T3)) almost surely. In particular, denoting the limit

by , we have

for any ε > 0, almost surely.

Remark 3.2 (i) Asmentioned in Sect. 1, a parabolic thinking gives regularity 3α− 1
2−

for . Lemma 3.1 (ii) states that, when α > 0 is small, we indeed gain about 1
2 -

regularity by exploiting multilinear dispersion as in the quadratic case studied in
[26].We point out that our proof is based on an adaptation of Bringmann’s analysis
on the corresponding term in the Hartree case [12] and thus the regularities we
obtain in Lemma 3.1 (ii) as well as Lemmas 3.3, 3.4, and 3.5 may not be sharp
(especially for large α > 0; see, for example, a crude bound (4.9)). They are,
however, sufficient for our purpose.

(ii) In this section, we only state almost sure convergence but the same argument also
yields convergence in L p(�)with an exponential tail estimate (as in [12,27,48]).
Our goal is, however, to prove local well-posedness and thus the almost sure
convergence suffices for our purpose.
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Lemma 3.3 Let 0 < α ≤ 1
2 and T > 0. Let and be as in

(1.12) and (1.15). Then, for any s < α − 1
2 , is a Cauchy sequence in

C([0, T ]; W s,∞(T3)) almost surely. In particular, denoting the limit by , we have

for any ε > 0, almost surely.

Lemma 3.4 Let α > 0, T > 0, and b > 1
2 be sufficiently close to 1

2 .

(i) For any s < α + 1
2 , defined in (1.22) is a Cauchy sequence in

Xs,b([0, T ]). In particular, denoting the limit by , we have

for any ε > 0, almost surely.
(ii) For any s < α + 1

2 , defined in (1.24) is a Cauchy sequence in

Xs,b([0, T ]). In particular, denoting the limit by , we have

for any ε > 0, almost surely.

Given Banach spaces B1 and B2, we use L(B1; B2) to denote the space of bounded
linear operators from B1 to B2. We also set

Ls1,s2,b
T0

=
⋂

0<T <T0

L
(
Xs1,b([0, T ]); Xs2,b([0, T ])) (3.1)

endowed with the norm given by

‖S‖Ls1,s2,b
T0

= sup
0<T <T0

T −θ‖S‖L(X
s1,b
T ;X

s2,b
T )

(3.2)

for some small θ > 0.

Lemma 3.5 Let α > 0 and T0 > 0. Then, given sufficiently small δ1, δ2 > 0, the
sequence of the random operators defined in (1.21) is a Cauchy sequence

in the class L
1
2+δ1,

1
2+δ1,

1
2+δ2

T0
, almost surely. In particular, denoting the limit by ,

we have

almost surely.

The following trilinear estimate is an immediate consequence of Lemma 2.7.
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Lemma 3.6 Let α > 0. Let δ1, δ2, ε > 0 be sufficiently small such that 2δ1 + ε ≤ α.
Then, we have

for any 0 < T ≤ 1.

3.2 Proof of Theorem 1.1

In this section, we prove the following proposition. Theorem 1.1 then follows from
this proposition and Lemmas 3.1 - 3.5.

Proposition 3.7 Let α > 0, s > 1
2 , and T0 > 0. Then, there exists small ε = ε(α, s),

δ1 = δ1(α, s), δ2 = δ2(α, s) > 0 such that if

• is a distribution-valued function belonging to C([0, T0]; W α− 1
2−ε,∞(T3)),

• is a distribution-valued function belonging to C([0, T0]; W α−ε,∞(T3)),

• is a distribution-valued function belonging to C([0, T0]; W α− 1
2−ε,∞(T3)),

• is a function belonging to Xα+ 1
2−ε, 12+δ2([0, T0]),

• is a function belonging to Xα+ 1
2−ε, 12+δ2([0, T0]),

• the operator belongs to the class L
1
2+δ1,

1
2+δ1,

1
2+δ2

T0
defined in (3.1),

then the Eq. (1.25) is locally well-posed in Hs(T3). More precisely, given any
(u0, u1) ∈ Hs(T3), there exist 0 < T ≤ T0 and a unique solution v to the cubic
SNLW (1.25) on [0, T ] in the class

X
1
2+δ1,

1
2+δ2([0, T ]) ⊂ C([0, T ]; H

1
2+δ1(T3)).

Furthermore, the solution v depends continuously on the enhanced data set

(3.3)

in the class

X s,α,ε
T = Hs(T3) × C([0, T ]; W α− 1

2−ε,∞(T3))

× C([0, T ]; W α−ε,∞(T3)) × C([0, T ]; W α− 1
2−ε,∞(T3))

× Xα+ 1
2−ε, 12+δ2([0, T ]) × Xα+ 1

2−ε, 12+δ2([0, T ])
× L

(
X

1
2+δ1,

1
2+δ2([0, T ]); X

1
2+δ2,

1
2+δ2([0, T ])).
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Proof Given α > 0 and s > 1
2 , fix small ε > 0 such that ε < min(α, s − 1

2 ). Given
an enhanced data set � as in (3.3), we set

and

where L
1
2+δ1,

1
2+δ1,

1
2+δ2

T0
is as in (3.2). In the following, we assume that

‖�(ξ)‖Yα,ε
T0

≤ K (3.4)

for some K ≥ 1.
Given the enhanced data set � in (3.3), define a map �� by

Fix 0 < T ≤ T0. From Lemmas 2.5 and 2.4 with (3.4), we have

(3.5)

and

(3.6)
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for some θ > 0. Similarly, we have

(3.7)

From Lemma 2.5 and Lemma 2.2 with (3.4), we have

(3.8)

provided that δ1 + ε ≤ α. From (3.2) and (3.4), we have

(3.9)

Hence, by applying Lemmas 2.3 and 2.5, then Lemma 2.6, (3.5), Lemma 3.6, (3.6),
(3.8), (3.9), (3.7), and Lemma 3.4 with (3.4), we have

‖��(v)‖
X

1
2+δ1, 12+δ2
T

� ‖(u0, u1)‖Hs + T θ
(
‖v‖3

X
1
2+δ1, 12+δ2
T

+ K 3
)

+ K .

Ananalogous computationyields a difference estimate on��(v1)−��(v2). Therefore,
Proposition 3.7 follows from a standard contraction argument. ��

4 Regularities of the stochastic terms

In this section, we present the proof of Lemmas 3.1 - 3.5, which are basic tools in
applying Proposition 3.7 to finally prove Theorem 1.1. In view of the local well-
posedness result in [51], we assume that 0 < α ≤ 1

4 in the following. Without loss
of generality, we assume that T ≤ 1. The main tools in this section are the counting
estimates from [12, Section 4] and the randommatrix estimate (see LemmaC.3 below)
from [18], which capture the multilinear dispersive effect of the wave equation. For
readers’ convenience, we collect the relevant counting estimates in Appendix A and
the relevant definitions and estimates for random matrices and tensors in Appendix C.
We show in details how to reduce the relevant stochastic estimates to some basic
counting and (random) matrix/tensor estimates studied in [12, Section 4] and [18].

In the remaining part of this section, we assume 0 < T < T0 ≤ 1.
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4.1 Basic stochastic terms

We first present the proof of Lemma 3.1.

Proof (i) Let t ≥ 0. From (1.16), we have

(4.1)

for any n ∈ Z
3 and N ≥ 1. Also, by the mean value theorem and an interpolation

argument as in [26], we have

for any θ ∈ [0, 1], n ∈ Z
3, and 0 ≤ t2 ≤ t1 ≤ T with t1− t2 ≤ 1, uniformly in N ∈ N.

Hence, from Lemma 2.10, we conclude that
for any ε > 0, almost surely. Moreover, a slight modification of the argument,

using Lemma 2.10, yields that is almost surely a Cauchy sequence in

C([0, T ]; W α− 1
2−ε,∞(T3)), thus converging to some limit . Since the required mod-

ification is exactly the same as in [26], we omit the details here.

Remark 4.1 In the remaining part of this section,we establish uniform (in N ) regularity
bounds on the truncated stochastic terms (such as ) but may omit the convergence
part of the argument. Furthermore, as for studied in Lemma 3.3, we only
establish a uniform (in N ) regularity boundon for eachfixed0 < t ≤ T ≤ 1.
A slight modification as above yields continuity in time but we omit details.

(ii) It is possible to prove this part by proceeding as in [26,45] (i.e. without
the use of the Xs,b-spaces). In the following, however, we follow Bringmann’s
approach [12], adapted to the stochastic PDE setting. More precisely, we show that
given any δ1 > 0 and sufficiently small δ2 > 0, the sequence is a

Cauchy sequence in Xα−1−δ1,− 1
2+δ2([0, T ]), almost surely, and thus converges almost

surely to in the same space, where is the almost sure limit of in

C([0, T ]; W 3α− 3
2−,∞(T3)) discussed in Sect. 1.

Our first goal is to prove the following bound; given any δ1 > 0 and sufficiently
small δ2 > 0, there exists θ > 0 such that

(4.2)

for any p ≥ 1 and 0 < T ≤ 1, uniformly in N ∈ N.
Let us first compute the space-time Fourier transform of (with a time cutoff

function). From (1.14)with (1.12),we canwrite the spatial Fourier transform
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as the following multiple Wiener–Ito integral (as in [41]):

(4.3)

We emphasize that the renormalization in (1.14) is embedded in the definition of the
multiple Wiener–Ito integral.

We nowcompute the space-timeFourier transformof ,where 1[0,T ] denotes
the sharp cutoff function on the time interval [0, T ]. From (4.3) and the stochastic
Fubini theorem ([15, Theorem 4.33]; see also Lemma B.2), we have

(4.4)

where Fn1,n2,n3(t1, t2, t3, τ ) is defined by

Fn1,n2,n3(t1, t2, t3, τ ) =
∫ T

0
e−i tτ

3∏
j=1

sin((t − t j )〈n j 〉)
〈n j 〉1+α

1[0,t](t j )dt . (4.5)

Note that Fn1,n2,n3(t1, t2, t3, τ ) is symmetric in t1, t2, t3.
Given dyadic N j ≥ 1, j = 1, 2, 3, let us denote by AN

N1,N2,N3
the contribution to

from |n j | ∼ N j , j = 1, 2, 3, in (4.4). We first compute the Xs−1,b-norm
of AN

N1,N2,N3
with b = − 1

2 − δ for δ > 0. We then interpolate it with the trivial

X0,0-bound. Recall the trivial bound:

‖u‖Xs,b = ‖〈n〉s〈|τ | − 〈n〉〉b û(n, τ )‖�2n L2
τ

≤
∑

ε0∈{−1,1}
‖〈n〉s〈τ + ε0〈n〉〉b û(n, τ )‖�2n L2

τ

=
∑

ε0∈{−1,1}
‖〈n〉s〈τ 〉b û(n, τ − ε0〈n〉)‖�2n L2

τ

(4.6)

for any s, b ∈ R. Then, defining κ(n̄) = κε0,ε1,ε2,ε3(n1, n2, n3) by

κ(n̄) = ε0〈n123〉 + ε1〈n1〉 + ε2〈n2〉 + ε3〈n3〉, (4.7)
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with ε j ∈ {−1, 1} for j = 0, 1, 2, 3, it follows from (4.6), (4.4), Fubini’s theorem,
Ito’s isometry, and expanding the sine functions in (4.5) in terms of the complex
exponentials that

∥∥∥‖AN
N1,N2,N3

‖
X

s−1,− 1
2−δ

T

∥∥∥2
L2(�)

�
∑

ε0∈{−1,1}

∑
n∈Z3

∫
R

〈n〉2(s−1)〈τ 〉−1−2δ

×
{ ∑

n=n1+n2+n3|n j |≤N
|n j |∼N j

∫
[0,T ]3

|Fn1,n2,n3(t1, t2, t3, τ − ε0〈n〉)|2dt3dt2dt1

}
dτ

�
∑

ε0,ε1,ε2,ε3∈{−1,1}

∑
n∈Z3

∫
R

〈n〉2(s−1)〈τ 〉−1−2δ
{ ∑

n=n1+n2+n3|n j |≤N
|n j |∼N j

3∏
j=1

1

〈n j 〉2(1+α)

×
∫

[0,T ]3

∣∣∣∣
∫ T

max(t1,t2,t3)
e−i t(τ−κ(n̄))dt

∣∣∣∣
2

dt3dt2dt1

}
dτ

�
∑

ε0,ε1,ε2,ε3∈{−1,1}

∑
n∈Z3

∑
n=n1+n2+n3|n j |∼N j

〈n〉2(s−1)∏3
j=1〈n j 〉2(1+α)

∫
R

1

〈τ 〉1+2δ〈τ − κ(n̄)〉2 dτ

�
∑

ε0,ε1,ε2,ε3∈{−1,1}

∑
n∈Z3

∑
n=n1+n2+n3|n j |∼N j

〈n〉2(s−1)∏3
j=1〈n j 〉2(1+α)

〈κ(n̄)〉−1−2δ

�
∑

ε0,ε1,ε2,ε3∈{−1,1}
sup
m∈Z

∑
n∈Z3

∑
n=n1+n2+n3|n j |∼N j

〈n〉2(s−1)∏3
j=1〈n j 〉2(1+α)

· 1{|κ(n̄)−m|≤1} (4.8)

for any δ > 0, uniformly in dyadic N j ≥ 1, j = 1, 2, 3. By noting

3∏
j=1

〈n j 〉−2α � 〈n12〉−2α, (4.9)

we can reduce the right-hand side of (4.8) to the setting of the Hartree nonlinear-
ity studied in [12]. In particular, from (4.8) with (4.9) and the cubic sum estimate
(Lemma A.1), we obtain∥∥∥‖AN

N1,N2,N3
‖

X
s−1,− 1

2−δ

T

∥∥∥
L2(�)

� N s−α
max , (4.10)

where Nmax = max(N1, N2, N3). This provides an estimate for s < α and b =
− 1

2 − δ < − 1
2 .
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On the other hand, using (4.4), we have

∥∥∥‖AN
N1,N2,N3

‖X0,0
T

∥∥∥2
L2(�)

=
∥∥∥‖AN

N1,N2,N3
‖L2

T ,x

∥∥∥2
L2(�)

� T θ
∑

n1,n2,n3∈Z3

|n j |∼N j

3∏
j=1

〈n j 〉−2(1+α)

� T θ N 3−6α
max

(4.11)

for some θ > 0. Hence, it follows from interpolating (4.10) and (4.11) and then
applying the Wiener chaos estimate (Lemma 2.9) that given s < α, there exist small
δ2 > 0 and ε > 0 such that

∥∥∥‖AN
N1,N2,N3

‖
X

s−1,− 1
2+δ2

T

∥∥∥
L p(�)

� p
3
2 T θ N−ε

max

for any p ≥ 1, uniformly in dyadic N j ≥ 1, j = 1, 2, 3. By summing over dyadic
blocks N j ≥ 1, j = 1, 2, 3, we obtain the bound (4.2) (with b = − 1

2 + δ2 > − 1
2 ).

As for the convergence of to in Xα−1−δ1,− 1
2+δ2([0, T ]), we can simply

repeat the computation above to estimate the difference for
M ≥ N ≥ 1. Fix s < α. Then, in (4.8), we replace the restriction |n j | ≤ N in the
summation of n j , j = 1, 2, 3, by N ≤ max(|n1|, |n2|, |n3|) ≤ M , which allows us to
gain a small negative power of N . As a result, in place of (4.10), we obtain

∥∥∥‖AM
N1,N2,N3

− AN
N1,N2,N3

‖
X

s−1,− 1
2−δ

T

∥∥∥
L2(�)

� N−ε N s−α+ε
max

for any small ε > 0 and M ≥ N ≥ 1. Then, the interpolation argument with (4.11) as
above yields that given s < α, there exist small δ2 > 0 and ε > 0 such that

(4.12)

for any p ≥ 1 and M ≥ N ≥ 1. Then, by applying Chebyshev’s inequality and the
Borel–Cantelli lemma, we conclude the almost sure convergence of . See [51].

Finally, fix s < α. Given N ∈ N, let . Then, we have

(4.13)

for t ∈ [0, T ], Note that from (4.4), we have ĤN (n, t) ∈ H3 and, furthermore, by the
independence of {Bn}n∈Z3 (modulo B−n = Bn), we have

E
[
ĤN (n, t1)ĤN (m, t2)

] = 1n+m=0 E
[
ĤN (n, t1)ĤN (n, t2)

]
(4.14)

123



Stoch PDE: Anal Comp

for any t1, t2 ∈ R. Then, by (4.13), Sobolev’s inequality (with finite r � 1 such that
rδ0 > 3 for some small δ0 > 0), Minkowski’s integral inequality, the Wiener chaos
estimate (Lemma 2.9) with (4.14), Hausdorff–Young’s inequality (in time), we have,
for any p ≥ max(q, r) � 1,

Now, by the triangle inequality: 〈τ 〉δ0 � 〈|τ | − 〈n〉〉δ0〈n〉δ0 , Hölder’s inequality (in
τ ), followed by the nonhomogeneous linear estimate (Lemma 2.5) and (4.12) (with
p = 2, M = ∞, and s replaced by s + 2δ0 < α), we obtain

by choosing δ0 > 0 sufficiently small. Then, the regularity and convergence claim
for follows from applying Chebyshev’s inequality and the Borel–Cantelli
lemma as before. ��
Remark 4.2 Given a function f ∈ L2((Z3 × R+)k), define the multiple stochastic
integral Ik[ f ] by

Ik[ f ] =
∑

n1,...,nk∈Z3

∫
[0,∞)k

f (n1, t1, . . . , nk, tk)d Bn1(t1) · · · d Bnk (tk).

SeeAppendixB for the basic definitions and properties ofmultiple stochastic integrals.
In terms of multiple stochastic integrals, we can express (4.3) as

where fn,t is defined by

fn,t (n1, t1, n2, t2, n3, t3) = 1n=n123 ·
( 3∏

j=1

sin((t − t j )〈n j 〉)
〈n j 〉1+α

· 1|n j |≤N · 1[0,t](t j )

)

for (n1, t1, n2, t2, n3, t3) ∈ (Z3×R)3. Then, by Fubini’s theorem formultiple stochas-
tic integrals (Lemma B.2), we have
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where Ft denotes the Fourier transform in time. With this notation, it follows from
Lemma B.1 that we can write the second moment of the Xs,b-norm of AN

N1,N2,N3
,

appearing in (4.8) and (4.11), in a concise manner:

∥∥∥‖AN
N1,N2,N3

‖Xs,b
T

∥∥∥2
L2(�)

= 3!
∑
n∈Z3

∫
R

〈n〉2s〈|τ | − 〈n〉〉2b
∥∥Ft (1[0,T ] f N̄

n,·)(τ )
∥∥2

�2n1,n2,n3
L2

t1,t2,t3
dτ,

where f N̄
n,t is given by

f N̄
n,t = fn,t ·

3∏
j=1

1|n j |∼N j .

In the following, for conciseness of the presentation, we express various stochastic
objects as multiple stochastic integrals on (Z3 × R+)k and carry out analysis. For this
purpose, we set

z j = (n j , t j ) ∈ Z
3 × R+ (4.15)

and use the following short-hand notation:

‖ f (z j )‖L p
z j

= ‖ f (n j , t j )‖�
p
n j L p

t j
. (4.16)

Note, however, that one may also carry out equivalent analysis at the level of multiple
Wiener–Ito integrals as in the proof of Lemma 3.1 presented above.

Next, we briefly discuss the proof of Lemma 3.3.

Proof of Lemma 3.3 By the paraproduct decomposition (2.3), we have

In view of Lemma 2.1 with (2.19), the paraproducts and belong

to C([0, T ]; W α− 1
2−ε,∞(T3)) for any ε > 0, almost surely. Hence, it remains to study

the resonant product . We only study the regularity of the resonant

product for a fixed time since the continuity in time and the convergence follow from
a systematic modification. In the following, we show

(4.17)
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for any n ∈ Z
3 and N ≥ 1. Note the bound (4.17) together with Lemma 2.10 shows

that the resonant product is smoother and has (spatial) regularity 2α − 1
2− =

(α−) + (
α − 1

2 − )
.

As in [41], by decomposing into components in the homogeneousWiener
chaoses Hk , k = 2, 4, we have

where and . See, for example, [43, Proposition
1.1.2] and Lemma B.4 on the product formula for multiple Wiener–Ito integrals (and
it also follows from Ito’s lemma as explained in [41]). From the orthogonality of H4
and H2, we have

Hence, it suffices to prove (4.17) for , j = 2, 4.

From a slight modification17 of (4.8) with Lemma A.2, we have

(4.18)

for any n ∈ Z
3 and N ≥ 1. Then, from Jensen’s inequality (see (B.2)),18 (4.1), (4.18),

and Lemma 2.8, we have

(4.19)

for any n ∈ Z
3 and N ≥ 1, where |n1| ∼ |n − n1| signifies the resonant product = .

This yields (4.17) for .

17 Namely, with s = 0 and dropping the summation over n in (4.8).
18 See the discussion on in Section 4 of [41]. See also Section 10 in [29].
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From Ito’s lemma (see also the product formula, Lemma B.4), (1.12), and (4.3)
with (4.15), we have

where gn,t,t ′ is defined by

gn,t,t ′(z2, z3) =
∑

|n1|≤N
|n1|∼|n123|

1n=n23 · 1|n2|≤N · 1|n3|≤N

∫ t ′

0

sin((t − t ′)〈n123〉)
〈n123〉

×
( 3∏

j=1

sin((t ′ − t j )〈n j 〉)
〈n j 〉1+α

· 1[0,t ′](t j )

)
sin((t − t1)〈n1〉)

〈n1〉1+α
dt1.

(4.20)

Note that gn,t,t ′(z2, z3) is symmetric (in z2 and z3). From Fubini’s theorem
(Lemma B.2), we have

(4.21)

We now apply LemmaB.1 to compute the secondmoment of(4.21). Then, with κ(n̄) as
in (4.7), it follows from expanding the sine functions in (4.20) in terms of the complex
exponentials and switching the order of integration in t ′ and t1 that
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Under the condition |n1| ∼ |n123| and n = n2 + n3, we have |n1| � |n|. Then, by
applying the basic resonant estimate (Lemma A.3) and Lemma 2.8, we obtain

(4.22)

This computationwith Lemma 2.10 shows that is even smoother and has (spatial)
regularity 4α−.

Therefore, putting (4.19) and (4.22) together, we obtain the desired bound (4.17).
��

4.2 Quintic stochastic term

In this subsection, we present the proof of Lemma 3.4 (i) on the quintic stochastic

process defined in (1.22). In view of Lemma 2.5, we prove the following bound;
given any ε > 0 and sufficiently small δ2 > 0, there exists θ > 0 such that

(4.23)

for any p ≥ 1 and 0 < T ≤ 1, uniformly in N ∈ N.
We start by computing the space-time Fourier transform of with a time cutoff.

As shown in (1.22), the quintic stochastic objects is a convolution of in (1.15)
and in (1.14):

(4.24)

Using Lemma B.2, we can write and as multiple stochastic integrals:

(4.25)
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where fn,t,t ′ and gn,t are defined by

fn,t,t ′(z1, z2, z3) = 1n=n123 · sin((t − t ′)〈n123〉)
〈n123〉

×
( 3∏

j=1

sin((t ′ − t j )〈n j 〉)
〈n j 〉1+α

· 1|n j |≤N · 1[0,t ′](t j )

)
,

gn,t (z1, z2) = 1n=n12 ·
( 2∏

j=1

sin((t − t j )〈n j 〉)
〈n j 〉1+α

· 1|n j |≤N · 1[0,t](t j )

)
.

(4.26)

By the product formula (Lemma B.4) to (4.24), we can decompose into the
components in the homogeneous Wiener chaosesHk , k = 1, 3, 5:

(4.27)

where , , and . By taking the Fourier transforms
in time, the relation (4.27) still holds. Then, by using the orthogonality ofH5,H3, and
H1, we have

Hence, it suffices to prove (4.23) for each , j = 1, 3, 5.

Case (i): Non-resonant term . From (4.25) and (4.26), we have

where f (5)
n,t is defined by

f (5)
n,t (z1, z2, z3, z4, z5) = 1n=n12345 ·

∫ t

0

sin((t − t ′)〈n123〉)
〈n123〉

×
( 3∏

j=1

sin((t ′ − t j )〈n j 〉)
〈n j 〉1+α

· 1|n j |≤N · 1[0,t ′](t j )

)
dt ′

×
( 5∏

j=4

sin((t − t j )〈n j 〉)
〈n j 〉1+α

· 1|n j |≤N · 1[0,t](t j )

)
.

(4.28)
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Let Sym( f (5)
n,t ) be the symmetrization of f (5)

n,t defined in (B.1). Then, from Lemma B.1
(ii), we have

Then, by taking the temporal Fourier transform and applying Fubini’s theorem
(Lemma B.2), we have

Then, by (4.6), Fubini’s theorem, and Lemma B.1 (iii) with (4.15) and (4.16), we have

(4.29)

where z̄ = (z1, . . . , z5).
By expanding the sine functions in (4.28) in terms of the complex exponentials, we

have

f (5)
n,t (z1, z2, z3, z4, z5) = c · 1n=n12345

∑
E

ε̂ · eitκ1(n̄)

〈n123〉
∫ t

max(t1,t2,t3)
e−i t ′κ2(n̄)dt ′

×
( 5∏

j=1

1

〈n j 〉1+α
· 1|n j |≤N

)( 5∏
j=4

1[0,t](t j )

)
F1(z1, . . . , z5),

(4.30)

where F1(z1, . . . , z5) is independent of t and t ′ with |F1| ≤ 1. Here, E , ε̂, κ1(n̄), and
κ2(n̄) are defined by

E = {
ε1, . . . , ε5, ε123 ∈ {−1, 1}}, ε̂ = ε123

5∏
j=1

ε j ,

κ1(n̄) = ε123〈n123〉 + ε4〈n4〉 + ε5〈n5〉,
κ2(n̄) = ε123〈n123〉 − ε1〈n1〉 − ε2〈n2〉 − ε3〈n3〉.

(4.31)

By integrating in t ′, we have
∫ t

max(t1,t2,t3)
e−i t ′κ2(n̄)dt ′ = e−i tκ2(n̄) − e−i t∗123κ2(n̄)

−iκ2(n̄)
, (4.32)
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where t∗123 = max(t1, t2, t3). Then, from (4.30) and (4.32), we have

∣∣Ft (1[0,T ] f (5)
n,· (z̄))(τ − ε0〈n〉)∣∣ � 1n=n12345

1

〈κ2(n̄)〉〈min(|τ − κ3(n̄)|, |τ − κ4(n̄)|)〉

× 1

〈n123〉
( 5∏

j=1

1

〈n j 〉1+α
· 1|n j |≤N · 1[0,T ](t j )

)
,

(4.33)

where κ3(n̄) and κ4(n̄) are defined by

κ3(n̄) = ε0〈n12345〉 + ε123〈n123〉 + ε4〈n4〉 + ε5〈n5〉,

κ4(n̄) = ε0〈n12345〉 +
5∑

j=1

ε j 〈n j 〉. (4.34)

Given dyadic N j ≥ 1, j = 1, 2, 3, 4, 5, we denote by B N
N1,··· ,N5

the contribution

to from |n j | ∼ N j in (4.33). Let E0 = E ∪ {ε0 ∈ {−1, 1}} and Nmax =
max(N1, . . . , N5). Then, from (4.29), Jensen’s inequality (B.2), and (4.33)with (1.23),
we have

∥∥∥∥∥1[0,T ]B N
N1,··· ,N5

∥∥
X

s−1,− 1
2−δ

T

∥∥∥2
L2(�)

� T θ
∑
E0

∑
n∈Z3

∑
n=n12345|n j |∼N j

〈n〉2(s−1)

〈n123〉2
1

〈κ2(n̄)〉2
( 5∏

j=1

1

〈n j 〉2+2α

)

×
∫
R

1

〈τ 〉1+2δ〈min(|τ − κ3(n̄)|, |τ − κ4(n̄)|)〉2 dτ

� T θ
∑
E0

sup
m,m′∈Z

∑
n1,...,n5∈Z3

|n j |∼N j

〈n12345〉2(s−α+ 1
2 ε−1)

〈n1234〉 1
2 ε〈n12〉 1

2 ε〈n123〉2 ∏5
j=1〈n j 〉2

×1{|κ2(n̄)−m|≤1}
(
1{|κ3(n̄)−m′|≤1} + 1{|κ4(n̄)−m′|≤1}

)
(4.35)

for some θ > 0, provided that δ > 0. In the last step, we used the following bound:

∫
R

1

〈τ 〉1+2δ〈min(|τ − κ3(n̄)|, |τ − κ4(n̄)|)〉2 dτ

≤
∫
R

1

〈τ 〉1+2δ〈τ − κ3(n̄)〉2 dτ +
∫
R

1

〈τ 〉1+2δ〈τ − κ4(n̄)〉2 dτ

� 〈κ3(n̄)〉−1−2δ + 〈κ4(n̄)〉−1−2δ

�
∑
m′∈Z

1

〈m′〉1+2δ

(
1{|κ3(n̄)−m′|≤1} + 1{|κ4(n̄)−m′|≤1}

)
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for δ > 0. Then, by applying Lemma A.4 to (4.35), we obtain

∥∥∥∥∥1[0,T ] B N
N1,··· ,N5

∥∥
X

α− 1
2−ε,− 1

2−δ

T

∥∥∥2
L2(�)

� T θ N−δ0
max (4.36)

for some δ0 > 0, provided that ε, δ > 0. Using (4.29) and (4.33), a crude bound shows

∥∥∥∥
∥∥∥1[0,T ] B N

N1,··· ,N5

∥∥∥
X0,0

∥∥∥∥
2

L2(�)

� T θ N K
max (4.37)

for some (possibly large) K > 0. By interpolating (4.36) and (4.37), applying the
Winner chaos estimate (Lemma 2.9), and then summing over dyadic N j , j = 1, . . . , 5,
we obtain

for some θ > 0, uniformly in N ∈ N. Proceeding as in the end of the proof of
Lemma 3.1 (ii) on , a slight modification of the argument above yields convergence

of to . Since the required modification is straightforward, we omit details.

A similar comment applies to and studied below.

Case (ii): Single-resonance term . In view of the product formula (Lemma B.4)19

and Definition B.3 together with (4.25) and (4.26), we have

where f (3)
n,t is defined by

f (3)
n,t (z1, z2, z4) =

∑
n3∈Z3

1n=n124 ·
( 4∏

j=1

1|n j |≤N

)
sin((t − t j )〈n4〉)

〈n4〉1+α
· 1[0,t](t4)

×
∫ t

0

sin((t − t ′)〈n123〉)
〈n123〉

( 2∏
j=1

sin((t ′ − t j )〈n j 〉)
〈n j 〉1+α

· 1[0,t ′](t j )

)

×
(∫ t ′

0

sin((t − t3)〈n3〉) sin((t ′ − t3)〈n3〉)
〈n3〉2+2α dt3

)
dt ′.

19 Note that both fn,t,t ′ and gn,t in (4.26) are symmetric in their arguments.
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By the Wiener chaos estimate (Lemma 2.9) and Hölder’s inequality, we have

(4.38)

for small δ2 > 0. Hence, (4.23) follows once we prove

(4.39)

for ε > 0, uniformly in N ∈ N.
With the symmetrization Sym( f (3)

n,t ) defined in (B.1), it follows from Lemma B.1
and Jensen’s inequality (B.2) that

(4.40)

where I(3)(z1, z2, t4) is defined by

I(3)(z1, z2, t4) =
∑

|n3|≤N

1

〈n123〉〈n3〉2+2α

∫ t

max(t1,t2)
sin((t − t ′)〈n123〉)

×
( 2∏

j=1

sin((t ′ − t j )〈n j 〉)
)

×
∫ t ′

0
sin((t − t3)〈n3〉) sin((t ′ − t3)〈n3〉)dt3dt ′.

(4.41)

By switching the order of the integrals in (4.41) (with a = max(t1, t2)):

∫ t

a

∫ t ′

0
f dt3dt ′ =

∫ a

0

∫ t

a
f dt ′dt3 +

∫ t

a

∫ t

t3
f dt ′dt3

and integrating in t ′ first, we have

|I(3)(z1, z2, t4)| �
∑

ε1,ε2,ε3,ε123∈{−1,1}

∑
|n3|≤N

1

〈n123〉〈n3〉2+2α〈κ2(n̄)〉 , (4.42)

123



Stoch PDE: Anal Comp

where κ2(n̄) is as in (4.31). Hence, from (4.40), (4.42), and Lemma A.3, we obtain

By applying Lemma 2.8 iteratively, we then obtain

provided that δ1 > 0. This yields (4.39).

Case (iii): Double-resonance term . As in Case (ii), from the product formula
(Lemma B.4) and Definition B.3 together with (4.25) and (4.26), we have

where f (1)
n,t is defined by

f (1)
n,t (z1) =

∑
n2,n3∈Z3

1n=n1 ·
( 3∏

j=1

1|n j |≤N

)

×
∫ t

0

sin((t − t ′)〈n123〉)
〈n123〉

sin((t ′ − t1)〈n1〉)
〈n1〉1+α

· 1[0,t ′](t1)

×
(∫ t ′

0

∫ t ′

0

3∏
j=2

sin((t − t j )〈n j 〉) sin((t ′ − t j )〈n j 〉)
〈n j 〉2+2α dt2dt3

)
dt ′.

Arguing as in (4.38), it suffices to show

(4.43)

for ε > 0, uniformly in N ∈ N.
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With the symmetrization Sym( f (1)
n,t ) defined in (B.1), it follows from Lemma B.1

and Jensen’s inequality (B.2) that

(4.44)

where I(1)(z1) is defined by

I(1)(z1) =
∑

|n2|,|n3|≤N

1

〈n123〉〈n2〉2+2α〈n3〉2+2α

×
∫ t

t1
sin((t − t ′)〈n123〉 sin((t ′ − t1)〈n1〉)

×
∫ t ′

0

∫ t ′

0

3∏
j=2

sin((t − t j )〈n j 〉) sin((t ′ − t j )〈n j 〉)dt2dt3dt ′.

(4.45)

By switching the order of the integrals in (4.45) and integrating in t ′ first, we have

|I(1)(z1)| �
∑

|n2|,|n3|≤N

1

〈n123〉〈n2〉2+2α〈n3〉2+2α〈κ2(n̄)〉 , (4.46)

where κ2(n̄) is as in (4.31). Hence, from (4.44) and (4.46), we obtain

Now, apply the dyadic decompositions |n j | ∼ N j , j = 1, 2, 3.Bynoting that 〈n12〉α �
Nα
1 Nα

2 and that |κ2(n̄) − m| ≤ 1 implies |m| � Nmax = max(N1, N2, N3), it follows
from Lemma A.5 that
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provided that ε > 0, where γ = γ (ε, α) > 0 is sufficiently small. This yields (4.43).
This concludes the proof of Lemma 3.4 (i).

4.3 Septic stochastic term

In this subsection, we present the proof of Lemma 3.4 (ii) on the septic stochastic term

defined in (1.24). Proceeding as in (4.38), it suffices to show

(4.47)

for ε > 0, uniformly in N ∈ N. As in the previous subsections, we decom-

pose into the components in the homogeneous Wiener chaoses Hk ,
k = 1, 3, 5, 7:

(4.48)

where . From the orthogonality of Hk , we have

Hence, it suffices to prove (4.47) for , j = 0, 1, 2, 3.

123



Stoch PDE: Anal Comp

Case (i): Non-resonant septic termWefirst study the non-resonant term .
From (1.12) and (4.25) with (4.26) and (4.15), we have

(4.49)

where f (7)
n,t is defined by

f (7)
n,t (z1, . . . , z7) = 1n=n1234567 ·

( 7∏
j=1

1|n j |≤N

)

×
∫ t

0

sin((t − t ′)〈n123〉)
〈n123〉

( 3∏
j=1

sin((t ′ − t j )〈n j 〉)
〈n j 〉1+α

1[t j ,t](t ′)
)

dt ′

×
∫ t

0

sin((t − t ′′)〈n456〉)
〈n456〉

( 6∏
j=4

sin((t ′′ − t j )〈n j 〉)
〈n j 〉1+α

1[t j ,t](t ′′)
)

dt ′′

× sin((t − t7)〈n7〉)
〈n7〉1+α

1[0,t](t7).

(4.50)

By defining the amplitude � by

�(t, z1, z2, z3) =
∫ t

max(t1,t2,t3)

sin((t − t ′)〈n123〉)
〈n123〉

3∏
j=1

sin((t ′ − t j )〈n j 〉)
〈n j 〉1+α

dt ′, (4.51)

we have

f (7)
n,t (z1, . . . , z7) = �(t, z1, z2, z3)�(t, z4, z5, z6)

sin((t − t7)〈n7〉)
〈n7〉1+α

.

Let κ2(n̄) be as in (4.31). Then, from (4.51), we have

sup
t∈[0,T ]

|�(t, z1, z2, z3)| � K (n1, n2, n3)

3∏
j=1

〈n j 〉−α,

where K (n1, n2, n3) is defined by

K (n1, n2, n3) = 1

〈n123〉〈κ2(n̄)〉
3∏

j=1

1

〈n j 〉 . (4.52)

Note that from Lemma A.1, we have

∑
n1,n2,n3∈Z3

|n j |∼N j

K 2(n1, n2, n3) � max(N1, N2, N3)
γ (4.53)
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for any γ > 0. In viewof (4.52) and (4.31), K (n1, n2, n3) depends on ε123, ε1, ε2, ε3 ∈
{−1, 1}. In the following, however, we drop the dependence on ε123, ε1, ε2, ε3 ∈
{−1, 1} since (4.53) uniformly in ε123, ε1, ε2, ε3 ∈ {−1, 1}. The same comment
applies to (4.54) below.

With the symmetrization Sym( f (7)
n,t ) defined in (B.1), it follows from Lemma B.1,

Jensen’s inequality (B.2), and Lemma 2.8 (to sum over n7) that

for some θ > 0, provided that δ1 > 0. By applying the dyadic decomposition |n j | ∼
N j , j = 1, . . . , 7, and then applying (4.53), we then obtain

as long as γ < 2α. This proves (4.47).
Case (ii): General septic terms As we saw in the previous subsections, all other terms

in (4.48) come from the contractions of the product of . In order to fully
describe these terms, we recall the notion of a pairing from [12, Definition 4.30] to
describe the structure of the contractions.

Definition 4.3 (pairing) Let J ≥ 1. We call a relation P ⊂ {1, . . . , J }2 a pairing if

(i) P is reflexive, i.e. ( j, j) /∈ P for all 1 ≤ j ≤ J ,
(ii) P is symmetric, i.e. (i, j) ∈ P if and only if ( j, i) ∈ P ,
(iii) P is univalent, i.e. for each 1 ≤ i ≤ J , (i, j) ∈ P for at most one 1 ≤ j ≤ J .

If (i, j) ∈ P , the tuple (i, j) is called a pair. If 1 ≤ j ≤ J is contained in a pair, we
say that j is paired. With a slight abuse of notation, we also write j ∈ P if j is paired.
If j is not paired, we also say that j is unpaired and write j /∈ P . Furthermore, given a
partition A = {A�}L

�=1 of {1, · · · , J }, we say that P respects A if i, j ∈ A� for some
1 ≤ � ≤ L implies that (i, j) /∈ P . Namely, P does not pair elements of the same set
A� ∈ A. We say that (n1, . . . , n J ) ∈ (Z3)J is admissible if (i, j) ∈ P implies that
ni + n j = 0.
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In order to represent , k = 1, 3, 5, as multiple stochastic integrals as in
(4.49), we start with (4.50) and perform a contraction over the variables z j = (n j , t j ),
namely, we consider a (non-trivial)20 pairing on {1, . . . , 7}. Then, by integrating in t ′
and t ′′ first in (4.50) after a contraction, a computation analogous to that in Case (i)
yields

(4.54)

where K is as in (4.52) and the non-resonant frequency nnr is defined by

nnr =
∑
j /∈P

n j . (4.55)

Here, �k denotes the collection of pairings P on {1, . . . , 7} such that (i) P respects
the partition A = {{1, 2, 3}, {4, 5, 6}, {7}} and (ii) |P| = 7 − k (when we view P

as a subset of {1, . . . , 7}). Note that the estimate on discussed in Case (i) is a
special case of (4.54) with P = ∅. By applying Lemma A.6 (with (1.23)), we then
obtain

provided that ε > 0. This concludes the proof of Lemma 3.4 (ii).

4.4 Random operator

In this subsection, we present the proof of Lemma 3.5 on the random operator
defined in (1.21).

In view of (3.1) and (3.2) in the definition of Ls1,s2,b
T0

, (1.21), and the nonhomoge-
neous linear estimate (Lemma 2.5), it suffices to show the following bound:

(4.56)

20 Namely, P = ∅.
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for some small δ1, δ2 > 0 and any p ≥ 1, uniformly in N ∈ N. From (2.9), we see
that (4.56) follows once we prove

(4.57)

Furthermore, by inserting a sharp time-cutoff function on [0, 1], we may drop the
supremum in T and reduce the bound (4.57) to proving

(4.58)

As in the proof of Lemma 3.1 (ii), we first prove

(4.59)

namelywith b = − 1
2−δ < − 1

2 on the Xs,b-normof for δ > 0. In fact,
we prove a frequency-localized version of (4.59) (see (4.72) below) and interpolate it
with a trivial X0,0 estimate (see (4.73) below), as in the proof of Lemma 3.1 (ii) and
Lemma 3.4 (i), to establish (4.58) with b = − 1

2 + 2δ2 > − 1
2

We start by computing the space-time Fourier transform of . From
(4.25) and (4.26), we have

where gn−n3,t (z1, z2) is as in (4.26). Now, write v = v1 + v−1, where

v̂1(n, τ ) = 1[0,∞)(τ ) · v̂(n, τ ) and v̂−1(n, τ ) = 1(−∞,0)(τ ) · v̂(n, τ ).

Then, by noting |̂v(n, τ )|2 = |̂v1(n, τ )|2 + |̂v−1(n, τ )|2, we have
‖v‖2Xs,b =

∑
ε3∈{−1,1}

‖vε3‖2Xs,b

=
∑

ε3∈{−1,1}

∥∥〈n〉s〈τ 〉b v̂ε3(n, τ + ε3〈n〉)∥∥2
�2n L2

τ
.

(4.60)

With this in mind, we write

(4.61)
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where ε0, ε3 ∈ {−1, 1} and the kernel H = H ε0,ε3 is given by

H(n, n3, τ, τ3) = 〈n〉− 1
2+δ1〈n3〉− 1

2−δ1
1√
2π

∫ 1

0
e−i t(τ−τ3−ε0〈n〉−ε3〈n3〉) I2[gn−n3,t ]dt .

By Fubini’s theorem (Lemma B.2), we can write H as

H(n, n3, τ, τ3) = 〈n〉− 1
2+δ1〈n3〉− 1

2−δ1 I2[hn,n3,τ,τ3 ], (4.62)

where hn,n3,τ,τ3 is given by

hn,n3,τ,τ3(z1, z2) = 1n−n3=n12 · 1√
2π

∫ 1

0
e−i t(τ−τ3−ε0〈n〉−ε3〈n3〉)

×
( 2∏

j=1

sin((t − t j )〈n j 〉)
〈n j 〉1+α

· 1|n j |≤N · 1[0,t](t j )

)
dt .

(4.63)

Then, by (4.6), (4.61), Cauchy–Schwarz’s inequality, and (4.60), we have

as long as δ, δ2 > 0, where, in the last step, we used Minkowski’s integral inequality
followed by Hölder’s inequality (in τ and τ3). Here, we viewed H(n, n3, τ, τ3) (for
fixed τ, τ3 ∈ R) as an infinite dimensional matrix operator mapping from �2n3 into �2n .
Hence, the estimate (4.59) is reduced to proving

sup
ε0,ε3

sup
τ,τ3∈R

∥∥∥‖H(n, n3, τ, τ3)‖�2n3
→�2n

∥∥∥
L p(�)

� p. (4.64)
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As mentioned above, we instead establish a frequency-localized version of (4.64):

sup
ε0,ε3

sup
τ,τ3∈R

∥∥∥‖HN1,N2,N3(n, n3, τ, τ3)‖�2n3
→�2n

∥∥∥
L p(�)

� pN−δ0
max , (4.65)

for some small δ0 > 0, uniformly in dyadic N1, N2, N3 ≥ 1, where Nmax =
max(N1, N2, N3) and HN1,N2,N3 is defined by (4.62) and (4.63) with extra frequency
localizations 1|n j |∼N j , j = 1, 2, 3. Namely, we have

HN1,N2,N3(n, n3, τ, τ3) = 〈n〉− 1
2+δ1〈n3〉− 1

2−δ1 I2
[
hN1,N2,N3

n,n3,τ,τ3

]
, (4.66)

where hN1,N2,N3
n,n3,τ,τ3 is given by

hN1,N2,N3
n,n3,τ,τ3 (z1, z2) =

∑
ε1,ε2∈{−1,1}

cε1,ε21n−n3=n12 · 1|n3|∼N3 · 1√
2π

∫ 1

0
e−i t(τ−τ3−κ(n̄))

×
( 2∏

j=1

e−i t j ε j 〈n j 〉

〈n j 〉1+α
· 1|n j |∼N j

|n j |≤N
· 1[0,t](t j )

)
dt (4.67)

with κ(n̄) as in (4.7).
For m ∈ Z, define the tensor hm by

hm
nn1n2n3 = cε1,ε21n=n123 · 1|n3|∼N3

( 2∏
j=1

1|n j |∼N j
|n j |≤N

)

× 1{|κ(n̄)−m|≤1}
〈n〉− 1

2+δ1

〈n1〉1+α〈n2〉1+α〈n3〉 1
2+δ1

.

(4.68)

Then, from (4.66), (4.67), and (4.68), we have

HN1,N2,N3(n, n3, τ, τ3) =
∑

ε1,ε2∈{−1,1}

∑
m∈Z

Hm(n, n3, τ, τ3)

:=
∑

ε1,ε2∈{−1,1}

∑
m∈Z

I2
[
hm

nn1n2n3H
m
n3,τ,τ3

]
,

(4.69)

where Hm
n3,τ,τ3 is given by

Hm
n3,τ,τ3(z1, z2)

= 1√
2π

∫ 1

0
1{|κ(n̄)−m|≤1}e−i t(τ−τ3−κ(n̄))

( 2∏
j=1

e−i t j ε j 〈n j 〉 · 1[0,t](t j )
)

dt .
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Performing t-integration, we have

‖Hm
n3,τ,τ3(z1, z2)‖�∞

n1,n2
L2

t1,t2
([0,1]2) � 〈τ − τ3 − m〉−1. (4.70)

Then from Lemma C.3, (4.70), and Lemma C.2 (with (1.23)), there exists δ3 > 0 such
that ∥∥∥‖Hm(n, n3, τ, τ3)‖�2n3

→�2n

∥∥∥
L p(�)

� pN ε
max〈τ − τ3 − m〉−1

×max
(
‖hm‖n1n2n3→n, ‖hm‖n3→nn1n2 , ‖hm‖n1n3→nn2 , ‖hm‖n2n3→nn1

)
� pN ε−δ3

max 〈τ − τ3 − m〉−1. (4.71)

for any ε > 0, provided that δ1 < α, which is needed to apply Lemma C.2. Hence,
by noting that the condition |κ(n̄) − m| ≤ 1 implies |m| � Nmax and summing over
m ∈ Z, the bound (4.65) follows from (4.69) and (4.71) (by taking ε > 0 sufficiently
small), which in turn implies

(4.72)

for some δ0 > 0, where vN3 = F−1
x (1|n|∼N3 v̂(n)) and

Namely, the frequencies n1, n2, and n3 are localized to the dyadic blocks {|n j | ∼ N j },
j = 1, 2, 3.
On the other hand, a crude bound shows

(4.73)

for some (possibly large) K > 0. By interpolating (4.72) and (4.73) and then summing
over dyadic N j , j = 1, . . . , 3, we obtain (4.58) for some small δ2 > 0.

Lastly, as for the convergence of to , we can simply repeat the computation
above to estimate the difference for M ≥ N ≥ 1. In con-
sidering the difference of the tensors hm in (4.68), we then obtain a new restriction
max(|n1|, |n2|) � N , which allows us to gain a small negative power of N . As a result,
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we obtain

for some small ε, δ′
0 > 0, Then, interpolating this with (4.73) and summing over

dyadic blocks, we then obtain

for any p ≥ 1 and M ≥ N ≥ 1. Then, by applying Chebyshev’s inequality, summing
over N ∈ N, and applying the Borel–Cantelli lemma, we conclude the almost sure

convergence of . This concludes the proof of Lemma 3.5.
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Appendix A: Counting estimates

In this section, we state the counting estimates used in Sect. 4 to study the regularities
of the stochastic terms. These lemmas are taken from Bringmann [12]. Note that
some statements are given in a slightly simplified form. The same comment applies
to Lemma C.2.

Lemma A.1 (Proposition 4.20 in [12]) Let 0 < s ≤ 1
2 and 0 ≤ β ≤ 1

2 . Given
ε j ∈ {−1, 1} for j = 0, 1, 2, 3, let κ(n̄) = κε0,ε1,ε2,ε3(n1, n2, n3) be as in (4.7). Then,
we have

sup
m∈Z

∑
n1,n2,n3∈Z3

|n j |∼N j

〈n123〉2(s−1) 1{|κ(n̄)−m|≤1}
〈n12〉2β ∏3

j=1〈n j 〉2
� N 2(s−β)

max ,
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uniformly in dyadic N1, N2, N3 ≥ 1 and ε j ∈ {−1, 1} for j = 0, 1, 2, 3, where
Nmax = max(N1, N2, N3).

Lemma A.2 (Lemma 4.22 (i) in [12]) Given ε j ∈ {−1, 1} for j = 0, 1, 2, 3, let
κ(n̄) = κε0,ε1,ε2,ε3(n1, n2, n3) be as in (4.7). Then, we have

sup
m∈Z

sup
n∈Z3

#
{
(n1, n2, n3) ∈ Z

3 : |n j | ∼ N j , j = 1, 2, 3, n = n123, {|κ(n̄) − m| ≤ 1}
}

� med(N1, N2, N3)
3 min(N1, N2, N3)

2,

uniformly in dyadic N1, N2, N3 ≥ 1 and ε j ∈ {−1, 1} for j = 0, 1, 2, 3.

Next, we recall the basic resonant estimate.

Lemma A.3 (Lemma 4.25 in [12]) Given ε j ∈ {−1, 1} for j = 0, 1, 2, 3, let κ(n̄) =
κε0,ε1,ε2,ε3(n1, n2, n3) be as in (4.7). Then, we have

∑
m∈Z

∑
n1∈Z3

|n1|∼N1

1{|κ(n̄)−m|≤1}
〈m〉〈n123〉〈n1〉2 � log(2 + N1)

〈n23〉 ,

uniformly in dyadic N1 ≥ 1 and ε j ∈ {−1, 1} for j = 0, 1, 2, 3.

The next two lemmas (and Lemma A.3 above) are used for estimating the quintic
stochastic term.

Lemma A.4 Let s ≤ 1
2 − η and β > 0 for some η > 0. Given ε123, ε j ∈ {−1, 1} for

j = 0, . . . , 5, let κ2(n̄), κ3(n̄), and κ4(n̄) be as in (4.31) and (4.34). Then, we have

sup
m,m′∈Z

∑
n1,...,n5∈Z3

|n j |∼N j

〈n12345〉2(s−1)

〈n1234〉2β〈n12〉2β〈n123〉2 ∏5
j=1〈n j 〉2

× 1{|κ2(n̄)−m|≤1}
(
1{|κ3(n̄)−m′|≤1} + 1{|κ4(n̄)−m′|≤1}

)
� max(N1, N2, N3, N4)

−2β+ε N−η

5

(A.1)

for any ε > 0, uniformly in dyadic N1, . . . , N5 ≥ 1 and ε123, ε j ∈ {−1, 1} for
j = 0, . . . , 5, where Nmax = max(N1, . . . , N5).

LemmaA.4 is essentially Lemma 4.27 in [12], where the condition |κ4(n̄)−m′| ≤ 1
in (A.1) is replaced by |κ4(n̄)+ε123〈n123〉−m′| ≤ 1.Wepoint out that thismodification
does not make any difference in the proof. In our notation, the first step of the proof
of Lemma 4.27 in [12] is to sum over n5, using [12, Lemma 4.17], for which the
conditions |κ4(n̄) − m′| ≤ 1 in (A.1) and |κ4(n̄) + ε123〈n123〉 − m′| ≤ 1 do not make
any difference since the extra term ε123〈n123〉 is fixed in summing over n5.
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Lemma A.5 (Lemma 4.29 in [12]) Let β > 0. Given ε123, ε j ∈ {−1, 1} for j = 1, 2, 3,
let κ2(n̄) be as in (4.31). Then, we have

sup
m∈Z3

sup
|n1|∼N1

∑
|n2|∼N2|n3|∼N3

1{|κ2(n̄)−m|≤1}
〈n123〉〈n12〉β〈n2〉2〈n3〉2 � max(N1, N2)

−β+ε

for any ε > 0, uniformly in dyadic N1, N2, N3 ≥ 1 and ε123, ε j ∈ {−1, 1} for
j = 1, 2, 3.

Lastly, we state the septic counting estimate. See Definition 4.3 in Sect. 4.3 for the
definition of a paring.

Lemma A.6 (Lemma 4.31 in [12])
Let 1

2 < s < 1 and β > 0. Given ε123, ε j ∈ {−1, 1} for j = 1, 2, 3, let κ2(n̄) be as
in (4.31) and set

K(n1, n2, n3) =
∑
m∈Z

1{|κ2(n̄)−m|≤1}
〈m〉〈n123〉〈n12〉β

3∏
j=1

1

〈n j 〉 .

LetP be a pairing on {1, · · · , 7} which respects the partition
{{1, 2, 3}, {4, 5, 6}, {7}}.

Then, we have

∑
{n j } j /∈P

〈nnr〉2(s−1)
( ∑

{n j } j∈P
1|n1234567|∼N1234567 · 1|n1237|∼N1237 · 1|n456|∼N456 · 1|n7|∼N7

× 1(n1,...,n7)
admissible

· K(n1, n2, n3)K(n4, n5, n6)

〈n7〉
)2

� N 2s−1+ε
max

for any ε > 0, uniformly in dyadic N1234567, N1237, N456, N7 ≥ 1 and ε123, ε j ∈
{−1, 1} for j = 1, 2, 3, where Nmax = max(N1, · · · , N7) and nnr is as in (4.55).

Appendix B: Multiple stochastic integrals

In this section, we go over the basic definitions and properties of multiple stochastic
integrals. See [43] and also [12, Section 4] for further discussion.

Let λ be the measure on Z := Z
3 × R+ defined by

dλ = dndt,

where dn is the counting measure on Z
3. Given k ∈ N, we set λk = ⊗k

j=1 λ and

L2(Zk) = L2((Z3 × R+)k, λk). Given a function f ∈ L2(Zk), we can adapt the
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discussion in [43, Section 1.1] (in particular, [43, Example 1.1.2]) to the complex-
valued setting and define the multiple stochastic integral Ik[ f ] by

Ik[ f ] =
∑

n1,...,nk∈Z3

∫
[0,∞)k

f (n1, t1, . . . , nk, tk)d Bn1(t1) · · · d Bnk (tk).

Given a function f ∈ L2(Zk), we define its symmetrization Sym( f ) by

Sym( f )(z1, . . . , zk) = 1

k!
∑
σ∈Sk

f (zσ(1), . . . , zσ(k)), (B.1)

where z j = (n j , t j ) as in (4.15) and Sk denotes the symmetric group on {1, . . . , k}.
Note that by Jensen’s equality, we have

|Sym( f )(z1, . . . , zk)|p ≤ 1

k!
∑
σ∈Sk

| f (zσ(1), . . . , zσ(k))|p (B.2)

for any p ≥ 1. We say that f is symmetric if Sym( f ) = f . We now recall some basic
properties of multiple stochastic integrals.

Lemma B.1 Let k, � ∈ N. The following statements hold for any f ∈ L2(Zk) and
g ∈ L2(Z�):

(i) Ik : L2(Zk) → Hk ⊂ L2(�) is a linear operator, where Hk denotes the kth
Wiener chaos.

(ii) Ik[Sym( f )] = Ik[ f ].
(iii) Ito isometry:

E
[
Ik[ f ]I�[g] ] = 1k=� · k!

∫
(Z3×R)k

Sym( f )Sym(g)dλk .

(iv) Furthermore, suppose that f is symmetric. Then, we have

Ik[ f ] = k!
∑

n1,··· ,nk∈Z3

∫ ∞

0

∫ t1

0

∫ tk−1

0
f (n1, t1, . . . , nk, tk)d Bnk (tk) · · · d Bn1(t1),

where the iterated integral on the right-hand side is understood as an iterated
Ito integral.

We state a version of Fubini’s theorem for multiple stochastic integrals that is
convenient for our purpose. See, for example, [15, Theorem 4.33] for a version of the
stochastic Fubini theorem.

Lemma B.2 Let k ≥ 1. Given finite T > 0, let f ∈ L2((Z3 ×[0, T ])k ×[0, T ], dλk ⊗
dt

)
. (In particular, we assume that the temporal support (for the variables t1, . . . , tk, t)
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of f is contained in [0, T ]k+1 for any (n1, . . . , nk).) Then, we have

∫ T

0
Ik[ f (·, t)]dt = Ik

[ ∫ T

0
f (·, t)dt

]
(B.3)

in L2(�).

Proof From Lemma B.1 (ii), we may assume that f (z1, . . . , zk, t) is symmetric in
z j = (n j , t j ), j = 1, . . . , k. Let nnn = (n1, . . . , nk) and ttt = (t1, . . . , tk). From
Minkowski’s integral inequality, Lemma B.1 (iii), and Cauchy–Schwarz’s inequality,
we have

∥∥∥ ∫ T

0
Ik[( f − ϕ)(·, t)]dt

∥∥∥
L2(�)

�
∫ T

0
‖( f − ϕ)(·, t)‖�2nnn((Z3)k ;L2

ttt ([0,T ]k ))dt

≤ T
1
2 ‖ f − ϕ‖�2nnn((Z3)k ;L2

t,ttt ([0,T ]k+1)).

(B.4)

On the other hand, by Lemma B.1 (iii) and Cauchy–Schwarz’s inequality, we have∥∥∥∥Ik

[ ∫ T

0
( f − ϕ)(·, t)dt

]∥∥∥∥
L2(�)

∼
∥∥∥∥
∫ T

0
( f − ϕ)(·, t)dt

∥∥∥∥
�2nnn((Z3)k ;L2

ttt (Rk+))

≤ T
1
2 ‖ f − ϕ‖�2nnn((Z3)k ;L2

t,ttt ([0,T ]k+1)).

(B.5)

Hence, it follows from (B.4), (B.5) and the density21 of �2nnn((Z3)k; C∞
t,ttt ([0, T ]k+1))

in �2nnn((Z3)k; L2
t,ttt ([0, T ]k+1)) that we may assume that f is symmetric and belongs

to �2nnn((Z3)k; C∞
t,ttt ([0, T ]k+1)). Furthermore, we may assume that f has a compact

support in nnn. Namely, there exists K > 0 such that if max(|n1|, . . . , |nk |) > K ,
then f (n1, t1, . . . , nk, tk, t) = 0 for any t1, . . . , tk, t ∈ [0, T ]. Then, together with
Lemma B.1 (iv), we have

∫ T

0
Ik [ f (·, t)]dt

= k!
∫ T

0

∑
n1,...,nk∈Z3

max(|n1|,...,|nk |)≤K

∫ T

0

∫ t1

0
· · ·

∫ tk−1

0
f (z1, . . . , zk , t)d Bnk (tk) · · · d Bn1 (t1)dt

= k!
∑

n1,...,nk∈Z3

max(|n1|,...,|nk |)≤K

∫ T

0

∫ T

0

∫ t1

0
· · ·

∫ tk−1

0
f (z1, . . . , zk , t)d Bnk (tk) · · · d Bn1 (t1)dt,

(B.6)

21 By identifying a function f ∈ �2nnn((Z3)k ; L2
t,ttt ([0, T ]k+1)) with a sequence { fnnn}nnn∈(Z3)k ⊂

L2
t,ttt ([0, T ]k+1), we can approximate each fnnn by a smooth function ϕnnn such that ‖ fnnn −ϕnnn‖L2

t,ttt ([0,T ]k+1)
<

εnnn such that εnnn is symmetric in nnn and
∑

nnn∈(Z3)k εnnn = ε. Then, the function ϕ ∼= {ϕnnn}nnn∈(Z3)k approximates

f within distance ε in �2nnn((Z3)k ; L2
t,ttt ([0, T ]k+1)). Since f is symmetric, we can choose ϕ to be symmetric.
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since the summation is over a finite set of indicesnnn = (n1, . . . , nk) and f is symmetric.
Hence, it remains to justifying the t-integration with the stochastic integrals for each
fixed nnn = (n1, . . . , nk). For this reason, we suppress the dependence of f on nnn =
(n1, . . . , nk) in the following.

When k = 1, we can exploit the smoothness of f and have

∫ T

0

∫ T

0
f (t1, t)d Bn1 (t1)dt =

∫ T

0
f (T , t)Bn1 (T )dt −

∫ T

0

∫ T

0
Bn1 (t1)∂t1 f (t1, t)dt1dt

= Bn1 (T )

∫ T

0
f (T , t)dt −

∫ T

0
Bn1 (t1)∂t1

(∫ T

0
f (t1, t)dt

)
dt1

=
∫ T

0

∫ T

0
f (t1, t)dtd Bn1 (t1),

where, at the second equality, we used the standard Fubini’s theorem in view of the
almost sure boundedness of Bn1 on [0, T ]. This proves (B.3) when k = 1.

For the general case, let us first consider the innermost integral in (B.6). For
notational simplicity, let us suppress all the variables of f except for tk and t . Let
�m = {0 ≤ τ0 < τ1 < · · · < τm ≤ T } be a partition of [0, T ] and define a step func-
tion fm(·, t) by setting fm(τ, t) = f (τ j−1, t) for τ j−1 < τ ≤ τ j . Then, by defining
Jm by

Jm(t) :=
∫ tk−1

0
fm(tk, t)d Bnk (tk) =

m∑
j=1

(1[0,tk−1] f )(τ j−1, t)
(
Bnk (τ j ) − Bnk (τ j−1)

)
,

(B.7)

it follows from the definition of the Wiener integral that

Jm(t) −→
∫ tk−1

0
f (tk, t)d Bnk (tk) in L2(�), (B.8)

as m → ∞ (such that |�m | → 0). By integrating (B.7) in t , we have

∫ T

0
Jm(t)dt =

m∑
j=1

(∫ T

0
(1[0,tk−1] f )(τ j−1, t)dt

)(
Bnk (τ j ) − Bnk (τ j−1)

)
. (B.9)

By the definition of the Wiener integral once again, we have

RHS of (B.9) −→
∫ tk−1

0

∫ T

0
f (tk, t)dtd Bnk (tk) in L2(�), (B.10)
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while from Minkowski’s integral inequality, (B.8), and the bounded convergence the-
orem (recall that f is smooth), we have

∥∥∥∥
∫ T

0
Jm(t)dt −

∫ T

0

∫ tk−1

0
f (tk, t)d Bnk (tk)dt

∥∥∥∥
L2(�)

≤
∫ T

0

∥∥∥Jm(t) −
∫ tk−1

0
f (tk, t)d Bnk (tk)

∥∥∥
L2(�)

dt −→ 0,

(B.11)

as m → ∞. Hence, from (B.9), (B.10), and (B.11), we conclude that

∫ T

0

∫ tk−1

0
f (tk, t)d Bnk (tk)dt =

∫ tk−1

0

∫ T

0
f (tk, t)dtd Bnk (tk) in L2(�). (B.12)

Next, we consider

∫ tk−2

0

∫ T

0
F(tk−1, t)dtd Bnk−1(tk−1)

:=
∫ tk−2

0

∫ T

0

(∫ tk−1

0
f (tk−1, tk, t)d Bnk (tk)

)
dtd Bnk−1(tk−1).

(B.13)

Given the partition�m of [0, T ] as above, we define an adaptive step function Fm(·, t)
by setting Fm(τ, t;ω) = F(τ j−1, t;ω) for τ j−1 < τ ≤ τ j . Then,we can simply repeat
the previous computation (but with Ito integrals instead ofWiener integrals) and obtain

∫ T

0

∫ tk−2

0
F(tk−1, t)d Bnk−1(tk−1)dt =

∫ tk−2

0

∫ T

0
F(tk−1, t)dtd Bnk−1(tk−1)

(B.14)

in L2(�). Combining (B.13) and (B.14) with (B.12), we then obtain

∫ T

0

∫ tk−2

0

∫ tk−1

0
f (tk−1, tk, t)d Bnk (tk)d Bnk−1(tk−1)dt

=
∫ tk−2

0

∫ tk−1

0

∫ T

0
f (tk−1, tk, t)dtd Bnk (tk)d Bnk−1(tk−1)

in L2(�). By iterating this process, we conclude

∫ T

0

∫ T

0

∫ t1

0
· · ·

∫ tk−1

0
f (t1, . . . , tk, t)d Bnk (tk) · · · d Bn1(t1)dt

=
∫ T

0

∫ t1

0
· · ·

∫ tk−1

0

∫ T

0
f (t1, . . . , tk, t)dtd Bnk (tk) · · · d Bn1(t1)

in L2(�). Together with (B.6), this proves (B.3). ��
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Weconclude this section by stating the product formula (LemmaB.4). Before doing
so, we first recall the contraction of two functions.

Definition B.3 Let k, � ∈ N. Given an integer 0 ≤ r ≤ min(k, l), we define the
contraction f ⊗r g of r indices of f ∈ L2(Zk) and g ∈ L2(Z�) by

( f ⊗r g)(z1, . . . , zk+�−2r ) =
∑

m1,...,mr ∈Z3

∫
R

r+
f (z1, . . . , zk−r , ζ1, . . . , ζr )

× g(zk+1−r , . . . , zk+�−2r , ζ̃1, . . . , ζ̃r )ds1 · · · dsr ,

where ζ j = (m j , s j ) and ζ̃ j = (−m j , s j ).

Note that even if f and g are symmetric, their contraction f ⊗r g is not symmetric
in general. We now state the product formula. See [43, Proposition 1.1.3].

Lemma B.4 (product formula) Let k, � ∈ N. Let f ∈ L2(Zk) and g ∈ L2(Z�) be
symmetric functions. Then, we have

Ik[ f ] · I�[g] =
min(k,�)∑

r=0

r !
(

k

r

)(
�

r

)
Ik+�−2r [ f ⊗r g].

Appendix C: Random tensors

In this section, we provide the basic definition and some lemmas on (random) tensors
from [12,18]. See [18, Sections 2 and 4] and [12, Section 4] for further discussion.

Definition C.1 Let A be a finite index set. We denote by n A the tuple (n j : j ∈ A). A
tensor h = hn A is a function: (Z3)A → C with the input variables n A. Note that the
tensor h may also depend on ω ∈ �. The support of a tensor h is the set of n A such
that hn A 
= 0.

Given a finite index set A, let (B, C) be a partition of A. We define the norms ‖·‖n A

and ‖ · ‖nB→nC by

‖h‖n A = ‖h‖�2n A
=

(∑
n A

|hn A |2
) 1

2

and

‖h‖2nB→nC
= sup

{∑
nC

∣∣∣∑
nB

hn A fnB

∣∣∣2 : ‖ f ‖�2nB
= 1

}
, (C.1)

where we used the short-hand notation
∑

nZ
for

∑
nZ ∈(Z3)Z for a finite index set Z .

Note that, by duality, we have ‖h‖nB→nC = ‖h‖nC →nB = ‖h‖nB→nC for any tensor
h = hn A . If B = ∅ or C = ∅, then we have ‖h‖nB→nC = ‖h‖n A .
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For example, when A = {1, 2}, the norm ‖h‖n1→n2 denotes the usual operator norm
‖h‖�2n1

→�2n2
for an infinite dimensional matrix operator {hn1n2}n1,n2∈Z3 . By bounding

the matrix operator norm by the Hilbert–Schmidt norm (= the Frobenius norm), we
have

‖h‖�2n1
→�2n2

≤ ‖h‖�2n1,n2
(C.2)

Let (B, C) be a partition of A. Then, by duality, we can write (C.1) as

‖h‖nB→nC = sup

{∑
nC

∣∣∣∑
nB

hn A fnB gnC

∣∣∣ : ‖ f ‖�2nB
= ‖g‖�2nC

= 1

}
,

from which we obtain

sup
n A

|hn A | = sup
nB ,nC

|hnB nC | ≤ ‖h‖nB→nC . (C.3)

Next, we recall a key deterministic tensor bound in the study of the random cubic
NLW from [12].

Lemma C.2 (Lemma 4.33 in [12])
Let s < 1

2 + β for some β > 0. Given ε j ∈ {−1, 1} for j = 0, 1, 2, 3, let κ(n̄) be
as in (4.7). For m ∈ Z, define the tensor hm by

hm
nn1n2n3 =

( 3∏
j=1

1|n j |∼N j
|n j |≤N

)
1{|κ(n̄)−m|≤1}

〈n〉s−1

〈n12〉β〈n1〉〈n2〉〈n3〉 1
2

.

Then, there exists δ0 > 0 such that

max
(
‖hm‖n1n2n3→n, ‖hm‖n3→nn1n2 , ‖hm‖n1n3→nn2 , ‖hm‖n2n3→nn1

)
� max(N1, N2, N3)

−δ0 ,

uniformly in N ≥ 1, m ∈ Z, dyadic N1, N2, N3 ≥ 1, and ε j ∈ {−1, 1} for j =
0, 1, 2, 3.

We conclude this section with the following random matrix estimate. This lemma
is essentially Propositions 2.8 and 4.14 in [18]; see also Proposition 4.50 in [12].
In our stochastic PDE setting, however, we need a slightly different formulation (in
particular, adapted to multiple stochastic integrals with general integrands) and thus
for readers’ convenience, we present its proof.

Let A be a finite index set. As in (4.15) and (4.16), we set z A = (kA, tA) for
(kA, tA) ∈ (Z3)A × R

A and write fz A = f (z A) = f (n A, tA).
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Lemma C.3 Let A be a finite index set with k = |A| ≥ 1. Let h = hbcn A be a tensor
such that n j ∈ Z

3 for each j ∈ A and (b, c) ∈ (Z3)d for some integer d ≥ 2. Given
N ≥ 1, assume that

supp h ⊂ {|b|, |c|, |n j | � N for each j ∈ A
}
. (C.4)

Given a (deterministic) tensor hbcn A ∈ �2bcn A
, define the tensor H = Hbc by

Hbc = Ik
[
hbcn A fz A

]
(C.5)

for f ∈ �∞
n A

((Z3)A; L2
tA

(RA+)), where Ik denotes the multiple stochastic integral
defined in Appendix B. Then, for any θ > 0, we have

∥∥‖Hbc‖b→c
∥∥

L p(�)
� p

k
2 N θ

(
max
(B,C)

‖h‖bnB→cnC

)
‖ f (n A, tA)‖�∞

n A
L2

tA
, (C.6)

where the maximum is taken over all partitions (B, C) of A.

Remark C.4 (i) The assumption that hbcn A ∈ �2bcn A
and f ∈ �∞

n A
((Z3)A; L2

tA
(RA+))

ensures that the multiple stochastic integral Ik
[
hbcn A fz A

]
in (C.5) is well defined.

Note that if for instance we have a stronger condition f ∈ �2
(
(Z3)A; L2(RA+)

)
,

then the conclusion (C.6) trivially holds without any loss in N . We also note that
even if the tensor h is random, Lemma C.3 holds with the same proof as long
as h is independent of the Brownian motions {Bn A } defining multiple stochastic
integrals.

(ii) By translation invariance, we may replace the condition (C.4) in Lemma C.3 by

supp h ⊂ {|b − b∗|, |c − c∗|, |n j − n j,∗| � N for each j ∈ A
}

for some (b∗, c∗) ∈ (Z3)d and n j,∗ ∈ Z
3, j ∈ A.

Proof of Lemma C.3 We follow the proof of Proposition 4.14 in [18] and use a higher
order version of Bourgain’s T T ∗-argument [9]. Let T : �2c → �2b be the linear operator
whose kernel is Hbc. Namely, T is defined by

(T g)b =
∑

c

Hbcgc, g ∈ �2c . (C.7)

For j ∈ N, we define the operator Tj by Tj = (T T ∗)m if j = 2m, and Tj = (T T ∗)m T
if j = 2m + 1. We claim that Tj has a kernel which is given by a linear combination
of terms T j of the form

T j =
{

I�
[
ybb′(zD)

]
, when j is even,

I�
[
ybc(zD)

]
, when j is odd,

(C.8)
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for some finite index set D and � = |D| ≤ k j , where ybb′(zD) (or ybc(zD)) satisfies
the following bound:

‖ybb′(zD)‖�2bcnD
L2

tD

(
or ‖ybc(zD)‖�2bcnD

L2
tD

)
�

(
max
(B,C)

‖h‖bnB→cnC

) j−1‖hbcn A‖�2bcn A
‖ f (n A, tA)‖ j

�∞
n A

L2
tA

.
(C.9)

where themaximum is taken over all partitions (B, C) of A. Here, the implicit constant
depends on k, �, and j . While it grows with j (and �), this does not cause an issue
since for a given small θ > 0 in (C.6), we fix j = j(θ) � 1.

Let j = 1. In this case, comparing (C.8) with (C.7) and (C.5) and using
Lemma B.1 (ii), we have ybc(zD) = Sym(hbcn A f (z A)) with D = A and thus the
bound (C.9) follows from Hölder’s inequality. Note that, in this case, it follows from
Lemma B.1 (iii) that

‖ybc(z A)‖�2bcn A
L2

tA
= (k!)−1

∥∥‖Hbc‖�2bc

∥∥
L2(�)

,

where the right-hand side is the second moment of the Hilbert–Schmidt norm of the
operator T . By taking higher powers Tj , we control the operator norm of T .

Now, assume that the claim with (C.8) and (C.9) hold true for j − 1. We assume
that j is odd. The proof for even j is analogous. Noting that Tj = Tj−1T , it follows
from the inductive hypothesis (C.8) with (C.5) and Lemma B.1 (ii) that the kernel for
Tj is given by a linear combination of terms T j of the form

(T j )bc =
∑

b′
(T j−1)bb′ Hb′c

=
∑

b′
I�
[
ybb′(zD)

] · Ik
[
hb′cn A f (z A)

]
=

∑
b′

I�
[
Sym(ybb′(zD))

] · Ik
[
Sym(hb′cn A f (z A))

]
.

Then, from the product formula (Lemma B.4), we have

(T j )bc =
min(k,�)∑

r=0

r !
(

k

r

)(
�

r

)
Ik+�−2r

[∑
b′

(
Sym(ybb′) ⊗r Sym(hb′c f )

)]
.

Hence, it suffices to show that
∑

b′(Sym(ybb′) ⊗r Sym(hb′c f )) satisfies (C.9) for
each 0 ≤ r ≤ min(k, �). For notational simplicity, we drop Sym in Sym(ybb′) and
Sym(hb′c f ) in the following. Note that this does not cause any issue since, in taking
the L2(�)-norm, we can remove Sym by Jensen’s inequality (B.2) as in Sect. 4.
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Fix 0 ≤ r ≤ min(k, �). From Definition B.3 on the contraction, we have(
ybb′ ⊗r hb′c f

)
(zB)

=
∑
nC

∫
R

r+
ybb′(zB1 , zC ) · (hb′c f )(zB2 , z̃C )dtC ,

(C.10)

where z̃C = (−nC , tC ) for given zC = (nC , tC ). Here, B1, B2, and C are pairwise
disjoint sets such that |B1| = � − r , |B2| = k − r , |C | = r , B = B1 ∪ B2, and (by
suitable relabeling of indices)

B1 ∪ C = D and B2 ∪ C = A. (C.11)

Then, from (C.10), Cauchy–Schwarz’s inequality (in tC ), Minkowski’s integral
inequality (with L2

tB
= L2

tB1
L2

tB2
, (C.1), and the identification in (C.11), we have

∥∥∥∑
b′

(
ybb′ ⊗r hb′c f

)
(nB, tB)

∥∥∥
�2bcnB

L2
tB

≤
∥∥∥ ∑

b′,nC

‖ybb′(nB1 , tB1 , nC , tC )‖L2
tB1

tC
· ‖(hb′c f )(nB2 , tB2 ,−nC , tC )‖L2

tB2
tC

∥∥∥
�2bcnB

≤ ‖ybb′(nB1 , tB1 , nC , tC )‖�2
bb′nB1

nC
L2

tB1
tC

∥∥∥‖(hb′c f )(zB2 , zC )‖L2
tB2

tC

∥∥∥
b′nC →cnB2

= ‖ybb′(zD)‖�2
bb′nD

L2
tD

∥∥∥hb′cn A‖ f (z A)‖L2
tA

∥∥∥
b′nC →cn A\C

. (C.12)

Moreover, from (C.1), we have∥∥∥hb′cn A‖ f (z A)‖L2
tA

∥∥∥
b′nC →cn A\C

≤ ‖hb′cn A‖b′nC →cn A\C ‖ f (n A, tA)‖�∞
n A

L2
tA

≤
(

max
(A1,A2)

‖hbcn A‖bn A1→cn A2

)
‖ f (n A, tA)‖�∞

n A
L2

tA
,

(C.13)

where the maximum is taken over all partitions (A1, A2) of A. Hence, from (C.12),
(C.13), and the inductive hypothesis (C.9) (with j − 1 in place of j), we obtain (C.9)
for j . Therefore, by induction, the claim holds for any j ∈ N.

We are now ready to prove (C.6). Consider the product T2m = (T T ∗)m for m ≥ 1.
Let us denote by R2m the kernel of T2m , which consists of terms T j , satisfying (C.8)
and (C.9). Namely, we have

(R2m)bb′ =
J∑

j=1

I2k� j

[
y( j)

bb′ (zD( j) )
]

(C.14)

for some J ≥ 1, 0 ≤ � j ≤ m, and y( j)
bb′ , satisfying (C.9). Note that we have R2m ∈

H≤2mk . Then, by the standard T T ∗ argument, (C.2), Minkowski’s integral inequality,
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(C.14), theWiener chaos estimate (Lemma 2.9), LemmaB.1 (iii), and (C.9), we obtain

∥∥‖Hbc‖b→c
∥∥

L p(�)
= ∥∥‖Hbc‖2m

b→c

∥∥ 1
2m

L
p
2m (�)

= ∥∥‖T ‖2m
�2c→�2b

∥∥ 1
2m

L
p
2m (�)

= ∥∥‖(T T ∗)m‖�2
b′→�2b

∥∥ 1
2m

L
p
2m (�)

≤ ∥∥‖(R2m)bb′ ‖�2
bb′
∥∥ 1

2m

L
p
2m (�)

≤ ∥∥‖(R2m)bb′ ‖
L

p
2m (�)

∥∥ 1
2m

�2
bb′

≤ p
k
2

( J∑
j=1

∥∥∥∥∥I2k� j

[
y( j)

bb′ (zD( j) )
]∥∥

L2(�)

∥∥∥
�2

bb′

) 1
2m

� p
k
2

( J∑
j=1

‖y( j)
bb′ (zD( j) )‖�2bcn

D( j)
L2

t
D( j)

) 1
2m

� p
k
2

(
max
(B,C)

‖h‖bnB→cnC

)1− 1
2m ‖h‖

1
2m

�2bcn A

‖ f (n A, tA)‖�∞
n A

L2
tA

(C.15)

for any p ≥ 4m. Moreover, from (C.4) and (C.3), we have

‖h‖�2bcn A
≤ N

3
2 (d+k) sup

b,c,n A

|hbcn A | ≤ N
3
2 (d+k) max

(B,C)
‖h‖bnB→cnC . (C.16)

Therefore, by combining (C.15) and (C.16) and taking m sufficiently large, we obtain
the desired bound (C.6). ��
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