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a b s t r a c t

Over the last 10 to 15 years, active inference has helped to explain various brain mechanisms
from habit formation to dopaminergic discharge and even modelling curiosity. However, the current
implementations suffer from an exponential (space and time) complexity class when computing the
prior over all the possible policies up to the time-horizon. Fountas et al. (2020) used Monte Carlo
tree search to address this problem, leading to impressive results in two different tasks. In this paper,
we present an alternative framework that aims to unify tree search and active inference by casting
planning as a structure learning problem. Two tree search algorithms are then presented. The first
propagates the expected free energy forward in time (i.e., towards the leaves), while the second
propagates it backward (i.e., towards the root). Then, we demonstrate that forward and backward
propagations are related to active inference and sophisticated inference, respectively, thereby clarifying
the differences between those two planning strategies.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Active inference is at this point a compelling explanatory
pproach in cognitive neuroscience, and significant analyses of
iologically-realistic implementations in both neural and non-
eural communication networks have been conducted. More
pecifically, active inference extends the free energy principle to
enerative models with actions (Champion, Grześ, & Bowman,
021; Da Costa, Parr et al., 2020; Friston, FitzGerald, Rigoli,
chwartenbeck, Doherty, & Pezzulo, 2016) and can be regarded
s a form of planning as inference (Botvinick & Toussaint, 2012).
his framework has successfully explained a wide range of neuro-
ognitive phenomena, such as habit formation (Friston et al.,
016), Bayesian surprise (Itti & Baldi, 2009), curiosity (Schwarten-
eck et al., 2018), and dopaminergic discharges (FitzGerald, Dolan,
Friston, 2015). It has also been applied to a variety of tasks, such
s animal navigation (Fountas, Sajid, Mediano, & Friston, 2020),
obotic control (Pezzato, Corbato, & Wisse, 2020; Sancaktar, van
erven, & Lanillos, 2020), the mountain car problem (Çatal, Ver-
elen, Nauta, Boom, & Dhoedt, 2020), the game of DOOM (Cullen,
avey, Friston, & Moran, 2018) and the cart pole problem (Mil-
idge, 2019). Many of those applications require planning several
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893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
steps into the future in order to be solved successfully. How-
ever, as explained in more depth in Appendix H, an exhaustive
search over all possible sequences of actions will quickly become
intractable, i.e., the number of sequences to explore grows ex-
ponentially with the time horizon of planning. Fig. 1 illustrates
this exponential growth. Exploring only a subset of this exponen-
tial number of possible sequences using a tree search therefore
becomes a compelling and quite natural alternative.

But what exactly is active inference? Imagine a basketball
player at the top of the key (i.e., the area just below the net) ready
to take a shot. Intuitively, active inference sees the world as a
collection of external states such as the positions of the net, the
player and the ball. The player (or agent) is equipped with sensors
(such as the eyes) which allow for measurements of the external
states. The player is also able to perform actions in the world
such as to perform sudden eye movement or simply unfolding
his (or her) arms and legs. Furthermore, it is believed that the
agent stores an internal representation of the external states, that
we shall refer to as the internal states. Importantly, the external
and internal states are separated from each other by the Markov
blanket (Kirchhoff, Parr, Palacios, Friston, & Kiverstein, 2018),
i.e., the sensory information received and actions taken by the
agent. In other words, the external states can only modify the
internal states indirectly through the observations (also called
sensory information) made by the agent, and the internal states
can only modify the external states indirectly through the actions

taken by the agent.

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Illustration of all possible policies up to two time steps in the future
when |U | = 2. The state at the current time step is denoted by St . Additionally,
ach branch of the tree corresponds to a possible policy, and each node SI is

indexed by a multi-index (e.g. I = (12)) representing the sequence of actions
that led to this state. This should make it clear that for one time step in the
future, there are |U | possible policies, after two time steps there are |U | times
ore policies, and so on until the time-horizon T where there are a total of

U |T possible policies, i.e., the number of possible policies grows exponentially
ith the number of time steps for which the agent tries to plan.

More formally, active inference builds on a subfield of Bayesian
tatistics called variational inference (Fox & Roberts, 2012), in
hich the true posterior distribution is approximated with a
ariational distribution. This method provides a way to balance
he complexity and accuracy of the posterior distribution. The
ariational approach is only tractable because some statistical
ependencies are ignored during the inference process, i.e., the
ariational distribution is generally assumed to fully factorize,
eading to the well known mean-field approximation:

(X) =
∏
i

Q (Xi), (1)

here X is the set of all hidden variables of the model, Xi rep-
resents the ith hidden variable, Q (X) is the variational distribu-
tion (see below) approximating the posterior P(X |O) where O
is the available data, and Q (Xi) is the ith factor of the varia-
tional distribution. In 2005, Winn and Bishop (2005) presented
a message-based implementation of variational inference, which
has naturally been called variational message passing. And more
recently, Champion, Grześ et al. (2021) realized an active infer-
ence scheme using this variational message passing procedure. By
combining the Forney factor graph formalism (Forney, 2001) with
the method of Winn and Bishop (2005), it becomes possible to
create modular implementations of active inference (Cox, van de
Laar, & de Vries, 2019; van de Laar & de Vries, 2019) that allows
users to define their own generative models without the burden
of deriving update equations.

However, as just stated, there is a major bottleneck to scal-
ing up the active inference framework: the number of action
sequences grows exponentially with the time-horizon (see Ap-
pendix H for details). In the reinforcement learning literature, this
explosion is frequently handled using Monte Carlo tree search
(MCTS) (Browne et al., 2012; Schrittwieser et al., 2019; Silver
et al., 2016). This approach has been applied to active inference
in several papers (Fountas et al., 2020; Maisto, Gregoretti, Friston,
& Pezzulo, 2021). Fountas et al. (2020) chose to modify the
original criterion used during the node selection step in MCTS.
This step returns the node that needs to be expanded, and the
reinforcement learning community uses the upper confidence
 b
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bound for trees (UCT) introduced by Kocsis and Szepesvári (2006)
as a selection criterion:

UCTj = X̄j + 2Cp

√
2 ln n
nj

, (2)

where n is the number of times the current (parent) node has
been explored; nj stands for the number of times the jth child
ode has been explored; Cp > 0 is the exploration constant and
¯ j is the average reward received by the jth child, i.e., the sum
f all rewards received by the current node and its descendants
ivided by nj. The child node with the largest UCTj is selected. In
heir paper, Fountas et al. (2020) replaced this selection criterion
y:

(s, a) = −G̃(s, a)+ Cexplore Q (a|s)
1

1+ N(s, a)
(3)

where U(s, a) indicates the utility of selecting action a in state
s; N(s, a) is the number of times that action a was explored in
state s; Cexplore is an exploration constant equivalent to Cp in the
UCT criterion; Q (a|s) is a neural network modelling the posterior
distribution over actions, which is trained by minimizing the vari-
ational free energy, and G̃(s, a) is an estimator of the expected free
energy (EFE). The EFE is computed from the following equation:

G(π, τ ) =− EQ (θ |π )Q (sτ |θ,π )Q (oτ |sτ ,θ,π )

[
ln P(oτ |π )

]
+ EQ (θ |π )

[
EQ (oτ |θ,π )H(sτ |oτ , π )− H(sτ |π )

]
(4)

+ EQ (θ |π )Q (sτ |θ,π )H(oτ |sτ , θ, π )− EQ (sτ |π )H(oτ |sτ , π ),

where H(x|y) is the entropy of p(x|y). The computation of the
EFE is performed by sampling from three distributions whose
parameters are predicted by deep neural networks, i.e., the en-
coder network modelling Q (sτ ), the decoder network modelling
P(oτ |sτ ) and the transition network modelling P(sτ |sτ−1, aτ−1).
ote that Eq. (2) was developed by Kocsis and Szepesvári (2006)
s a criterion for selecting nodes during planning, such that the
elected node minimizes the agent’s regret (cf. Appendix G for
dditional details). Eq. (3) finds its origin in the Predictor Upper
onfidence Bound (PUCB) algorithm introduced by Rosin (2010).
he idea of the PUCB algorithm is to use contextual information
o predict the node to select during planning. Eqs. (2) and (3)
oth aim to select the node that minimizes the agent’s regret, and
an therefore be used interchangeably. However, Eq. (3) requires
ontextual information and a model predicting the node to be
elected. Fountas et al. (2020) proposed to use the neural network
odelling Q (a|s) as a predictor. This has the advantage of making

he predictor very flexible, since neural networks are known to
e general function approximators, but neural networks are also
xpensive to train and lack interpretability.
To avoid the additional complexity brought by the predictor,

his paper makes use of (2), which arises from the multi-armed
andit literature (Auer, Cesa-Bianchi, & Fischer, 2002). The idea
s to minimize the agent’s regret to handle the trade-off be-
ween exploration and exploitation at the tree-level in an optimal
anner.
A major novelty of our paper is to think about tree search as

dynamical expansion of the generative model, where the past
nd present is modelled as a partially observable Markov decision
rocess (Sondik, 1971) and the future is modelled by a tree-like
enerative model. Importantly, our agent treats future states and
bservations as latent variables over which posterior beliefs are
omputed, and those beliefs encode the uncertainty of our agent
ver future states. In contrast, Fountas et al. (2020) are using
maximum a posteriori (MAP) estimate of the future hidden

tates, while performing MCTS. Lastly, the posterior beliefs held

y our agent are computed using variational message passing as
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resented in Champion, Grześ et al. (2021). In comparison, Foun-
as et al. (2020) perform amortized inference using an encoder
etwork that predicts the mean and variance of the posterior
istribution over latent states. Then, (during planning) a MAP
stimate is used as input for the neural network modelling the
emporal transition. All those neural networks are trained using
radient descent on the variational free energy.
Overall, the key contribution of our paper is to use MCTS to

xpand or grow the probabilistic graphical model, treat future
tates and observations as latent variables, and do inference using
ariational message passing. Indeed, the definition in Champion,
rześ et al. (2021) of a general message passing procedure for
erforming active inference makes it possible to construct graph-
cal active inference models in a modular fashion. In turn, this
akes it possible to incrementally expand an active inference
odel as required of our MCTS procedure. It is this message
assing procedure that makes our approach possible. To our
nowledge, an approach of this kind has never been studied
efore.
In the following, we first provide the requisite background

oncerning Forney factor graphs, variational message passing, ac-
ive inference, and Monte Carlo tree search in Sections 2, 3, 4, and
, respectively. Next, Section 6 introduces our method that frames
lanning using a tree as a form of Bayesian model extension.
sing terminology from concurrency theory (Bowman, 2005), we
all our new formalism Branching Time Active Inference (BTAI). In
his domain, models of systems based upon sequences of actions
the format of policies) are described as linear time, while models
ased upon tree and even graph structures are called branching
ime (Bowman, 2005; van Glabbeek, 1990, 1993). Importantly,
TAI does not consider the generative model and the tree as two
ifferent objects, instead, BTAI merges those two objects together
nto a generative model that can be dynamically expanded. For a
etailed analysis of the properties of BTAI, the reader is referred
o our companion paper (Champion, Bowman, & Grześ, 2021),
hich provides an empirical demonstration of the benefits of
TAI over standard active inference (AcI) in the context of a graph
avigation task. This companion paper also supplies a theoretical
omparison of BTAI and standard AcI based upon a complexity
lass analysis. Briefly, standard AcI has a space complexity class
f O(|π | × T × |S|), where |π | = |U |T is the number of possible
olicies, |U | is the number of available actions, T is the time

horizon of planning, and |S| is the number of values that the
hidden state can take. In contrast, the space complexity class of
BTAI is O([K + t] × |S|), where t is the current (i.e. present) time
point, and K is the number of expansions of the tree performed
during planning. Importantly, even complex applications such as
the game of Go can be solved by expanding only a small number
of nodes (Schrittwieser et al., 2019; Silver et al., 2016). Section 6
is followed by Section 7 that explains the connection between our
method and the planning strategies used in both active inference
and sophisticated inference (Friston, Da Costa, Hafner, Hesp, &
Parr, 2021). Finally, Section 8 concludes this paper and provides
ideas for future research.

2. Forney factor graphs

A Forney factor graph (Forney, 2001) uses three kinds of
nodes. The nodes representing hidden and observed variables
are depicted by white and grey circles, respectively. And the
distribution’s factors are represented using white squares, which
are linked to variable nodes by arrows or lines. Arrows are used
to connect factors to their target variable, while lines link factors
to their predictors. Fig. 2 shows an example of a Forney factor
graph corresponding to the following generative model:

P(O, S) = P (O|S)P (S). (5)
O S
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Fig. 2. This figure illustrates the Forney factor graph corresponding to the fol-
lowing generative model: P(O, S) = PO(O|S)PS (S). The hidden state is represented
by a white circle with the variable’s name at the centre, and the observed
variable is depicted similarly but with a grey background. The factors of the
generative model are represented by squares with a white background and the
factor’s name at the centre. Finally, arrows connect the factors to their target
variable and lines link each factor to its predictor variables.

Generally, factor graphs only describe the model’s structure
such as the variables and their dependencies, but do not specify
the definition of individual factors. For example, the definitions
of PO and PS are not given by Fig. 2, and additional information
s required to remove the ambiguity, e.g., PS(S) = N (S;µ, σ )
larifies that PS is a Gaussian distribution.

. Variational message passing

We now build on Forney factor graphs and provide an overview
f the method of Winn and Bishop (2005). For more details,
ee Champion, Grześ et al. (2021), which provided a complete
erivation of the equations presented below from Bayes’ theorem.

.1. Winn and Bishop method

Variational message passing as developed by Winn and Bishop
2005) is an approach for inference based upon the mean-field
pproximation, which assumes that the posterior fully factorizes,
.e.

(X) =
∏
i

Q (Xi), (6)

where X is the set of all hidden variables of the model and Xi
represents the ith hidden variable. In this section, we focus on the
intuition behind the method, starting with the update equation of
an arbitrary hidden state xk:

lnQ ∗k (xk) = ⟨ln P(xk|pak)⟩∼Qk +

∑
cj∈chk

⟨ln P(cj|xk, cpkj)⟩∼Qk + C (7)

where C is a normalizing constant, and ⟨·⟩∼Qk
is the expectation

over all factors but Qk(xk). (7) tells us that the optimal posterior of
any hidden states xk only depends on its Markov blanket, i.e., xk’s
parents pak, children chk and co-parents cpkj. To make (7) more
specific, we assume that each random variable of the model is
conjugate to its parents (i.e., the posterior has the same functional
form as the prior) and is distributed according to a distribution in
the exponential family, i.e.,

ln P(xk|pak) = µk(pak) · uk(xk)+ hk(xk)+ zk(pak) (8)

where µk(pak), uk(xk), hk(xk) and zk(pak) are the parameters, the
sufficient statistics, the underlying measure and the log partition,
respectively. Under those two assumptions, (7) can be re-written
as:

Q ∗k (xk) = exp
{
µ∗k · uk(xk)+ hk(xk)+ Const

}
(9)
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Fig. 3. This figure illustrates the computation of the optimal posterior pa-
rameters as a message passing procedure, which requires the transmission of
messages from the parent (m2) and child (m3) factors. Additionally, the message
rom the child factor (m3) requires the computation of messages from the co-
arent (m4) and child (m5) variables. Also, the message from the parent factor
m2) requires the computation of a message (m1) from the parent variable.

ith the parameters of the posterior defined as:

∗

k = µ̃k({⟨ui(i)⟩Qi}i∈pak ) +
∑
cj∈chk

µ̃j→k(⟨uj(cj)⟩Qj , {⟨ul(l)⟩Ql}l∈cpkj )

(10)

here µ̃k is a re-parameterization of µk(pak) in terms of the ex-
ectation of the sufficient statistics of the parents of xk, and sim-
larly µ̃j→k is a re-parameterization of µj→k. Importantly, uk(xk)
nd hk(xk) in the optimal posterior (9) are the same as in the prior
8), and only the parameters have changed according to (10).

To understand the intuition behind (10), let us suppose that
e are given the Forney factor graph illustrated in Fig. 3 and we
ish to compute the posterior of Y . Then, the only parent of Y

s Z , the only child of Y is X and the only co-parent of Y with
espect to X is W . Therefore, applying (10) to our example leads
o the equation presented in Fig. 3 whose components can be
nterpreted as messages. Indeed, each variable (i.e., X , Z and W )
sends the expectation of its sufficient statistics (i.e., a message) to
the square node in the direction of Y (i.e., either PX or PY ). Those
messages are then combined using a function (i.e., either µ̃Y or
˜ X→Y ) whose output (i.e., another set of messages) are summed
o obtain the optimal parameters µ∗Y . The computation of the
ptimal parameters (10) can then be understood as a message
assing procedure. Also, we provide in Appendix C a concrete
nstance of the approach presented above.

. Active inference

This section provides a quick overview of the active inference
ramework, and Appendix H presents a description of the expo-
ential complexity class that it exhibits. The reader is referred to
ppendix F for any notations that might not be explained here.
or a more detailed treatment of the active inference framework,
e refer the reader to Champion, Grześ et al. (2021), Da Costa,
arr et al. (2020), Smith, Friston, and Whyte (2021).

.1. Generative model

As illustrated in Fig. 4, the classic generative model represents
he world as a sequence of hidden states generating observations
hrough the matrix A. The prior over the initial states is defined by
he vector D and the transition between time steps is encoded by
3-tensor B, i.e., one matrix per action. Importantly, the random
298
Fig. 4. This figure illustrates the Forney factor graph of the entire generative
model presented by Friston et al. (2016). The probability of the initial states
is defined by the vector D, and the matrix A defines the probability of the
observations given the hidden states. The B matrices define the transition
between any successive pair of hidden states. This transition depends on the
action performed by the agent, i.e., on the policy π . Furthermore, the prior over
he policies has been chosen such that policies minimizing expected free energy
re more probable. Finally, the precision parameter γ (which modulates the

confidence over which policies to pursue) is distributed according to a gamma
distribution.

variable π represents all possible policies up to a given time
horizon T and each policy is defined as a sequence of actions,
i.e., {Ut , . . . ,UT−1} where Uτ ∈ {1, . . . , |U |} ∀τ ∈ {t, . . . , T − 1}.
The prior over the policies is then set such that policies with high
probability minimize the EFE, which is defined as follows (Parr &
Friston, 2019):

G(π ) ≈
T∑

τ=t+1

[
DKL[Q (Oτ |π ) ∥ P(Oτ )]  

risk

+EQ (Sτ |π )[H[P(Oτ |Sτ )]]  
ambiguity

]
(11)

where H[·] is the Shannon entropy, the expected outcomes
Q (Oτ |π ) ≜

∑
Sτ P(Oτ |Sτ )Q (Sτ |π ), G is a vector containing as

any elements as the number of policies, and the ith element
f G represents the cost of the ith policy. The prior preferences
ver observations P(Oτ ) represent the (categorical) distribution
hat the agent wants its observations to be sampled from and is
raditionally encoded by the vector C . Note that this generalizes
he concept of reward from reinforcement learning. Indeed, max-
mizing reward can be reformulated as sampling observations
rom a Dirac delta distribution over reward maximizing states (Da
osta, Sajid, Parr, Friston, & Ryan, 2020).
Lastly, the precision parameter γ has been associated to neu-

omodulators such as dopamine (FitzGerald et al., 2015; Friston,
chwartenbeck, Fitzgerald, Moutoussis, Behrens, & Dolan, 2013)
nd can be understood as modulating the confidence over the
nformation afforded by the expected free energy—e.g., smaller
alues of γ lead to more stochastic decision-making. Finally,
he framework allows A, B and D to be learned by introducing
irichlet distributions over the columns of these tensors such that
he posterior parameters of A, B and D can be reused in a new
rial, as parameters of the prior, giving an empirical prior. Finally,
he classic generative model is defined as follows:
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(O0:t , S0:T , π,A,B,D, γ ) = P(π |γ )P(γ )P(A)P(B)P(S0|D)P(D)
t∏

τ=0

P(Oτ |Sτ ,A)
T∏
τ=1

P(Sτ |Sτ−1, πτ−1,B)

(12)

(π |γ ) = σ (−γG) P(γ ) = Γ (1,β)
(A) = Dir(a) P(B) = Dir(b)
(S0|D) = Cat(D) P(D) = Dir(d)

P(Oτ |Sτ ,A) = Cat(A) P(Sτ |Sτ−1, πτ−1,B) = Cat(B),

where G is a vector of size |π | whose ith element corresponds
to the expected free energy of the ith policy, σ (·) is the softmax
function, Γ (·), Cat(·) and Dir(·) stand for a gamma, categorical
and Dirichlet distribution, respectively, πτ−1 ∈ {1, . . . , |U |} is the
action prescribed by policy π at time τ − 1, O0:t is the set of
(random variables representing) observations between time step
0 and t , and S0:T is the set of (random variables representing)
hidden states between time step 0 and T .

4.2. Variational distribution

The most widely used variational distribution (Da Costa, Parr
et al., 2020; Friston et al., 2016) is not fully factorized, i.e., the
posterior models the influence of the policy on the hidden states,
leading to the following factorization:

Q (S0:T , π,A,B,D, γ ) = Q (π )Q (A)Q (B)Q (D)Q (γ )
T∏
τ=0

Q (Sτ |π )

(13)

Q (Sτ |π ) = Cat(D̂τ ) Q (π ) = Cat(π̂)

Q (γ ) = Γ (1, β̂) Q (D) = Dir(d̂)

Q (A) = Dir(â) Q (B) = Dir(b̂)

where all variables with a hat correspond to posterior parameters.
Notice that the distributions over A, B and D remain Dirichlet dis-
tributions, and the distributions over γ and Sτ remain a gamma
and a categorical distribution, respectively. Only the distribution
over π changes from a Boltzmann to a categorical distribution but
both are discrete distributions.

Remark 1. By definition the generative model P(O0:t , S0:T , π,
A,B,D, γ ) is a joint probability distribution over both the ob-
served (O0:t ) and latent (S0:T , π,A,B,D, γ ) variables. However,
the goal of the variational distribution Q (S0:T , π,A,B,D, γ ) is to
approximate the true posterior P(S0:T , π,A,B,D, γ |O0:t ), which is
a distribution over the latent variables only. Thus, the approxi-
mate posterior Q (S0:T , π,A,B,D, γ ) is also a distribution over the
latent variables only, and does not contain the observed variables.

4.3. Variational free energy

By definition, the variational free energy (VFE) is the Kullback–
Leibler divergence between the variational distribution and the
generative model, i.e.

F = EQ [lnQ (S0:T , π,A,B,D, γ )− ln P(O0:t , S0:T , π,A,B,D, γ )]

= DKL [ Q (x)|| P(x|o)] − ln P(o) (14)

= DKL [ Q (x)|| P(x)]  
complexity

−EQ (x)[ln P(o|x)]  
accuracy

(15)
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where x = {S0:T , π,A,B,D, γ } refers to the model’s hidden vari-
ables, and o = {O0:t} refers to the sequence of observations made
by the agent. (14) shows that minimizing free energy involves
moving the variational distribution Q (x) closer to the true poste-
rior P(x|o) in the sense of KL divergence, and that the variational
free energy is an upper bound on the negative log evidence. (15)
shows the trade-off between complexity and accuracy, where the
complexity penalizes the divergence of the posterior Q (x) from
the prior P(x) and the accuracy scores how likely the observations
are given the generative model and current belief of the hidden
states.

To fit the variational distribution as closely as possible to the
true posterior, the VFE is minimized w.r.t each variational factor,
e.g., Q (D) and Q (A). The minimization process can be solved by
iterating the update equations of each factor until convergence of
the VFE. More details and intuition about those updates are given
by Champion, Grześ et al. (2021).

4.4. Action selection

In active inference, the simplest strategy to select actions is
to compute the evidence for all policies under consideration and
then choose the most likely action according to these policies.
Mathematically, this amounts to a Bayesian model average by
executing the action with the highest posterior evidence:

u∗t = argmax
u

|π |∑
m=1

[u = πm
t ]Q (π = m) (16)

where |π | is the number of policies, πm
t is the action predicted

at the current time step by the mth policy, and [u = πm
t ] is an

indicator function that equals one if u = πm
t and zero otherwise.

5. Monte Carlo Tree search

By now, the reader should be familiar with the framework of
active inference and how variational message passing combined
with the Forney factor graph formalism can be used to compute
posterior beliefs. We now turn to the last piece of background
required to present the method proposed in this paper: Monte
Carlo tree search (MCTS), which is based on the multi-armed
bandit literature (cf. Appendix G for details).

5.1. A four step process

Monte Carlo tree search has been widely used in the reinforce-
ment learning literature as it enables agents to plan efficiently
when the evaluation of every possible action sequence is compu-
tationally prohibitive (Browne et al., 2012; Fountas et al., 2020;
Schrittwieser et al., 2019; Silver et al., 2016). This algorithm es-
sentially builds a tree in which each node corresponds to a future
state and each edge represents the action that led to that state.
Initially, the tree is only composed of a root node corresponding
to the current state. From here, MCTS is a four step process. First,
a node is selected according to a criterion such as the upper
confidence bound for trees (UCT):

UCTj = X̄j + 2Cp

√
2 ln n
nj

, (17)

here n is the number of times the current (parent) node has
een explored, nj stands for the number of times the jth child
ode has been explored, Cp > 0 is the exploration constant and
¯ j is the average reward received by the jth child. Note, if the
ewards are in [0, 1], then C =

1
√ is known to satisfy the
p 2
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Fig. 5. This figure illustrates the MCTS algorithm as a four step process. First, we start at the node representing the current state St and select a node based on the
CT criterion until a leaf node is reached. Second, the tree is expanded to a new node by taking a virtual action from the selected node. Third, the value of this
ction is estimated by simulating the expected reward following that action. In the simplest version of MCTS, simulations are run until a terminal state is reached,
.g., until the game ends in Go or Chess. Fourth, the expected value is back-propagated to the new node and all of its ancestor nodes. The multi-indices in curly
rackets denote action sequences taken from the root node, indicating the current state of the environment.
oeffding inequality (Browne et al., 2012) and the UCT criterion
educes to:

CTj = X̄j + 2

√
ln n
nj
. (18)

Importantly, the UCT aims to explore highly rewarding paths
(exploitation in first term), while also visiting rarely explored
regions (exploration in second term).

As shown in Fig. 5, this criterion is first used at the root level
leading to the selection of a node from the root’s children. Then,
it is used at the level of the root’s children, and so on until
a leaf node is reached. As explained by Kocsis and Szepesvári
(2006), UCT is a direct application of the UCB1 criterion to trees,
where at each level, the allocation strategy must pick a node
that is expected to lead to the highest reward, and ‘‘picking the
ith node" can be seen as the ith action of a multi-armed bandit
problem. Once a leaf node has been selected, an expansion step is
performed by sampling an action from a distribution and adding
the node corresponding to this action as a child of the leaf node,
i.e., the leaf node is expanded.

The third step consists of performing virtual rollouts into the
future to estimate the average future reward obtained from the
state corresponding to the newly expanded node. Finally, during
the back-propagation step, the average reward obtained from the
newly expanded state is used to re-evaluate the average quality
of all its ancestors, and the visit counts of all nodes (in the
branch explored) are increased. Iterating this four-step process
until the time budget has been spent gives a fairly good estimate
of the best action to perform next. Fig. 5 summarizes the MCTS
procedure. In the next section, we present our approach and
show how MCTS can be fused to active inference by performing
a dynamical expansion of the generative model.

6. Branching Time Active Inference (BTAI)

In this section, we present a novel active inference agent
that frames planning using a tree as a form of Bayesian model
extension. Using terminology from concurrency theory (Bowman,
2005), we call our new formalism, Branching Time Active Inference
(BTAI). In this domain, models of systems based upon sequences
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of actions (the format of policies) are described as linear time,
while models based upon tree and even graph structures are
called branching time (Bowman, 2005; van Glabbeek, 1990, 1993).
Importantly, we do not consider the generative model and the
tree as two different objects. Instead, we merge those two ob-
jects together into a generative model that can be dynamically
expanded.

Fig. 6 illustrates an example of such a model, where for the
sake of simplicity, we assume that the matrices A, B and D
are given to the agent. Furthermore, the random variable rep-
resenting the policies has been replaced by random variables
representing actions and the precision parameter γ has been
removed, which is a common design choice (Fountas et al., 2020).
Additionally, we follow Parr and Friston (2019) by viewing future
observations as latent random variables. Finally, note that the
transition between two consecutive hidden states in the future
(SI\last and SI where I is a multi-index) will only depend on the
matrix B̄I = B̄(·, ·, Ilast), i.e., the matrix corresponding to action
Ilast that led to the transition from SI\last to SI . The reader is
referred to Table 1 for the definition of B̄ and more details about
multi-indices can be found in Appendix F.

6.1. Prior, posterior and target distributions

Since the generative model is fairly different from the standard
model, we state here its formal definition:

P(O0:t ,S0:t ,U0:t−1,OIt , SIt ,A,B,D,Θ0:t−1) =
∑

P(S0|D)P(A)P(B)P(D)
t∏

τ=0

P(Oτ |Sτ ,A)
t−1∏
τ=0

P(Uτ |Θτ )P(Θτ )

×

t∏
τ=1

P(Sτ |Sτ−1,Uτ−1,B)
∏
I∈It

P(OI |SI )P(SI |SI\last ) (19)

where It is the set of all non-empty multi-indices already ex-
panded by the tree search from the current state St , the second
product (τ from 0 to t − 1) models the uncertainty over action,
reflecting the focus on actions rather than policies, and SI\last is the
parent state of SI . Intuitively, the product over all I ∈ It models
the future, while the rest of the above equation models the
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Table 1
Update equations notation. Note that Appendix D provides a proof for D.
Notation Meaning

⟨f (X)⟩PX ≜ EPX [f (X)] The expectation of f (X) over PX
ψ(·) The digamma function
Θ̊τ (i) = ⟨lnΘτ (i)⟩QΘ τ = ψ

(
θ̂τ (i)

)
− ψ

(∑
k θ̂τ (k)

)
The expected logarithm of Θτ

D̊(i) = ⟨lnD(i)⟩QD = ψ
(
d̂(i)

)
− ψ

(∑
k d̂(k)

)
The expected logarithm of D

Å(i, j) = ⟨lnA(i, j)⟩QA = ψ
(
â(i, j)

)
− ψ

(∑
k â(k, j)

)
The expected logarithm of A

B̊(i, j, u) = ⟨lnB(i, j, u)⟩QB = ψ
(
b̂(i, j, u)

)
− ψ

(∑
k b̂(k, j, u)

)
The expected logarithm of B

Ā(i, j) = ⟨A(i, j)⟩QA =
â(i,j)∑
k â(k,j) The expectation of A

B̄(i, j, u) = ⟨B(i, j, u)⟩QB =
b̂(i,j,u)∑
k b̂(k,j,u)

The expectation of B
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Fig. 6. This figure illustrates the new expandable generative model allowing
planning under active inference. The future is now a tree like generative model
whose branches correspond to the policies considered by the agent. As we
will see, these branches can be dynamically expanded during planning. Here,
the nodes in light grey represent possible expansions of the current generative
model. For the sake of clarity, the random tensors A, B, Θτ and D are not
illustrated, i.e., Dirichlet priors over those random tensors are not shown.

past and present. Additionally, we need to define the individual
factors:

P(S0|D) = Cat(D) P(Uτ |Θτ ) = Cat(Θτ )

P(Oτ |Sτ ,A) = Cat(A) P(OI |SI ) = Cat(Ā)
P(Sτ |Sτ−1,Uτ−1,B) = Cat(B) P(SI |SI\last ) = Cat(B̄I )
P(D) = Dir(d) P(Θτ ) = Dir(θτ )
P(A) = Dir(a) P(B) = Dir(b)

where Ā and B̄ are defined in Table 1, B̄I = B̄(·, ·, Ilast) is the
matrix corresponding to Ilast and Ilast is the last index of the multi-
index I , i.e., the last action that led to SI . Importantly, Ā and B̄
should not be confused with Å and B̊, Ā is the expectation of A
w.r.t. Q (A), while Å is the expectation of the logarithm of A w.r.t.
Q (A).
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We now turn to the definition of the variational posterior.
Under the mean-field approximation:

Q (S0:t ,U0:t−1,OIt , SIt ,A,B,D,Θ0:t−1) =

Q (A)Q (B)Q (D)
t−1∏
τ=0

Q (Uτ )Q (Θτ )
t∏

τ=0

Q (Sτ )
∏
I∈It

Q (OI )Q (SI ) (20)

here the individual factors are defined as:

(Sτ ) = Cat(D̂τ ) Q (Uτ ) = Cat(Θ̂τ )

(OI ) = Cat(Ê I ) Q (SI ) = Cat(D̂I )

(D) = Dir(d̂) Q (Θτ ) = Dir(θ̂τ )

(A) = Dir(â) Q (B) = Dir(b̂),

here D̂τ , Θ̂τ , Ê I , D̂I , d̂, θ̂τ , â and b̂ are the parameters of the
actors Q (Sτ ), Q (Uτ ), Q (OI ), Q (SI ), Q (D), Q (Θτ ), Q (A) and Q (B),
espectively. Importantly, OI appears in the variational distribu-
ion because observations in the future are treated as hidden
ariables.
Finally, we follow Millidge, Tschantz, and Buckley (2021) in

ssuming that the agent aims to minimize the KL divergence
etween the approximate posterior depicting the state of the
nvironment and a target (desired) distribution. Therefore, our
ramework allows for the specification of prior preferences over
oth future hidden states and future observations:

(OIt , SIt ) =
∏
I∈It

V (OI )V (SI ) (21)

here the individual factors are defined as:

(OI ) = Cat(CO), V (SI ) = Cat(C S). (22)

mportantly, by specifying the value of future observations and
tates, CO and C S play a similar role to the vector C in active
nference, i.e., they specify which observations and hidden states
re rewarding.
To sum up, this framework is defined using three distribu-

ions: the prior defines the agent’s beliefs before sampling any
bservation; the posterior is an updated version of the prior
hich takes into account past observations made by the agent; fi-
ally, the target distribution encodes the agent’s prior preferences
n terms of future observations and hidden states.

.2. BayesIan belief updates

In this section, we focus on the set of update equations used to
erform approximate Bayesian inference. These update equations
ely on variational message passing as presented in Section 3,
ee Champion, Grześ et al. (2021) as well as Winn and Bishop
2005) for details. A key strength of the message passing approach
s the capacity to derive and implement these updates within
n automatic and modular toolbox (Cox et al., 2019; van de
aar & de Vries, 2019), which in a way similar to automatic
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ifferentiation alleviates the final user from the burden of manu-
lly deriving complex update equations for each new generative
odel. To simplify our notation, we use two operators ⊗ and ⊙

that we call generalized outer and inner product, respectively.
The generalized outer product creates an N dimensional tensor
from N vectors, while the generalized inner product performs a
weighted average over one dimension of an N dimensional array,
f Appendix A for details. Using these notations, the first set of
pdate equations are given by:

∗(D) = Dir
(
d̂
)

where d̂ = d + D̂0

t∑
τ

(23)

∗(A) = Dir
(
â
)

where â = a+
t∑

τ=0

⊗

[
D̂τ , oτ

]
(24)

Q ∗(B) = Dir
(
b̂
)

where b̂ = b+
t∑

τ=1

⊗

[
D̂τ−1, Θ̂τ−1, D̂τ

]
(25)

Q ∗(Θτ ) = Dir
(
θ̂τ

)
where θ̂τ = θτ + Θ̂τ

t∑
τ

(26)

where oτ is the observation made at time τ . Furthermore, this
first set of equations count (probabilistically) the number of
times, an initial hidden state has been observed, an action has
been performed, a state has generated a particular observation
or an action has led to the transition between two consecutive
hidden states. For example, the posterior parameters â are com-
puted by adding

∑t
τ=0⊗[D̂τ , oτ ] (i.e., the number of times a

state-observation pair has been observed during this trial) to the
prior parameters a (i.e., the number of times this same pair has
been observed during previous trials). The equations for belief
updates are given by:

Q ∗(OI ) = σ
(
Å⊙ D̂I

)
(27)

Q ∗(SI ) = σ
(
Å⊙ Ê I + B̊I ⊙ D̂I\last +

∑
J∈chI

B̊J ⊙ D̂J

) t∑
τ

(28)

Q ∗(Uτ ) = σ
(
Θ̊ + B̊⊙ [D̂τ , D̂τ+1]

)∑
τ

(29)

Q ∗(Sτ ) = σ
(
[τ = 0]D̊τ + [τ ̸= 0]B̊⊙ [D̂τ−1, Θ̂τ−1]

+ Å⊙ oτ (30)

+ [τ = t]
∑
J∈cht

B̊J ⊙ D̂J + [τ ̸= t]B̊⊙ [D̂τ+1, Θ̂τ ]

)

where σ (·) is the softmax function, cht are the children (states) of
the current states St , chI are the children (states) of the states SI ,
[predicate] is an indicator function returning one if the predicate
is true and zero otherwise, and the definition of Å, B̊, D̊ and Θ̊τ

is given in Table 1. Note that thanks to the operators ⊗ and ⊙,
the perception (i.e., state-estimation) equations can be intuitively
understood as a sum of messages, where each message from a
factor to a variable is the average over all dimensions except the
dimension of the variable, e.g., the message (Å⊙ o0) from Po0 to
S0 is the vector obtained by weighting the rows of Å by the ele-
ments of o0. Importantly, the above update equations are almost
identical to the ones used in standard active inference, and thus
can be implemented efficiently. Indeed, most of the computation
required is about addition of matrices O(n2) and multiplication of

3
matrices O(n ), or their higher dimensional counterparts.
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6.3. Planning as structure learning

In this section, we frame planning as a form of structure
learning where the structure of the generative model is modified
dynamically. This method is greatly inspired by the Monte Carlo
tree search literature, cf., Section 5 for details.

6.3.1. Selection of the node to be expanded
The first step of planning is to select a node to be expanded.

The selection process starts at the root node, if the root node still
has unexplored children, then one of them is selected. Otherwise,
the child node maximizing the UCT criterion, where the average
reward is replaced by minus the average EFE, is selected, i.e., the
selected node maximizes:

UCTJ = −ḡJ
exploitation

+ Cp

√
ln n
nJ  

exploration

, (31)

here J is a multi-index, n is the number of times the root node
has been visited, nJ is the number of times the child correspond-
ng to the multi-index J was selected, and ḡJ is the average cost
received when selecting the child SJ . The UCT criterion can be
understood as a trade-off between exploitation and exploration
at the tree level, which is different to the exploitation and ex-
ploration dilemma at the model level. This dilemma is handled
by the EFE. Also, the notion of cost in the above equation can be
defined in many ways and will be the subject of Section 6.3.3. For
our purposes, the cost will be equal, or similar, to the expected
free energy, which means that the expected free energy drives
structure learning. When a root’s child is selected, it becomes the
new root in the above procedure, which is iterated until a leaf
node is reached.

6.3.2. Dynamical expansion of the generative model
Let SI\last denote the leaf node selected for expansion. When

I\last has been selected, the structure of the generative model
eeds to be modified by expanding all possible actions from that
ode. For each action, we expand the generative model by adding
future hidden state whose prior distribution is given by

(SI |SI\last ) = Cat(B̄I ), (32)

here B̄I is the matrix corresponding to the last action that led
o SI . Finally, we expand the (future) observation associated with
he new hidden state SI , whose distribution is:

(OI |SI ) = Cat(Ā). (33)

To sum up, the expansion step is adding two random variables
SI and OI ) to the generative model, i.e. the generative model
ecomes bigger, and I is added to the set of all non-empty

multi-indices already expanded by the tree search (It ). The prior
distributions over those newly added random variables (i.e. SI and
OI ) are defined using the matrices B̄I and Ā, which effectively pre-
dict the future states and observations. After the expansion step,
the posterior distribution over SI and OI needs to be computed.
At least two kinds of inference strategies can be used. The first—
global inference—performs variational message passing over the
entire generative model, while the second—local inference—only
iterates the update equations of the newly expanded nodes, i.e., SI
and OI , until convergence to the variational free energy minimum.

6.3.3. Cost evaluation of the expanded nodes
After expanding the model structure, we need to compute the

cost of the newly expanded node SI . As explained in Section 6.3.1,
the cost of SI will influence the probability of expanding SI dur-
ing future planning iterations. In active inference, the classic
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bjective of planning is the expected free energy as defined in
ection 4.1, i.e.,
classic
I ≜ DKL[Q (OI ) ∥ V (OI )] + EQ (SI )[H[P(OI |SI )]] (34)

here gclassic
I trades off risk (first summand) and ambiguity (sec-

ond summand). Alternatively, one could follow Section 5 of Mil-
lidge et al. (2021) and define the cost of SI using the free energy
of the expected future:

g feef
I = DKL [ Q (OI , SI )|| V (OI , SI )] (35)

here V (OI , SI ) is the target distribution over states and observa-
tions. The target distribution V (OI , SI ) generalizes the C matrix in
riston’s model by specifying prior preferences over both future
bservations and future states. Also, this formulation of the cost
peaks to the notion of KL divergence minimization proposed
y Hafner et al. (2020).
Furthermore, due to the mean-field approximation of the pos-

erior 20 and the factorized form of the target distribution (21),
he expression of the cost simplifies to
pcost
I ≜ DKL [ Q (SI )|| V (SI )]+ DKL [ Q (OI )|| V (OI )] . (36)

Intuitively, the pure cost (gpcost
I ) measures how different the

redicted future hidden states and observations are from desired
tates and observations. In future research, it might be interesting
o compare the performance and behaviour of gpcost

I , g feef
I and

classic
I empirically and theoretically.
Note that in MCTS, the evaluation of a node’s quality is done

y performing virtual roll-outs, while gpcost
I , g feef

I and gclassic
I are

ot. If we let gI be any of those criteria, then we can improve our
estimate of the cost, by computing gaverage

I , i.e., the average cost
ver N roll-outs of size K . Algorithm 1 presents the pseudo code
sed to estimate gaverage

I .

Algorithm 1: Estimation of gaverage
I

Input: N the number of virtual roll-outs,
K the maximal length of each roll-out.

average
I ← 0 // Initialize roll-out estimate to zero
epeat N times

g rollout
I ← gI // Initial cost equals cost of SI

for i← 1 to K do
sample a random action Ui uniformly from the set of
unexplored actions

perform the expansion of the current node using Ui
(Section 6.3.2)

perform inference on the newly expanded nodes
(Section 6.2)

g rollout
I ← g rollout

I + gJ where J corresponds to last
expanded node

end
gaverage
I ← gaverage

I + g rollout
I

end
gaverage
I ← gaverage

I /N

6.3.4. Propagation of the node cost
In this section, we let Gaggr

L be a variable that contains the total
cost of the node SL, where L could be any multi-index. According
o the previous section, we let gL be any of the following evalua-
ion criteria gpcost

L , g feef
L and gclassic

L . Initially, Gaggr
L equals gL. Also,

e let SK be the node that was selected for expansion, and let
I be an arbitrary hidden state expanded from SK . The cost of
he newly expanded node(s) can be propagated either forward
r backward. The forward propagation (towards the leaves) leads
o the following equation:
aggr
← g + Gaggr

, (37)
I I K
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here here Gaggr
K is the aggregated cost of the parent of SI . Impor-

antly, the symbol ← refers to a programming-like assignment
i.e., an incremental update) performed each time the tree is
xpanded. The backward propagation (towards the root) leads to:
aggr
J ← Gaggr

J + gI ∀J ∈ AI (38)

here AI corresponds to all ancestors of the newly expanded
node SI . We will see in Section 7 that these strategies respectively
relate to active inference and sophisticated inference (Friston
et al., 2021). Finally, since the agent is free to choose any action,
we can back-propagate the (locally) minimum cost, i.e.,

Gaggr
J ← Gaggr

J + min
a∈{1,...,|U |}

gK ::a ∀J ∈ AI , (39)

where K :: a is a multi-index obtained from K by adding the
action a to the sequence of actions described by K . In all cases,
the propagation step updates the counter nJ associated with each
ancestor SJ of the newly expanded hidden state SI ; this counts
the number of times the node SJ has been explored (exactly as
in MCTS). This counter will be used for action selection, as well
as for the computation of the average cost of SJ—ḡJ—that was left
undefined by Section 6.3.1. Formally, ḡJ is given by:

ḡJ =
1
nJ

Gaggr
J . (40)

emark 2. The forward propagation of the cost presented above
ill only be used for theoretical purpose in Section 7. Practical

mplementation of BTAI should use the backward schemes.

.4. Action selection

The planning procedure presented in the previous section ends
fter a pre-specified amount of time has elapsed or when a suf-
iciently good policy has been found. When the planning is over,
he agent needs to choose an action to act in its environment. In a
ompanion paper (Champion, Bowman et al., 2021) that presents
mpirical results of BTAI, the actions are sampled from σ (−γ g

N ),
where σ (·) is a softmax function, γ is a precision parameter, g
s a vector whose elements correspond to the cost of the root’s
hildren and N is a vector whose elements correspond to the
umber of visits of the root’s children. Importantly, actions with
ow average cost are more likely to be selected than actions with
igh average cost.
Alternative approaches to action selection (Browne et al.,

012) could be studied. For example, one could imagine sampling
ctions from a categorical distribution with parameter σ (N),

where N is a vector containing the nJ of all children of the root
node. Or, we could select the action corresponding to the root’s
child with the highest number of explorations nJ . The fact that it
has been visited more often means that is has a lower cost overall.
If there were a tie between several actions, the action with the
lowest cost would be selected. The study of these strategies is left
to future research.

6.5. Action-perception cycle with tree search

In active inference, the action-perception cycle realizes an
active inference agent in an infinite loop (van de Laar & de
Vries, 2019). Each loop iteration begins with the agent sampling
an observation from the environment. The observation is used
to perform inference about the states and contingencies of the
world, e.g., an impression on the retina might be used to recon-
struct a three dimensional scene with a representation of the
objects that it contains. Then, planning is performed by inferring
the consequences of alternative action sequences. Importantly,
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nly a subset of all possible action sequences are evaluated, due
o the dynamical expansion of the generative model. Finally, the
gent selects an action to perform in the environment by sam-
ling a softmax function of minus the average cost weighted by
he precision parameter γ , i.e., σ (−γ g

N ). Therefore, actions with
ow average cost are more likely to be selected than actions with
igh average cost. We summarize our method using pseudo-code
n Algorithm 2.
Algorithm 2: Action-perception cycle with tree search
while end of trial not reached do

sample an observation from the environment
perform inference using the observation (Section 6.2)
while maximum planning iteration not reached do

select a node to be expanded (Section 6.3.1)
perform the expansion of the node (Section 6.3.2)
perform inference on the newly expanded nodes
(Section 6.2)

evaluate the cost of the newly expanded nodes
(Section 6.3.3)

propagate the cost of the nodes through the tree,
either forward or backward (Section 6.3.4)

end
select an action to be performed (Section 6.4)
execute the action in the environment

nd

7. Connection between BTAI, active inference and sophisti-
cated inference

In this section, we explore the relationship between BTAI,
ctive inference (AcI) and sophisticated inference (SI). We show
hat BTAI is a class of algorithms that generalizes AcI and is
elated to SI. To do so, we focus on the ‘‘cost" of a policy for each
ethod. In addition, we need to introduce the notion of localized
nd aggregated cost. The localized cost of a node SI , denoted G local

I ,
s the cost of SI in and of itself, i.e., without any consideration of
he cost of past or future states. The aggregated cost of a node SI ,
enoted Gaggre

I , is the cost of SI when taking into account either
he cost of future states that can be reached from SI (which is the
ase in SI) or the cost of the past states that an agent has to go
hrough in order to reach SI (which is the case in AcI).

.1. Active inference

The full framework of active inference was described in Sec-
ion 4. This section focuses on expressing the expected free en-
rgy in a recursive form that highlights the relationship between
TAI and AcI. We start by defining the notion of localized and
ggregated EFE with Definitions 3 and 4, respectively. Then, we
how that in active inference (under some assumptions described
elow), the aggregated EFE of a policy of size N is given by the
ggregated EFE of a policy of size N − 1 plus the localized EFE
eceived at time t + N .

In active inference, a policy is a sequence of actions π =
Ut ,Ut+1, . . . ,UT−1), where T is the time horizon of planning,
nd for convenience, πN denotes a policy of size N , obtained
y selecting the first N actions of the policy π , i.e., πN =

Ut ,Ut+1, . . . ,Ut+N−1) with N ≤ T − t . Recall from Section 4, that
in active inference) the expected free energy of a policy is:

(π ) =
T∑

τ=t+1

G(π, τ ) (41)

here: G(π, τ ) = DKL[Q (Oτ |π ) ∥ P(Oτ )] + EQ (Sτ |π )[H[P(Oτ |Sτ )]].
f instead of letting τ range from t + 1 to T , we let N range from
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1 to T − t , then Eq. (41) can be re-written as:

G(π ) =
T−t∑
N=1

G(π, t + N) (42)

where:

G(π, t + N) =

DKL[Q (Ot+N |π ) ∥ P(Ot+N )] + EQ (St+N |π )[H[P(Ot+N |St+N )]]. (43)

Additionally, under the assumption that the probability of ob-
servations and states are independent of future actions, i.e., that
∀j ∈ N>0,Q (Ot+i|πi) ≈ Q (Ot+i|πi+j) and ∀j ∈ N>0,Q (St+i|πi) ≈
Q (St+i|πi+j), π can be replaced by πN in the RHS of the above
quation, leading to:

(π ) =
T−t∑
N=1

G(πN , t + N) (44)

where:

G(πN , t + N) =

DKL[Q (Ot+N |πN ) ∥ P(Ot+N )] + EQ (St+N |πN )[H[P(Ot+N |St+N )]]. (45)

mportantly, the elements of the above summation constitute the
ocalized cost presented in Definition 3.

efinition 3. We define the localized cost received at time t+N
fter selecting policy πN as:
local
πN
= G(πN , t + N) (46)
= DKL[Q (Ot+N |πN ) ∥ P(Ot+N )] + EQ (St+N |πN )[H[P(Ot+N |St+N )]].

Importantly, the localized cost quantifies the amount of risk
nd ambiguity received by the agent at time step t+N , assuming
hat it will follow the policy πN . We now turn to the notion of
ggregated cost of a policy of size N . Definition 4 states that
he aggregated cost of a policy is defined recursively. Indeed, by
efinition, a policy of size zero has an aggregated cost of zero,
nd then, the aggregated cost of a policy πN (of size N) is equal
o the aggregated cost of πN−1 (of size N − 1) plus the localized
ost received at time t + N .

efinition 4. We define the aggregated cost of a policy πN of
ize N as:

aggre
πN
=

{
0 if N = 0

Gaggre
πN−1
+ G local

πN
otherwise . (47)

Equipped with Definitions 3 and 4, we are now ready to state
nd prove Theorem 5 using the two Lemmas of Appendix E.

heorem 5. Under the assumption that the probability of ob-
ervations and states are independent of future actions, i.e., ∀j ∈
>0,Q (Ot+i|πi) ≈ Q (Ot+i|πi+j) and ∀j ∈ N>0,Q (St+i|πi) ≈
(St+i|πi+j), the expected free energy can be written as:

(πN ) ≈ Gaggre
πN
= Gaggre

πN−1
+ G local

πN
. (48)

roof. This proof is based on two lemmas demonstrated in
ppendix E. Note that in active inference the expected free energy
s defined as:

(π ) =
T∑

τ=t+1

G(π, τ ). (49)

et N denote the size of the policy π , i.e. N = T − t . Note that
ecause π is of size N , then by definition π = π , and the above
N
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quation can be re-written as:

(π ) = G(πN ) =
t+N∑
τ=t+1

G(πN , τ ). (50)

Expanding the summation and using Definition 3:

G(πN ) =
t+N−1∑
τ=t+1

G(πN , τ )+ G(πN , t + N) (51)

=

t+N−1∑
τ=t+1

G(πN , τ )+ G local
πN
. (52)

If, instead of letting τ range from t+1 to t+N−1, we let i range
from 1 to N − 1, then the above equation can be re-written as:

G(πN ) =
N−1∑
i=1

G(πN , t + i)+ G local
πN
. (53)

Note that ∀i ∈ {1, . . . ,N − 1},N > i, and thus there exists a
ki ∈ N>0 such that ∀i ∈ {1, . . . ,N − 1},N = i+ ki. Therefore, we
replace N by i+ ki in the above summation:

G(πN ) =
N−1∑
i=1

G(πi+ki , t + i)+ G local
πN
. (54)

Lemma 11 tells us that under the assumption that the probability
of observations and states are independent of future actions,
∀ki ∈ N>0,G(πi+ki , t+ i) ≈ G(πi, t+ i), which allows us to remove
the ki to get:

G(πN ) ≈
N−1∑
i=1

G(πi, t + i)+ G local
πN
. (55)

Finally, Lemma 12 states that
∑N−1

i=1 G(πi, t+i) = Gaggre
πN−1

, and thus:

G(πN ) ≈ Gaggre
πN−1
+ G local

πN
≜ Gaggre

πN
. (56)

The above equation will be used in Section 7.4 to show that BTAI
generalizes active inference. ■

7.2. Sophisticated inference

Sophisticated inference (Friston et al., 2021) is a new type of
active inference that defines the EFE recursively from the time
horizon backward. Intuitively, the agent does not simply ask
‘‘what would happen if I did that‘‘, but instead wonders ‘‘what
would I believe about what would happen if I did that’’. In other
words, the agent is exhibiting a form of sophistication, which
refers to the fact of having beliefs about one’s own or another’s
beliefs. Friston et al. (2021) also replaced variational message
passing by an alternative inference scheme called Bayesian Fil-
tering (Fox, Hightower, Liao, Schulz, & Borriello, 2003). While
the change of inference method is of little relevance to us here,
the recursive definition of the EFE is at the core of this section.
As explained in Section 4.3 of Da Costa, Sajid et al. (2020), the
(recursive) EFE of a Markov decision process is given by:

G(UT−1, ST−1) = DKL [ Q (ST |UT−1, ST−1)|| V (ST )] (57)
G(Uτ , Sτ ) = DKL [ Q (Sτ+1|Uτ , Sτ )|| V (Sτ+1)]

+ EQ (Uτ+1,Sτ+1|Uτ ,Sτ )[G(Uτ+1, Sτ+1)] (58)

here Uτ and Sτ are the action and state at time τ , and V (Sτ ) is
the target (i.e., desired) distribution over states at time τ . Using

ur terminology of localized and aggregated cost, this can be
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rewritten as:

G(UT−1, ST−1)  
Gaggre(UT−1,ST−1)

= DKL [ Q (ST |UT−1, ST−1)|| V (ST )]  
G local(UT−1,ST−1)

(59)

G(Uτ , Sτ )  
Gaggre(Uτ ,Sτ )

= DKL [ Q (Sτ+1|Uτ , Sτ )|| V (Sτ+1)]  
G local(Uτ ,Sτ )

+ EQ (Uτ+1,Sτ+1|Uτ ,Sτ )[G(Uτ+1, Sτ+1)  
Gaggre(Uτ+1,Sτ+1)

] (60)

ut simply, the aggregated cost of taking action Uτ in state Sτ can
e computed by summing the localized cost at time step τ and
he expected aggregated cost at time step τ + 1, i.e.,

aggre(Uτ , Sτ ) = G local(Uτ , Sτ )+ EQ (Uτ+1,Sτ+1|Uτ ,Sτ )[G
aggre(Uτ+1, Sτ+1)]

(61)

Note that for τ = T − 1 the second term vanishes because
future states beyond the temporal horizon are ignored, and thus
Gaggre(UT−1, ST−1) = G local(UT−1, ST−1). Also, the above equation
will be useful in Section 7.5 to show that BTAI is related to
sophisticated inference.

Remark 6. The recursive aspect of Eq. (58) is deeply related to
dynamic programming and the interested reader is referred to Da
Costa, Sajid et al. (2020) for details about this relationship.

7.3. Branching Time Active Inference (BTAI)

In BTAI, the (localized) cost of the hidden state SI is defined as
G local

I = gI , where gI can be equal to gclassic
I , g feef

I or gpcost
I , and there

are two ways of computing the aggregated cost of SI . We can
either propagate the localized cost towards the leaves (forward):

gI ← gI + gI\last (62)

where the gI\last is the cost of the parent of SI . Alternatively, we
can back-propagate the cost towards the root

gJ ← gJ + gI ∀J ∈ A, (63)

where A corresponds to all ancestors of the newly expanded node
SI .

7.4. BTAI as a generalization of active inference

To understand the relationship between BTAI and active in-
ference, we need to focus on the forward propagation of the
cost where the cost is given by gclassic

I . Recall that the update for
forward propagation is given by:

gclassic
I ← gclassic

I + gclassic
I\last , (64)

where the gI\last is the cost of the parent of SI , i.e., the parent of the
newly expanded node. This equation tells us that the aggregated
cost of SI is equal to the localized cost of SI plus the aggregated
cost of SI\last , i.e.,

gclassic
I  
Gaggre
I

← gclassic
I  
G local
I

+ gclassic
I\last  
Gaggre
I\last

⇔ Gaggre
I = G local

I + Gaggre
I\last , (65)

ut, then, we also recall (48), i.e.,
aggre
πN
≈ Gaggre

πN−1
+ G local

πN
⇔ Gaggre

πN
≈ G local

πN
+ Gaggre

πN−1
. (66)

The only difference between Eqs. (48) and (65) is notational.
Indeed, in BTAI (Eq. (48)) a policy is represented by a multi-
index denoting the sequence of actions selected, e.g., I = (1, 2)
corresponds to a policy of size two consisting of action one
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ollowed by action two. In contrast, in active inference, a policy
s a sequence of actions, e.g., π2 = (1, 2) corresponds to the same
olicy as the one described by I .

7.5. Relationship between BTAI and sophisticated inference

The relationship between BTAI and sophisticated inference is
slightly more involved. The backward propagation equation, i.e.,

gJ ← gJ + gI ∀J ∈ A, (67)

ells us that when expanding a node SI , we first need to compute
ts localized cost gI and then add gI to the aggregated cost of its
ncestors SJ where J ∈ A. In other words, we can rewrite the
ackward propagation equation as the following: the aggregated
ost of an arbitrary node SJ will equal the sum of its localized cost
J and that of its descendants DJ that have already been evaluated
aggre
J = G local

J +

∑
SK∈DJ

G local
K , (68)

here the descendants are the children, children of children,
tc. We can further simplify this expression by grouping the
ummands by children of SJ . This leads us to:

aggre
J = G local

J +

∑
SI∈chJ

⎛⎝G local
I +

∑
SK∈DI

G local
K

⎞⎠
  

Gaggre
I

(69)

= G local
J +

∑
SI∈chJ

Gaggre
I , (70)

where chJ are the children of SJ and DI are the descendants of SI .
The above equation has clear similarities to Eq. (61), which is,

Gaggre(Uτ , Sτ ) = G local(Uτ , Sτ )+ EQ (Uτ+1,Sτ+1|Uτ ,Sτ )[G
aggre(Uτ+1, Sτ+1)].

(71)

However, the second term of the RHS of (61) is an expectation,
while the second term of the RHS of (69) is a summation over
the children that have already been expanded. The expectation
in (61) is w.r.t.

Q (Uτ+1, Sτ+1|Uτ , Sτ ) = Q (Uτ+1|Sτ+1)Q (Sτ+1|Uτ , Sτ ), (72)

where:

Q (Uτ+1|Sτ+1) > 0⇔ Uτ+1 ∈ argminsU∈UGaggre(U, Sτ+1), (73)

where U is the set of all possible actions, and argmins is defined
as:

M = argminsU∈Uf (U)⇔ M =
{
U ∈ U

⏐⏐ f (U) = min
U ′∈U

f (U ′)
}
. (74)

This means that an action is assigned positive probability mass if
and only if it minimizes the aggregated cost at the next time point
Gaggre(Uτ+1, Sτ+1) and a set is required, because multiple actions
could have the same minimum cost. Note that if there is a unique
minimum, then Q (Uτ+1|Sτ+1) will be a one-hot like distribution
with a probability of one for the best action.

To conclude, Eqs. (61) and (69) suggest that BTAI and SI
share a similar notion of EFE, where the immediate (or localized)
EFE is added to the future (or aggregated) EFE. Both BTAI and
SI propagate the cost backward, however, in SI the aggregated
EFE (i.e., the back-propagated cost) is weighted by the prob-
ability of the next action and states, i.e., Q (Uτ+1, Sτ+1|Uτ , Sτ ).
Intuitively, the weighting terms in SI discounts the impact of
the back-propagated cost for unlikely states and (locally) sub-
optimal actions. Importantly, those weighting terms emerge from
306
the recursive definition of the EFE that relates to the Bellman
equation (Da Costa, Sajid et al., 2020). In contrast, there are no
such weights in BTAI because BTAI finds its inspiration in active
inference.

8. Conclusion and future works

In this paper, we have presented a new approach where
planning is cast as structure learning. Simply put, this approach
consists of dynamically expanding branches of the generative
model by evaluating alternative futures under different action se-
quences. The dynamic expansion trades off evaluating promising
(with respect to the target distribution) policies with exploring
policies whose outcomes are uncertain. We proposed two dif-
ferent tree search methods: the first in which the nodes’ cost is
propagated forward from the root node to the leaves; the second
in which the nodes’ cost is propagated backward from the leaves
to the root node. Then, in Section 7 we showed that forward
propagation of the EFE leads to active inference (AcI) under the
assumption that the probability of observations and states are
independent of future actions, and that backward propagation re-
lates to sophisticated inference (SI). This clarifies the link between
AcI and BTAI, and helps to understand the relationship between
AcI and SI.

Importantly, by performing a complexity class analysis, we
have shown that while Active Inference suffers from an exponen-
tial complexity class, our approach scales nicely (linearly) with
the number of tree expansions, cf., Section 3.4.2 of our companion
paper (Champion, Bowman et al., 2021). Of course, the total
number of possible expansions grows exponentially but as has
been empirically shown in the reinforcement learning literature,
even complex tasks, such as chess or the game of go, can be
performed efficiently with MCTS (Schrittwieser et al., 2019; Silver
et al., 2016), i.e., the efficiency of MCTS-like approaches relies
on the ability to guide the expansion procedure using either
powerful heuristics (like the EFE) or neural networks or both.

We also know that humans engage in counterfactual rea-
soning (Rafetseder, Schwitalla, & Perner, 2013), which, in our
planning context, could involve the consideration and evaluation
of alternative (non-selected) sequences of decisions. It may be
that, because of the more exhaustive representation of possi-
ble trajectories, the classic active inference can more efficiently
engage in counterfactual reasoning. In contrast, branching-time
active inference would require these alternatives to be generated
‘‘a fresh" for each counterfactual deliberation. In this sense, one
might argue that there is a trade-off: branching-time active in-
ference provides considerably more efficient planning to attain
current goals, classic active inference provides a more exhaustive
assessment of paths not taken.

Now that we have laid out the mathematics of BTAI, many
directions of research could be investigated. One could for exam-
ple obtain an intuitive understanding of the model’s parameters
through experimental study. At first it might be necessary to
restrict oneself to agents without learning, i.e., inference only.
This step should help answer questions such as: How does the
number of expansions of the tree and the quality of the prior
preferences impact the quality of planning? What is the best
inference method (i.e., local or global inference) to use during
planning?

Then, one could consider learning of the transition and likeli-
hood matrices as well as the vector of initial states. This can be
done in at least two ways. The first is to add Dirichlet priors over
those matrices/vectors and the second would be to use neural
networks as function approximators. The second option will lead
to a deep active inference agent (Millidge, 2020; Sancaktar &
Lanillos, 2020) equipped with tree search that could be directly
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ompared to the method of Fountas et al. (2020). Including deep
eural networks in the framework will also enable direct compar-
son with the deep reinforcement learning literature (Haarnoja,
hou, Abbeel, & Levine, 2018; Lample & Chaplot, 2017; Mnih
t al., 2013; Silver et al., 2016; van Hasselt, Guez, & Silver, 2016).
hese comparisons will enable the impact of epistemic terms to
e studied when the agent is composed of deep neural networks.
Another, very important direction for future research would

e the creation of a biologically plausible implementation of BTAI.
or example, using artificial neural networks to model the various
appings of the framework may provide a neural-based imple-
entation of BTAI that is closer to biology. This would especially
e the case, if the back-propagation algorithm frequently used for
earning is replaced by the (more biologically plausible) gener-
lized recirculation algorithm (O’Reilly, 1996). Another possible
pproach would be to use populations of neurons to encode the
pdate equations of the framework, as was proposed by Friston,
arr, and de Vries (2017).
Whatever technique is chosen for learning and inference, im-

lementing MCTS in a biologically plausible way will be challeng-
ng. Indeed, MCTS requires a dynamic expansion of the search
ree used to explore the space of possible policies. Each time an
xpansion is performed, the agent needs to store the associated
ariables such as: the number of visits, the aggregated expected
ree energy, and the posterior beliefs of the newly expanded node.
iven the fast pace at which planning must be performed to be
seful, slow mechanisms such as synaptic plasticity and neuro-
enesis are likely to be unsuitable for the task. A more plausible
pproach might rely upon a change of neuronal activation, which
an occur within a few hundred milliseconds. One such approach
ses a binding pool (Bowman & Wyble, 2007) and provides a
otion of variable. In this framework, a variable is composed
f two parts. First, a token that can be intuitively understood
s the variable’s name, and second, a type corresponding to the
ariable’s value. The binding pool is then composed of neurons
epresenting the fact that a variable’s name is bound (or set) to
specific value. A localist realization of a binding pool could be

mplemented as a 2D array of neurons of size ‘‘number of tokens"
‘‘number of types". However, such a representation is quite

nefficient and a more compact (i.e. distributed) representation
as been developed (Wyble & Bowman, 2006). If variables are
omplex data structures, such as those required by BTAI, they can
e realized in a neural substrate.
Finally, in this paper, we focused on the UCT criterion for node

election because it is a standard choice in the reinforcement
earning literature (Schrittwieser et al., 2019; Silver et al., 2016).
owever, it would be valuable to consider alternative criteria
uch as Thompson Sampling (Russo, Van Roy, Kazerouni, Osband,
Wen, 2018; Sajid, Ball, Parr, & Friston, 2021; Thompson, 1933)
r expected improvement (Bergstra, Bardenet, Bengio, & Kégl,
011; Brochu, Cora, & de Freitas, 2010). For example, Thomp-
on Sampling has been shown to improve upon the standard
CT criterion when applied to MCTS (Bai, Wu, & Chen, 2013),
ut requires additional modelling and we leave this for future
esearch.
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Appendix A. Generalized inner and outer products

Generalized outer products:. Given N vectors V i, the generalized
uter product returns an N dimensional array W , whose element
n position (x1, . . . , xN ) is given by V 1

x1 × · · · × VN
xN , where V i

xj is
the xj-th element of the ith vector. In other words:

W = ⊗
[
V 1, . . . , VN

]
⇔ W (x1, . . . , xN ) = V 1

x1
× · · · × VN

xN

∀xj ∈ {1, . . . , |V j
|} ∀j ∈ {1, . . . ,N},

(75)

here |V j
| is the number of elements in V j. Also, note that by

efinitionW is a N-tensor of size |V 1
|×· · ·×|VN

|. Fig. 7 illustrates
he generalized outer product for N = 3.

eneralized inner products:. Given an N-tensor W and M = N−1
ectors V i, the generalized inner product returns a vector Z ob-
ained by performing a weighted average (with weighting coming
rom the vectors) over all but one dimension. In other words:

= W ⊙
[
V 1, . . . , VM

]
⇔ ∀xj ∈ {1, . . . , |Z |},

(xj) =
∑

x1∈{1,...,|V1 |}
xM∈{1,...,|VM |}

V 1
x1 × · · · ×W (x1, . . . , xj, . . . , xM )× · · · × VM

xM

(76)

here |Z | denotes the number of elements in Z , and the large
ummand is over all xr for r ∈ {1, . . . ,M} \ {j}, i.e., excluding
. Also, note that if |W |V i ∀i ∈ {1, . . . ,M} is the number of
lements in the dimension corresponding to V i, then for W ⊙
V 1, . . . , VM

]
to be properly defined, we must have |W |V i =

V i
| ∀i ∈ {1, . . . ,M} where |V i

| is the number of elements in V i.
ig. 8 illustrates the generalized inner product for N = 3.

aming of the dimensions:. Importantly, we should imagine that
ach side of W has a name, e.g., if W is a 3x2 matrix, then the
th dimension of W could be named: ‘‘the dimension of Vi". This
nables us to write: Z1

= W ⊙ V 1 and Z2
= W ⊙ V 2, where Z1

s a 1x2 matrix (i.e., a vector with two elements) and Z2 is a 3x1
atrix (i.e., a vector with three elements). The operator ⊙ knows

thanks to the dimension name) that W ⊙ V 1 takes the weighted
verage w.r.t ‘‘the dimension of V1", while W ⊙ V 2 must take the
eighted average over ‘‘the dimension of V2".
In the context of active inference, the matrix A has two dimen-

ions that we could call ‘‘the observation dimension‘‘ (i.e., row-
ise) and ‘‘the state dimension’’ (i.e., column-wise). Trivially, A⊙
τ will then correspond to the average of A along the observation
imension and A⊙ D̂τ will correspond to the average of A along
he state dimension.

ppendix B. Generalized inner/outer products and other well-
nown products

In this section, we explore the relationship between our gen-
ralized inner and outer products—presented in Appendix A—and

ther well known products in the literature.
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Fig. 7. This figure illustrates the generalized outer product W = ⊗
[
V 1, V 2, V 3

]
, where W is a cube of values illustrated in red, whose typical element W (i, j, k) is

the product of V 1(i), V 2(j) and V 3(k). Also, the vectors V i
∀i ∈ {1, . . . , 3} are drawn in blue along the dimension of the cube they correspond to. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. This figure illustrates the generalized inner product Z = W ⊙
[
V 2, V 3

]
, where W is a cube of values illustrated in red with typical element W (i, j, k). Also,

he vectors Z and V i
∀i ∈ {2, 3} are drawn in blue along the dimension of the cube they correspond to. (For interpretation of the references to colour in this figure

egend, the reader is referred to the web version of this article.)
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nner product of two vectors

The inner product of two vectors a⃗ and b⃗ of the same size is:

⃗ · b⃗ =
|a⃗|∑
i=1

aibi, (77)

here ai and bi are the elements of the vectors a⃗ and b⃗, respec-
ively, and |a⃗| is the number of elements in a⃗. This product is a
pecial case of our generalized inner product, i.e.,

= W ⊙ V ⇔ Z =
|W |∑
i=1

WiVi, (78)

here Z is a scalar (a 0-tensor), W and V are two vectors (two
1-tensors) of the same size, and |W | is the number of elements
in W .

Inner product of two matrices (Frobenius inner product)

The inner product of two matrices A and B of same sizes is:

A,B⟩ =
|A|1∑
i=1

|A|2∑
j=1

aijbij, (79)

here |A|1 is the number of rows in A, |A|2 is the number of
olumns in A, and aij (bij) are the elements of the matrices A (re-
pectively B). This product is not a special case of our generalized
nner product.
308
nner product of two tensors (Frobenius inner product)

The inner product of two tensors A and B of same sizes is:

A,B⟩ =
|A|1∑
i1=1

...

|A|n∑
in=1

a(i1, . . . , in)b(i1, . . . , in), (80)

here a(i1, . . . , in) and b(i1, . . . , in) are the elements of the ten-
ors A and B, respectively, and |A|i is the number of elements in
he ith dimension of A. This product is not a special case of our
eneralized inner product.

tandard matrix multiplication

Let A be an n×m matrix and b⃗ be a vector of size m. The standard
atrix multiplication of A by b⃗ is given by:

⃗ = Ab⃗⇔ c⃗i =
m∑
j=1

Aijb⃗j. (81)

his is a special case of our generalized inner product, i.e.,

⃗ = Ab⃗ = A⊙ b⃗. (82)

dditionally, let A be an n×m matrix and a⃗ be a vector of size n,
hen:

⃗ = AT a⃗⇔ c⃗i =
n∑

j=1

Ajia⃗j. (83)

his is a special case of our generalized inner product, i.e.,

⃗ = AT a⃗ = A⊙ a⃗. (84)

ote that because the dimensions are ‘‘named" (cf. Appendix A)
he operator performs the transposition implicitly.
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uter product of two vectors

Given two vectors a⃗ and b⃗, there outer product—denoted a⃗⊗ b⃗—is
a matrix defined as:

a⃗⊗ b⃗ =

⎡⎢⎣a1b1 . . . a1bn
...

. . .
...

amb1 . . . ambn

⎤⎥⎦. (85)

This outer product is a special case of our generalized outer
product, where the operator is applied to only two vectors, i.e.

a⃗⊗ b⃗ = ⊗
[
a⃗, b⃗

]
. (86)

Outer product of two tensors

Given two tensors U and V , the outer product of U and V is
another tensor W such that:

W (i1, . . . , in, j1, . . . , jm) = V (i1, . . . , in)U (j1, . . . , jm),

∀iα ∈ {1, . . . , |V |α}∀α ∈ {1, . . . , n},

∀jβ ∈ {1, . . . , |U |β}∀β ∈ {1, . . . ,m}. (87)

Given N vectors V i
∀i ∈ {1, . . . ,N}, our outer product is a

sequence of outer tensor products, i.e.,

⊗

[
V 1, . . . , VN

]
=

[[
V 1
⊗tensor V 2

]
⊗tensor ...

]
⊗tensor VN , (88)

where ⊗tensor and ⊗ are the tensor and generalized outer prod-
ucts, respectively.

Kronecker product

Given two matrices A and B, the Kronecker product of A and B—
enoted⊗K—is a generalization of the outer product from vectors
o matrices defined as:

⊗K B =

⎡⎢⎣a11B . . . a1nB
...

. . .
...

am1B . . . amnB

⎤⎥⎦, (89)

here aij are the elements of A. Note that even if the Kronecker
roduct is a generalization of the outer product, it is neither a
pecial case nor a generalization of our generalized outer product.

adamard product

Given two matrices A and B of the same size, the Hadamard
product of A and B is an element-wise product defined by:

C = A⊙B⇔ cij = aijbij ∀i ∈ {1, . . . , |A|1}∀j ∈ {1, . . . , |A|2}, (90)

here aij, bij and cij are the elements in the ith row and jth column
f A, B and C , respectively, |A|1 is the number of rows in A, and
A|2 is the number of columns in A. This product is unrelated to
oth our generalized inner and outer products.

ppendix C. Instance of variational message passing

This appendix provides a concrete instance of the method of
inn and Bishop discussed in Section 3. The generative model is

s follows:

(S,D) = P(S|D)P(D) (91)

here:

(S|D) = Cat(D) (92)
 i

309
P(D) = Dir(d). (93)

dditionally, the variational distribution is given by:

(D) = Dir(d̂), (94)

hich means that we assume that S is an observed random
ariable. Let us start with the definition of the Dirichlet and
ategorical distributions written in the form of the exponential
amily:

ln P(D) =

[ d1 − 1
...

d|S| − 1

]
  

µD(d)

·

[ lnD1
...

lnD|S|

]
  

uD(D)

− ln B(d)  
zD(d)

(95)

ln P(S|D) =

[ lnD1
...

lnD|S|

]
  
µS (D)

·

[
[S = 1]
...

[S = |S|]

]
  

uS (S)

(96)

here · performs an inner product of the two vectors it is applied
o, B(d) is the Beta function and |S| is the number of values a
tate can take. The first step requires us to re-write Eq. (96) as a
unction of uD(D), which is straightforward because µS(D) is just
nother name for uD(D). Using the fact that the inner product is
ommutative:

ln P(S|D) =

[
[S = 1]
...

[S = |S|]

]
  

µS→D(S)

·

[ lnD1
...

lnD|S|

]
  

uD(D)

. (97)

The second step aims to substitute (95) and (97) into the
variational message passing Eq. (7), i.e.

lnQ ∗(D) =
⟨[ d1 − 1

...

d|S| − 1

]
  

µD(d)

·

[ lnD1
...

lnD|S|

]
  

uD(D)

− ln B(d)  
zD(d)

⟩

+

⟨[ [S = 1]
...

[S = |S|]

]
  

µS→D(S)

·

[ lnD1
...

lnD|S|

]
  

uD(D)

⟩
+ Const, (98)

here ⟨·⟩ refers to ⟨·⟩∼QD . Note that in the above equation, d i
are fixed parameters, therefore there is no posterior over d and
the first expectation ⟨·⟩∼QD can be removed. The third step rests
on taking the exponential of both sides, using the linearity of
expectation and factorizing by uD(D) to obtain:

∗(D) = exp
{[ d1 − 1+ ⟨[S = 1]⟩

...

d|S| − 1+ ⟨[S = |S|]⟩

]
· uD(D)+ Const

}
, (99)

here zD(d) have been absorbed into the constant term because
t does not depend on D. The fourth step is a re-parameterization
one by observing that ⟨[S = i]⟩ is the ith element of the
xpectation of the vector uS(S), i.e. ⟨uS(S)⟩i = ⟨[S = i]⟩:

∗(D) = exp
{[ d1 − 1+ ⟨uS(S)⟩1

...

d|S| − 1+ ⟨uS(S)⟩|S|

]
  

µ̃D(...)+µ̃S→D(...)

·uD(D)+ Const
}
. (100)

The last step consists of computing the expectation of ⟨uS(S)⟩i
or all i. This can be achieved by realizing that the probability of
n indicator function for an event is the probability of this event,
.e. ⟨u (S)⟩ = ⟨[S = i]⟩ = Q (S = i) = D̂ where D̂ is a one hot
S i i
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epresentation of the observed value for S. Substituting this result
n Eq. (100), leads to the final result:

∗(D) = exp
{⎡⎣ d1 − 1+ D̂1

...

d|S| − 1+ D̂|S|

⎤⎦ · uD(D)+ Const
}
. (101)

Indeed, the above equation is in fact a Dirichlet distribution
in exponential family form, and can be re-written into its usual
form to obtain the final update equation:

Q ∗(D) = Dir(d + D̂). (102)

Appendix D. Expected log of Dirichlet distribution

Definition 7. A probability distribution over x parameterized by
µ is said to belong to the exponential family if its probability mass
function P(x|µ) can be written as:

P(x|µ) = h(x) exp
[
µ · T (x)− A(µ)

]
, (103)

here h(x) is the base measure, µ is the vector of natural param-
ters, T (x) is the vector of sufficient statistics, and A(µ) is the log

partition.

Lemma 8. The log partition is given by:

A(µ) = ln
∫

h(x) exp
[
µ · T (x)

]
dx. (104)

Proof. Starting with the fact that P(x|µ) integrate to one:∫
P(x|µ)dx =

∫
h(x) exp

[
µ · T (x)− A(µ)

]
dx = 1 (105)

⇔
1

exp A(µ)

∫
h(x) exp

[
µ · T (x)

]
dx = 1 (106)

⇔ A(µ) = ln
∫

h(x) exp
[
µ · T (x)

]
dx (107)

■

emma 9. The gradient of the log partition function is the expec-
ation of the sufficient statistics, i.e.,

∂A(µ)
∂µ

= EP(x|µ)

[
T (x)

]
. (108)

Proof. Restarting with the derivative of the result of Lemma 8:

∂A(µ)
∂µ

=
∂

∂µ

[
ln

∫
h(x) exp

[
µ · T (x)

]
dx

]
, (109)

nd using the chain rule:

∂A(µ)
∂µ

=
1∫

h(x) exp
[
µ · T (x)

]
dx

∂

∂µ

[∫
h(x) exp

[
µ · T (x)

]
dx

]
.

(110)

ote that the denominator of the first term is equal to the
xponential of A(µ), and we can swap the derivative and the
ntegral because the limit of integration does not depend on the
arameters µ:

∂A(µ)
∂µ

=
1

exp A(µ)

∫
∂

∂µ

[
h(x) exp

[
µ · T (x)

]]
dx (111)

=
1

exp A(µ)

∫
h(x)

∂

∂µ

[
exp

[
µ · T (x)

]]
dx. (112)
310
sing the chain rule again:

∂A(µ)
∂µ

=
1

exp A(µ)

∫
h(x) exp

[
µ · T (x)

]
T (x)dx (113)

=

∫
h(x) exp

[
µ · T (x)− A(µ)

]
T (x)dx (114)

=

∫
P(x|µ)T (x)dx (115)

= EP(x|µ)

[
T (x)

]
. (116)

■

heorem 10. If D is distributed according to a Dirichlet distribution
(D) = Dir(D; d̂), then: D̊ = EQ (D)

[
lnD

]
⇔ D̊i = ψ(di)−ψ(

∑
j dj).

roof. Let µ be equal to d̂ − 1⃗. Taking the exponential of both
ides in Eq. (95) and using that d̂ = µ+ 1⃗, we obtain:

(D) = exp
{⎡⎣ d̂1 − 1

...

d̂|S| − 1

⎤⎦
  

µ

·

[ lnD1
...

lnD|S|

]
  

T (D)

− ln B(µ+ 1⃗)  
A(µ)

}
, (117)

where µ is the vector of natural parameters, T (D) is the vector of
sufficient statistics, A(µ) is the log partition, and B(·) is the beta
unction. Using the result of Lemma 9:

˚ ≜ EQ (D)

[
T (D)

]
= EQ (D)

[
lnD

]
=
∂A(µ)
∂µ

=
∂

∂µ

[
ln B(µ+ 1⃗)

]
. (118)

e now focus on a typical element of D̊:

˚ i =
∂

∂µi

[
ln B(µ+ 1⃗)

]
, (119)

and use the definition of the beta function:

D̊i =
∂

∂µi

[
ln

∏
k Γ (µk + 1)

Γ (
∑

k µk + 1)

]
(120)

=
∂

∂µi

[∑
k

lnΓ (µk + 1)− lnΓ (
∑

k µk + 1)
]

(121)

=
∂

∂µi

[
lnΓ (µi + 1)

]
−

∂

∂µi

[
lnΓ (

∑
k µk + 1)

]
, (122)

where Γ (·) is the gamma function. The last step relies on the
hain rule:

˚ i =
∂

∂(µi + 1)

[
lnΓ (µi + 1)

]
∂µi + 1
∂µi  
=1

−
∂

∂(
∑

k µk + 1)

[
lnΓ (

∑
k µk + 1)

]
∂
∑

k µk + 1
∂µi  
=1

(123)

=
∂

∂(µi + 1)

[
lnΓ (µi + 1)

]
−

∂

∂(
∑

k µk + 1)

[
lnΓ (

∑
k µk + 1)

]
(124)

= ψ(µi + 1)− ψ(
∑

k µk + 1) (125)

= ψ(d̂ i)− ψ(
∑

k d̂k), (126)

here we used that d̂ = µ+ 1⃗ and the definition of the digamma
unction, i.e.,ψ(x) = ∂ lnΓ (x) .
∂x ■
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ppendix E. Relationship between BTAI and active inference
Lemmas)

emma 11. Under the assumption that the probability of observa-
ions and states are independent of future actions, i.e.,

j ∈ N>0, Q (Ot+i|πi) ≈ Q (Ot+i|πi+j) and Q (St+i|πi) ≈ Q (St+i|πi+j),

(127)

then:

∀j ∈ N>0, G(πi+j, t + i) ≈ G(πi, t + i). (128)

Proof. The proof is straightforward, we start with the following
definition:

G(πi+j, t + i) = DKL[Q (Ot+i|πi+j) ∥ P(Ot+i)]

+ EQ (St+i|πi+j)[H[P(Ot+i|St+i)]]. (129)

Then, using the assumption that the probability of observa-
tions and states are independent of future actions, i.e., ∀j ∈
N>0, Q (Ot+i|πi+j) ≈ Q (Ot+i|πi) and ∀j ∈ N>0, Q (St+i|πi+j) ≈
Q (St+i|πi), we get:

G(πi+j, t + i) ≈ DKL[Q (Ot+i|πi) ∥ P(Ot+i)]

+ EQ (St+i|πi)[H[P(Ot+i|St+i)]] ≜ G(πi, t + i). (130)

■

Lemma 12. The aggregated cost for an arbitrary N is given by:

Gaggre
πN
=

N∑
i=1

G(πi, t + i), (131)

Proof. The proof is done by induction. The initialization holds for
N = 1, indeed, π1 = {Ut} and by definition:

G(π1)  
Gaggreπ1

=

t+1∑
τ=t+1

G(π1, τ )

= DKL[Q (Ot+1|π1) ∥ P(Ot+1)] + EQ (St+1|π1)[H[P(Ot+1|St+1)]]  
Glocalπ1

, (132)

⇔ Gaggre
π1
= Gaggre

π0
+ G local

π1
, (133)

ecause by definition Gaggre
π0
= 0. Then, assuming that Gaggre

πN
=

N
i=1 G(πi, t+i) holds for some N , we show that its hold for N+1

s well. By definition:

aggre
πN+1
= Gaggre

πN
+ G local

πN+1
, (134)

nd:

local
πN+1
= G(πN+1, t + N + 1). (135)

sing the inductive hypothesis and the above two equations:

aggre
πN+1
=

N∑
i=1

G(πi, t + i)+ G(πN+1, t + N + 1) (136)

=

N+1∑
i=1

G(πi, t + i). (137)
■
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Appendix F. Notation

In this appendix, we introduce the notation used throughout
this paper. The following sub-sections describe the notation re-
lated to sets of numbers, tensors, probability distributions, global
variables, multi-indices and random variables, respectively.

Sets of numbers

Definition 13. Let N>0 be the set of all strictly positive integers
defined as:

N>0 = {x ∈ N | x > 0}, (138)

where N is the set of all natural numbers.

Definition 14. Let R>0 be the set of all strictly positive real
numbers defined as:

R>0 = {x ∈ R | x > 0}, (139)

where R is the set of all real numbers.

Tensors

Definition 15. An n-tensor is an n-dimensional array of val-
ues. Each element of an n-tensor is indexed by an n-tuple of
non-negative integers, i.e., (x1, . . . , xn) where xi ∈ N>0 ∀i ∈
{1, 2, . . . , n}.

Definition 16. Let T be an n-tensor. The element of T indexed by
the n-tuple (x1, . . . , xn) is a real number denoted by T (x1, . . . , xn).

Example 1. Let T be a 2-tensor defined as:

T =
[
1 2
3 4

]
. (140)

Then T (1, 1) = 1, T (1, 2) = 2, T (2, 1) = 3 and T (2, 2) = 4.

Remark 17. A 0-tensor is a scalar, a 1-tensor is a vector, and a
2-tensor is a matrix.

Definition 18. Let T be an n-tensor. The size of T is a vector of
size n denoted |T | whose ith element corresponds to the size of
the ith dimension of T .

Example 2. Let T be a 2-tensor defined as:

T =
[
1 2 3
4 5 6

]
. (141)

Then |T |1 = 2 and |T |2 = 3.

Definition 19. Let T be an n-tensor. A 1-sub-tensor of T is a
1-tensor obtained by selecting a 1-dimensional slice of T , i.e.,

T (x1, . . . , xi−1, ·, xi+1, . . . , xn), (142)

where · represents the selection of a 1-dimensional slice of T , and
the values of all xj̸=i must be set to specific values in {1, . . . , |T |j}.
Fig. 9 (left) illustrates the notion of a 1-dimensional slice.

Definition 20. Let T be an n-tensor and m < n. An m-sub-
tensor of T (denoted W ) is an m-tensor obtained by selecting an
m-dimensional slice of T , i.e.,

W = T (x , . . . , x , ·, x , . . . ..., x , ·, x , . . . , x ), (143)
1 i1−1 i1+1 im−1 im+1 n
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Fig. 9. This figure illustrates the notion of a 1-dimensional slice (on the left) and of a 2-dimensional slice (on the right).
F
l

P

here ik ∈ {1, . . . , n} ∀k ∈ {1, . . . ,m} are indices representing
the dimension being selected. Naturally, the kth dimension of
W corresponds to the ik-th dimension of T for k ∈ {1, . . . ,m}.
mportantly, the sextuple of dots in the middle of the expression
epresents that there will be m symbols ‘‘ · ", i.e., one for each
imension selected. Fig. 9 (right) illustrates the special case of a
-dimensional slice, i.e., m = 2.

xample 3. Let T be a 3-tensor such that:

• |T |1 = 2
• T (1, x2, x3) = 1, ∀(x2, x3) ∈ {1, . . . , |T |2} × {1, . . . , |T |3}
• T (2, x2, x3) = 2, ∀(x2, x3) ∈ {1, . . . , |T |2} × {1, . . . , |T |3}.

hen T (1, ·, ·) is a 2-sub-tensor of T full of ones, and T (2, ·, ·) is
a 2-sub-tensor of T full of twos.

Probability distributions

Definition 21. A random n-tensor is an n-tensor over which we
ave an n-dimensional probability distribution.

emark 22. A random variable is a random 0-tensor, a random
ector is a random 1-tensor, and a random matrix is a random
-tensor.

efinition 23. An n-tensor T is said to represent a joint
istribution over a set of n random variables {X1, . . . , Xn} if:

(X1 = x1, . . . , Xn = xn) = T (x1, . . . , xn). (144)

or conciseness, if T represents P(X1, . . . , Xn) we let:

(X1, . . . , Xn) = Cat(T ). (145)

emark 24. If T represents P(X1, . . . , Xn), then the sum of its
lements must equal one.

emark 25. In contrast, if T is a random n-tensor, then:

(X1, . . . , Xn|T ) = Cat(T ), (146)

hich means that the joint probability over X1, . . . , Xn is repre-
ented by T , and because T is a random tensor (taking values in
he set of valid n-tensors Tn, i.e., the set of all n-tensors whose
lements sum up to one), we must specify which instance of T ∈
n should be used to define the joint distribution over X1, . . . , Xn.

efinition 26. An m-tensor R is said to represent a conditional
istribution over a set of m random variables {X1, . . . , Xm} if:

(X1 = x1, . . . , Xn = xn|Xn+1

= xn+1, . . . , Xm = xm) = R(x1, . . . , xm). (147)
312
or conciseness, if R represents P(X1, . . . , Xn|Xn+1, . . . , Xm) we
et:

(X1, . . . , Xn|Xn+1, . . . , Xm) = Cat(R). (148)

Remark 27. If R represents P(X1, . . . , Xn|Xn+1, . . . , Xm), then the
elements of the n-sub-tensor R(·, . . . , ·, xn+1, . . . , xm) must sum
to one ∀xi ∈ {1, . . . , |R|i} ∀i ∈ {n+ 1, . . . ,m}.

Remark 28. If R is a random m-tensor, then:

P(X1, . . . , Xn|Xn+1, . . . , Xm, R) = Cat(R). (149)

Remark 29. Importantly, Definition 26 uses the symbol T to
represent P(X1, . . . , Xn) and Definition 23 uses the symbol R
to represent P(X1, . . . , Xn|Xn+1, . . . , Xm). Throughout this docu-
ment, different symbols will be used for representing joint and
conditional distributions.

Definition 30. Let R be a random m-tensor representing
P(X1, . . . , Xn|Xn+1, . . . , Xm, R) and k = m − n be the number of
variables upon which the variables X1, . . . , Xn are conditioned.
Having a Dirichlet prior over R means that:

P(R) =
|R|n+1∏
i1=1

...

|R|m∏
ik=1

Dir
(
r(i1, . . . , ik, ·)

)
, (150)

where r is an (m+1)-tensor such that the 1-sub-tensor r(i1, . . . ,
ik, ·) contains the parameters of the Dirichlet prior over P(X1, . . . ,

Xn|Xn+1 = i1, . . . , Xm = ik). For conciseness, we denote the prior
over R as:

P(R) = Dir(r). (151)

Remark 31. Definition 30 implicitly means that if V is a 1-tensor
then Dir(V ) represents a Dirichlet distribution. However, if V is
an m-tensor (with m ̸= 1) then Dir(V ) represents a product of
Dirichlet distributions.

Remark 32. If R is a random m-tensor representing P(X1, . . . ,

Xn|Xn+1, . . . , Xm, R), then its prior will be a product of |Xn+1| ×

· · · × |Xm| Dirichlet distributions, where |Xi| is the number of
values that Xi can take. Additionally, each Dirichlet distribution
will have |X1|×· · ·×|Xn| parameters stored in the last dimension
of r , where r is the tensor storing the parameters of the prior over
R, i.e. P(R) = Dir(r).

Example 4. Let A be a random 2-tensor representing P(O|S,A),
then the Dirichlet prior over A is given by:

P(A) = Dir(a) ≜
|A|2∏

Dir
(
a(i, ·)

)
, (152)
i=1
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here |A|2 is the number of values that S can take (i.e., the
umber of hidden states).

xample 5. Let B be a random 3-tensor representing P(Sτ+1|Sτ ,
Uτ ,B), then the Dirichlet prior over B is given by:

P(B) = Dir(b) ≜
|B|2∏
i1=1

|B|3∏
i2=1

Dir
(
b(i1, i2, ·)

)
, (153)

where |B|2 is the number of values that Sτ can take (i.e., the
number of hidden states) and |B|3 is the number of values that
Uτ can take (i.e., the number of actions).

Global labels

Definition 33. The number of actions available to the agent is
enoted |U |.

efinition 34. The number of states in the environment is
enoted |S|.

efinition 35. The number of observations that the agent can
ake is denoted |O|.

Definition 36. The number of policies that the agent can pick
from is denoted |π |.

Definition 37. The time point representing the present is a
natural number denoted t .

Definition 38. The time-horizon (i.e., the time point after which
the agent stops modelling the sequence of hidden states) is a
natural number denoted T .

Multi-indices

Definition 39. A multi-index is a sequence of indices denoted
by: I = (i1, . . . , in), where ij ∈ D ∀j ∈ {1, . . . , n}, and in this
aper D = {1, . . . , |U |}.

emark 40. Multi-indices are used to index random variables
uch that SI is the hidden state obtained after taking the se-
uence of actions described by I , and OI is the random variable
epresenting the observation generated by SI .

efinition 41. The last index of a multi-index is denoted Ilast ,
.e., Ilast is the last element of the sequence I .

efinition 42. The one-hot representation of the action corre-
ponding to Ilast is denoted I⃗last .

efinition 43. Given a multi-index I , I \ last corresponds to the
equence of actions described by I without the last element.

emark 44. In Section 6, when a hidden state (i.e., SI ) is indexed
y I , then SI\last will be the parent of SI .

efinition 45. Given an expandable generative model, It is the
et of all multi-indices already expanded from the current state
t .

emark 46. In Section 6 each time a hidden state (i.e., SI ) is added
o the generative model, I is added to the set of all multi-indices
lready expanded I .
t

313
andom variables and parameters of their distributions

Remark 47. Parameters of the posterior distributions are rec-
ognizable by the hat notation, e.g., â, b̂ and d̂ will be posterior
parameters, while a, b and d will be prior parameters.

Remark 48. The expected logarithm of an arbitrary tensor X
representing a conditional or a joint distribution is denoted X̄ ,
.g. Ā = EQ (A)[lnA] and B̄ = EQ (B)[lnB].

Definition 49. Let Uτ be a random variable taking values in
{1, . . . , |U |} indexing all possible actions. The prior distribution
over Uτ is a categorical distribution represented by Θτ . The
posterior distribution over Uτ is a categorical distribution repre-
sented by Θ̂τ .

Definition 50. Let Sτ be a random variable taking values in
{1, . . . , |S|} indexing all possible states. The prior and posterior
distributions over Sτ are categorical distributions represented by
different tensors depending on the generative model being con-
sidered. Therefore, those distributions are defined in Sections 4
and 6.

Definition 51. Let Oτ be an observed random variable taking
values in {1, . . . , |O|} indexing all possible observations. The prior
distribution over Oτ is a categorical distribution conditioned on Sτ
and represented by the random matrix A. There is no posterior
distribution over Oτ because Oτ is observed, i.e., realized.

Definition 52. Let OI be a random variable taking values in
{1, . . . , |O|} indexing all possible observations. The prior distri-
bution over OI is a categorical distribution conditioned on SI
nd represented by the random matrix Ā. Note that OI refers to

an observation in the future and is therefore a hidden variable.
The posterior distribution over OI is a categorical distribution
represented by Ê I .

Definition 53. Let SI be an random variable taking values in
{1, . . . , |S|} indexing all possible states. The prior distribution
over SI is a categorical distribution conditioned on SI\last and rep-
resented by the matrix B̄I ≜ B̄(·, ·, Ilast ). The posterior distribution
over SI is a categorical distribution represented by D̂I .

Definition 54. Let A be a |O| × |S| random matrix defining the
probability of an observation Oτ given the hidden state Sτ . The
rior distribution over A is a product of Dirichlet distributions
hose parameters are stored in a |S|×|O| matrix a. The posterior
istribution over A is also a product of Dirichlet distribution, but
he parameters are stored in a |S| × |O| matrix â.

efinition 55. Let B be a |S|×|S|×|U | random 3-tensor defining
he probability of transiting from Sτ to Sτ+1 when taking action
τ . The prior distribution over B is a product of Dirichlet distri-
utions whose parameters are stored in a |S| × |U | × |S| 3-tensor
. The posterior distribution over B is also a product of Dirichlet
istributions, but the parameters are stored in a |S| × |U | × |S|
-tensor b̂.

efinition 56. Let D be a random vector of size |S| defining the
robability of the initial state S0. The prior distribution over D is
Dirichlet distribution whose parameters are stored in a vector
of size |S|. The posterior distribution over D is also a Dirichlet
istribution, but the parameters are stored in a vector d̂ of size
S|.
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efinition 57. Let Θτ ∀τ ∈ {0, . . . , t − 1} be a random vector
f size |U | defining the probability of the action Uτ . The prior
istribution over Θτ is a Dirichlet distribution whose parameters
re stored in a vector θτ of size |U |. The posterior distribution over
τ is also a Dirichlet distribution, but the parameters are stored

n a vector θ̂τ of size |U |.

efinition 58. Let γ be a random variable taking values in R>0.
he prior distribution over γ is a gamma distribution with shape
arameter α = 1 and rate parameter β ∈ R>0. The posterior
istribution over γ is a gamma distribution with shape parameter
ˆ = 1 and rate parameter β̂ ∈ R>0.

efinition 59. Let π be a random variable taking values in
1, . . . , |π |} indexing all possible policies. The prior distribution
ver π is a softmax function of the vector G multiplied by minus
he precision γ . Note that G is a vector of size |π | whose ith ele-
ent is the expected free energy of the ith policy. The posterior
istribution over π is a categorical distribution whose parameters
re stored in a vector π̂ of size |π |.

ppendix G. Multi-armed bandit problem

In the multi-armed bandit problem, the agent is prompted
ith K actions (one for each bandit’s arm). Pulling the ith arm
eturns a reward sampled from the reward distribution Pi(X)
ssociated to this arm. Let µi be the mean of the ith reward
istribution and Ti(n) be the number of times the ith bandit has
een selected after n plays. To solve the bandit problem, one
eeds to come up with an allocation strategy that selects the
ction that minimizes the agent’s regret defined as:

n = µ
∗n−

K∑
i=1

µiE[Ti(n)], (154)

here µ∗ is the average reward of the best action. Note that an
pper bound of E[Ti(n)] is derived by first upper bounding Ti(n),
nd then using: the Chernoff–Hoeffding bound, the Bernstein
nequality and some properties of p-series, cf., proof of Theorem
in Auer et al. (2002) for details. So, if we first assume that,

CB1i =

√
1
1
X̄i

√
1
1  

exploitation

+

√
2 ln n
ni  

exploration

, (155)

where ni is the number of times the ith action has been selected,
and X̄i is the average reward received after taking the ith action.
Then, the main result of Auer et al. (2002) was to show that if an
allocation strategy was using the UCB1 criterion to select the next
action, the expected regret of this allocation strategy will grow
at most logarithmically in the number of plays n, i.e., O(ln n).
n addition, since it is known that the expected regret of the
best) allocation strategy grows at least logarithmically in n (Lai
Robbins, 1985), we say that the UCB1 criterion resolves the

xploration/exploitation trade-off, i.e., the UCB1 criterion ensures
hat the expected regret grows as slowly as possible.

ppendix H. The exponential complexity class

In this appendix, we precisely pinpoint the exponential com-
lexity class that is addressed in this paper, but first, we introduce
multi-index notation. Multi-indices will help us to refer to hid-
en states in the future. Naturally enough the indices inside the
ulti-indices will correspond to the actions the agent will have

o perform to reach the hidden state, e.g., S(123) corresponds to a
idden state at time t+3 obtained by performing action 1 at time
 s
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Fig. 10. Illustration of all possible policies up to two time steps in the future
when |U | = 2. The state at the current time step is denoted by St . Additionally,
ach branch of the tree corresponds to a possible policy, and each node SI is

indexed by a multi-index (e.g. I = (12)) representing the sequence of actions
that led to this state. This should make it clear that for one time step in the
future, there are |U | possible policies, after two time steps there are |U | times
more policies, and so on until the time-horizon T where there are a total of
|U |T possible policies, i.e., the number of possible policies grows exponentially
with the number of time steps for which the agent tries to plan.

t , 2 at time t + 1 and 3 at time t + 2. Using this notation, Fig. 10
depicts all the possible policies up to two time steps in the future
and the associated hidden states. Importantly, Fig. 10 shows that
the number of policies grows exponentially with the number
of time steps for which the agent tries to plan. Therefore, the
definition of the prior over the policies, i.e., P(π |γ ) = σ (−γG),
exhibits an exponential space and time complexity class because
the agent needs to store and compute the |U |T parameters of
P(π |γ ), where T is the time-horizon.

To show that this exponential explosion is not only a theo-
retical problem and also appears in practice, we modified the
DEMO_MDP_maze.m of the SPM1 package in two ways. First, we
allowed the agent to plan N time steps in the future as follows:

Second, we used the ‘‘tic’’ and ‘‘toc’’ functions provided by
Matlab to track the execution time required to execute the func-
tion ‘‘spm_maze_search’’ where the parameters of the model are
assumed to be known already by the agent:

1 Statistical parametric mapping (SPM) is a software package created by the
ellcome Department of Imaging Neuroscience at University College London,
hich was initially developed to carry out statistical analyses of functional
euroimaging data. Today, SPM also contains MatLab simulations implementing
ctive inference agents (among other things), cf. https://www.fil.ion.ucl.ac.uk/
pm/.

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
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B

B

D

Fig. 11. This figure shows the time required to execute the function
‘‘spm_maze_search’’ when the agent is allowed to plan N time steps in the future
(for N from 2 to 6). A logarithmic scale is used on the time axis.

Fig. 11 presents the results of our simulations for N from 2 to
6. Under a logarithmic scale on the time axis, the experimental
results show that the graph is almost a perfect line, which pro-
vides empirical evidence for an exponential time explosion. Note
that the simulation for N = 7 crashed after trying to allocate
an array of 9.5 GB (space explosion). In Section 5, we presented
an approach proposed to deal with the exponential complexity
class that arises during planing, yet is fundamentally similar to
active inference. This effectively means that our paper shows how
standard active inference can be made more efficient and scale to
longer time horizons.

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2), 235–256. http://dx.doi.
org/10.1023/A:1013689704352, https://doi.org/10.1023/A:1013689704352.

ai, A., Wu, F., & Chen, X. (2013). BayesIan mixture modelling and inference
based Thompson sampling in Monte-Carlo tree search. In Proceedings of the
advances in neural information processing systems (NIPS) (pp. 1646–1654).
Lake Tahoe, United States.

ergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
& K. Q. Weinberger (Eds.), Advances in neural information processing systems
(Vol. 24). Curran Associates, Inc., URL https://proceedings.neurips.cc/paper/
2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf.

Botvinick, M., & Toussaint, M. (2012). Planning as inference. Trends in Cognitive
Sciences, 16(10), 485–488, https://doi.org/10.1016/j.tics.2012.08.006.

Bowman, H. (2005). Concurrency theory: Calculi an automata for modelling
untimed and timed concurrent systems. Dordrecht: Springer, URL https://cds.
cern.ch/record/1250124.

Bowman, H., & Wyble, B. (2007). The simultaneous type, serial token model
of temporal attention and working memory. Psychological Review, 114(1),
38–70.

Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. Citeseer, ArXiv preprint arXiv:1012.2599.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfsha-
gen, P., et al. (2012). A survey of Monte Carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in Games, 4(1), 1–43.

Çatal, O., Verbelen, T., Nauta, J., Boom, C. D., & Dhoedt, B. (2020).
Learning perception and planning with deep active inference. In 2020
IEEE international conference on acoustics, speech and signal process-
ing, ICASSP 2020, Barcelona, Spain, May 4–8, 2020 (pp. 3952–3956).
IEEE, http://dx.doi.org/10.1109/ICASSP40776.2020.9054364, https://doi.org/
10.1109/ICASSP40776.2020.9054364.
315
Champion, T., Bowman, H., & Grześ, M. (2021). Branching time active inference:
empirical study. Available at https://arxiv.org/abs/2111.11276.

Champion, T., Grześ, M., & Bowman, H. (2021). Realizing active inference
in variational message passing: The outcome-blind certainty seeker. Neu-
ral Computation, 1–65. http://dx.doi.org/10.1162/neco_a_01422, https://doi.
org/10.1162/neco_a_01422, arXiv:https://direct.mit.edu/neco/article-pdf/doi/
10.1162/neco_a_01422/1930278/neco_a_01422.pdf.

Cox, M., van de Laar, T., & de Vries, B. (2019). A factor graph approach to
automated design of Bayesian signal processing algorithms. International
Journal of Approximate Reasoning, 104, 185–204. http://dx.doi.org/10.1016/j.
ijar.2018.11.002, https://doi.org/10.1016/j.ijar.2018.11.002.

Cullen, M., Davey, B., Friston, K. J., & Moran, R. J. (2018). Active inference in
openai gym: A paradigm for computational investigations into psychiatric
illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(9),
809–818, Computational Methods and Modeling in Psychiatry. https://doi.
org/10.1016/j.bpsc.2018.06.010. URL http://www.sciencedirect.com/science/
article/pii/S2451902218301617.

a Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., & Friston, K. (2020).
Active inference on discrete state-spaces: A synthesis. Journal of Mathematical
Psychology, 99, Article 102447, https://doi.org/10.1016/j.jmp.2020.102447.
URL https://www.sciencedirect.com/science/article/pii/S0022249620300857.

Da Costa, L., Sajid, N., Parr, T., Friston, K., & Smith, R. (2020). The relation-
ship between dynamic programming and active inference: the discrete,
finite-horizon case. arXiv:2009.08111.

FitzGerald, T. H. B., Dolan, R. J., & Friston, K. (2015). Dopamine, re-
ward learning, and active inference. Frontiers in Computational Neuro-
science, 9, 136. http://dx.doi.org/10.3389/fncom.2015.00136, URL https://
www.frontiersin.org/article/10.3389/fncom.2015.00136.

Forney, G. D. (2001). Codes on graphs: normal realizations. IEEE Transactions on
Information Theory, 47(2), 520–548.

Fountas, Z., Sajid, N., Mediano, P. A. M., & Friston, K. J. (2020). Deep active
inference agents using Monte-Carlo methods. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural information processing
systems 33: Annual conference on neural information processing systems 2020,
NeurIPS 2020, December 6–12, 2020, Virtual. URL https://proceedings.neurips.
cc/paper/2020/hash/865dfbde8a344b44095495f3591f7407-Abstract.html.

Fox, V., Hightower, J., Liao, L., Schulz, D., & Borriello, G. (2003). BayesIan filtering
for location estimation. IEEE Pervasive Computing, 2(3), 24–33. http://dx.doi.
org/10.1109/MPRV.2003.1228524.

Fox, C. W., & Roberts, S. J. (2012). A tutorial on variational Bayesian inference.
Artificial Intelligence Review, 38(2), 85–95. http://dx.doi.org/10.1007/s10462-
011-9236-8, https://doi.org/10.1007/s10462-011-9236-8.

Friston, K., Da Costa, L., Hafner, D., Hesp, C., & Parr, T. (2021). Sophisticated in-
ference. Neural Computation, 33(3), 713–763. http://dx.doi.org/10.1162/neco_
a_01351, https://doi.org/10.1162/neco_a_01351. arXiv:https://direct.mit.edu/
neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf.

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., Doherty, J. O., & Pezzulo, G.
(2016). Active inference and learning. Neuroscience & Biobehavioral Reviews,
68, 862–879, https://doi.org/10.1016/j.neubiorev.2016.06.022.

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation
and active inference. Network Neuroscience, 1(4), 381–414. http://dx.doi.org/
10.1162/NETN_a_00018, https://doi.org/10.1162/NETN_a_00018.

Friston, K., Schwartenbeck, P., Fitzgerald, T., Moutoussis, M., Behrens, T., &
Dolan, R. (2013). The anatomy of choice: active inference and agency. Fron-
tiers in Human Neuroscience, 7, 598. http://dx.doi.org/10.3389/fnhum.2013.
00598, URL https://www.frontiersin.org/article/10.3389/fnhum.2013.00598.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR
arXiv:1801.01290.

Hafner, D., Ortega, P. A., Ba, J., Parr, T., Friston, K. J., & Heess, N. (2020). Action
and perception as divergence minimization. CoRR arXiv:2009.01791.

Itti, L., & Baldi, P. (2009). BayesIan surprise attracts human attention. Vision
Research, 49(10), 1295–1306, Visual attention: Psychophysics, electrophysiol-
ogy and neuroimaging. https://doi.org/10.1016/j.visres.2008.09.007 URL http:
//www.sciencedirect.com/science/article/pii/S0042698908004380.

Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov
blankets of life: autonomy, active inference and the free energy princi-
ple. Journal of the Royal Society Interface, 15(138), Article 20170792. http:
//dx.doi.org/10.1098/rsif.2017.0792, arXiv:https://royalsocietypublishing.org/
doi/pdf/10.1098/rsif.2017.0792. URL https://royalsocietypublishing.org/doi/
abs/10.1098/rsif.2017.0792.

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In
J. Fürnkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Lecture notes in computer
science: Vol. 4212, Machine learning: ECML 2006, 17th European conference on
machine learning, Berlin, Germany, September 18–22, 2006, proceedings (pp.
282–293). Springer, http://dx.doi.org/10.1007/11871842_29, https://doi.org/
10.1007/11871842_29.

http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1023/A:1013689704352
http://dx.doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb2
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1016/j.tics.2012.08.006
https://cds.cern.ch/record/1250124
https://cds.cern.ch/record/1250124
https://cds.cern.ch/record/1250124
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb6
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb6
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb6
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb6
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb6
http://arxiv.org/abs/1012.2599
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb8
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb8
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb8
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb8
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb8
http://dx.doi.org/10.1109/ICASSP40776.2020.9054364
https://doi.org/10.1109/ICASSP40776.2020.9054364
https://doi.org/10.1109/ICASSP40776.2020.9054364
https://doi.org/10.1109/ICASSP40776.2020.9054364
https://arxiv.org/abs/2111.11276
http://dx.doi.org/10.1162/neco_a_01422
https://doi.org/10.1162/neco_a_01422
https://doi.org/10.1162/neco_a_01422
https://doi.org/10.1162/neco_a_01422
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/doi/10.1162/neco_a_01422/1930278/neco_a_01422.pdf
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.1016/j.ijar.2018.11.002
https://doi.org/10.1016/j.ijar.2018.11.002
https://doi.org/10.1016/j.bpsc.2018.06.010
https://doi.org/10.1016/j.bpsc.2018.06.010
https://doi.org/10.1016/j.bpsc.2018.06.010
http://www.sciencedirect.com/science/article/pii/S2451902218301617
http://www.sciencedirect.com/science/article/pii/S2451902218301617
http://www.sciencedirect.com/science/article/pii/S2451902218301617
https://doi.org/10.1016/j.jmp.2020.102447
https://www.sciencedirect.com/science/article/pii/S0022249620300857
http://arxiv.org/abs/2009.08111
http://dx.doi.org/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
https://www.frontiersin.org/article/10.3389/fncom.2015.00136
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb17
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb17
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb17
https://proceedings.neurips.cc/paper/2020/hash/865dfbde8a344b44095495f3591f7407-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/865dfbde8a344b44095495f3591f7407-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/865dfbde8a344b44095495f3591f7407-Abstract.html
http://dx.doi.org/10.1109/MPRV.2003.1228524
http://dx.doi.org/10.1109/MPRV.2003.1228524
http://dx.doi.org/10.1109/MPRV.2003.1228524
http://dx.doi.org/10.1007/s10462-011-9236-8
http://dx.doi.org/10.1007/s10462-011-9236-8
http://dx.doi.org/10.1007/s10462-011-9236-8
https://doi.org/10.1007/s10462-011-9236-8
http://dx.doi.org/10.1162/neco_a_01351
http://dx.doi.org/10.1162/neco_a_01351
http://dx.doi.org/10.1162/neco_a_01351
https://doi.org/10.1162/neco_a_01351
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/713/1889421/neco_a_01351.pdf
https://doi.org/10.1016/j.neubiorev.2016.06.022
http://dx.doi.org/10.1162/NETN_a_00018
http://dx.doi.org/10.1162/NETN_a_00018
http://dx.doi.org/10.1162/NETN_a_00018
https://doi.org/10.1162/NETN_a_00018
http://dx.doi.org/10.3389/fnhum.2013.00598
http://dx.doi.org/10.3389/fnhum.2013.00598
http://dx.doi.org/10.3389/fnhum.2013.00598
https://www.frontiersin.org/article/10.3389/fnhum.2013.00598
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/2009.01791
https://doi.org/10.1016/j.visres.2008.09.007
http://www.sciencedirect.com/science/article/pii/S0042698908004380
http://www.sciencedirect.com/science/article/pii/S0042698908004380
http://www.sciencedirect.com/science/article/pii/S0042698908004380
http://dx.doi.org/10.1098/rsif.2017.0792
http://dx.doi.org/10.1098/rsif.2017.0792
http://dx.doi.org/10.1098/rsif.2017.0792
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0792
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0792
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2017.0792
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0792
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0792
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2017.0792
http://dx.doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29


T. Champion, L. Da Costa, H. Bowman et al. Neural Networks 151 (2022) 295–316

L

L

M

M

M

M

M

O

P

P

R

R

R

S

S

S

S

S

S

T

v

v

v

v

W

W

ai, T., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1), 4–22. http://dx.doi.org/10.1016/0196-
8858(85)90002-8, https://doi.org/10.1016/0196-8858(85)90002-8.

ample, G., & Chaplot, D. S. (2017). Playing FPS games with deep reinforcement
learning. In S. P. Singh, & S. Markovitch (Eds.), Proceedings of the thirty-first
AAAI conference on artificial intelligence, February 4–9, 2017, San Francisco,
California, USA (pp. 2140–2146). AAAI Press, URL http://aaai.org/ocs/index.
php/AAAI/AAAI17/paper/view/14456.

aisto, D., Gregoretti, F., Friston, K. J., & Pezzulo, G. (2021). Active tree search
in large POMDPs. CoRR arXiv:2103.13860.

illidge, B. (2019). Combining active inference and hierarchical predictive
coding: A tutorial introduction and case study. https://doi.org/10.31234/osf.
io/kf6wc.

illidge, B. (2020). Deep active inference as variational policy gradients.
Journal of Mathematical Psychology, 96, Article 102348, https://doi.org/10.
1016/j.jmp.2020.102348. URL http://www.sciencedirect.com/science/article/
pii/S0022249620300298.

illidge, B., Tschantz, A., & Buckley, C. L. (2021). Whence the expected free
energy? Neural Computation, 33(2), 447–482. http://dx.doi.org/10.1162/neco_
a_01354, https://doi.org/10.1162/neco_a_01354. arXiv:https://direct.mit.edu/
neco/article-pdf/33/2/447/1896836/neco_a_01354.pdf.

nih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
et al. (2013). Playing atari with deep reinforcement learning. CoRR arXiv:
1312.5602.

’Reilly, R. C. (1996). Biologically plausible error-driven learning using local
activation differences: The generalized recirculation algorithm. Neural Com-
putation, 8(5), 895–938. http://dx.doi.org/10.1162/neco.1996.8.5.895, https:
//doi.org/10.1162/neco.1996.8.5.895.

arr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Bi-
ological Cybernetics, 113(5), 495–513. http://dx.doi.org/10.1007/s00422-019-
00805-w, https://doi.org/10.1007/s00422-019-00805-w.

ezzato, C., Corbato, C. H., & Wisse, M. (2020). Active inference and behavior
trees for reactive action planning and execution in robotics. CoRR arXiv:
2011.09756.

afetseder, E., Schwitalla, M., & Perner, J. (2013). Counterfactual reasoning: From
childhood to adulthood. Journal of Experimental Child Psychology, 114(3),
389–404.

osin, C. D. (2010). Multi-armed bandits with episode context. In Interna-
tional symposium on artificial intelligence and mathematics, ISAIM 2010, Fort
Lauderdale, Florida, USA, January 6–8, 2010. URL http://gauss.ececs.uc.edu/
Workshops/isaim2010/papers/rosin.pdf.

usso, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial
on thompson sampling. Foundation in Trends Machine Learning, 11(1), 1–96.
http://dx.doi.org/10.1561/2200000070, https://doi.org/10.1561/2200000070.

Sajid, N., Ball, P. J., Parr, T., & Friston, K. J. (2021). Active inference: Demys-
tified and compared. Neural Computation, 33(3), 674–712. http://dx.doi.org/
10.1162/neco_a_01357, https://doi.org/10.1162/neco_a_01357. arXiv:https://
direct.mit.edu/neco/article-pdf/33/3/674/1889396/neco_a_01357.pdf.
316
Sancaktar, C., van Gerven, M. A. J., & Lanillos, P. (2020). End-to-end pixel-
based deep active inference for body perception and action. In Joint IEEE
10th international conference on development and learning and epigenetic
robotics, ICDL-EpiRob 2020, Valparaiso, Chile, October 26–30, 2020 (pp. 1–8).
IEEE, http://dx.doi.org/10.1109/ICDL-EpiRob48136.2020.9278105, https://doi.
org/10.1109/ICDL-EpiRob48136.2020.9278105.

ancaktar, C., & Lanillos, P. (2020). End-to-end pixel-based deep active inference
for body perception and action. arXiv:2001.05847.

chrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et
al. (2019). Mastering atari, go, chess and shogi by planning with a learned
model. arXiv:1911.08265.

chwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H. B., Kronbichler, M.,
& Friston, K. (2018). Computational mechanisms of curiosity and goal-
directed exploration. BioRxiv, http://dx.doi.org/10.1101/411272, URL https:
//www.biorxiv.org/content/early/2018/09/07/411272.

ilver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et
al. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587), 484–489. http://dx.doi.org/10.1038/nature16961,
https://doi.org/10.1038/nature16961.

mith, R., Friston, K. J., & Whyte, C. J. (2021). A step-by-step tutorial on active
inference and its application to empirical data. URL https://psyarxiv.com/
b4jm6/.

ondik, E. J. (1971). The optimal control of partially observable Markov
processes (Ph.D. thesis), Stanford University, URL https://ci.nii.ac.jp/naid/
20000916958/en/.

hompson, W. R. (1933). On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika, 25(3/4),
285–294, URL http://www.jstor.org/stable/2332286.

an de Laar, T., & de Vries, B. (2019). Simulating active inference processes by
message passing. Frontiers Robotics and AI, 2019, http://dx.doi.org/10.3389/
frobt.2019.00020, https://doi.org/10.3389/frobt.2019.00020.

an Glabbeek, R. J. (1990). The linear time-branching time spectrum (extended
abstract). In Proceedings of the theories of concurrency: Unification and
extension (pp. 278–297). Berlin, Heidelberg: Springer-Verlag.

an Glabbeek, R. J. (1993). The linear time — Branching time spectrum II. In
E. Best (Ed.), CONCUR’93 (pp. 66–81). Berlin, Heidelberg: Springer Berlin
Heidelberg.

an Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with
double Q-learning. In D. Schuurmans, & M. P. Wellman (Eds.), Proceedings
of the thirtieth AAAI conference on artificial intelligence, February 12–17, 2016,
Phoenix, Arizona, USA (pp. 2094–2100). AAAI Press, URL http://www.aaai.org/
ocs/index.php/AAAI/AAAI16/paper/view/12389.

inn, J., & Bishop, C. (2005). Variational message passing. Journal of Machine
Learning Research, 6, 661–694.

yble, B., & Bowman, H. (2006). A neural network account of binding discrete
items into working memory using a distributed pool of flexible resources.
Journal of Vision, 6(6), 33–33a.

http://dx.doi.org/10.1016/0196-8858(85)90002-8
http://dx.doi.org/10.1016/0196-8858(85)90002-8
http://dx.doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1016/0196-8858(85)90002-8
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14456
http://arxiv.org/abs/2103.13860
https://doi.org/10.31234/osf.io/kf6wc
https://doi.org/10.31234/osf.io/kf6wc
https://doi.org/10.31234/osf.io/kf6wc
https://doi.org/10.1016/j.jmp.2020.102348
https://doi.org/10.1016/j.jmp.2020.102348
https://doi.org/10.1016/j.jmp.2020.102348
http://www.sciencedirect.com/science/article/pii/S0022249620300298
http://www.sciencedirect.com/science/article/pii/S0022249620300298
http://www.sciencedirect.com/science/article/pii/S0022249620300298
http://dx.doi.org/10.1162/neco_a_01354
http://dx.doi.org/10.1162/neco_a_01354
http://dx.doi.org/10.1162/neco_a_01354
https://doi.org/10.1162/neco_a_01354
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/2/447/1896836/neco_a_01354.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/2/447/1896836/neco_a_01354.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/2/447/1896836/neco_a_01354.pdf
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1162/neco.1996.8.5.895
https://doi.org/10.1162/neco.1996.8.5.895
https://doi.org/10.1162/neco.1996.8.5.895
https://doi.org/10.1162/neco.1996.8.5.895
http://dx.doi.org/10.1007/s00422-019-00805-w
http://dx.doi.org/10.1007/s00422-019-00805-w
http://dx.doi.org/10.1007/s00422-019-00805-w
https://doi.org/10.1007/s00422-019-00805-w
http://arxiv.org/abs/2011.09756
http://arxiv.org/abs/2011.09756
http://arxiv.org/abs/2011.09756
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb40
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb40
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb40
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb40
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb40
http://gauss.ececs.uc.edu/Workshops/isaim2010/papers/rosin.pdf
http://gauss.ececs.uc.edu/Workshops/isaim2010/papers/rosin.pdf
http://gauss.ececs.uc.edu/Workshops/isaim2010/papers/rosin.pdf
http://dx.doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070
http://dx.doi.org/10.1162/neco_a_01357
http://dx.doi.org/10.1162/neco_a_01357
http://dx.doi.org/10.1162/neco_a_01357
https://doi.org/10.1162/neco_a_01357
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/674/1889396/neco_a_01357.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/674/1889396/neco_a_01357.pdf
http://arxiv.org/abs/https://direct.mit.edu/neco/article-pdf/33/3/674/1889396/neco_a_01357.pdf
http://dx.doi.org/10.1109/ICDL-EpiRob48136.2020.9278105
https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278105
https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278105
https://doi.org/10.1109/ICDL-EpiRob48136.2020.9278105
http://arxiv.org/abs/2001.05847
http://arxiv.org/abs/1911.08265
http://dx.doi.org/10.1101/411272
https://www.biorxiv.org/content/early/2018/09/07/411272
https://www.biorxiv.org/content/early/2018/09/07/411272
https://www.biorxiv.org/content/early/2018/09/07/411272
http://dx.doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://psyarxiv.com/b4jm6/
https://psyarxiv.com/b4jm6/
https://psyarxiv.com/b4jm6/
https://ci.nii.ac.jp/naid/20000916958/en/
https://ci.nii.ac.jp/naid/20000916958/en/
https://ci.nii.ac.jp/naid/20000916958/en/
http://www.jstor.org/stable/2332286
http://dx.doi.org/10.3389/frobt.2019.00020
http://dx.doi.org/10.3389/frobt.2019.00020
http://dx.doi.org/10.3389/frobt.2019.00020
https://doi.org/10.3389/frobt.2019.00020
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb53
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb53
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb53
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb53
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb53
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb54
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb54
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb54
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb54
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb54
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb56
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb56
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb56
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb57
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb57
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb57
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb57
http://refhub.elsevier.com/S0893-6080(22)00114-9/sb57

	Branching Time Active Inference: The theory and its generality 
	Introduction
	Forney factor graphs
	Variational message passing
	Winn and Bishop method

	Active inference
	Generative model
	Variational distribution
	Variational free energy
	Action selection

	Monte Carlo Tree search
	A four step process

	Branching Time Active Inference (BTAI)
	Prior, posterior and target distributions
	BayesIan belief updates
	Planning as structure learning
	Selection of the node to be expanded
	Dynamical expansion of the generative model
	Cost evaluation of the expanded nodes
	Propagation of the node cost

	Action selection
	Action-perception cycle with tree search

	Connection between BTAI, active inference and sophisticated inference
	Active inference
	Sophisticated inference
	Branching Time Active Inference (BTAI)
	BTAI as a generalization of active inference
	Relationship between BTAI and sophisticated inference

	Conclusion and future works
	Declaration of competing interest
	Acknowledgements
	Appendix A. Generalized inner and outer products
	Appendix B. Generalized inner/outer products and other well-known products
	Inner product of two vectors
	Inner product of two matrices (Frobenius inner product)
	Inner product of two tensors (Frobenius inner product)
	Standard matrix multiplication
	Outer product of two vectors
	Outer product of two tensors
	Kronecker product
	Hadamard product

	Appendix C. Instance of variational message passing
	Appendix D. Expected log of Dirichlet distribution
	Appendix E. Relationship between BTAI and active inference (Lemmas)
	Appendix F. Notation
	Sets of numbers
	Tensors
	Probability distributions
	Global labels
	Multi-indices
	Random variables and parameters of their distributions

	Appendix G. Multi-armed bandit problem
	Appendix H. The exponential complexity class
	References


