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Antibiotic resistance in the commensal human gut 
microbiota 
Lisa E Lamberte and Willem van Schaik   

Antibiotic-resistant infections are a major threat to global public 
health and there is an urgent need to develop new drugs and 
interventions to treat and prevent infections caused by 
antibiotic-resistant bacteria. The human gut microbiota 
harbours both commensals and opportunistic pathogens which 
can acquire resistance to antibiotics through mutation and 
horizontal gene transfer. The powerful combination of modern 
high-throughput DNA sequencing and microbiological culture 
methods is providing novel insights into the mechanisms of 
antibiotic resistance among, up to recently poorly studied, 
commensal bacteria in the gut. Interventions to minimise the 
abundance of antibiotic-resistant commensals and 
opportunistic pathogens include faecal microbiota 
transplantation and the use of live biotherapeutics, but the 
efficacy of these treatments remains elusive. 
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The human gut microbiota as a reservoir of 
antibiotic resistance genes 
Antibiotic resistance is a grave threat to modern medi-
cine and global public health. The global attributable 
mortality of antibiotic resistance is estimated to number 
around 1.3 million deaths [1]. Most of these deaths occur 
in low-income and middle-income countries, with the 
highest numbers in South Asia (an estimated 389 000 
deaths) and Sub-Saharan Africa (approximately 255 000 
deaths) [1]. Antibiotic resistance can be mediated by a 
variety of mechanisms, with the most important being 
the prevention of access of the antibiotic to its target, the 

prevention of the antibiotic binding to its target and the 
modification or degradation of the antibiotic [2]. Bacteria 
can develop resistance through mutations, which can 
then further spread vertically upon cell division to 
daughter cells. Alternatively, bacteria can acquire mobile 
genetic elements carrying antibiotic resistance genes in a 
process termed horizontal gene transfer (HGT). Ad-
ditionally, genes transferred horizontally may also be 
inherited vertically from mother to daughter cells 
(Figure 1), further contributing to the spread of anti-
biotic resistance genes. Mechanisms of HGT include 
transformation, transduction, conjugation and DNA 
transfer via membrane vesicles [3]. Collectively, these 
pathways of HGT contribute to the global spread of 
antibiotic resistance genes in microbial ecosystems. The 
transfer of antibiotic resistance genes is predicted to be 
particularly high in ecosystems where microbial abun-
dance and diversity are high, such as the bacterial 
communities found in the human gut [4•,5]. 

The term 'human gut microbiota' describes the collec-
tive of microbes that colonise the human intestinal tract  
[6]. Members of the gut microbiota typically have a 
symbiotic relationship with their human host, by sup-
plying nutrients and providing protection from patho-
genic organisms [7]. However, opportunistic pathogens 
can also be present in the gut microbiota. These are 
mostly carried asymptomatically in healthy individuals 
but can cause infections, particularly when the host is 
immunocompromised. These gut-dwelling, opportu-
nistic pathogens include Clostridioides difficile, Escherichia 
coli and Enterococcus faecium [8–10]. In addition, species 
in the genus Bacteroides, in particular Bacteroides fragilis, 
are among the most prominent anaerobic causes of in-
fection, even though they are widely regarded as com-
mensal members of the gut microbiota [11,12]. Indeed, 
the human gut microbiota is now recognised as a re-
servoir of antibiotic resistance determinants, termed the 
‘gut resistome’ [13,14]. Thus, there is an interest to 
study antibiotic resistance in the human gut microbiota 
and to characterise to what extent the resistome can 
contribute to the emergence of multidrug-resistant 
clones of opportunistic pathogens. 

In this review, we discuss current research into the 
human gut resistome using high-throughput DNA se-
quencing and microbiological culture. We primarily 
focus on antibiotic resistance in gut commensals as re-
sistance mechanisms of opportunistic pathogens that 
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colonise the human gut have been reviewed elsewhere  
[10,15,16]. We will also discuss current strategies to re-
duce the levels of antibiotic-resistant bacteria in the 
human gut by microbiota manipulation. 

Antibiotic resistance in gut commensals 
The human gut microbiota in healthy adults is a gen-
erally stable ecosystem that is mostly studied using high- 
throughput DNA sequencing. Initial studies showed 
that a large diversity of antibiotic resistance genes exists 
in the human gut microbiota with genes encoding re-
sistance to tetracyclines, beta-lactams and macrolides 
being particularly prevalent across gut microbiotas of 
different individuals [17]. Methods to predict novel an-
tibiotic resistance genes through machine learning ap-
proaches or on the basis of the predicted three- 
dimensional structure of the proteins they encode sug-
gest that gut bacteria carry over 6000 uncharacterised 
antibiotic resistance determinants [18•,19]. With most 
high-throughput sequencing methods, it remains a 
challenge to link an antibiotic resistance gene to its 
bacterial host or hosts. This challenge can be overcome 
through the use of metagenomic chromosome con-
firmation capture methods, most prominently by a 
technique termed Hi-C, in which regions of bacterial 
DNA that are in close proximity to each other are cap-
tured and sequenced [4•]. When antibiotic resistance 
genes are thus linked to chromosomal markers, the mi-
crobial hosts of these antibiotic resistance genes can be 
identified. Studies using Hi-C have suggested that HGT 
of resistance genes is frequent in the human gut mi-
crobiota [4•]. The taxonomic resolution of Hi-C is, 
however, often insufficient to identify the hosts of re-
sistance genes down to the strain- or species-level, and 
may not be able to identify links between resistance 
genes and chromosomal markers in members of the gut 
microbiota that are present at low abundance [20]. For 
this reason, the use of microbiological culture methods 
to isolate resistant bacteria from the gut microbiota is an 
essential alternative technique to profile the gut re-
sistome, with high-throughput approaches being used to 
isolate, identify and characterise the microbial hosts of 
resistance genes [21]. 

A systematic study has recently assessed the impact of 
144 different antibiotics on a set of strains representing 
38 species of gut bacteria [22••]. This study showed that 
β-lactam resistance among gut commensals is strain- 
specific and most likely spreads through HGT. Re-
markably, both macrolides and tetracyclines selectively 
kill a wide range of gut commensals, which suggests that 
these antibiotics may disproportionately affect the gut 
microbiota during therapy. As the species described in 
this study are representative to those of the healthy 
human gut microbiota, we use these bacteria as a basis to 

discuss some of the key members of the gut commensal 
community in the following paragraphs. 

Among the quantitatively most prominent members of 
the gut microbiota, strains from the genus Bacteroides 
have high resistance rates across antibiotic drug classes, 
particularly β-lactams and tetracyclines [23–25]. Re-
sistance to β-lactams in these genera is linked to the 
genes cfxA, cfiA, and cepA, while resistance to tetra-
cyclines is linked to the gene tetQ [24]. The tetQ gene, 
along with the macrolide resistance gene ermF, is carried 
on a 65-kbp conjugative transposon, named CTnDOT, 
that is present in 80% of Bacteroides spp isolates. 
CTnDOT excision and conjugative transfer is triggered 
by exposure to low levels of tetracycline, thus leading to 
its rapid dissemination among Bacteroides strains [26]. 

The mucin-degrader Akkermansia muciniphila, a species 
in the phylum Verrucomicrobia, is near ubiquitously 
present in the adult human gut microbiota, making up 
approximately 3% of the bacteria in the colon [27]. Le-
vels of A. muciniphila are lower in individuals with a 
variety of conditions, including obesity, metabolic syn-
drome and diabetes. This observation has led to research 
efforts to better understand the impact of A. muciniphila 
on human health [28]. Antibiotic resistance in A. muci-
niphila has so far been poorly studied. A recent study 
showed that the type strain of A. muciniphila was re-
sistant to nearly all quinolone antibiotics [22••]. 
Genome sequence analysis of 39 Akkermansia muciniphila 
strains showed that a single strain among this dataset had 
acquired sulphonamide and aminoglycoside resistance 
genes through an HGT event from the Salmonella en-
terica plasmid pRSF1010 [29]. As A. muciniphila is pro-
posed as a live biotherapeutic that could positively 
contribute to host health [30], a deeper understanding of 
its antibiotic resistance mechanisms and the potential of 
its resistance genes to spread horizontally is urgently 
needed. 

Species in the genus Bifidobacterium are abundant in the 
infant gut, but present at lower levels in adult gut. 
Supplementation of infant nutrition with Bifidobacterium 
to promote health is a topic of considerable interest [31]. 
It is therefore important to ensure that probiotic Bifido-
bacterium strains are free of any relevant antibiotic re-
sistance genes important to infant gut health. An 
exception can be made for the gene ileS, which confers 
intrinsic mupirocin resistance [32]. In a study that as-
sessed the resistome of Bifidobacterium species from gut 
metagenome data sets of adults and infants, the tetra-
cycline resistance gene tetW was predicted to be carried 
on a conjugative transposon, suggesting they can be ac-
quired or disseminated via HGT [33]. 

C. difficile has been shown to develop resistance to me-
tronidazole through the acquisition of a high-copy 
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plasmid, presumably via HGT, although the donor could 
not be identified [34]. HGT in the gut microbiota ap-
pears to be particularly prominent among members of 
the phylum Firmicutes and it is thus likely that there is 
widespread sharing of resistance genes in this phylum, 
including between commensals and opportunistic pa-
thogens, like C. difficile and Enterococcus [35••]. 

However, it is still unclear to what extent antibiotic re-
sistance genes in commensals are a threat to human 
health. An important recent study set out a framework 
that can be used to assess the risks associated with 
finding resistance genes in microbial genome sequences  
[36•]. The resistance genes in the highest risk category 
are those that are associated with mobile genetic ele-
ments in human pathogens. The large majority (81.6%) 
of antibiotic resistance genes were, however, not asso-
ciated with mobile genetic elements. These genes are 
thus likely to be intrinsic determinants of antibiotic re-
sistance, and, if found in a commensal, may not mean-
ingfully contribute to the burden of resistance genes 
among pathogens. 

Interventions to reduce expansion of the gut 
resistome 
The human gut resistome is affected by a variety of 
factors, including changes in diet and exposure to anti-
biotics [37,38]. In particular, members of the families 
Enterobacteriaceae and Enterococcaceae, which contain 
several opportunistic pathogens, were found to expand 
and persist during antibiotic treatment of healthy adult 
individuals [39,40]. Additionally, antibiotic treatment 
diversifies the resistome across individuals, suggesting 
that the resistome composition is highly individualised  
[37]. The impact of the resistome is well recognised in 
vulnerable individuals such as preterm infants and im-
munocompromised individuals. In particular, the gut 
microbiota in hospitalised patients undergoes rapid and 
dynamic changes, such as the loss of microbial diversity 
and the expansion of opportunistic pathogens, during 
their stay [41,42]. However, commensal anaerobes pre-
sent during admission may prevent the expansion of 
pathogenic bacteria by suppressing their growth and 
colonisation [42,43]. 

Given the importance of the resistome in human health, 
methods to circumvent the expansion of the resistome 
by manipulating the microbiota are being explored. 
Currently, the most-studied methods include faecal 
microbiota transplantation (FMT), and the use of live 
biotherapeutics (probiotics) which could suppress the 
outgrowth of bacteria carrying antibiotic resistance genes 
(Figure 1). Of these, FMT is the most dramatic inter-
vention to modulate the composition of the gut micro-
biota as it involves a replacement of the original gut 
microbiota of the host by new microbiota provided via 

the stools of a healthy donor [44]. FMTs are effective in 
the treatment of recurrent C. difficile infections and 
FMTs in patients suffering from C. difficile infections 
have been shown to lead to the elimination of antibiotic 
resistance genes from the gut microbiota as well [45]. 
The success of FMT in the treatment of C. difficile in-
fections has spurred several studies into the use of FMT 
to eradicate gut colonisation by multidrug-resistant 
bacteria. The authors of a recent systematic review on a 
total of 36 studies covering 254 patients remarked that 
variability in patient populations, FMT protocols and 
the multidrug-resistant bacteria that are being targeted 
by the treatment complicate the interpretation of data on 
the efficacy of FMTs on gut colonisation by multidrug- 
resistant bacteria. Despite these limitations, however, 
FMT was associated with a moderate amount of reduc-
tion (ranging from 20% to 90%) of gut colonisation by 
multidrug-resistant bacteria [46•]. 

Evidence for the effectiveness of probiotics as a method 
for microbiota recovery and eradication of antibiotic-re-
sistant bacteria after antibiotic exposure has so far been 
elusive [47]. Studies using lactic acid bacteria, which are 
traditionally used in probiotic products, even suggested 
that probiotics might negatively affect the reconstitution 
of the gut microbiota post-antibiotic exposure [48]. A 
recent study determined the impact of taking both an-
tibiotics and probiotics (a commercially available pro-
biotic supplement composed of 11 strains from the 
Lactobacillus, Bifidobacterium, Streptococcus, and Lacto-
coccus genera) on the human gut resistome. In in-
dividuals where the probiotics colonised the gut, and 
which were not treated with antibiotics, a reduction in 
antibiotic resistance gene load was observed in an in-
dividual-specific way [49•]. Currently, there is sig-
nificant interest in the use of novel live biotherapeutic 
products which contain gut commensals that have not 
been traditionally used as probiotics in food products  
[50], but no studies have so far studied the impact of 
these novel products on the levels of antibiotic re-
sistance genes in the gut microbiota [47]. The use of 
novel live biotherapeutic products can, however, be an 
intriguing approach as recent studies in gut microcosms 
suggest that the gut microbiota can suppress growth of 
E. coli and its evolution towards antibiotic resistance 
upon exposure to an antibiotic [43]. Other promising 
interventions include prebiotics, postbiotics, phage- 
mediated therapies, conjugation inhibitors, and vaccines, 
although only a limited number of studies that has been 
conducted with inconsistent outcomes [47,51]. Finally, it 
may be possible to redeploy existing drugs to protect 
commensal bacteria against exposure to antibiotics. 
While the precise mechanisms of these antidotes have 
not been characterised, the anticoagulant dicumarol 
provided some protection to Bacteroides vulgatus upon 
exposure to erythromycin in a mouse model [22••]. 
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Conclusions 
The spread of antibiotic-resistant pathogens is a major 
public health concern and there are ongoing intensive 
research efforts to develop new drugs and interventions 
to treat and prevent multidrug-resistant infections. As 
commensals in the human gut microbiota frequently 
carry antibiotic resistance genes, these bacteria may 
contribute to the emergence of resistant clones of op-
portunistic pathogens, particularly in the rare events 
where HGT occurs across phylogenetic barriers  
[35••,52]. For this reason, there is an interest to develop 
interventions that reduce the selection for antibiotic-re-
sistant bacteria in the human gut microbiota (Figure 1). 
Both FMTs and the administration of live biother-
apeutics have shown some promise to reduce carriage of 
multidrug-resistant bacteria in the gut, but significant 
variations in the success of these interventions have 
been observed. Due to the complex interactions be-
tween the host, the microbiota, and external factors (e.g. 
diet), it may be unlikely that there will be an easy ‘one- 
size-fits-all’ solution to reduce the burden of antibiotic- 
resistant bacteria in the gut microbiota. Despite this 
observation, there remains an urgent need for studies on 
unravelling the role of gut bacteria in the dissemination 
of antibiotic resistance genes to opportunistic pathogens. 
Insights from these studies can be useful to identify 
novel ‘hubs’ of resistance gene dissemination among 
commensal bacteria, potentially leading to the develop-
ment of targeted approaches to inhibit HGT or to era-
dicate these strains from the gut. 
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