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ABSTRACT

Respiratory motion can cause artifacts in magnetic resonance imaging of
the body trunk if patients cannot hold their breath or triggered acquisi-
tions are not practical. Retrospective correction strategies usually cope
with motion by fast imaging sequences under free-movement conditions
followed by motion binning based on motion traces. These acquisitions
yield sub-Nyquist sampled and motion-resolved k-space data. Motion
states are linked to each other by non-rigid deformation fields. Usually,
motion registration is formulated in image space which can however
be impaired by aliasing artifacts or by estimation from low-resolution
images. Subsequently, any motion-corrected reconstruction can be bi-
ased by errors in the deformation fields. In this work, we propose a
deep-learning based motion-corrected 4D (3D spatial + time) image
reconstruction which combines a non-rigid registration network and a
4D reconstruction network. Non-rigid motion is estimated in k-space
and incorporated into the reconstruction network. The proposed method
is evaluated on in-vivo 4D motion-resolved magnetic resonance images
of patients with suspected liver or lung metastases and healthy sub-
jects. The proposed approach provides 4D motion-corrected images and
deformation fields. It enables a ∼ 14× accelerated acquisition with a 25-
fold faster reconstruction than comparable approaches under consistent
preservation of image quality for changing patients and motion patterns.

Keywords: Motion-compensated image reconstruction, Magnetic Resonance
Imaging, Image registration, Deep learning reconstruction

1 Introduction

In clinical diagnostics, magnetic resonance imaging (MRI) is a valuable and
versatile tool to assess anatomy and functional processes within the human
body in a non-invasive manner. However, MRI is prone to several artifacts
which can deteriorate image quality significantly. Due to its long acquisition
time, motion is one of the major extrinsic factors influencing image quality.
Patient and physiological motion induces aliasing along the phase-encoding
direction and/or blurring of the image content, where the appearance depends
on the imaging trajectory.

Motion visualization, estimation and correction are thus important tasks
when processing MRI data. Fast and accurate motion estimation and tracking
is required to enable prospective or retrospective motion correction techniques
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which can be applied to, e.g., image guided interventions [50], cardiac assess-
ment [48] or magnetic resonance (MR)-based motion correction of positron
emission tomography (PET) data [38, 53]. Several prospective and retro-
spective motion correction methods have been developed which include fast
imaging sequences [17, 45], tracking of motion by sensors (MR navigators [22,
30, 66], cameras [46], respiratory belts or electrocardiogram [75]), application
of motion-robust acquisition schemes [3], prospectively corrected acquisitions
[67], and motion-resolved imaging [10, 19, 31, 40, 72].

Global translations or rotations of stiff structures describe rigid motion and
arises from movement of body parts like head motion. Rigid motion can be
modelled in k-space as linear phase drifts and incorporated into acquisition as
prospective correction scheme or into reconstruction as retrospective correction
scheme. Non-rigid motion, i.e., local deformations of tissues, mainly occurs in
the thorax and abdominal region caused by physiological motion. However,
local deformations in image space are related to non-trivial changes in the
acquired k-space, which imposes further challenges in motion correction. Cor-
rection of non-rigid motion usually involves two steps: image reconstruction
and image registration from motion-resolved data.

Motion-resolved data acquisition for these applications are usually accel-
erated by Parallel Imaging or Compressed Sensing techniques yielding sub-
Nyquist sampled (in the following denoted as subsampled) k-space data. In
order to reconstruct aliasing-free images these methods rely on reconstruction
schemes that, for example incorporate sparsity or low-rank constraints to solve
the ill-posed problem [45, 56]. Fixed sparsity assumptions in Compressed Sens-
ing are often too restrictive and incapable of fully modelling spatio-temporal
dynamics. Careful fine-tuning between regularization and data consistency
is required and especially in highly subsampled cases residual aliasing may
remain in the image (under-regularization) or staircasing and blurring artifacts
can occur (over-regularization) which affect the image registration.

After reconstruction, non-rigid motion fields can be estimated in image
space from reconstructed images by solving a registration problem. A particular
interest and challenge lies in the derivation of reliable motion fields which
capture the spatio-temporal non-rigid deformations, such as respiratory or
cardiac movement. The non-rigid motion estimation problem can be formulated
in image space using diffusion-based [69], parametric spline-based [61] or optical
flow-based methods [23].

Instead of performing these two steps sequentially, motion-compensated
image reconstruction schemes [1, 2, 11, 21, 54, 55, 71] integrate both motion
field estimation and motion correction into the reconstruction process. These
methods require reliable motion-resolved images from which the motion fields
can be estimated. Motion field estimation can be controlled or supported
by external motion surrogate signals [11, 54], initial motion field estimates
[1, 2], from motion-aliased images [21] or low-frequency image contents [71].
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Moreover, spatio-temporal redundancies can be exploited to achieve an aliasing-
free image [5, 8, 27, 32, 43, 44, 52]. While these methods have been proven
to be more robust against registration errors, they can require a significantly
increased computational demand and/or limit imaging acceleration.

In case of highly subsampled data, aliasing artifacts in the reconstructed
images can impair the registration process as reconstruction errors can prop-
agate into the image registration and/or low-resolution images do not provide
sufficient information for accurate registration. Moreover, higher subsampling
leads to a challenging ill-posed reconstruction problem for which inherent
spatio-temporal redundancies need to be better exploited. Recently deep-
learning based reconstruction methods have been promoted to target this area
[7, 9, 12, 13, 18, 20, 24, 26, 29, 33, 42, 49, 59, 62, 64, 68, 73, 74, 77]. Network
inputs thereby differ from single-coil 2D image [12, 64, 73] and/or k-space [12,
68, 77] to multi-coil 2D image [7, 41, 49, 63], 2D k-space [6, 9, 20, 24, 63, 73] or
low-resolution 3D k-space [47]. The works studied static imaging [7, 12, 13, 18,
20, 26, 41, 49, 68, 73, 74, 77] and dynamic imaging [33, 59, 62, 64], i.e., exploit-
ing spatio-temporal dynamics. Recently, works investigated the possibility to
combine reconstruction networks with image-based registrations [25, 58, 65].

The novel contributions of this work are the integration of an unrolled
reconstruction and registration network into a motion-corrected reconstruction
network. We extend our previously proposed reconstruction network [33] for a
self-supervised motion-corrected 4D (3D spatial + time) reconstruction. We
thereby exploit spatio-temporal redundancies as implicit motion handling via
separable spatial-temporal convolution filters and as explicit motion handling
via motion fields derived from the motion registration network [34–36]. The
non-rigid motion information is directly extracted from the subsampled k-space
data, based on the idea of optical flow registration [16, 37]. The proposed
method which operates on the subsampled k-space data is compared against
an image-based registration paired with a motion-corrected iterative SENSE
reconstruction [2]. We investigate the proposed approach in 36 patients with
suspected liver or lung metastases and 20 healthy subjects for retrospectively
subsampled data of 3D motion-resolved MR imaging.

2 In-Vivo 4D MR Acquisition

To investigate the proposed motion-corrected reconstruction network, motion-
resolved k-space data were obtained on a cohort of 36 patients (60±9 years, 20
female) with suspected liver or lung metastases and 20 healthy subjects (31±4
years, 9 female) [38]. The study was approved by the local ethics committee
and all subjects gave written consent.

A 3D T1 weighted spoiled gradient echo sequence was acquired on a 3T
PET/MR (Biograph mMR; Siemens Healthcare) in coronal orientation with
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a variable-density Poisson Disc subsampling [39] for an acquisition time of
90 seconds (prospectively subsampled) and 300 seconds (reference). The re-
maining imaging parameters were TE = 1.23ms, TR = 2.60ms, bandwidth =
890Hz/px and a flip angle of 7◦. A matrix size of Nx×Ny×Nz = 256×256×144
(RO × PE × 3D ⇔ HF × LR × AP) was acquired covering a field-of-view of
500×500×360mm3. A 2D MR self-navigation signal (256×8×1, RO×PE×3D)
was acquired each 200ms serving as gating signal. MR data was retrospec-
tively gated into Nt = 8 respiratory gates, ranging from end-expiratory to
end-inspiratory position, with a Gaussian view-sharing amongst neighbouring
gates. An average acceleration factor per motion gate of ∼ 14× (prospectively
subsampled) and ∼ 2× (reference) was obtained [38]. The coil sensitivity
map was estimated from the time-averaged fully sampled calibration cen-
ter region by ESPIRIT [70] with virtual coil compression to a common size
of Nch = 8.

3 Non-Rigid Registration in k-Space

For the motion-compensated reconstruction, a reliable estimation of motion
fields is required. Although most (intensity-based) registration algorithms
are to a certain extent robust to blurring and/or noise amplification, they
are very sensitive to coherent aliasing artefacts. A motion field estimation
from the subsampled k-space data can avoid this potential impairment from
aliasing and blurring. The non-rigid registration follows the concept of the
LAP algorithm [15]. The key idea of LAP is that any non-rigid deformation
can be regarded as local translational displacements. A local translation on
the other hand can be regarded as an all-pass operation in Fourier space, i.e.,
non-rigid motion can be modelled as local all-pass filter operations.

Under the assumption of local brightness consistency and a motion flow
continuum, the optical flow equation of a displacement can be stated in discrete
(discrete domain is used throughout the manuscript) Fourier space

ρf (x) = ρm(x− ux,m) ⇐⇒ νf (k) ≃ νm(k)e−juT
x,mk (1)

for deforming a moving image ρm to a fixed image ρf via a deformation field
ux,m = [ux, uy, uz]

T at image position x = [x, y, z]T and of motion state m
(i.e., warping moving state m to fixed state f), with νf (k) and νm(k) being
the k-spaces of the fixed and moving image at k-space sampling location
k = [kx, ky, kz]

T (underscore notation denotes a vector, [·]T is the transposed
vector and j =

√
−1 represents the imaginary unit). The linear phase ramp

can be regarded as an all-pass filter H(k) = e−juTk = F (k)/F (−k) that
can be split into a forward F (k) and backward filter F (−k) which is all-
pass by design, i.e., |H(k)| = 1 [14]. Global non-rigid deformation is thus
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modelled as local translational displacements and hence the problem of non-
rigid image registration is transformed to estimating the appropriate local
all-pass filter for different x in a cubic window W . The phase-modulated (for
various x positions) at motion state i tapering function T(k) for the local
window W

W (x) · ρi(x) ⇐⇒ T(k) ∗ νi(k) (2)

allows us to conclude the non-rigid registration formulation in k-space (Fourier
domain)

min
{cn}

∑
k∈R3

(T(k) ∗ (F (k)νf (k)),T(k) ∗ (F (−k)νm(k)))2

s.t. F (k) = F0(k) +

NF∑
n=1

cnFn(k) ∀k ∈ R3

(3)

At each k-space position k, the NF optimal filters cnFn are estimated [4]
by minimizing the dissimilarity between νm and νf . The deformation field
u of motion state m in the image domain can be directly derived from the
all-pass filter

um = j
∂ lnH(k)

∂k

∣∣∣∣
k=0

= 2

[∑
x xf(x)∑
x f(x)

,

∑
x yf(x)∑
x f(x)

,

∑
x zf(x)∑
x f(x)

]T

(4)

The optimal all-pass filters F (k) that solve Equation (3) are learnt by
the convolutional filters in the registration network. It is expected that each
convolutional layer learns an optimal filter cnFn that achieves diffeomorphic
and smooth flows. Real and imaginary part of the moving and fixed k-space are
passed through a succession of NF = 6 3× 3 convolutional filters with dyadic
increase in kernel size (starting kernel size 64) and leaky ReLU activation
function. In the last layer a fully connected regression is performed on the
average pooled feature map to estimate the in-plane deformations u11, u21 at
the given central location of the input patch after the first run. To obtain a
3D deformation field u, the registration is also performed on an orthogonal
direction, yielding u12, u22 that are merged with the previous run to obtain
ux = u11, uy = 0.5(u21+u12), uz = u22. The whole non-rigid deformation field
ux,m warping motion state m to the fixed state f is obtained by estimating the
deformations ux, uy, uz at all voxel locations x. This principle follows the idea
of approximating a global non-rigid flow by local translational deformations.

4 Motion-Corrected Image Reconstruction

The proposed motion-compensated network architecture consists of two sub-
networks as depicted in Figure 1: A 3D non-rigid registration network [36] which
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Figure 1: Proposed motion-compensated 4D reconstruction network which consists of two
sub-networks: A non-rigid registration network directly operating on motion-resolved k-
spaces and a reconstruction network employing 3D spatial and 1D temporal convolutions to
exploit spatio-temporal redundancies. The reconstruction network consists of six cascaded
UNet regularizers with intermittent data consistency blocks from a coil-weighted zero-filled
image ρu. The estimated deformation fields U , the auto-calibrated coil sensitivity maps S,
the k-space ν and the sampling mask ϕ are incorporated in the data consistency blocks to
reconstruct a motion-corrected image ρ for each motion state. The registration network is
pre-trained in a supervised manner deploying a squared end-point error loss to reference
deformation fields derived via Local All-Pass. The joint motion-compensated reconstruction
network is then trained in a self-supervised manner to minimize the combined complex-valued
photometric and mean-squared error loss L.

provides the motion fields and a (3 + 1)D reconstruction network [33] which
includes the estimated motion in the data consistency block to reconstruct an
aliasing-free and motion-corrected image. Subsampled and motion-resolved k-
spaces ν ∈ CNxNyNzNtNCh serve as input from which 3D non-rigid deformation
fields u ∈ RNxNyNzNtNt·3 between all motion state pairs are estimated. Nx, Ny

and Nz reflect the 3D spatial dimensions, Nt the temporal direction, and
NCh the channels of the multi-coil MR receiver array. The coil sensitivity
map S ∈ CN×N with N = NxNyNzNCh is derived from the k-space ν. The
SENSE combined subsampled 4D image ρu ∈ CNxNyNzNt is reconstructed to
an aliasing-free and motion-corrected image ρ ∈ CNxNyNzNt for each motion
state.

A physics-based unrolled reconstruction is used for motion-corrected re-
construction [33], consisting of cascaded (3 + 1)D UNets and intermittent
data consistency blocks. The network operates on multi-coil complex-valued
4D (3D + time) data. It introduces a series of 3D spatial and 1D temporal
complex-valued convolutional filters paired with motion field warping in the
data consistency blocks. The input to the network is the complex-valued
subsampled and motion-resolved image ρ which was reconstructed with a
coil-weighted zero-filling, as well as the acquired k-space ν, the sampling mask
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ϕ, the coil sensitivity map S and the 3D motion fields u from the registration
network between all pairs of the motion-resolved data restacked into the sparse
matrix U ∈ RN×N with N = NxNyNzNt · 3. The output of the motion-
corrected reconstruction is a motion-resolved image in which each motion state
utilized information from the remaining motion states. The unconstrained
motion-compensated MR reconstruction problem is thus given by

min
ρ

R(ρ; Θ) + λ∥Eρ− ν∥22 (5)

where E = ϕFSU is the encoding operator, F denotes the discrete Fourier
transform, ∥ · ∥2 is the ℓ2 norm and λ > 0 is the data consistency weighting
parameter. The regularizer R(ρ; Θ) is expressed by the residual denoising
(3 + 1)D UNet mappings fUNet(ρ; Θ)

R(ρ; Θ) = ∥ρ− fUNet(ρ; Θ)∥22 (6)

with learnable parameters Θ. Combining Equations (5) and (6) allows us to
formulate the alternating reconstruction algorithm

ρ(i+1) = argmin
ρ

∥∥∥ρ− z(i)
∥∥∥2
2
+ λ∥Eρ− ν∥22 (7)

z(i) = fUNet

(
ρ(i); Θ

)
(8)

for step-wise unrolled updates at stage (i) of the image ρ. Subproblem (7) can
be solved using conjugate gradient descent

ρ(i+1) =
(
λEHE + I

)−1
(λEHν + z(i)) (9)

which is incorporated as the data consistency block in the motion-corrected
reconstruction network. The encoding operator E thereby explicitly steers
sharing of spatio-temporal information amongst all motion states via the
motion fields in U obtained from the k-space registration network. Inverse
motion mappings UH as required in Equation (9) consider the backward motion
field obtained from the registration network.

The (3 + 1)D UNet mappings perform an implicit spatio-temporal informa-
tion sharing via the (3 + 1)D convolutional filters. The motion fields in the
data consistency blocks enable an explicit spatio-temporal sharing.

The (3 + 1)D UNet fUNet(ρ; Θ) has four encoding and decoding stages
which consist each of two pairs of complex-valued spatial convolutional layers
of size 3 × 3 × 3 × 1 (kx × ky × kz × t) followed by a temporal convolution
of size 1× 1× 1× 2 and complex ReLU activation. A complex convolution
is performed. A dyadic increase in channel size is selected between scales,
starting from 8 for the first scale. Residual paths between encoder/decoder
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improve convergence. In the encoder branch the last convolutional layer per
stage uses a stride of 2 for down-sampling between stages while transposed
convolutions are performed in the decoder side for up-sampling.

The registration network resulted in ∼ 25 million trainable parameters,
and for six cascaded (3 + 1)D UNets, the motion-corrected reconstruction
network results in ∼ 5.8 million trainable parameters.

The registration network was pre-trained in a supervised manner on pairs
of moving and fixed k-space inputs with the corresponding target motion
fields utarget derived from the iterative SENSE reconstructed images of the
reference acquisition via image-based LAP [16, 37]. Flows were augmented by
smoothing, translating, rotating and shearing. In total 15,000 training samples
were generated which resulted after tapering in ∼ 150 million training samples.
The squared end-point error (sEPE)

sEPE = LReg =
∑

i∈{x,y,z}

(utarget,i − ui)
2 (10)

was deployed as the training loss. Training was performed with an Adam
optimizer [28] (learning rate 2.5 · 10−4 with learning rate scheduler, batch size
64) over 150 k iterations on a Nvidia V-100 GPU (32 GB VRAM).

Afterwards, the proposed motion-corrected network was trained in a self-
supervised manner (for registration network) on retrospectively subsampled
reference data. The registration network was initialized with the pre-trained
weights. Training data for the motion-compensated reconstruction network
was generated by an iterative SENSE reconstruction [57] of the reference
data which was retrospectively binned and subsampled by variable-density
Poisson Disc for accelerations in the range of 2× to 20×. The respective
“fully-sampled” (2× accelerated) reference data served as target image ρtarget.
A complex-valued mean-squared error and photometric loss

L =
∥∥∥[Re(ρ), Im(ρ)]

T − [Re (ρtarget) , Im (ρtarget)]
T
∥∥∥2
2

+ 0.5 ·
Nt∑
t=1

∑
s ̸=t

∥ρt − TI(ρs, us)∥1 (11)

with warping TI (bilinear interpolation) of the 3D image ρs at motion state
s via the deformation field us into the 3D image ρt at motion state t is
used as training loss to yield close agreement to the target image ρtarget.
The loss is optimized by Adam [28] (learning rate 10−4, batch size 16) and
fixed data consistency parameter λ = 10−3 on three Nvidia V-100 GPU
(3× 32GB VRAM) for 40 epochs. The code is made publicly available under:
https://github.com/midas-tum.

Overall, 50 subjects (33 patients and 17 healthy subjects) were used for
training and 6 subjects (3 patients and 3 healthy subjects) were used in testing.

https://github.com/midas-tum
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For training, the reference data were used while for testing the prospectively
subsampled data were taken. A 5-fold cross-validation was performed.

5 Evaluation and Experiments

The proposed motion-corrected reconstruction framework was evaluated on
prospectively subsampled data in 6 subjects. Motion fields were estimated from
subsampled k-space data (∼ 14× accelerated) with the registration network
and reconstructed with the motion-corrected (3 + 1)D reconstruction network.
For comparison, two image-based 3D registrations using the image-based LAP
(denoted as imageLAP) [16, 37, 38] and NiftyReg [51] were combined with a
motion-corrected iterative SENSE reconstruction [2]. Registrations of these
methods were performed on initial iterative SENSE reconstructed images.
Comparative methods were run on an Intel Xeon E5-2697 CPU.

The end-point error EPE =
∥∥u− utarget

∥∥
2

and end-angulation error EAE =
arg(u, utarget) between the estimated motion field u of the prospectively sub-
sampled acquisition was compared with the target motion field utarget obtained
from an image-based LAP registration of the reference acquisition (2× accel-
erated). Structural similarity index (SSIM) [76] and normalized root MSE
(NRMSE) = 1/N

√
MSE (N being the number of voxels) were calculated be-

tween the motion-corrected image ρ and the target ρtarget of the reference
scan at end-expiratory position. All quantitative results are reported as
mean ± one standard deviation over all voxel positions, test subjects and
cross-validations.

6 Results

The motion-corrected reconstruction in a healthy subject of the proposed
framework is shown in Figure 2 in comparison to the image-based imageLAP
and NiftyReg. The obtained motion fields are overlaid on the reconstructed
and motion-corrected images as a vector field (forward deformation) pointing
from end-expiratory (t = 1) to end-inspiratory state (t = 8). Additionally, the
deformation fields are illustrated in coronal and sagittal orientation. We ob-
serve a significant portion of motion in superior-inferior and anterior-posterior
direction. The registration network does not estimate any motion in the image
background whereas the image-based methods try to match background voxels.
The proposed approach thus helps to minimize background bleeding into image
content and reduces noise amplification in the reconstruction. Reconstruction
from subsampled images was possible in all cases with a markedly improved vi-
sual image quality and sharpness of the proposed approach. For the imageLAP
and NiftyReg, residual blurring of the diaphragm at the lung-liver interface was
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Figure 2: End-expiratory state of motion-corrected and reconstructed images in a healthy
test subject for the proposed approach, image-based LAP registration with motion-corrected
iterative SENSE reconstruction and NiftyReg registration with motion-corrected iterative
SENSE reconstruction. Subsampled images were prospectively acquired with a subsampling
of 16× reflecting an acquisition time of 90 seconds for Nt = 8 motion states. The reference
target image represents the 2× accelerated acquisition of 300 seconds. Zoomed images
of the liver dome are depicted. Deformation fields in coronal orientation are overlaid on
motion-corrected images. Color-coded forward deformation fields are shown in coronal and
sagittal orientation pointing from end-expiratory to end-inspiratory state. Blue arrows
indicate residual motion blurring at the lung-liver interface.

observed (pointed out by arrows). Visually improved reconstruction quality
was obtained with the proposed approach.

Images of a patient with pancreas carcinoma and liver metastasis in liver
segment V are shown in Figure 3 for the proposed approach in comparison to
imageLAP and NiftyReg. The proposed approach provides clear delineation of
the liver lesion comparable to the reference scan as pointed out by the arrows.
Image-based approaches suffer from residual blurring. Good quality images
were obtained in an accelerated acquisition of ∼ 90 seconds, reducing scan time
and rendering clinically feasible for respiratory motion-compensated imaging
of the body trunk.

Motion-resolved images over all Nt = 8 motion states of a patient with
neuroendocrine tumor are depicted in Figure 4. The forward and backward
deformation fields are overlaid on the respective obtained motion-corrected
images of the proposed approach. Good and consistent image quality amongst
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Figure 3: End-expiratory state of motion-corrected and reconstructed images in a patient with
pancreas carcinoma and liver metastasis (pointed out by arrows). The proposed approach,
image-based LAP registration with motion-corrected iterative SENSE reconstruction and
NiftyReg registration with motion-corrected iterative SENSE reconstruction are shown.
Zoomed images of the liver metastasis in liver segment V are depicted. Forward deformation
fields in coronal orientation are overlaid on motion-corrected images. Color-coded forward
deformation fields are shown in coronal and sagittal orientation pointing from end-expiratory
to end-inspiratory state.

Figure 4: Reconstructed motion-corrected images of proposed approach in a patient with
neuroendocrine tumor in the liver over complete respiratory cycle. Forward (end-expiratory
state t = 1 to end-inspiratory state t = 8) and backward deformation fields in relation to
fixed image (t = 1) are overlaid on motion-corrected moving images.

all motion states can be observed in our proposed approach, highlighting the
benefit of explicit (via deformation fields in data consistency layer) and implicit
(3D + 1D convolutional filters) temporal sharing. Diffeomorphic flows were
obtained that enable a respiratory cyclic consistent motion sharing, i.e., during
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Fig5.tif 

Figure 5: Respiratory non-rigid motion estimation in a patient with caecal carcinoma showing
strong irregular breathing patterns. Motion displacement is estimated by the proposed
LAPNet in k-space in comparison to image-based non-rigid registration by NiftyReg (cubic
B-Splines). Motion-corrected images are reconstructed from an extended scan of 360 seconds
as ∼ 90 seconds long scans, corresponding to a ∼ 20× subsampling. End-expiratory images
and forward deformations (end-expiratory to end-inspiratory) are shown for these cases. In
the respiratory trace, horizontal dashed lines mark the end-expiratory and end-inspiratory
bins of the respective 90 s scans and of the reference 360 s scan. Reference images depict the
end-expiratory and end-inspiratory image reconstructed by iterative SENSE and reference
flow depict the imageLAP registration.

joint training only backward deformations can be estimated and forward fields
can be inverted therefrom which saves computational costs.

The impact of changing motion patterns for a patient with caecal carcinoma
can be seen in Figure 5 for an extended acquisition time of TA = 360 seconds.
The extracted self-navigation signal reveals a strong irregular breathing pattern.
Motion-corrected images were reconstructed from shorter ∼ 90 seconds portions
of the acquisition, reflecting in an ∼ 20× acceleration per motion bin for this
subject. The proposed approach was able to track the motion consistently and
provided motion-corrected images with high quality. The image-based solutions
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Figure 6: Quantitative analysis over test subjects for reconstructed motion-corrected images
and deformations fields of the proposed approach, image-based LAP registration with motion-
corrected iterative SENSE reconstruction and NiftyReg registration with motion-corrected
iterative SENSE reconstruction. Reconstructed motion-corrected images of subsample data
(acquisition time 90 seconds) were compared against reference target images (acquisition time
300 seconds). Deformation fields were compared against reference deformation fields derived
via Local All-Pass from the reference target images. Violin plots depict mean (central point),
positive and negative standard deviation around mean (vertical central bar) and distribution
of values.

were impaired by residual blurring along the diaphragm. Reconstruction to
end-expiratory bin was possible with realistic captured deformations which
can be appreciated by the 90 seconds scan (180–270 seconds) for which end-
expiratory binned image resembles closely the end-inspiratory binned reference
image of the complete scan (TA = 360 seconds).

Quantitative analysis of the motion-corrected reconstruction is summarized
in Figure 6 and Table 1. Violin plots in Figure 6 indicate an improved
quantitative performance of the proposed approach over the image-based
solutions with reduced error in the motion-corrected images. Deformation fields
which were extracted from the subsampled acquired data show a high similarity
to reference deformation for the proposed approach. The proposed approach
outperforms both image-based approaches. Any errors in the registration
originating from residual aliasing or blurring can propagate into the motion-
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Table 1: Quantitative analysis of end-point error (EPE) and end-angulation error (EAE)
between estimated deformation field and target deformation field obtained from image-
based LAP in reference scan, in prospectively subsampled acquisition (∼ 14×). Structural
similarity index (SSIM) and normalized root mean-squared error (NRMSE) are calculated
between the motion-compensated reconstructed image and the end-expiratory target image
of the reference scan. Inference times for 4D test cases are reported. Metrics are reported
as mean ± one standard deviation for all voxels and test subjects. Best performance is
indicated in bold.

Proposed approach imageLAP NiftyReg

EPE 0.17 ± 0.26 0.97± 1.70 1.34± 1.31
EAE 7.9◦ ± 9.9◦ 35.5◦ ± 22.6◦ 40.7◦ ± 25.3◦

SSIM 0.96 ± 0.04 0.88± 0.07 0.81± 0.03
NRMSE 0.005 ± 0.001 0.017± 0.008 0.023± 0.01
Inference registration 30 ± 2 s 231± 8 s 301± 10 s
Inference reconstruction 5 ± 1 s 610± 6 s 608± 5 s
Inference total 35 ± 2 s 841± 8 s 909± 9 s

corrected reconstruction yielding a reduced image quality metric. Consistent
and reproducible results were obtained with k-space based registration over
the complete cohort. Pre-training of the registration network required ∼
12 hours. Training duration of the proposed method was around ∼ 296 hours.
Overall, motion-corrected reconstruction of the proposed method took on
average ∼ 35 seconds (registration ∼ 30 seconds, reconstruction ∼ 5 seconds),
for imageLAP ∼ 841 seconds (registration ∼ 231 seconds, reconstruction ∼
610 seconds) and for NiftyReg ∼ 909 seconds (registration ∼ 301 seconds,
reconstruction ∼ 608 seconds), yielding a 25-times faster reconstruction with
the proposed approach.

7 Discussion

In this work, we proposed the combination of a deep-learning non-rigid k-space
registration network with a deep-learning reconstruction network for motion-
corrected MR image reconstruction. We investigated the possibility of directly
estimating the non-rigid deformation in k-space without the need of a prior
image reconstruction. The obtained deformation fields were subsequently incor-
porated into the motion-corrected reconstruction to enhance spatio-temporal
information sharing. An unrolled physics-based reconstruction network was
used with a cascade of (3 + 1)D convolutional layers and intermittent data
consistency blocks.

Deformation fields and motion patterns can be different in the reference
scan and in the subsampled acquisition. Test subjects were selected which
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showed good agreement in motion patterns between reference and subsampled
acquisition to perform a quantitative analysis with minimal bias. The reference
target motion field is provided by an image-based LAP registration of the target
reference scan. Generation of accurate and reliable ground truth motion fields,
as well as their evaluation, still remain an open challenge [60]. Therefore, the
registration network was pre-trained in a supervised manner and subsequently
fine-tuned jointly together with the reconstruction network in a self-supervised
way.

As the registration method for imageLAP and for retrieving the target
deformation field were the same, we can expect close agreement in quantitative
metrics. Hence, any deviation can be mainly attributed to residual aliasing
and blurring in the initially reconstructed subsampled image. Deviations can
thus be a first indicator on how residual aliasing and blurring may influence
registration performance when registration is performed in image space. A
comparison between imageLAP and the registration network (proposed ap-
proach) shows the impact of performing a registration on accelerated data in
image space and in k-space. Further detailed analysis of the k-space based
LAP registration on in-vivo data is reported in [36]. The comparison of the
image-based LAP to the k-space based LAP registration on simulated motion
flows can be found in [35].

The non-rigid registration network provided accurate deformation fields
which were in close agreement to the target deformation and resembled the
underlying motion. K-space registration showed high agreement with reference
motion. For highly accelerated acquisitions, image-based registration can
fail whereas k-space registration still provides satisfactory performance. The
quantitative analysis of the motion fields yielded good agreement in non-rigid
k-space registration with minimal errors which subsequently contributed to
reduced errors in the reconstruction.

Continuous and smooth deformations for consecutive motion states were
obtained with k-space registration. Matching forward and backward deforma-
tion fields ensured a respiratory cyclic consistent warping. The registration in
k-space was less affected by background noise than the image-based version
and deformation fields were concentrated to the actual image content. Static
regions (e.g., spine) were not deformed and the largest flow occurred in the
liver, lung and spleen along superior-inferior direction. The network-based
registration was less computationally demanding than the image-based versions.
Pre-training the registration network enabled good initialization for the joint
self-supervised training.

The reconstruction network utilized an efficient spatio-temporal redundancy
sharing with the proposed (3 + 1)D convolutional filters. In contrast to a full
4D convolution operation, less trainable parameters were required. Moreover,
the estimated deformation fields were incorporated to guide and share samples
in the data consistency as well. A conjugate gradient data consistency was



Self-Supervised Motion-Corrected Image Reconstruction Network 17

formulated to solve the multi-coil complex-valued processing. The amount of
unrolled reconstruction stages and the regularization parameter were chosen
empirically to provide a trade-off between performance, trainable parameters
and training duration. The proposed approach yields motion-corrected images
for each respiratory phase and the deformation fields which enable further
analysis of the underlying motion.

We acknowledge several limitations of this study. We performed a com-
parison against established image-based registration and motion-corrected
reconstruction techniques. In the future, other deep learning techniques should
be compared [58] as well as the impact of the separable convolution filters [33]
shall be investigated. A supervised pre-training is performed for the non-rigid
registration network which may be impaired by the image-based registration
ground-truth. In addition, a full 3D registration may also be beneficial to
capture the local 3D deformation. However, the obtained results in this study
did not indicate any performance loss of the pseudo 3D training scheme. The
proposed approach was only tested for respiratory motion in T1-weighted
imaging of the body trunk. Future studies will investigate its generalizability
to different imaging applications and sequences. A Cartesian subsampling was
performed which results in incoherent aliasing artifacts along phase-encoding
directions. For radial or spiral subsampling, different aliasing artifacts will
manifest in the image and may require a retraining.

8 Conclusion

A deep-learning based motion-corrected reconstruction network was proposed
which combines a non-rigid k-space registration network with a (3+1)D recon-
struction network. Non-rigid registration in k-space is feasible and provides
reliable deformation fields, especially for highly accelerated imaging for which
image-based registration is impaired. Incorporating the deformation fields into
the reconstruction network allows for efficient utilization of spatio-temporal
information. The proposed approach was in close agreement with the ground-
truth and provided 4D motion-corrected images and deformation fields within
∼ 35 seconds.
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