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Abstract: Tactile Internet (TI) is a new internet paradigm that enables sending touch interaction
information and other stimuli, which will lead to new human-to-machine applications. However,
TI applications require very low latency between devices, as the system’s latency can result from
the communication channel, processing power of local devices, and the complexity of the data
processing techniques, among others. Therefore, this work proposes using dedicated hardware-based
reconfigurable computing to reduce the latency of prediction techniques applied to TI. Finally, we
demonstrate that prediction techniques developed on field-programmable gate array (FPGA) can
minimize the impacts caused by delays and loss of information. To validate our proposal, we present a
comparison between software and hardware implementations and analyze synthesis results regarding
hardware area occupation, throughput, and power consumption. Furthermore, comparisons with
state-of-the-art works are presented, showing a significant reduction in power consumption of ≈1300×
and reaching speedup rates of up to ≈52×.

Keywords: tactile internet; robotic; FPGA; latency

1. Introduction

Tactile Internet (TI) enables the propagation of the touch sensation, video, audio, and
text data through the Internet [1]. TI-based communication systems will provide solutions
to more complex computational problems, such as human-to-machine interactions (H2M)
in real time [2,3]. Therefore, TI is a new communication concept that allows transmitting
skills through the Internet [4]. Several applications are available in the literature, such as
virtual and augmented reality, industrial automation, games, and education [5].

Currently, the system’s latency is a major bottleneck for TI applications. Therefore,
it is necessary to guarantee very low latency, as demonstrated in [5–8]. Studies indicate
that TI applications’ latency varies from 1 to 10 ms in most cases or up to 40 ms in specific
cases. Nevertheless, high latency can result in many problems, as stated in [7], such as
cybersickness [9,10]. Several works have investigated methods to minimize the problems
associated with the latency on TI applications, as presented in [1,11–14]. The work shown
in [15] provides a comprehensive survey of techniques designed to deal with latency, which
proposes prediction techniques as a solution to minimize the impacts caused by delays and
loss of information. Thus, the system “hides the real network latency” by predicting the
user’s behavior; notably, the proposal does not reduce the latency but predicts the system
behavior, thus, enhancing the user experience’s quality.

Plenty of research areas, such as market, industry, stocks, health, and communication,
have used forecasting techniques over the years [16–22]. However, these techniques are
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often implemented in software, increasing the latency in computer systems within tactile
links due to the high computational complexity of the techniques and the large datasets to
be processed.

Systems based on reconfigurable computing (RC), such as field-programmable gate
arrays (FPGAs), have been proposed to overcome the processing speed limitations of
complex prediction techniques [23]. In addition, FPGAs enable the deployment of dedicated
hardware, enhancing the performance of computer systems within the tactile system. In
addition, systems deployed with FPGAs proposed in the literature can reach 1000× speedup
compared to software-based ones [24–28].

Therefore, we propose the parallel implementation of linear and nonlinear prediction
techniques applied to the TI on reconfigurable hardware, that is, on FPGA. Hence, the main
contributions of this work are the following:

• Parallel implementation of prediction techniques on FPGA without additional embed-
ded processors.

• A detailed description of the modules implemented for the linear and nonlinear
regression techniques on FPGA.

• A synthesis-based analysis of the system’s throughput, area occupation, and power
consumption, using data from a robotic manipulator.

• An analysis of fixed-point precision against floating-point precision used by software
implementations.

Related Works

The use of RC for computationally complex algorithms is widely available in the
literature. Prediction techniques based on machine learning (ML), such as multilayer
perceptron (MLP), are proposed to assist the bandwidth allocation process on the server
automatically [29–31]. However, the presented systems are local and may not be scalable
for use in more complex networks with higher traffic due to the need for data from all
communications to perform the techniques’ configuration and training steps. Therefore,
linear prediction techniques have been proposed in [32,33] to avoid the loss of packages
or errors.

Numerous works applied to TI are software-based implementations, such as cloud
applications [34–36]. Usually, these software-based approaches are slower compared to
hardware-based ones, thus affecting the data processing time of prediction techniques. As a
result, some proposals were deployed on FPGA to increase the performance of manipulative
tools [37–40], requiring accurate feedback [41–44].

Prediction techniques deployed on hardware, such as FPGAs, can reduce the latency in
computer systems. In [45], an implementation of the quadratic prediction technique based
on FPGA regression is proposed. In [46], a technique to detect epistasis based on logistic
regression is implemented with an FPGA combined with GPU, achieving between 1000×
to 1600× speedup compared to software implementations. In [47], an implementation of
a probabilistic predictor on FPGA is proposed. Ref. [23] presented the hardware area
occupation and processing time results for various RNA configurations of functions radial
bases. Meanwhile, [48,49] demonstrate the feasibility of implementing algorithms based on
deep learning (DL) using an RC-based platform.

Few studies explore linear regression applied to signal prediction on FPGAs or
predictors applied in TI systems. However, there are proposals for machine learning (ML)
techniques on FPGA. As an example, [50] proposes an MLP architecture for wheezing
identification of the auscultation of lung sounds in real time. The MLP training step is
performed offline, and its topology contains 2 inputs, 12 neurons in the hidden layer,
and 2 neurons in the output layer (2–12–2). The architecture uses a 36-bits fixed-point
implementation on an Artix-7 FPGA, achieving a sampling time of 8.63 ns and a throughput
of 115.88 Msps.

The work presented in [51] uses an MLP on FPGA to perform the activity classification
for a human activity recognition system (HAR) for smart military garments. The system
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has seven inputs, six neurons in the hidden layer, and five in the output layer (7–6–5). In
addition, five versions of the architecture were implemented by varying the data precision.
The analysis shows that the MLP designed with a 16-bit fixed-point is more efficient
concerning classification accuracy, resource utilization, and energy consumption, reaching
a sampling time of 270 ns using about 90% of the embedded multipliers and a throughput
of 3.70 Msp.

Another MLP implemented on FPGA is proposed by [52] for real-time classification of
gases with low latency. The MLP has 12 inputs, 3 neurons in the hidden layer, and 1 neuron
in the output layer (12–3–1). In addition, the Levenberg–Marquardt backpropagation
algorithm is used to perform offline training. The architecture was developed on Vivado
using high-level synthesis (HLS) to optimize the development time and deployed on a
Xilinx Zynq-7000 XC7Z010T-1CLG400 FPGA. Concerning the bit-width, a 24-bit signed
fixed-point representation was used for the trained weight data with 20 bits on the fractional
part. Meanwhile, 16-bit (14 bits on the fractional part) was used to deploy the output layer
using the TanH function. A throughput of 539.7 ns was achieved.

In [53], an MLP was implemented for automatic blue whale classification. The MLP
had 12 inputs, 7 neurons in the hidden layer, and 3 in the output layer (12–7–3). The
backpropagation algorithm was used for an offline training process. The trained weight
data were deployed using fixed-point representation with a 24-bit maximum length. The
output function adopted was the logistic sigmoid function. The architecture was developed
on a Xilinx Virtex 6 XC6VLX240T and Artix-7 XC7A100T FPGAs, reaching a throughput of
27.89 Msps and 25.24 Msps, respectively.

Unlike the literature works discussed, we propose linear and nonlinear prediction
techniques designed on hardware for TI applications to reduce the latency. The linear
techniques proposed are predictions based on linear regression using the floating-point
standard IEEE 754. In addition, four solutions for different ranges of the regression buffer
are presented. Regarding the nonlinear techniques, an MLP-BP prediction technique is
proposed, using fixed-point representation, performed with online training. The Phantom
Omni dataset is used to validate the implementations and compare them to software
versions implemented on Matlab.

2. Proposal Description

TI-based communication enables sending the sensation of touch through the Internet.
The user, OP, interacts with a virtual environment or a physical tool, ENV, over the network.
Figure 1 shows the general tactile internet system, with two devices interacting. The devices
can be the most diverse, such as manipulators, virtual environments, and tactile or haptic
gloves. The master device (MD) sends signals to the slave device (SD) during the forward
flow. Meanwhile, the SD feedbacks the signals to the MD on the backward flow.

Each master and slave device has its subsystem, computational system, responsible
for data processing, control, robotics, and prediction algorithms at each side of the
communication process. MCS and SCS are the identifications for the master and the slave
device computational systems, respectively. The total execution time of each of these
blocks can be given by the sum of the individual time of each algorithm, assuming they
are sequential.

The model adopted in this work considers that several algorithms constitute the
computational systems, and each of them increases the system’s latency. Thus, the
prediction process should be implemented in parallel to the other algorithms embedded
in the MCS and SCS. This consideration aims to decouple prediction techniques from
other algorithms, simplify the analysis, and to improve performance. Figure 1 presents a
model that uses prediction methods in parallel with computational systems. The prediction
modules, identified as MPD and SPD, have the same signal inputs as their respective
computational systems, signals q̃(n) and c̃(n). In this project, the predictions performed
use Cartesian values. The module MPD predicts a vector called q̂(n) upon receiving the
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input vector. This prediction has a processing time of tmpd. Similarly, the SPD module
predicts the ĉ(n) vector on the slave side, with a prediction processing time of tspd.

Forward

OP MD SD ENVNWMCS SCS

MPD

SPD

Backward

Figure 1. Block diagram illustrating the behavior of a generic Tactile Internet system that uses a
parallel prediction method.

3. Prediction Methods

As shown in Figure 1, the modules responsible for the prediction system, called MPD
and SPD, can be implemented in parallel with MCS and SCS computational systems. These
prediction systems can execute nonlinear prediction methods (NLPM), linear prediction
methods (LPM), or probabilistic prediction methods (PPM), as illustrated in Figure 2. We
propose the implementation of linear regression and the multilayer perceptron with the
backpropagation algorithm (MLP-BP).

As mentioned in the previous section, the system has two data streams, forward and
backward, represented by the signal vectors c(n) and q(n). In this section, υ(n) represents
the input samples, and υ̂(n) represents the predicted samples for these two vectors in
both streams.

Each prediction module can implement different prediction methods that can be
applied for both Cartesian and joint coordinates, as described in [54]. The implementations
can replicate the same technique multiple times. A replication index, NI, can be used as a
metric to define the hardware capacity to implement multiple techniques in parallel. The
NI value may vary according to the degree of freedom of the virtual environment or robotic
manipulator model.

NLMP

LMP

PPM

Figure 2. Structure of the prediction modules, MPD and SPD.

3.1. Linear Regression

The linear regression prediction model uses a set of M past samples to infer possible
predicted data. It uses a set of observed pairs composed of the time marker, tm, and the depen-
dent variable, υ, that is, (tm(1), υ(1)), (tm(2), υm(2)), . . . , (tm(M−1),υ(M− 1)),(tm(M), υ(M)).
The regression can be defined by Equation (1),

υ̂(n) = β̂0(n) + β̂1(n)tm(n), (1)

where υ̂(n) is the predicted value of υ(n), β̂0(n) is the linear estimation coefficient, and
β̂1(n) is the coefficient of angular estimation for the same estimated sample. The parameter
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estimation process uses the principle of least squares [55]. Equations (2) and (3) indicate
the coefficients,

β̂0(n) = ῡ(n) − β̂1(n) ¯tm(n), (2)

β̂1(n) =

∑M
j=0(tm(n− j) − ¯tm(n))(υ(n− j) − ῡ(n))∑M

j=0(tm(n− j) − ¯tm(n))2
, (3)

where ῡ(n) and ¯tm(n) are the average values of the sample variables υ and tm.

3.2. Multilayer Perceptron Networks

Commonly, complex problems are solved with machine-learning-based solutions, such
as artificial neural networks (ANN). The mathematical structure of the ANN is composed
of processing units called artificial neurons. The neurons can operate in a parallel and
distributed manner [56]. Hence, ANN solutions can exploit the high parallelism degree
provided by FPGAs.

3.2.1. Architecture

Several applications based on neural networks use the architecture of an MLP-BP due
to the ability to deal with nonlinearly separable problems [57]. Equation (4) represents the
prediction function using the MLP technique, which uses B past samples of υ to generate
the υ̂(n) value, as follows:

υ̂(n) = f (υn−1, υn−2, . . . , υn−B), (4)

where υn−1, υn−2, . . . υn−B are the input values of the MLP and υ̂ is the MLP predicted output.
Equation (5) presents a generic MLP with L layers, where each k-th (k = 1, . . . , L)

layer can have Nk neurons with Nk−1 + 1 inputs representing the number of neurons in the
previous layer. The neurons from the k-th layer process their respective input and output
signals through an activation function fk(•). At the n-th sample, this function is given by

yk
i (n) = fk

(
xk

i (n)
)
, (5)

where yk
i (n)(i = 1, . . . , Nk) is the i-th neuron output in the k-th layer, and xk

i (n) can be
defined as

xk
i (n) =

 Nk∑
j=1

wk
i j(n)yk−1

j (n)

−wk
i0(n), (6)

where wk
i j(n) is the synaptic weight associated with j-th input of the i-th neuron. Figure 3

illustrates the structure of an MLP ANN with L layers and Figure 4 illustrates the i-th
neuron in the k-th layer.

y1(n)
x1(n)

f( )

y1(n)

+

f( )

y2(n)

+

f( )

y2(n)

+
yN (n)

0

xN (n)
1

yN (n)
1

x1(n)
f( )

y1(n)

+

x2(n)
f( )

y2(n)

+

f( )+

0

0

0

1 1

x2(n)
1

y0(n)=-1
0

y0(n)=-1
1

1

1

x1 (n)
f( )

y1 (n)

+

x2 (n)
f( )

y2 (n)

+

f( )+

1

2 2

2 2

xN (n)
2

yN (n)
2

22
yN   (n)

L-1

L-1

y2 (n)
L-1

y1 (n)L-1

y0 (n)=-1
L-1

xN (n)
L

yN (n)
L

LL

L L

L L

...

...

...

...

...

...

...

...

...

...

...

Layer 0 Layer 1 Layer 2 Layer L

Figure 3. Structure of an MLP artificial neural network (ANN) with L layers.
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+

y0    (n)= −1

wiN    (n)k
k-1

yN    (n)
k-1

k-1

wi0(n)kk-1

...

... xi (n)k

fk( )
yi (n)k

( )ny k 1

1

− ( )n
k

i1ω

Figure 4. Structure of a neuron (perceptron) with Nk−1 + 1 inputs.

The fk(•) function was defined by rectified linear unit (ReLU) function according to
Equation (7):

fk(x) = max{0, x}. (7)

The backpropagation algorithm is the training algorithm used with MLP.

3.2.2. Backpropagation Training Algorithm

The weights are updated with the error gradient descent vector. At the n-th iteration,
the i-th neuron error signal in the k-th layer is defined by

ek
i (n) =

 di(n) − yk
i (n) for k = L∑N−1

j=0 wk+1
i j (n)δk+1

i (n) for k = 1, . . . , L− 1 , (8)

where di(n) is the desired value, and δk+1
j (n) is the local gradient for the i-th neuron in the

(k + 1)-th layer at the n-th iteration. Equation (9) describes the local gradient,

δk+1
i (n) =

{
ek

i (n) f ′(y(n)) for k = 0, . . . , K − 2 , (9)

where f ′(y(n)) is the derivative of the activation function.
The synaptic weights are updated according to the following:

wk
i j(n + 1) = wk

i j(n) + ηδ
k
j(n)yk

j(n) + αwk
i j(n− 1), (10)

where η is the learning rate, α is the regularization or penalty term, and wk
i j(n + 1) is the

updated synaptic weight used in the next iteration.

4. Implementation Description

We propose an architecture using a 32-bit floating-point (IEEE754) format for the linear
prediction technique. Throughout this section, we use the notation [F32]. For the MLP
prediction technique proposed, we designed an architecture with a fixed-point format
(varying the bit-width). We use the notation [sT.W] to represent the fixed-point values,
where s represents the sign with 1 bit, T is the total number of bits, and W the number of
bits in the fractional part. Therefore, the integer part of signed variables is T−W− 1 bits
long, while for unsigned variables it is T−W bits.

4.1. Linear Regression

The hardware architecture implemented for the linear prediction technique based on
linear regression was based on Equations (1)–(3). All circuits in the structure use 32-bits
floating-point precision.



Sensors 2022, 22, 3556 7 of 32

The circuit shown in Figure 5 executes Equation (1). As can be observed, the circuit
is composed of one multiplier and one adder. There are three input values, (tm[F32](n),
β0[F32](n), and β1[F32](n)), and one output, (υ̂[F32](n)).

+

Figure 5. Block diagram representing the circuits implemented in hardware to perform the linear
regression prediction technique, described in Equation (1).

To perform Equation (2), we use one multiplier and one subtractor, as shown in
Figure 6. The circuit has three inputs values ( ¯tm[F32](n), β1[F32](n), and ῡ[F32](n)), and
one output value (β0[F32](n)). The ¯tm[F32](n) and ῡ[F32](n) inputs are the mean value of
tm[F32](n) and υ[F32](n), respectively.

-

Figure 6. Block diagram representing the circuits implemented in hardware to obtain the β0 variable
used in the linear regression prediction technique.

The circuit shown in Figure 7 performs Equation (3). As can be seen, the circuit is
composed of two multipliers, one subtractor, one cascading sum module (CS), and two
constant values (C). The constant values, C, were obtained empirically to simplify the
existing division process in Equation (3). The circuit has two inputs values (υ[F32](n),
ῡ[F32](n)), and one output value (β1[F32](n)).

-
CS

C
C

Figure 7. Block diagram representing the circuits and modules implemented in hardware to obtain
the β1 variable used in the linear regression prediction technique.

The cascading sum (CS) module shown in Figure 7 is implemented by the generic
circuits shown in Figure 8. The cascading sum is also used as an input to calculate the mean
values of t[F32](n) and υ[F32](n), as shown by the circuit illustrated in Figure 9.
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+
z
-1

+z
-1

+
z
-1

+z
-1

.

.

.

.

.

.

Figure 8. Block diagram representing the circuits used to implement the cascading sum (CS) hardware
module. It receives u[F32](n) as input value (generated in the previous multiplier), and outputs the
CS[F32](n) value.

C

Figure 9. Block diagram representing the circuits for generating the mean values t̄[F32](n) and
ῡ[F32](n) used as inputs of the circuits shown in Figures 6 and 7, respectively.

4.2. Multilayer Perceptron

The main modules that perform the multilayer perceptron with the backpropagation
training (MLP-BP) and the multilayer perceptron with recurrent output (RMLP-BP) are
shown in Figures 10 and 11, respectively. The hardware structures are similar. The main
difference between them is that the first input signal of the RMLP-BP is a feedback of
the output signal. As can be observed, there are two main modules called multilayer
perceptron module (MLPM) and backpropagation module (BPM). Both modules implement
the variables in fixed-point format.

The MLPM module for the MLP-BP proposal (Figure 10) has B inputs from previous
instants of the υ variable. The MLPM for the RMLP-BP proposal (Figure 11) has B− 1 inputs
from previous instants of the υ variable. The MLPM module forwards the υ inputs to
the BPM modules with a unit delay. The BPM also receives the MLPM neurons output
signal, yk

i [sT.W](n), as well as the desired MLP output value characterized by an error
signal, e[sT.W](n). Given that the desired value is equal to the current sample of a
time series, that is di[sT.W](n) = υ[sT.W](n), the error can be defined as e[sT.W](n) =
υ[sT.W](n) − υ̂[sT.W](n). Finally, during the neuron update process, the BPM defines the
new weight values, wk

Nk,Nk−1
[sT.W](n), and forwards them back to the MLPM.



Sensors 2022, 22, 3556 9 of 32

z
-1

MLPM

BPM

z
-1

-

Figure 10. Main hardware modules implemented to perform the MLP-BP.

z
-1

MLPM

BPM

z
-1

-

z
-1

Figure 11. Main hardware modules implemented to perform the RMLP-BP.
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4.2.1. Multilayer Perceptron Module (MLPM)

Figure 12 presents the hardware implementation of the neurons of an ANN structure
(Figure 3). MLPM module circuits implement the neurons based on Equations (5) and (6).
As can be observed, it is a semi-parallel implementation for one neuron with ten inputs
values, of which four are the υ[sT.W](n) and one bias (υ0

0[sT.W](n)) values, while the
remaining five inputs are the weight values, wk

Nk,Nk−1
[sT.W](n). The sequential combination

of adders and multipliers generates the output xk
i [sT.W](n). The hidden layers of the

network also use the structure described.
As mentioned in Section 3.2.1, the output layer uses the ReLU activation function.

Figure 13 shows its hardware implementation. The signal xk
i [sT.W](n) is the input of the

nonlinear function described in Equation (7). The linear combination of weight and hidden
layer output provides the neural network output.

+

+

+

+

Figure 12. Block diagram representing the circuits used to implement the neurons of the MLPM
module for both the MLP-BP and RMLP-BP.

0

sel

0

1

Figure 13. Block diagram representing the circuits used to implement the ReLU function ( f (.))
submodule in Figure 12.

4.2.2. Backpropagation Module (BPM)

The BPM defines the error gradient and updates the neurons’ weights. The error
gradient, e[sT.W](n), described in Equations (8) and (9), is performed by the circuits
shown in Figure 14. The signals wk

i, j[sT.W](n), yk
i [sT.W](n) and δk+1

j [sT.W](n) define the

δk
j [sT.W](n) gradient.

The circuit shown in Figure 15 calculates the MLP neurons’ weights, as previously
described in Equation (10). It consists of two inputs, yk

i [sT.W](n) and e[sT.W](n), and
two constants, α and η. The constants are defined using the fixed-point format [sT.W].
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≤

w
k
i,j[sT.W](n)

δk+1j[sT.W](n)

X

0

yki[sT.W](n)

δkj[sT.W](n)

Figure 14. Block diagram representing the circuits used to obtain the hidden layers gradient
implemented in the BPM module for the MLP-BP and RMLP-BP.
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Figure 15. Block diagram representing the circuits used for updating the neurons’ weights imple-
mented in the BPM module of the the MLP-BP and RMLP-BP.

Table 1 summarizes the value used for each parameter in the MLP-BP and RMLP-BP
hardware implementation. It is essential to mention that the training parameter was
empirically defined.

Table 1. Parameters used for implementation MLP-BP and RMLP-BP technique.

Parameter Value

Number of nodes in layers 4–4–1

Activation function ReLU

Training Algorithm Backpropagation

Training mode Online mode

η 0.008

α 0.0

5. Synthesis Results

This section presents synthesis results for linear and nonlinear prediction techniques.
Three key metrics are analyzed: area occupation, throughput, and power consumption.
This work’s throughput (Rs) has a 1:1 ratio with frequency (MHz). All synthesis results
analyzed here use a Xilinx Virtex-6 xc6vlx240t-1ff1156 FPGA, with 301, 440 registers,
150, 720 6-bits look-up tables (LUTs), and 768 digital signal processors (DSPs) that can be
used as multipliers.

Firstly, we carried out analyses for the linear regression technique varying the M value
from 1 to 3, 6, and 9, implemented in a 32-bit floating-point format. Secondly, we present
the synthesis analysis values for MLP-BP using signed fixed-point configurations with
the following bit widths: 18.14, 16.12, and 14.10. Finally, we also provide an analysis by
increasing the number of implementations (NI) in parallel from 1 to 3 and 6, thus, increasing
the number of variables processed in parallel.
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5.1. Linear Prediction Techniques

Tables 2–4 show the synthesis results for the linear regression prediction technique with
1, 3, and 6 parallel implementations, respectively. The first column of each table highlights
the M value. The second to seventh columns present the area occupation on the FPGA. The
second and third display the number of registers/flip-flops (NR) and their percentage (PNR),
and the fourth and fifth, the number of LUTs (NLUT) and their percentage (PNLUT). Finally,
the sixth and seventh indicate the number of multipliers (NMULT) and their percentage
(PNMULT). The last two columns show the processing time, ts, in nanoseconds (ns), and
the throughput, Rs, in mega-samples per second (Msps).

Table 2. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the linear regression (LR) prediction technique, NI = 1, and varying M from 1 to 9.

Method NR PR NLUT PNLUT NMULT PNMULT
ts

(ns)
Rs

(Msps)

LR (M = 1) 198 0.07% 3440 2.28% 9 1.17% 40.25 24.84
LR (M = 3) 380 0.13% 5574 3.70% 9 1.17% 64.50 15.50
LR (M = 6) 649 0.22% 8870 5.89% 9 1.17% 104.81 9.54
LR (M = 9) 942 0.31% 11,762 7.80% 9 1.17% 142.16 7.03

Table 3. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the linear regression (LR) prediction technique, NI = 3, and varying M from 1 to 9.

Method NR PR NLUT PNLUT NMULT PNMULT
ts

(ns)
Rs

(Msps)

LR (M = 1) 529 0.18% 9923 6.58% 27 3.52% 43.53 68.91
LR (M = 3) 1075 0.36% 16,328 10.83% 27 3.52% 66.07 45.42
LR (M = 6) 1886 0.63% 26,159 17.36% 27 3.52% 118.64 25.29
LR (M = 9) 2764 0.92% 34,979 23.21% 27 3.52% 139.12 21,57

Table 4. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the linear regression (LR) prediction technique, NI = 6, and varying M from 1 to 9.

Method NR PR NLUT PNLUT NMULT PNMULT
ts

(ns)
Rs

(Msps)

LR (M = 1) 1027 0.34% 19,649 13.04% 54 7.03% 42.42 141.48
LR (M = 3) 2119 0.70% 32,457 21.53% 54 7.03% 66.81 89.82
LR (M = 6) 3740 1.24% 52,146 34.60% 54 7.03% 104.75 57.30
LR (M = 9) 5497 1.82% 69,595 46.18% 54 7.03% 171.32 35.04

To demonstrate the linear behavior of our hardware proposal, we provide a linear
regression model for Table 4. Figures 16–18 show NR, NLUT, and RS results. It is essential
to mention that linear regression models return a coefficient of determination called R2.
The R2 rate represents the quality of the linear regression model, i.e., it demonstrates the
obtained data variance. Commonly, R2 is expressed on a scale from 0% to 100% (or a
scale from 0 to 1 for normalized values). Concerning the NR, the plane fNR(NI, M) can be
described by

fNR(NI, M) ≈ −1439 + 510.7×NI + 309.5×M; (11)

the coefficient of determination is R2 = 0.8553.
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Figure 16. Plane fNR(NI, M) that estimates the NR, as a function of the NI and M, for the linear
regression prediction technique.

Meanwhile, the NLUT, shown in the plane fNLUT(NI, M), can be defined by

fNLUT(NI, M) ≈ −16, 360 + 7210×NI + 3487×M; (12)

and R2 = 0.8863.
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Figure 17. Plane fNLUT(NI, M) that estimates the NLUTs, as a function of the NI and M, for the linear
regression prediction technique.

Finally, the the plane fRs(NI, M) presents the throughput in Msps, is presented in the
plane fRs(NI, M), and is described as

fRs(NI, M) ≈ 33.4 + 13.35×NI− 6.896×M, (13)

and R2 = 0.8372.
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Figure 18. Plane fRs (NI, M) that estimates the throughput, Rs, as a function of NI and M, for the
linear regression prediction technique.

According to the ts results presented in Tables 2–4 and Figure 18, a significant reduction
in throughput is noticeable as M increases. Increasing the number of circuits in the cascading
sum (CS) submodule results in a more significant critical path and, thus, a more considerable
sampling time (ts). However, the throughput increases proportionally to NI for a fixed
value of M.

It is observable that there is a linear increase in the number of resources used as M and
the NI grow. As presented in Table 4, for NI = 6 and M = 9, 46% of the NLUT are occupied.
On the other hand, for smaller values such as M = 3 and NI = 6, the NLUT occupied
is 21.53%. Additionally, it is possible to increase the NI using the remaining resources.
However, there is no guarantee that there will not be large throughput losses.

Therefore, it is relevant to mention that the parallel FPGA implementations of the linear
regression can achieve high throughput, as required in the TI scenario. On the other hand,
these implementations result in high hardware area occupation. Considering that TI is still
under development, high processing speed and intelligent use of resources are crucial.

5.2. Nonlinear Prediction Techniques

Commonly, MLP-based implementations use the hyperbolic tangent function. How-
ever, using this function resulted in a 28% occupation of the FPGA memory primitives for
an MLP of four inputs, four neurons in the hidden layer, and one neuron in the output
layer (with N = 1). For N = 6, it could occupy ≈68% of the memory primitives, making
the tanh function unfeasible due to its high hardware implementation cost. The activation
function that we use in this work is ReLU, since its hardware implementation does not
require the use of memory primitives. As previously described, Equation (7) describes the
ReLU function.

Tables 5 and 6 show the hardware area occupation and throughput results for the
MLP-BP and RMLP linear prediction techniques. The analyses for both techniques use a
Virtex-6 FPGA. As presented in the first columns (T.W), they are implemented for different
unsigned fixed-point bit widths.
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Table 5. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the MLP prediction technique, varying NI and T.W.

NI T.W NR PR NLUT PNLUT NMULT PNMULT ts (ns)
Rs

(Msps)

1
18.14 547 0.18% 8141 5.40% 54 7.03% 54.24 18.44

16.12 514 0.17% 7307 4.85% 54 7.03% 55.12 18.14

14.10 431 0.14% 6575 4.36% 54 7.03% 52.94 18.89

3
18.14 1695 0.56% 24,483 16.24% 162 21.09% 64.42 46.57

16.12 1590 0.53% 21,889 14.52% 162 21.09% 60.24 49.80

14.10 1335 0.44% 19,729 13.09% 162 21.09% 55.39 54.16

6
18.14 3390 1.12% 48,520 32.19% 324 42.19% 63.95 93.82

16.12 3180 1.05% 43,390 28.79% 324 42.19% 64.03 93.71

14.10 2670 0.89% 39,718 26.35% 324 42.19% 61.86 96.99

Table 6. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the RMLP prediction technique, varying NI and T.W.

NI T.W NR PR NLUT PNLUT NMULT PNMULT ts (ns)
Rs

(Msps)

1
18.14 565 0.19% 8141 5.40% 54 7.03% 57.01 17.54

16.12 530 0.18% 7303 4.85% 54 7.03% 55.87 17.90

14.10 445 0.15% 6577 4.36% 54 7.03% 54.74 18.27

3
18.14 1,749 0.58% 24,455 16.23% 162 21.09% 63.66 47.13

16.12 1,738 0.58% 21,885 14.52% 162 21.09% 56.99 52.64

14.10 1,377 0.46% 19,725 13.09% 162 21.09% 56.37 53.22

6
18.14 3,498 1.16% 48,910 32.45% 324 42.19% 75.44 79.53

16.12 3,276 1.09% 43,786 29.05% 324 42.19% 63.95 93.82

14.10 2754 0.91% 39,460 26.18% 324 42.19% 60.77 98.73

The results displayed in Tables 5 and 6 make it possible to plot surfaces demonstrating
the hardware behavior concerning the area occupation and throughput. Figures 19 and 20
present the relationship between the NI and the number of bits in the fractional part (W)
with the number of registers (NR) for the MLP and RMLP, respectively.

The fNR(NI, W) planes can be expressed by

f MLP
NR (NI, W) ≈ −1439 + 510.7×NI + 309.5×W, (14)

with R2 = 1, and

f RMLP
NR (NI, W) ≈ −1237 + 531.4×NI + 103×W, (15)

and R2 = 0.9835.
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Figure 19. Plane, fNR(NI, W), found to estimate the number of registers, NR, as a function of
the number of implementations, NI, and the number of bits in fractional part W for ML-based
prediction techniques.

1
2

3
4

5
6

10

12

14
0

1,000

2,000

3,000

4,000

NINbp

f
N
R
(N

I,
N
b
p
)

Figure 20. Plane, fNR(NI, W), found to estimate the number of registers, NR, as a function of
the number of implementations, NI, and the number of bits in fractional part W for RLMP-based
prediction techniques.

Figures 21 and 22 present the relationship between the NI and the number of bits in the
fractional part (W) with the number of LUTS (NLUTS) for the MLP and RMLP, respectively.

The fNLUT(NI, W) planes can be expressed by

f MLP
NLUT(NI, W) ≈ −15, 050 + 7305×NI + 1260×W, (16)

for R2 = 0.9935, and

f RMLP
NLUT (NI, W) ≈ −15, 750 + 7342×NI + 1312×W, (17)

for R2 = 0.9899.
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Figure 21. Plane, fNLUT(NI, W), found to estimate the number of LUTs, NLUT, as a function of
the number of implementations, NI, and the number of bits in fractional part W for MLP-based
prediction techniques.
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Figure 22. Plane, fNLUT(NI, W), found to estimate the number of LUTs, NLUT, as a function of
the number of implementations, NI, and the number of bits in fractional part W for RMLP-based
prediction techniques.

Figures 23 and 24 present the relationship between the NI and the number of bits in
the fractional part (W) with the throughput (Rs) for the MLP and RMLP, respectively.

Equations (18) and (19) characterize the fRs(NI, W) planes, for a throughput in Msps, as

f MLP
Rs

(NI, W) ≈ 14.92 + 15.24×NI− 0.93×W, (18)

for R2 = 1, and

f RMLP
Rs

(NI, W) ≈ 31.04 + 14.45×NI− 2.17×W, (19)

for R2 = 1.
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Figure 23. Plane, fRs (NI, W), found to estimate the number of registers, Rs, as a function of the
number of implementations, NI, and the number of bits in fractional part W, for MLP-based
prediction techniques.
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Figure 24. Plane, fRs (NI, W), found to estimate the number of registers, Rs, as a function of the
number of implementations, NI, and the number of bits in fractional part W, for RMLP-based
prediction techniques.

Regarding the throughput (Rs) presented in Tables 5 and 6, it is observable that the
Rs does not vary significantly for a fixed NI and a varying bit width (T.W). For a fixed bit
width (T.W) and a varying NI, the throughput values have a linear increase proportional
to the NI value. Nevertheless, it is also necessary to mention that the ts value has a low
variance because the MLP and BP structures adapt well to parallelism. Hence, the circuit
provides good scalability without considerable performance losses. Compared to the linear
regression discussed in Section 5.1, the MLP shows better flexibility.

The area occupation decreases as the bit width (T.W) and NI parameters also decrease.
Reducing these parameters also reduces the modules’ circuits to store or process data. The
multipliers (NMULT) are the most used resource, reaching up to ≈42% of occupation when
NI = 6. In addition, the MLP and RMLP result in a similar hardware area occupation, using
less than 43%, 27%, and 2% of multipliers, LUTs, and registers, respectively. Given that,
or the current design and chosen FPGA, the maximum value of NI feasible to implement
would be 9 or 10. The throughput would remain close to the current range. Nevertheless,
this analysis used only the Virtex-6 DSPs. It is important to emphasize that the available
LUTs can implement multipliers, permitting an increase in the parallelization degree
and throughput.

We also performed the synthesis for the MLP and BP algorithms separately to verify
the hardware impact of each of them. Table 7 presents an MLP-only implementation, while
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Table 8 presents a BP-only implementation. Given that most of the works in the literature
do not implement the BP or any training algorithm on hardware, we provide a complete
analysis of the modules implemented separately. The MLP, for NI = 6, occupies only
3.82% and 19.53% of the LUTs and multiplies (PNMULT), respectively. It also achieved a
throughput of ≈188 Msps. Hence, the low resource usage shows that our approach provides
good scalability and high performance for applications that do not require online training
and only use the MLP module.

Table 7. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the MLP module implemented without the BP and varying NI and the number of bits.

NI T.W NR PR NLUT PNLUT NMULT PNMULT ts (ns) Rs (Msps)

1
18.14 0 0.00% 1166 0.77% 25 3.26% 28.69 34.86

16.12 0 0.00% 1061 0.70% 25 3.26% 27.30 36.64

14.10 0 0.00% 956 0.63% 25 3.26% 28.41 35.20

3
18.14 0 0.00% 3510 2.33% 75 9.77% 32.65 91.90

16.12 0 0.00% 3195 2.12% 75 9.77% 32.20 93.18

14.10 0 0.00% 2880 1.91% 75 9.77% 30.72 97.65

6
18.14 0 0.00% 7020 4.66% 150 19.53% 34.36 174.63

16.12 0 0.00% 6390 4.24% 150 19.53% 33.84 177.30

14.10 0 0.00% 5760 3.82% 150 19.53% 31.81 188.62

Table 8. Synthesis results regarding the hardware area occupation, processing time, and throughput
for the BP module and varying the number of bits.

NI T.W NR PR NLUT PNLUT NMULT PNMULT ts (ns) Rs (Msps)

1
18.14 475 0.16% 6411 4.25% 29 3.78% 29.16 34.29

16.12 425 0.14% 5651 3.75% 29 3.78% 25.83 38.71

14.10 350 0.12% 5316 3.53% 29 3.78% 25.16 39.74

The synthesis results show that the hardware proposal occupies a small hardware area.
As can be seen, the MLP uses less than 20% and 4% of multipliers and LUTs, respectively.
Meanwhile, the BP occupies less than 4% multipliers and LUTs and reaches more than
39 Msps. Thus, it is possible to increase the architecture parallelization degree due to the
unused resources, consequently enabling the acceleration of several applications that relies
on massive data processing [58]. In addition, the unused resources can also be used for
robotic manipulators with more degrees of freedom and other tools [59]. The low hardware
area occupation also shows that smaller, low-cost, and low-consumption FPGAs can fit our
approach for IoT and M2M applications [60].

Therefore, for the linear and nonlinear regression with BP implementations, the
throughput results reached values up to ≈98 Msps. These values make it possible to use
these solutions in problems with critical requirements, such as TI applications [9,10,29–31].
Figures 19–24 show that the MLP and RMLP techniques have similar results for NR,
NLUT, and Rs. The similarity observed between the results is expected due to the RMLP
architecture being similar to the MLP, except for the input υ̂[sT.W](n), which is now delayed
by a time sample ts. Therefore, the following sections will only focus on the MLP and
MLP-BP results, as it provides better scalability for increasing the NI.

6. Validation Results

This work uses bit-precision simulation tests to validate the proposed hardware designs
for the prediction techniques described in the previous section. Bit precision simulation is
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performed by a dynamic nonlinear system characterized by a robotic manipulator system
with 6 degrees of freedom (DOF), i.e., rotational joints, called Phantom Omni [61–64].
Nonetheless, only the first three joints are active [64]. Therefore, the Phantom Omni can be
modeled as a three-DOF robotic manipulator with two segments (L1 and L2) interconnected
by three rotary joints (θ1, θ2, and θ3), as shown in Figure 25.

θ2
L1

θ3

θ1
L4

L3

L2

A

y
x
z

Figure 25. Structure of 3-DOF Phantom Omni robotic manipulator.

Based on the description provided by [63], the Phantom Omni parameters on the
simulations carried out were defined as follows: L1 = 0.135 mm; L2 = L1; L3 = 0.025 mm;
and L4 = L1 + A for A = 0.035 mm. In addition, the dynamics of the Phantom Omni can
be described by nonlinear, second-order, and ordinary differential equations, as follows:

M(θ(t))θ̈(t) + C
(
θ(t), θ̇(t)

)
θ̇(t) + g(θ(t)) − f

(
θ̇(t)
)
= τ(t), (20)

where θ(t) is the vector of joints expressed as

θ(t) =
[
θ1(t) θ2(t) θ3(t)

]T
∈ R3×1, (21)

τ is the vector of acting torques which can be described as

τ(t) =
[
τ1(t) τ2(t) τ3(t)

]T
∈ R3×1, (22)

M(θ(t)) ∈ R3×3 is the inertia matrix, C
(
θ(t), θ̇(t)

)
∈ R3×3 is the Coriolis and centrifugal

forces matrix, g(θ(t)) ∈ R3×1 represents the gravity force acting on the joints, θ(t), and
f
(
θ̇(t)
)

is the friction force on the joints, θ(t) [61–64].
Figure 26 shows the angular position for each joint of the three-DOF Phantom Omni

robotic manipulator, that is, θ1, θ2, and θ3. It is possible to observe the trajectory of each
joint concerning its angular position as a function of the number of samples received.
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Figure 26. Trajectory of each rotatory joint of the Phantom Omni used to perform the simulations.



Sensors 2022, 22, 3556 21 of 32

The mean square error (MSE) between the actual and predicted data is used to define
the reliability of the results generated by the proposal and can be defined as

Eqm(X) =
1

Ns

Ns−1∑
i=0

(X(i) − ˆ(X)(i))2, (23)

where Eqm(X) is the value of the mean square error, Ns is the number of samples, ˆ(X)(i) is
the i-th sample estimated value, and (X)(i) is the i-th sample current value.

The following subsections present the validation results for the implemented linear
and nonlinear prediction techniques.

6.1. Linear Prediction Techniques

We compared the θ1(n) signal generated by our proposed FPGA architecture with one
from a Matlab implementation for the linear prediction techniques. Figures 27–30 show the
results. We developed a Matlab version using a double-precision floating-point. In contrast,
our hardware design uses a single-precision floating point. As can be observed, the results
shown for the hardware implementation are similar to the Matlab version, despite reducing
the hardware bit-width by half.
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Figure 27. Comparison of the simulation results in Matlab Simulink and system generator for the
linear regression technique with M = 1.
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Figure 28. Comparison of the simulation results in Matlab Simulink and system generator for the
linear regression technique with M = 3.
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Figure 29. Comparison of the simulation results in Matlab Simulink and system generator for the
linear regression technique with M = 6.
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Figure 30. Comparison of the simulation results in Matlab Simulink and system generator for the
linear regression technique with M = 9.

Table 9 and Figure 31 present the MSE between the software (64-bit floating-point based
on IEE754) and hardware (32-bit floating-point) implementations for the LR prediction
techniques, using Ns = 4000 data samples, 80 frames, and 50 samples per frame. As can be
observed, the two implementations are equivalent, i.e., the MSE is significantly small.

Table 9. Mean square error (MSE) between the software implementation and the proposed hardware
implementation for LR technique.

Method MSE

LR (M = 1) 3.52× 10−12

LR (M = 3) 4.52× 10−11

LR (M = 6) 7.22× 10−10

LR (M = 9) 3.99× 10−10
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Figure 31. Comparison of the MSE value between the implemented linear prediction techniques.

6.2. Nonlinear Prediction Techniques

For the nonlinear MLP-BP technique, we also compared the θ1(n) signal. The results
are presented in Figures 32–34. We implemented a Matlab Simulink using a double-precision
floating-point. The hardware uses fixed-point with the number of bits in the fractional part
varying from W = {10, 12, 14}. FPGA and Matlab implementations have similar behavior,
showing that they are equivalent.
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Figure 32. Comparisonof the simulation results in Matlab Simulink and system generator for the
MLP-BP using W = 14.
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Figure 33. Comparison of the simulation results in Matlab Simulink and system generator for the
MLP-BP using W = 12.
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Figure 34. Comparison of the simulation results in Matlab Simulink and system generator for the
MLP-BP with W = 10.

Afterwards, we performed an MSE analysis by varying the hardware bit-width from
18.14 to 16.12 and 14.10. The analysis was carried out for Ns = 4000 data samples, 80 frames,
and 50 samples per frame. Figure 35 and Table 10 show the resultant MSE. As can be
observed, similarly to linear prediction techniques, the MSE between the software and
hardware versions is also small for nonlinear techniques.
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Figure 35. Comparison of the MSE value between MLP-BP implementations.

The proposed hardware implementations for prediction techniques have a similar
response to the double-precision (64-bit) software implementation, even using fixed-point
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with fewer bits, such as 14.10. Furthermore, fewer bits may allow the implementation of
the proposed method on hardware with limited capacity resources. Thus, the number of
resources available could define the number of bits used to implement a technique.

Table 10. Mean square error (MSE) between the software and the proposed hardware implementations
for nonlinear methods.

W MSE

14 5.36× 10−7

12 4.97× 10−6

10 2.93× 10−4

After analyzing the MSE, it is possible to see that both linear and nonlinear techniques
perform well in the current test scenario. However, as previously mentioned, linear-
regression-based techniques may not be the most suitable for the TI landscape due to
scalability issues seen in Section 5.1. Hence, in the following section, this work will focus
on the results of the MLP-BP.

7. Comparison with State-of-the-Art Works

In this section, a comparison with state-of-the-art works is carried out for the following
hardware key metrics: throughput, area occupation, and energy consumption. The
implementations presented were developed on the Virtex-6 FPGA with T.W = 14.10 bits.

7.1. Throughput Comparison

Table 11 shows the MLP processing speed and throughput for our work and other
works in the literature. As can be seen, the columns present the number of implementations
(NI), the fixed-point data precision (T.W), the MLP and MLP-BP processing speed, and the
throughput in Msps.

The work proposed in [50] is an MLP with a 12–12–2 topology (twelve inputs, twelve
neurons in the hidden layer, and two neurons in the output layer) deployed with a
24-bits fixed-point format. The MLP training is offline, and it reaches a throughput of
113.135 Msps and 115.875 Msps for the Virtex 6 XC6VLX240T and the Artix-7 XC7A100T
FPGAs, respectively. The high performance achieved is due to the pipeline used in their
proposed hardware design, reducing the system’s critical path and increasing the maximum
frequency. Unlike [50], our proposal uses online training, and using a pipeline-based
architecture is not feasible due to the chain of delays intrinsic to this approach that can
reduce the sample’s accuracy during online training. Nevertheless, the throughput value
of our architecture can improve as the number of implementations grows, increasing the
number of samples processed per second without impacting its maximum clock.

The design proposed in [51] implements a 7–6–5 MLP with offline training on the Artix-
7 35T FPGA. It achieved a throughput of 3.7 Msps, but the number of clock cycles required
to obtain a valid output reduces the throughput compared to other works. Meanwhile,
the work presented in [52] proposes a 12–3–1 MLP on a Zynq-7000, also with offline
training, capable of reaching a maximum throughput of 1.85 Msps. The small throughput
(compared to other works) may be related to the use of high-level synthesis (HLS), which
usually results in a non-optimized implementation. The architecture presented in [53] is
a 12–7–3 MLP with a 24-bit fixed-point data format and offline training. The maximum
throughput achieved was 27.89 Msps and 25.24 Msps for the Virtex 6 XC6VLX240T and
Artix-7 XC7A100T FPGAs implementations, respectively.
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Table 11. Throughput comparison with other state-of-the-art works.

Ref. NI Data
Precision (T.W)

MLP
Speed (MHz)

MLP-BP
Speed (MHz)

Throughput
(Msps)

[50] 1 24
113.14 - 113.14

115.88 - 115.88

[51] 1 16.15 100 - 3.70

[52] 1 24.20 100 - 1.85

[53] 1 24
27.89 - 27.89

25.24 - 25.24

This Work

1

14.10

35.20 18.89 18.89

3 32.55 18.05 54.15

6 31.44 16.17 97.02

Table 12 presents a speedup analysis performed for all works presented in Table 11.
The first column presents the NI in our architecture, while the second to seventh columns

are the literature works compared with ours. Throughputwork

Throughputre f defines the speedup, where

Throughputwork represents the throughput of our proposal and Throughputre f represents the
literature reference throughput. The results were obtained only for the
MLP-BP implementation.

Table 12. Speedup comparison of the MLP-BP implementation with other works.

NI [50] 1 [50] 2 [51] [52] [53] 1 [53] 2

1 0.17× 0.16× 5.11× 10.21× 0.68× 0.75×

3 0.48× 0.47× 14.64× 29.27× 1.94× 2.15×

6 0.86× 0.84× 26.22× 52.44× 3.48× 3.84×

As shown in Table 12, the implementation seen proposed by [50] achieves a higher
speedup. However, our proposal offers good scalability that allows increasing the NI and
enables higher throughput, reducing this difference even with an implementation that
uses online training embedded in the platform. Moreover, our approach reached a higher
throughput than the other works, reaching speedup rates of up to 52×.

In addition, it is vital to mention that a higher frequency speed in MHz does not mean
a higher throughput. Conversely, the throughput is commonly related to the parallelism
degree. For example, the MLP speed in [51,52] have the lowest throughput even for a
high-frequency speed (Table 11). In these cases, the speedup was up to 26× and 52× for [51]
and [52], respectively.

In [53], the throughput value is 27.89 and 25.24 Msps, for an MLP with offline training
and NI = 1. Meanwhile, even implementing the training algorithm in hardware, our work
achieves speedup rates of up to 3×.

In [50], a pipeline scheme reduces the system’s critical path and increases the through-
put. However, it does not provide online training, which could reduce its performance.
Meantime, our proposed architecture provides online training, adapting to different scenar-
ios. In addition, it would not be feasible to use a pipelined scheme since the samples have a
temporal dependence.
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7.2. Hardware Area Occupation

The area occupation comparison was based on a hardware occupation ratio defined as

Roccupation =



Nwork
hardware

Nref
hardware

, for Nwork
hardware > 0 and Nref

hardware > 0

1
Nref

hardware
, for Nwork

hardware = 0 and Nref
hardware > 0

Nwork
hardware , for Nwork

hardware > 0 and Nref
hardware = 0

1 , for Nwork
hardware = 0 and Nref

hardware = 0.

. (24)

The superscripts work and ref represent the resource information regarding our work
and the compared work, respectively. Meanwhile, Nhardware represents the primitives,
such as the number of LUTS, registers, multipliers, or the number of block random access
memory (BRAM).

Table 13 shows the area occupation for our work and works in the literature. The
second and third columns present the NI and fixed-point data precision (T.W). From the
third to sixth columns, we present the number of LUTs (NLUT), the number of registers
(NR), the number of multipliers (NMULT), and the number of BRAMs (NBRAM).

Table 13. Hardware occupation comparison with other works.

Ref. NI Data Precision (T.W) NLUT NR NMULT NBRAM

[50] 1 1 24 19,567 21,861 168 26

[50] 2 1 24 19,732 21,659 168 26

[51] 1 16.15 3466 569 81 0

[52] 1 24.20 4032 2863 28 2

[53] 1 1 24 21,322 13,546 219 2

[53] 2 1 24 21,658 13,330 219 2

This Work

1

14.10

6575 431 54 0

3 19,729 1335 162 0

6 39,718 2670 324 0

In [50], a total of 19,567 LUTs, 21,861 registers, 168 multipliers, and 26 BRAMs were used
in the Virtex 6 XC6VLX240T, while the Artix-7 XC7A100T occupied a total of 19, 732 LUTs,
21,659 registers, 168 multipliers, and 26 BRAMs. The memory usage can be attributed
to implementing the sigmoid activation function. Meanwhile, our work uses the ReLU
function; thus, it does not use memories.

The work presented in [51] uses an Artix-7 35T FPGA for the implementation, occupying
3466 LUTs, 569 registers, and 81 multipliers. The proposal shown in [52] uses 4032 LUTs,
2863 registers, 28 multipliers, and 2 BRAMs. The architecture proposed in [53] was
implemented in two FPGAs using the sigmoid activation function, occupying 21,322 LUTs,
13,546 registers, 219 multipliers, and 2 BRAMs for the Virtex 6 XC6VLX240T FPGA, and
21,658 LUTs, 13,330 registers, 219 multipliers, and 2 BRAMs for Artix-7 XC7A100T.

Tables 14–17 present the hardware ratio, Roccupation, regarding our proposed architecture.
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Table 14. Analysis of the ratio occupation for NLUT.

NI [50] 1 [50] 2 [51] [52] [53] 1 [53] 2

This Work

1 0.34× 0.33× 1.90× 1.63× 0.31× 0.30×

3 1.01× 1.00× 5.69× 4.89× 0.93× 0.91×

6 2.03× 2.01× 11.46× 9.85× 1.86× 1.83×

Table 15. Analysis of the ratio occupation for NR.

NI [50] 1 [50] 2 [51] [52] [53] 1 [53] 2

This Work

1 0.02× 0.02× 0.76× 0.15× 0.03× 0.03×

3 0.06× 0.06× 2.35× 0.47× 0.10× 0.10×

6 0.12× 0.12× 4.69× 0.93× 0.20× 0.20×

Table 16. Analysis of the ratio occupation for NMULT.

NI [50] 1 [50] 2 [51] [52] [53] 1 [53] 2

This Work

1 0.32× 0.32× 0.67× 1.93× 0.25× 0.25×

3 0.96× 0.96× 2.00× 5.79× 0.74× 0.74×

6 1.93× 1.93× 4.00× 11.57× 1.48× 1.48×

Table 17. Analysis of the ratio occupation for NBRAM.

NI [50] 1 [50] 2 [51] [52] [53] 1 [53] 2

This Work

1 0.04× 0.04× 1.00× 0.50× 0.50× 0.50×

3 0.04× 0.04× 1.00× 0.50× 0.50× 0.50×

6 0.04× 0.04× 1.00× 0.50× 0.50× 0.50×

As shown in Tables 14–17, our proposal uses online training and implements up to
six replicas of the same technique in parallel. For most cases, it requires fewer resources,
evidencing efficient use of hardware. For a scenario where NI is 1, except for the works
presented in [51,52], which have low throughput (see Table 11), our proposal maintains a
good advantage over the other proposals. For a scenario where NI is 6, the present work
has a high consumption of hardware resources compared to the other works. However,
this is a strategy adopted to increase the throughput of the proposal. Furthermore, unlike
other proposals, our design does not occupy any BRAMs as we use the ReLU function, thus
improving the design’s scalability for flexible implementation in different scenarios, such
as using TI systems with more DOFs, such as six or nine DOF.

7.3. Dynamic Power Consumption

Dynamic power is the primary factor for a digital circuit’s energy consumption. It can
be expressed as

Pd ∝ Ng × Fclk ×V2
DD, (25)

where Ng is the number of elements (or gates), Fclk is the maximum clock frequency,
and VDD is the supply voltage. Given that the operating frequency of CMOS circuits is
proportional to the voltage [65], the dynamic power can also be described as

Pd ∝ Ng × F3
clk. (26)

The number of elements, Ng, can be defined by the FPGA primitives used to deploy
the architecture, i.e., Ng = NLUT + NR + NMULT.
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Tables 18 and 19 present the operating frequency and dynamic power analysis results
regarding Ng. Concerning the dynamic power, we present the reduction rate, Sd, achieved
by our proposal according to the following:

Sd =
Nref

g ×
(
Fref

clk

)3
Nwork

g ×

(
Fwork

clk

)3 , (27)

where the Nref
g and Fref

clk are the number of elements and the maximum clock frequency of
the work we are comparing. At the same time, Nwork

g and Fwork
clk are the number of elements

and the maximum clock frequency of our work. Unlike the works in the literature, our
hardware proposal uses a fully parallel layout, requiring one single clock cycle per sample
processing. Therefore, the maximum clock frequency is equivalent to the throughput,
Fwork

clk ≡ Rs.

Table 18. Analysis of the frequency regarding Ng.

Ref. NI Data Precision (T.W) Fclk Ng

[50] 1 1 24 113.14 41,596

[50] 2 1 24 115.88 41,559

[51] 1 16.15 100.00 4116

[52] 1 24.20 100.00 6923

[53] 1 1 24 27.89 35,087

[53] 2 1 24 25.24 35,207

This Work

1

14.10

18.89 7060

3 18.05 21,226

6 16.17 42,712

Table 19. Analysis of dynamic power.

NI [50] 1 [50] 2 [51] [52] [53] 1 [53] 2

This Work

1 1265.90× 1358.91× 86.49× 145.48× 16.00× 11.90×

3 482.61× 518.07× 32.97× 55.46× 6.10× 4.54×

6 333.60× 358.11× 22.79× 38.34× 4.22× 3.13×

We assume that all proposals operate at the maximum frequency that the platform
can reach. Thus, for an NI = 1, our design reduced power consumption by more than
1200× compared to the one proposed by [50]. Overall, our proposal reduced the power
consumption compared to other work in most case scenarios. Therefore, IoT projects that
require low power consumption can use our method without affecting their performance.

For NI = 6, we can observe a similar power consumption compared to [53] due to their
proposal’s small clock value and not providing online training.

Lowering the use of BRAMs to zero is a highlight of this work. This reduction is
possible due to the implementation of the ReLU function. Unlike other proposals that make
use of functions, such as sigmoid, this strategy provides an advantage in terms of scalability
of the proposal, which can be scaled to various scenarios without compromising the use
of BRAMs. The fully parallel computing strategy proposed in the present work does not
spend clock time accessing the RAM block, and this can increase throughput and decrease
power consumption.
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8. Conclusions

This work introduced a method for implementing prediction techniques in parallel
to reduce the latency of TI systems using FPGA, thus enabling local devices to be used
in conjunction with haptic devices. The hardware-based method minimized the data
processing time of linear and nonlinear prediction techniques, showing that reconfigurable
computing is feasible for solving complex TI problems.

We presented all the implementation details and the synthesis results for different
bit-width resolutions and three different numbers of implementations in parallel (one,
three, and six). In addition, the proposal is validated with a three-DOF Phantom Omni
robotic manipulator and evaluated regarding hardware area occupation, throughput,
and dynamic power consumption. In addition, we also presented comparisons with
state-of-the-art works.

Comparisons demonstrate that a fully parallel approach adopted for linear regression
and nonlinear prediction techniques can achieve high processing speed. However, linear
regression techniques have low scalability and may not be a good path for the TI area.
Nonlinear prediction techniques achieve a throughput of up to ≈52×while also reducing
power consumption by ≈1300×. Furthermore, despite the high degree of parallelism, the
proposed approach offers good scalability, indicating that the present work can be used in
TI systems, especially for the nonlinear prediction techniques.
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