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Abstract: Robotic disassembly sequence planning (DSP) is a research area that looks at the sequence of actions 

in the disassembly intending to achieve autonomous disassembly with high efficiency and low cost in 

remanufacturing and recycling applications. A piece of key input information being factored in DSP is the 

interference condition of a product, i.e., a mathematical representation of the spatial location of components in 

an assembly usually in the form of a matrix. An observed challenge in the area is that the interference condition 

can be uncertain due to variations in the end-of-life conditions, and there is a lack of tools available in DSP 

under uncertain interference. To address this challenge, this paper proposes a new DSP method that can cope 

with uncertain interference conditions enabled by the fuzzification of DSP (FDSP). This new approach in the 

core is a fuzzy and dynamic modeling method in combination with an iterative re-planning strategy, and FDSP 

offers the capability for DSP to adapt to failures and self-evolve online. Three products are given to demonstrate 

FDSP.  

Keywords: Robotic disassembly; Fuzzification; Sequence planning; Dual-loop Self-evolving; Uncertain 

interference 

1. Introduction 

Disassembly of end-of-life (EoL) products is a common step in remanufacturing [1], which extracts 

valuable parts and materials from EOL products through a series of operations, promoting the recycling of 

resources and reducing the environmental pollution. The disassembly process is often carried out in a certain 

sequence to improve disassembly efficiency and reduce disassembly costs. This process of obtaining the 

optimal disassembly sequence is called DSP [2]. A disassembly task usually starts with DSP, which is 

considered key to the efficiency of remanufacturing and a fundamental technique that underpins autonomous 

remanufacturing [3-5]. 

The traditional disassembly process relies on manual operation, as people have strong adaptability and 

can respond quickly and accurately to uncertain situations. However, with the increase in labor cost and the 

disassembly process having a specific risk, manual disassembly has become less and less advantageous. In 

such a situation, robot disassembly has been widely concerned. However, since the EoL product has been used 

for many years, its condition is unpredictable. This uncertainty forces DSP to change constantly, making 

automatic robot disassembly face significant challenges. 
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The automatic disassembly process usually contains three steps: deciding the disassembly mode, building 

a disassembly model, and applying a selected planning method [6]. Disassembly mode can be classified as 

complete disassembly and partial disassembly according to the disassembly completion rate or sequential 

disassembly and parallel disassembly in disassembly order. Disassembly modeling refers to generating 

component relations of a product through specific methods, including graph-based method, Petri net method, 

matrix-based method, and other methods. When the previous two steps have been completed, appropriate 

planning methods can be used to find the optimal disassembly sequence. The optimal disassembly sequence 

here refers to the sequence meeting specific disassembly objectives (such as disassembly cost, time, benefit, 

etc.). This process can be completed by many optimization methods, such as Nature Inspired heuristic 

algorithms (NIHA), rule-based methods (RBM), stochastic simulation (SSI) techniques, and so on [6]. 

However, most of the current research assumes that the component relationship of the product is constant 

and the product condition is completely predictable [6-8]. In fact, due to years of use, the state of the EoL 

product has been inconsistent with the original state, and the static disassembly models and methods are 

difficult to adapt to the uncertainties [1,9]. Therefore, to make optimization results more suitable for practical 

applications, it is essential to develop disassembly sequence re-planning methods. 

To achieve full autonomy, robots must be able to make intelligent and informed decisions about stochastic, 

non-deterministic objectives online. An observed challenge in the area is that the interference condition can be 

uncertain due to variations in the end-of-life conditions, and there is a lack of tools available in DSP under 

uncertain interference. In line with recent advances in evolution algorithms, various kinds of bees algorithms, 

genetic algorithms, and memetic algorithms have been applied [10-12]. Agrawal and Nallamothu et al. 

employed genetic algorithms (GA) to produce optimized DSP from a geometric description of an assembly 

[13]. Tseng, Huang et al. then adapted conventional GA to form a novel ‘Flatworm’ algorithm of superior 

quality [14]. Since population-based evolution algorithms can be time-consuming in dynamic planning and re-

planning, heuristics methods with fewer iterations were also proposed [6]. However, the performance of 

heuristics methods is also influenced by the number of population size and iterations. There is also some 

previous research about modeling uncertainty in disassembly using fuzzy data sets [15-19]; however, these 

models are more from the point of view of serviceability and economic viability rather than robotic DSP [20-

22]. 

This paper proposes a method for the fuzzification of DSP (FDSP) as a new DSP system that can cope 

with uncertain interference conditions by learning from disassembly failures. This new approach in the core is 

a fuzzy and dynamic modeling method combined with an iterative re-planning strategy, such a combination of 

which offers the capability for DSP to adapt to failures and self-evolve online. The method involves designing 

two new fuzzy non-binary matrices combined with a traditional contact matrix to define an assembly in 3D 

space, which can dynamically represent the uncertainty interference of EoL products. A penalty mechanism is 

created as a tool to evaluate the cost of changing components and directions. As a product is being disassembled, 

the feasibility and confidence matrices are continuously updated online to accommodate disassembly failures 

and support re-planning. The dual-loop self-evolving algorithm allows online decision-making based on the 

previous operations. As more products are disassembled, the initial values of the feasibility and confidence 
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matrices are renewed to reflect reality more accurately. 

The rest of the paper is organized as follows. Section 2 summarizes the state-of-the-art in disassembly 

sequence planning and re-planning research. Section 3 defines the fuzzy mathematical representation of the 

physical assemblies. In section 4, the dynamic re-planning process is dissected. In section 5, iterative estimation 

and sequence ranking schemes are explained. Case studies are examined to assess the algorithm performance 

in Section 6. Conclusions are drawn in Section 7. 

2. Related work 

From the perspective of process automation, a robotic DSP mainly contains disassembly modeling and 

sequence planning [23]. Normally, disassembly modeling is a prerequisite for sequence planning, which 

eliminates infeasible disassembly sequences by modeling the spatial relationships between product 

components. The sequence planning methods will efficiently help to obtain the optimal disassembly sequence 

for given objectives. This section briefly reviews the related literature on disassembly modeling, automatic 

disassembly sequence planning and re-planning methods. 

2.1 Disassembly modeling 

Disassembly modeling refers to the representation of EoL products, mainly extracted from the original 

CAD model and adjusted by manual work to represent the actual product condition. In 1984, Bourjault was 

one of the first to investigate DSP modeling by using human-machine precedence relationships to create an 

assembly tree, or liaison graph [24]. This work was further extended by De Fazio and Whitney in 1987, who 

applied it to generate assembly sequences by defining connective states with binary variables [25]. Usually, 

the mainstream disassembly modeling methods include the graph-based method, matrix-based method, Petri 

net method, and other methods, among which the matrix and graph representations are the most popular 

mathematical representations adopted in DSP. 

The disassembly sequence and constraints of a product can be expressed in a graph, which consists of 

nodes and edges [26]. Usually, a node represents a component, while the edges connecting the nodes represent 

the relationships between different components. Based on the graph, a disassembly sequence can be determined 

to describe the precedence relationships among the components in the product. Typical graph representations 

include the disassembly tree [27], disassembly network graph [28-30], AND/OR graph [31], transformed 

AND/OR graph [32], state representation-based disassembly graph [33], disassembly constraint graph [34], 

task precedence diagram [35], and directed flow disassembly network [36]. The disassembly tree starts from 

the root node to the branch nodes, which indicates the original EoL product and subassemblies or parts of the 

product, respectively. The disassembly network graph can be three-element, four-element, or five-element. The 

AND/OR graph can be deduced from the interference matrix. The transformed AND/OR graph uses two types 

of nodes, artificial nodes and normal nodes, to describe disassembly components and operations. The state 

representation-based disassembly graph describes the structure of the EoL product at several disassembly levels 

or disassembly stages. The disassembly constraint graph uses lines to stand for the disassembly operations and 

nodes representing components. The task precedence diagram is essentially the immediate preceded matrix [37] 
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in the form of graphs. The directed flow disassembly network starts from one node and ends in another node, 

i.e., from the assembled product and ends at the complete disassembly of all parts. 

The graph representations and component precedence relationships are relatively intuitive and easy to 

understand. However, when the number of components of a complex product is vast, the relationship diagram 

is prone to a combinatorial explosion. In addition, to facilitate computer processing, graph-based descriptions 

have to be converted to matrix-based representations. Matrix-based methods employ multiple matrices to 

describe the disassembly precedence relationships between different parts. The interference matrix is the most 

commonly used matrix representing the interference of any two components in the product [38]. Dini and 

Santochi [39] described a procedure for the assembly sequences of a product based on 3 matrices: the 

interference matrix, the contact matrix, and the connection matrix. To deal with the dynamic changes of the 

actual situation, the dynamic disassembly precedence matrix was proposed [40]. The immediate preceded 

matrix focuses on the disassembly sequence wherein the components are disassembled rather than interference 

[37]. The hybrid disassembly matrix based on both topological disassemblability and tool accessibility includes 

connectivity matrix, topological disassemblability matrix, and rating matrix of disassemblability level, 

dedicated to forming an effective and optimized disassembly sequence for selective-disassembly [41]. Luo et 

al. introduced an efficient method based on matrix representation for selective disassembly planning for 

product maintenance and recycling to reduce the product operation time and cost [42]. To deal with uncertain 

interference, Laili et al. created an interference probability matrix to represent the uncertainty in interference 

conditions [9]. Furthermore, there also exist other matrix-based methods [43], such as disassembly transition 

matrix, enhanced support matrix [44], and so on. 

Another typical expression for disassembly is Petri net method. It can represent the detailed geometrical 

and topological information on the components of the EoL product. A simplified representation of the 

disassembly Petri net includes places, transitions, and arcs, respectively, which represent the sets of EoL 

products, disassembly operators, and disassembly routes [45]. To enrich the description of the disassembly 

structure, more elements can be added to the simplified disassembly Petri net to form new ones, such as five-

tuple disassembly Petri net [46] and eight-tuple disassembly Petri net [47]. Tang et al. [48] proposed a 

workstation Petri net and product Petri net method for its hierarchical and modular modeling to derive the 

disassembly path with the maximal end-of-life value. Grochowski and Tang [49] proposed a disassembly Petri 

net combined with a hybrid Bayesian network to automatically decide the optimal disassembly action without 

the input of a human operator. Kuo [50] proposed a Petri net-based analysis approach to deal with the 

disassembly and recycling problems in EOL Electrical and Electronic Equipment, finding the optimal tradeoff 

between the cost and environmental effectiveness of the disassembly processes. Hsu [51] proposed a fuzzy 

knowledge-based disassembly process planning system for disassembly process planning based on a novel 

high-level Petri net, termed fuzzy attributed and timed predicate/transition net. 

In addition to the above mainstream methods, other methods have also been studied [19,52-54]. In general, 

these methods have both advantages and disadvantages. Graphics provide an intuitive way to describe the 

priority relationships between parts of an EoL product. Petri nets give detailed geometric and topological 

information about EoL product components. However, as the number of product components increases, both 
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methods are prone to combinatorial explosions. The matrix-based method is more conducive to computer 

processing, but because the relationship among all components needs to be recorded, it is easy to lead to data 

redundancy. In addition, since the condition of EoL products changes with time, how to express this uncertainty 

is a more challenging problem. 

2.2 Methods of disassembly sequence planing and re-planning 

The goal of the DSP is to find the optimal disassembly sequence under given objectives. The disassembly 

objectives consist of several categories, namely disassembly time, disassembly cost, economic value, and 

environmental index [55]. The disassembly time can be divided into the time for component removing, 

direction changing, tool changing, and tool traveling among different points. The disassembly cost includes 

tools, energy, labor, etc. The economic value refers to the profitability of the disassembly operation, and 

environmental index represents the impact on the environment. 

In order to find the optimal sequence efficiently, many optimization algorithms are employed. In literature 

[6], the main methods are categorized as the nature inspired heuristic algorithms (NIHA), linear programming 

methods (LPM), rule-based methods (RBM), stochastic simulation techniques (SSI) and so on. Ren et al. [10] 

proposed a genetic algorithm based approach to solve the asynchronous parallel DSP problem. Han et al. [52] 

proposed an improved LPM to solve the selective disassembly sequencing under the sequential disassembly 

environment for the objective of minimizing the total disassembly cost. Tian et al. [56] Employed Monte Carlo 

simulation to obtain the optimal disassembly sequence with random removal time and different removal labor 

cost. In addition to using one optimization algorithm independently, recent research prefers to design hybrid 

methods to handle complex situations. Smith and Chen [57] combined RBM and genetic algorithm to narrow 

the search space and find the optimal disassembly sequence, thus reducing the search time. 

However, the actual condition of an EoL product is often different from the initial condition, to obtain 

automatic disassembly, the robot must be able to make quick decisions against these uncertainties. Therefore, 

dynamic disassembly sequence re-planning methods is essential when one disassembly operation of the 

preliminary plan has failed. In the literature [58], the authors described the uncertainty-related difficulties in 

DSP, presenting a framework for dealing with uncertainty in DSP implementation and demonstrating the 

method by a simple example. Zussman et al. [59] proposed the use of a Petri net based pre-ordered transition 

list to adjust the disassembly in case of a failure. However, the ranking sorted used for online decision making 

may not be available. Further, the next transition may also fail if the sorted values and component relationships 

are not updated. ElSayed et al. [60] proposed an online decision making process using GA to generate an 

automated robot disassembly plan. However, the method lacks a re-planning strategy to quickly respond to 

disassembly failures. Laili et al. [1] proposed a robotic disassembly re-planning method combining a two-

pointer detection strategy and a super-fast bees algorithm to identify detachable elements. This method can 

enable a robot to adapt for re-planning very fast in the presence of task failures. However, as the population 

size and number of iterations increase, the efficiency of the heuristic algorithm also decreases. The existing 

literature indicates that there are limited studies on robotic disassembly sequence re-planning and this work is 

a future research trend considering the uncertainty of the actual DSP problems [6].  
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3. Fuzzy mathematical representation of physical assemblies 

In our previous research [61], we demonstrated a mathematical representation of an assembly through 

three matrices: a contact matrix, a space interference matrix, and a relation matrix. The space interference 

matrix indicates the existence or absence interference between components along different directions. The 

contact matrix is similar to space interference matrix but focuses on contact relationship. The relation matrix 

reveals the general contact status of components considering all directions. 

However, binary matrices cannot describe products under uncertain interference conditions. Although Lai 

Li et al. [9] proposed an interference probability matrix as a new mathematical representation that uses 

probability to indicate uncertainty in the interference, the multi-threshold planning scheme uses the same 

threshold for all components, ignoring the variability among components. To solve this problem, we propose 

the use of two fuzzy dynamic matrices in combination with a contact matrix to define an assembly in 3D space. 

To illustrate the proposed method more clearly, a simple product in 2D space, shown in Figure 1, will be used 

as an example. 

 

Figure 1. An example Product A (Wang et al. 2021 [21]). 

The contact matrix defines the contact relationship among components in 4 or 6 directions. As the product 

in Fig. 1 has 9 components and 4 removal directions (X+, X-, Y+, Y-), a 9x36 matrix is populated with 1’s for 

contact (in the direction of motion, relative to another part) and 0’s for non-contact. The relationship matrix is 

a compression of the contact matrix that focuses on interference between components rather than directional 

interference, which functions like an OR gate, outputting a value of 1 if the component shares contact with 

another part in any given direction. The relationship between these two matrices can be seen from Equations 1 

and 2. 
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where C is the contact matrix (shown in Table 2A), 
C2

C1xC + is a binary number indicating whether component 

C2 impedes component C1 along X+ direction, R is the relation matrix (shown in Table 2D), and
C2

C1R  indicates 

whether component C2 impedes component C1in any directions. 

In this study, two new non-binary matrices are developed, one a mirror of the other, initially based on the 

fuzzification of Wang et al. s’ space interference matrix [61, 62]. The feasibility matrix provides a value for 

each component direction of movement relative to each other. Scoring from 0 (completely free to move) to 1 

(direct contact/impossible). The confidence matrix evaluates “How guaranteed is this move?” from 0 

(absolutely confident) to 1 (very uncertain).  

Table 1 indicates the a scoring system that has been used in this research. These initial conditions can 

influence the performance of DSP, and have been assumed as follows: Perpendicular interference, i.e., Pulling 

a component directly away from another, has the lowest feasibility and confidence scores, 0.05 and 0.01 

respectively. Theoretically, this move is most likely to succeed for two contacting components, even though 

rust and temperature-induced adhesion remain a possibility. Parallel removal is considered slightly less feasible 

(0.1) and more uncertain (0.05) due to increased surface friction and prolonged contact time during removal. 

Similarly, threads are attributed 0.2 feasibility and 0.1 confidence, respectively. An impossible move scores 1 

feasibility and 0 confidence as we can be sure that two physical objects have obvious spatial interference. 

Finally, remote interference, which refers to a future contact in a given direction, is considered somewhat 

feasible (0.3) but very uncertain (0.1). It is important to remember that although counter-intuitive, scoring low 

in both feasibility and confidence indicates a high probability of removal. 

It is worth mentioning that 1) the scores provided are indicative, and can be changed to the user’s 

preferences; and 2) they are initial parameters and will be adjusted automatically as DSP cases increase. 

Table 1. Feasibility & Confidence scoring metric 

Removal Relationship Contact Feasibility Confidence 

Free to move 0 0 0 

Thread 0 0.2 0.1 

Perpendicular 0 0.05 0.01 

Parrallel 0 0.1 0.05 

Remote 0 0.3 0.1 

Direct/Impossible 1 1 0 

Using Example 1 (Fig.1), the feasibility score for C1 in the X+ direction can be calculated as the sum of 

C1’s feasibility when moved in the X+ direction relative to other components. Equation (2) indicates this 
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compression: 
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where Fsource is the uncompressed feasibility matrix (shown in Table 2B), 
C2

C1xF +  represents the feasibility 

interference between C1 and C2 when moving C1 along the X+ direction, and +1xFC is the feasibility score 

moving of C1 along the X+ direction at a given moment. 

The same summation method is used to compress the confidence matrix. The full uncompressed and more 

digestible compressed matrices can be seen below in Table 2(A-F).  

Table 2(A-F). Uncompressed C, F & U, and corresponding compressed R, F & U matrices 

 

 

It is worth noting that the relation matrix functions like an OR gate that focuses on interference between 

C1 C2 C3 C4 C5 F1 F2 F3 F4
X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y-

C1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
C2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
C5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
F1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F2 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C1 C2 C3 C4 C5 F1 F2 F3 F4
X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y-

C1 0 0 0 0 0.3 0.3 0.05 1 0.3 0.3 0 0.3 0.3 0.3 0 0.3 0.1 0.1 0.05 1 1 1 1 1 0.3 0.3 0 0.3 0.3 0.3 0 0.3 1 1 1 1
C2 0.3 0.3 1 0.05 0 0 0 0 0 0 0 0.3 0 0 0 0.3 0 0 0 0.3 1 1 1 1 0 0 0 0.3 0 0 0 0.3 0 0 0 0
C3 0.3 0.3 0.3 0 0 0 0.3 0 0 0 0 0 1 1 0.1 1 0 0 0 0.3 0 0 0.3 0 1 1 1 1 0 0 0 0.3 0.3 0 0 0
C4 0.3 0.3 0.3 0 0 0 0.3 0 1 1 1 0.2 0 0 0 0 0.1 0.1 0.05 1 0 0 0.3 0 0 0.3 0 0 1 1 1 1 0.3 0 0 0
C5 0.1 0.1 1 0.05 0 0 0.3 0 0 0 0.3 0 0.1 0.1 1 0.05 0 0 0 0 0 0 0.3 0 1 1 1 1 1 1 1 1 1 1 1 1
F1 1 1 1 0.2 1 1 1 0.2 0 0 0 0.3 0 0 0 0.3 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0
F2 0.3 0.3 0.3 0 0 0 0.3 0 1 1 0.2 1 0.3 0 0 0 1 1 0.2 1 0 0 0 0 0 0 0 0 0.3 0 0 0 0.3 0 0 0
F3 0.3 0.3 0.3 0 0 0 0.3 0 0 0 0.3 0 1 1 1 0.2 1 1 1 0.2 0 0 0.3 0 0 0.3 0 0 0 0 0 0 0.3 0 0 0
F4 1 1 1 0.2 0 0 0 0 0 0.3 0 0 0 0.3 0 0 1 1 1 0.2 0 0 0 0 0 0.3 0 0 0 0.3 0 0 0 0 0 0

C1 C2 C3 C4 C5 F1 F2 F3 F4
X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y- X+ X- Y+ Y-

C1 0 0 0 0 0.1 0.1 0.01 0 0.1 0.1 0 0.1 0.1 0.1 0 0.1 0.05 0.05 0.01 0 0 0 0 0 0.1 0.1 0 0.1 0.1 0.1 0 0.1 0 0 0 0
C2 0.1 0.1 0 0.01 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0 0
C3 0.1 0.1 0.1 0 0 0 0.1 0 0 0 0 0 0 0 0.05 0 0 0 0 0.1 0 0 0.1 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0
C4 0.1 0.1 0.1 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0 0.05 0.05 0.01 0 0 0 0.1 0 0 0.1 0 0 0 0 0 0 0.1 0 0 0
C5 0.05 0.05 0 0.01 0 0 0.1 0 0 0 0.1 0 0.05 0.05 0 0.01 0 0 0 0

A) Contact Matrix

B) Feasibility Matrix

C) Confidence Matrix

0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0
F1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0
F2 0.1 0.1 0.1 0 0 0 0.1 0 0 0 0.1 0 0.1 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0
F3 0.1 0.1 0.1 0 0 0 0.1 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0.1 0 0 0.1 0 0 0.1 0 0 0 0 0 0 0.1 0 0 0
F4 0 0 0 0.1 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0 0 0 0.1 0 0 0 0 0 0.1 0 0 0 0.1 0 0 0 0 0 0

D) Relation Matrix E) Compressed Feasibility Matrix F) Compressed Confidence Matrix

C1 C2 C3 C4 C5 F1 F2 F3 F4 X+ X- Y+ Y- X+ X- Y+ Y-

C1 0 1 0 0 1 1 0 0 1 C1 3.6 3.6 2.1 5.2 C1 0.55 0.55 0.02 0.4

C2 1 0 0 0 0 1 0 0 0 C2 1.3 1.3 2 2.55 C2 0.1 0.1 0 0.51

C3 0 0 0 1 0 0 1 0 0 C3 2.6 2.3 2 2.6 C3 0.2 0.1 0.35 0.2

C4 0 0 1 0 1 0 0 1 0 C4 2.7 2.7 2.95 2.2 C4 0.25 0.25 0.31 0.1

C5 1 0 0 1 0 0 1 1 1 C5 3.2 3.2 5.9 3.1 C5 0.1 0.1 0.3 0.02

F1 1 1 0 0 0 0 0 0 0 F1 2 2 2 1.6 F1 0 0 0 0.6

F2 0 0 1 0 1 0 0 0 0 F2 3.2 2.3 1 2 F2 0.4 0.1 0.4 0

F3 0 0 0 1 1 0 0 0 0 F3 2.6 2.6 3.2 0.4 F3 0.2 0.2 0.4 0.2

F4 1 0 0 0 1 0 0 0 0 F4 2 3.2 2 0.4 F4 0 0.4 0 0.2
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components rather than directional interference, while the feasibility and confidence matrices summarize the 

directional relationships of the components. The contact matrix can be obtained from a CAD model. The initial 

scores of feasibility and confidence are subjectively assigned and are continuously updated and infinitely 

approximated to the actual condition of the product as DSP cases increase. 

4. Dual-loop self-evolving framework 

The intention of the FDSP is to provide a self-evolving capability for a DSP system to learn from historical 

passes and failures. Breaking this task down into two parts: 1) as a product is being disassembled, the feasibility 

and confidence matrices are continuously updated online; and 2) as more products are disassembled, the initial 

values of the feasibility and confidence matrices are renewed to reflect reality more accurately.  

To address the two components above, we designed a dual-loop self-evolving framework, which is built 

on the foundation of our work on disassembly re-planning [1]. This framework as given in Figure 3 adopts 

several techniques, including layered candidate sets, Monte Carlo forward propagation, penalty value matrices, 

etc.  

4.1 Layered candidate set 

In each iteration, a removable component is detected and removed. This iterative process can be 

represented as multiple layers, that is, the removable components detected in an iteration form a layer. All the 

layers formulate a layered candidate set, which can be represented by Equation (5) . 



 nnb1bbb1bb1b111

H21

d,E,dEd,E,dEd,E,d E

SS SS 

1H-1H-1b22111




++ ++=

=
     （5） 

where Si represents the ith layer; Ei, i ∈ [1, n] represents a component; di stands for removable direction. A 

boundary list b = {b1, b2,…, bH −1} denotes the endpoint of each layer. A layer Si, i∈ [1, H − 1] contains bi+1 − 

bi + 1 components. As explained in [9], the components in a layer do not interfere with each other, so their 

disassembly orders are interchangeable, while different layers cannot be swappable.  

Based on the layered candidate set, the algorithm will start the disassembly from the first layer in the 

layered order, prioritizing the search for disassembled components within the same layer and assigning 

different priorities to different layers according to the component space constraints. Such a layered structure 

can prevent incorrect disassembly sequences and promote the convergence of the feasibility and confidence 

matrices. 

4.2 Monte Carlo propagation of uncertainty 

As defined in Section 3, two new non-binary fuzzy matrices are designed to represent the uncertainty of 

the interference. The feasibility matrix assesses the feasibility of a disassembly operation, while the confidence 

matrix assesses the credibility of the feasibility matrix. Only these two matrices work together to score a 

disassembly operation. Scoring low in both feasibility and confidence values indicates a high probability of 

removal, so they should be summed to form a composite evaluation metric. Considering that the feasibility and 

confidence values follow different distribution functions, the Monte Carlo simulation is introduced to deal with 
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the correlation between the distributions of various uncertain and random variables and the correlation between 

the input factors for the stochastic DSP model [63]. The Monte Carlo simulation assigns random values to each 

uncertain variable and then generates the output results. 

Therefore, we replace the direct summation of feasibility and confidence with the Equation (6), where the 

last item, i.e., two times the standard deviation is to simulate a 95% confidence interval of the normal 

distribution. The decision on which component to remove depends on the Summation matrix. This matrix is 

the sum of the feasibility matrix, the mean of a significant times the normal distribution of the confidence 

matrix, and two times the standard deviation. This calculation applies a tolerance to the initial feasibility scores. 
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where S is the summation matrix and +C1XF , +C1Xμ
 
&

 +C1Xδ represent the directional feasibility, the mean 

of the normal distribution of directional confidence, and the standard deviation, respectively. This summation 

is conducted before each removal decision, and as the confidence matrix is updated every iteration, this 

uncertainty propagation can prove decisive. 

4.3 Penalty matrix  

It is reasonable to assume that upon failure, the uncertainty of a component will increase and become less 

feasible, as well as for its contacting components. In this case, variable penalties are applied to all contacting 

components with uncertainty (or confidence values). The coordinates of these components are taken from the 

Relation matrix. 

The penalties are applied in the form of a penalty matrix determined as the product of the uncompressed 

confidence value of the contacting parts and a penalty cost. The confidence values can be considered as weights 

in a neural network - the dynamic properties of which will be described in section 4.5. This penalty matrix is 

then applied to the uncompressed feasibility matrix before the next iteration of compression, summation, and 

removal decision. 

Taking product A as an example. When F1 and F4 are removed, assuming that C1 is chosen for removal 

in the Y+ direction but fails, then C2 and C5 will also be punished as C1, C2 and C5 are the only contacting 

components. It is important to note that relevant confidence matrices will undergo significant change 

throughout the program, thus determining the weight of these penalties. 

4.4 Training data  

Since the conditions of EOL products are usually different, a stochastic DSP model should be established 

to introduce uncertainties in various variables, and the resulting DSP problem is closer to the actual situation. 

For the purpose of this experiment, the training data is managed as a set of probability ranges or Chance of 

Failure (CoF). This will allow us to verify if the output is coherent with the input: 

①The question is whether the steady-state feasibility and confidence matrices are rational after a 
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significant number of cycles. 

②Preparing the data in this manner allows easy adaptation for testing, rather than creating a finite list of 

instructions for each experiment. 

③Using stochastic data will generate a degree of noise that is to be expected in situ. 

These CoF ranges will be illustrated in the upcoming examples.  

4.5 Dynamic uncertainty 

The crucial element in adapting to uncertainties is how confidence is manipulated at each decision. The 

following pass/fail configuration will determine the stability and plasticity of our system. In this study, we plan 

to iterate thousands of times over, and that being the case, a relatively stable manipulation mechanism has been 

designed. Figure 2 presents the percentage change in confidence for both passes and failures. 

 

Figure 2. The effect of Passes and Failures on confidence values (U) 

When a disassembly operation fails, the confidence values will increase upon failures due to the penalty. 

Therefore, this factor should be a number that is always greater than 1. Components with low confidence will 

be severely penalized if they fail, i.e., if a component we believe to be deterministically removable fails, it is 

severely punished. This means that if a part fails consecutively, significant penalties will be accumulated based 

on the increased uncertainty. This exponential curve provides the system with some agility. Conversely, if a 

component that is believed to be uncertain fails, the confidence values will increase almost linearly. The 

component was expected to fail, and it did, so the initial prediction was relatively appropriate. In view of the 

above reasons, a factor of e(0.01/U) is used to increase the confidence value upon failure. Here, U+1 denotes the 

next iteration’s confidence value. 

U+1 = U * e0.01/U                                  （7）  

As we expect to witness passes several times more often than failures, a passing component receives a 

statutory 10% reduction in confidence value. Confidence values will rarely fall below 0.01, except for 

absolutely certain parts, which remain at confidence 0 throughout the program. With this stable system in place, 

we can expect most confidence values to remain in the range of 0.01-0.1. 
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4.6 Dual-loop self-evolving framework 

 

Figure 3. The algorithm flow chart 

As shown in Figure 3, the dual-loop refers to the inner loop and the outer loop. In the inner loop (Step 2 

to Step 6), the values of feasibility and confidence will be updated online according to historical passes and 

failures. When a complete disassembly is achieved, the relevant data generated by this disassembly will be 

obtained and then used as the initial conditions for the next disassembly. In the outer loop (Step 7 to Step 9), 

the initial conditions are continuously updated through multiple successful disassemblies, and the finally 

obtained feasibility and confidence matrices are closer to the actual situation of the product. The self-evolving 

is reflected in updating the feasibility and confidence matrices. The following are the specific implementation 

steps of this method. 

Steps 1-4: The compressed Feasibility, Confidence, and Relation matrices are generated. A layered candidate 

set will be generated before determining the disassembly components and directions. Based on the generated 

layered candidate set, a component is identified and an attempt is made to remove it.  

Step 5 - Failure Response: Upon failure, parts contacting the identified component receive a variable feasibility 

penalty based on the uncompressed confidence matrix and a fixed value, penalty cost. The confidence values 

of the components are then increased by a factor e(0.01/U) – increasing the uncertainty. Notably, if the penalty is 

less than the difference that prevents the component from re-suggesting, a recursion stopper matrix is generated 

and stored to provide a temporary penalty for the next iteration. 

Step 6 - Pass Response: Upon successful removal of a given component, the corresponding confidence value 
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is decreased by 10%. The component feasibility and confidence data are stripped from the source data and 

stored in the corresponding Aggregate matrices. Likewise, the component feasibility, confidence and their 

product at that moment are kept as scores for later evaluation of sequences. 

Step 7 – Cycle Data: The cycle completes and the algorithm outputs pass/failure data as well as the achieved 

DSPs. Total scores are calculated for the completed sequences. 

Step 8 – System Data: The system outputs mean aggregate feasibility and confidence. The steady-state matrices 

display the effect of all past cycles. A dictionary of sequences is created to find the mode DSP. The scores are 

then used to locate the most feasible, most confident, and best overall DSP. 

Step 9 – Update Initial Conditions: The Algorithm runs until the number of cycles equals the run_size criterion. 

Otherwise, the initial confidence is set equal to mean aggregate confidence. The previous cycle penalties are 

applied to the stored feasibility matrix and a balancer is subtracted to allow for iterative estimation, preventing 

the new feasibility matrix from converging. The new feasibility matrix is then stored and prepared for the next 

cycle. 

To reflect the self-evolving process of the algorithm more intuitively, Product A is selected to demonstrate 

the evolution of the confidence values with different failure probabilities. Figure 4 shows the variation of the 

confidence values of component C1 along the X- direction with the cycles, and the results in Figures 4(a), 4(b), 

and 4(c) correspond to the CoFs of 0, 5%-15%, and 60%-80%, respectively. It can be seen that when the 

planned operation succeeds, the confidence value of the component along the corresponding direction will 

keep decreasing with the cycles. When the CoF is low, the overall trend decreases due to the limited number 

of failures, although the confidence values will increase upon failure due to the penalty. Conversely, when the 

CoF is high, the overall trend of the confidence values increases because of the predominance of punishment 

due to the excessive number of failures. Figure 5 shows the trend of the confidence values of component F1 

along the Y-direction with the cycles, which followings the same pattern as the results in Figure 4. 

 

       Figure 4(a). CoF is 0         Figure 4(b). CoF is 5%-15%       Figure 4(c). CoF is 60%-80% 

Figure 4. The variation of the confidence value of component C1 along the X- direction under different CoFs 
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  Figure 5(a). CoF is 0         Figure 5(b). CoF is 5%-15%       Figure 5(c). CoF is 60%-80% 

Figure 5. The variation of the confidence value of component F1 along the X- direction under different CoFs 

5. Iterative estimation and ranking systems  

There are two feedback loops within the program. The first determines passes and failures, defining each 

sequence while creating penalties and updating the confidence matrix. The second extrapolates the final data 

and feeds it back into the first loop through both feasibility and confidence matrices. This section will describe 

this final data, how it is calculated and fed back into the system. 

5.1 Steady-state Feasibility/Confidence  

After simulating a significant number of cycles, steady-state F and U (feasibility & confidence) matrices 

are acquired. This is achieved by storing the removed component data in Aggregate matrices, then calculating 

the average values. Thus, two new matrices will more accurately depict the product conditions at the end of 

the program. Table 3(A-C) present the steady-state outputs for example 1 under Training data 1a. Table 3(C) 

uses color shades to indicate the level of confidence—the lighter the color, the lower the confidence values, 

and vice versa. Initial F and U matrices are available for comparison in Table 2. 

Table 3(A-C). Example 1a A) Training Data and B&C) Steady-state Matrices 

 

Once a cycle has finished, the data is fed back into the system in two ways:  

①The new confidence is set equal to mean aggregate confidence, resulting in an almost fixed U matrix 

formed over time (Equation 8). Interestingly, if the confidence matrix is given the freedom to maintain its 

values from one cycle to the next, an extremely dynamic system would be created for real-time, in-situ use. 

Run_size

egate_UTotal_aggr
Unew =

                                

（8） 

where Unew is the new confidence matrix for current cycle, Total_aggregate_U represents the sum of all 

Aggregate Confidence matrices and Run_size indicates the number of cycles completed. 

②The new ceasibility matrix is updated to accommodate the penalties of the last iteration. Then a balancer 

matrix, equal to the sum of these penalties, is subtracted. This prevents the matrix from converging. Please note 

that both the penalties and the balancer matrix will only affect the directional feasibility of components with 

contact interference (parallel, perpendicular, or thread interference). The method is explained in Equation 7. 

A) Training Data 1a B) Compressed mean F 1a C) Compressed mean U 1a

CoF X+ X- Y+ Y- X+ X- Y+ Y-

C1 8 - 12% C1 4.70 4.70 2.45 5.20 C1 0.50 0.50 0.03 0.40 

C2 8 - 12% C2 1.98 1.98 2.00 2.71 C2 0.06 0.06 0.00 0.51 

C3 8 - 12% C3 2.60 2.30 2.16 2.60 C3 0.20 0.10 0.33 0.20 

C4 8 - 12% C4 2.97 2.97 3.05 2.51 C4 0.23 0.23 0.31 0.06 

C5 8 - 12% C5 3.90 3.90 5.90 3.39 C5 0.07 0.07 0.30 0.03 

F1 15 - 20% F1 2.00 2.00 2.00 2.09 F1 0.00 0.00 0.00 0.52 

F2 8 - 12% F2 3.20 2.30 2.29 2.00 F2 0.40 0.10 0.33 0.00 

F3 8 - 12% F3 2.60 2.60 3.20 2.19 F3 0.20 0.20 0.40 0.13 

F4 8 - 12% F4 2.00 3.20 2.00 2.08 F4 0.00 0.40 0.00 0.14 
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where Nu-contacts is the number of contacting components with parallel, perpendicular or thread interference. 

This is multiplied by a binary matrix representing the location of contacts. The Paggregate matrix is set to zero 

after this calculation, and Fnew becomes equal to Fstore for next cycles use. 

5.2 Recommended disassembly sequence plans 

As shown in Figure 3, before performing the iterative operation, it is necessary to generate a layered 

candidate set based on space constraints. The component with less interference has a higher priority and a more 

advanced level. Then, after simulating a significant number of cycles, the sequence obtained can be determined 

as the systems overall DSP recommendation.  

Continuing with example 1a, its layered candidate set contains 3 layers, denoted as {F1, F2, F3, F4| C1, C2, 

C3, C5| C4}.Then the program runs for 100 cycles to obtain the steady-state feasibility and confidence matrices. 

Given F1’s failure rate and relationships with C1 and C2, the proposed DSP method effectively adapt to this 

uncertainty by disassembling the bottom half of the product first. Furthermore, the direction of disassembly is 

predominantly in the Y-, which is a reasonable suggestion considering the internal elements are blocked by C1. 

Table 4 lists three different DSPs in order of cycles, illustrating that the FDSP offers the capability for DSP to 

adapt to failures and self-evolve online. For Example 1a, the 73rd cycle received the recommended disassembly 

sequence.  
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Table 4. Three different DSPs in 100-cycle run of Example 1a 

Cycle 

No. 

Cycle = 100, penalty cost = 0.1 

1 
F4 F3 F2 F1 C5 C1 C2 C3 C4 

Y- Y- Y+ Y- Y- Y+ Y+ Y+ Free 

29 
F4 F3 F2 C5 F1 C1 C4 C3 C2 

Y- Y- Y+ Y- Y- Y+ Y- Y- Y- 

73 
F3 F4 F2 C5 C4 C3 F1 C1 C2 

Y- Y- Y+ Y- Y- Y- Y- Y+ Y- 

6. Experiments and discussion 

To validate the performance of the proposed re-planning, dynamic uncertainty approach, example 1 is 

revisited with new training data, and 2 new products (Product B and Product C) varying in structure and 

complexity are considered in six directions (X+, X-, Y+, Y-, Z+, Z-) for performance validation. The 

component relationships of these two new products cover the removal relationships listed in Table 1. Therefore, 

they can be used as typical cases to verify the performance of the proposed method. 

First, the CoFs of each product component are set in a range rather than a fixed value to simulate the actual 

situation. Second, the proposed fuzzification DSP algorithm (FDSPA) is applied to provide the re-planning 

solutions for the three products in both solution quality and time consumption. FDSPA will be compared with 

our previous research [1] in this paper. According to section 5, when the value of U converges, it is considered 

that the recommended disassembly sequence is the optimal sequence at this time, and the feasibility and 

superiority of this sequence will be evaluated. The time consumption directly determines whether the robot can 

cope with disassembly failures online in real-time, which is an essential indicator of the quality of the re-

planning algorithms.  

All experiments are implemented by Python and tested in a Windows 10 environment. The hardware 

configuration is 3.6-GHz Intel Core i7-7700 CPU with 32 GB of 2,400-MHz DDR4 RAM. 

 

Figure 6(a). Product B        Figure 6(b). Product C 

Figure 6. Two typical products applied to validate the method proposed in this study (Laili et al. 2019 [23]) 
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6.1 Performance analysis of the solution quality 

6.1.1 Example 1 

To assess the plasticity of the method, the training data of Example 1 (Figure 1) is altered to increase the 

frequency of failures within the bottom half, i.e., the CoFs of F2 and F3 have been significantly increased. 

When F and U reach a steady state, the sequence generated demonstrates that the system has successfully 

adapted to the changes in product condition by dismantling the top half first. The overall results can be seen in 

Table 5. It is important to note that no run is the same, individual cycles can vary greatly due to noise in the 

training data, and in many cases the program can be creative.  

Table 5(A-C). Example 1b B&C) Feasibility & Confidence matrices under A) stated training conditions 

 

Table 6. The recommended DSP for Example 1b 

Component F4 F1 C2 C1 F3 F2 C3 C5 C4 

Direction Y- Y- Y- Y+ Y- Y+ Y+ Y- Free 

Hence, we can more or less conclude that a new and more efficient DSP was constructed based on the 

knowledge of past failures. Interpreting the steady-state confidence matrix can be difficult because of remote 

interference. The enormous uncertainty adds aesthetic noise to the matrix, as only contacting relations receive 

a penalty upon failure. Thus, remote interference has a rare effect on penalties (A few instances where 

components share contact and remote interference, where remote is the most significant interference.), yet it is 

still vital to the initial conditions.  

6.1.2 Example 2 

Now let us consider a 3D example in 6 directions. For Product B in Figure 6(a), when set up with a 

relatively balanced training conditions, i.e., CoF ranges between 8-20% for each component. The layered 

candidate set and the recommended disassembly sequence are shown in Table 7. 

  

A) Training Data 1b B) Compressed mean F 1b C) Compressed mean U 1b

CoF X+ X- Y+ Y- X+ X- Y+ Y-

C1 8 - 12% C1 5.98 5.98 2.95 5.20 C1 0.47 0.47 0.03 0.40 

C2 8 - 12% C2 2.91 2.91 2.00 3.02 C2 0.05 0.05 0.00 0.51 

C3 8 - 12% C3 2.60 2.30 2.89 2.60 C3 0.20 0.10 0.33 0.20 

C4 8 - 12% C4 3.44 3.44 3.31 3.79 C4 0.23 0.23 0.31 0.05 

C5 8 - 12% C5 4.71 4.71 5.90 3.83 C5 0.05 0.05 0.30 0.03 

F1 8 - 12% F1 2.00 2.00 2.00 4.19 F1 0.00 0.00 0.00 0.49 

F2 12 - 20% F2 3.20 2.30 6.51 2.00 F2 0.40 0.10 0.30 0.00 

F3 12 - 20% F3 2.60 2.60 3.20 5.59 F3 0.20 0.20 0.40 0.10 

F4 8 - 12% F4 2.00 3.20 2.00 3.46 F4 0.00 0.40 0.00 0.09 
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Table 7. Results of Example 2a 

 

D) The layered candidate set for Example 2a 

{A1, A2, E1, E2, H1 | B, F, H2 | C1, H3 | C2, H4 | D, H5 | G } 

E) The recommended DSP for Example 2a 

Component E1 E2 H1 A1 A2 F B H2 C1 H3 C2 H4 D H5 G 

Direction Y+ Y- Z+ Z- Z- Y- Z- Z+ Z- Z+ Z- Z+ Z- Z+ Free 

This is a reasonable and valid DSP. One critique would be that adjacent components could be removed in 

a more sensible order, but this is understandable because the algorithm focuses on the effects of space 

constraints and CoFs on the disassembly sequence rather than considering the impact of disassembly time, 

disassembly tools, etc. Therefore, the program is removing them in order of how guaranteed it believes their 

removal to be. 

So once again, to validate the performance and adaptability of the algorithm, the CoFs of E1, E2, and F 

are raised to 2 times as often. The result is shown in Table 8. 

Table 8. Results of Example 2b 

 

D) The recommended DSP for Example 2b 

Component H1 A1 A2 E2 E1 B H2 F C1 H3 C2 H4 D H5 G 

 Direction Z+ Z- Z- Y- Y+ Z- Z+ Y+ Z- Z+ Z- Z+ Z- Z+ Free 

CoF X+ X- Y+ Y- Z+ Z- X+ X- Y+ Y- Z+ Z-

A1 8 - 20% A1 2.00 2.90 2.00 2.00 2.30 1.05 A1 0.00 0.30 0.00 0.00 0.10 0.13 

A2 8 - 20% A2 2.90 2.00 2.00 2.00 2.30 2.16 A2 0.30 0.00 0.00 0.00 0.10 0.13 

B 8 - 20% B 3.89 3.89 3.89 3.89 7.10 2.53 B 0.07 0.07 0.07 0.07 0.70 0.05 

C1 8 - 20% C1 2.32 2.32 2.02 2.02 2.78 1.43 C1 0.17 0.17 0.07 0.07 0.22 0.03 

C2 8 - 20% C2 2.26 2.26 1.96 1.96 1.99 2.17 C2 0.17 0.17 0.07 0.07 0.23 0.01 

D 8 - 20% D 5.96 5.96 6.26 6.26 6.06 6.00 D 0.07 0.07 0.17 0.17 0.55 0.00 

E1 8 - 20% E1 1.35 1.35 0.82 2.60 1.35 1.35 E1 0.03 0.03 0.08 0.20 0.03 0.03 

E2 8 - 20% E2 1.30 1.30 2.60 

A) Training Data 2a B) Compressed mean F 2a C) Compressed mean U 2a

0.72 1.30 1.30 E2 0.03 0.03 0.20 0.07 0.03 0.03 

F 8 - 20% F 2.65 2.65 2.62 2.62 2.65 3.55 F 0.07 0.07 0.14 0.14 0.07 0.37 

G 8 - 20% G 9.00 9.00 8.75 8.75 8.00 10.50 G 0.00 0.00 0.07 0.07 0.00 0.50 

H1 8 - 20% H1 1.00 1.00 1.00 1.00 0.67 5.60 H1 0.00 0.00 0.00 0.00 0.07 0.20 

H2 8 - 20% H2 1.00 1.00 1.00 1.00 2.41 4.72 H2 0.00 0.00 0.00 0.00 0.08 0.21 

H3 8 - 20% H3 1.00 1.00 1.00 1.00 3.04 3.88 H3 0.00 0.00 0.00 0.00 0.08 0.22 

H4 8 - 20% H4 1.00 1.00 1.00 1.00 4.41 2.81 H4 0.00 0.00 0.00 0.00 0.08 0.21 

H5 8 - 20% H5 1.00 1.00 1.00 1.00 4.65 1.88 H5 0.00 0.00 0.00 0.00 0.06 0.22 

CoF X+ X- Y+ Y- Z+ Z- X+ X- Y+ Y- Z+ Z-

A1 8 - 20% A1 2.00 2.90 2.00 2.00 2.30 0.63 A1 0.00 0.30 0.00 0.00 0.10 0.12 

A2 8 - 20% A2 2.90 2.00 2.00 2.00 2.30 0.64 A2 0.30 0.00 0.00 0.00 0.10 0.12 

B 8 - 20% B 3.33 3.33 3.33 3.33 7.10 2.24 B 0.07 0.07 0.07 0.07 0.70 0.04 

C1 8 - 20% C1 1.63 1.63 1.33 1.33 2.68 1.16 C1 0.17 0.17 0.07 0.07 0.21 0.03 

C2 8 - 20% C2 1.63 1.63 1.33 1.33 1.76 2.07 C2 0.17 0.17 0.07 0.07 0.23 0.01 

D 8 - 20% D 5.33 5.33 5.63 5.63 5.73 6.00 D 0.07 0.07 0.17 0.17 0.54 0.00 

E1 16 - 40% E1 1.33 1.33 0.76 2.60 1.33 1.33 E1 0.05 0.05 0.10 0.20 0.05 0.05 

E2 16 - 40% E2 1.29 1.29 2.60 

A) Training Data 2b B) Compressed mean F 2b C) Compressed mean U 2b

0.67 1.29 1.29 E2 0.05 0.05 0.20 0.10 0.05 0.05 

F 16 - 40% F 2.63 2.63 2.19 2.21 2.63 3.53 F 0.09 0.09 0.17 0.17 0.09 0.39 

G 8 - 20% G 9.00 9.00 8.51 8.51 8.00 10.50 G 0.00 0.00 0.07 0.07 0.00 0.50 

H1 8 - 20% H1 1.00 1.00 1.00 1.00 0.40 5.60 H1 0.00 0.00 0.00 0.00 0.09 0.20 

H2 8 - 20% H2 1.00 1.00 1.00 1.00 1.43 4.68 H2 0.00 0.00 0.00 0.00 0.08 0.22 

H3 8 - 20% H3 1.00 1.00 1.00 1.00 2.46 3.68 H3 0.00 0.00 0.00 0.00 0.11 0.22 

H4 8 - 20% H4 1.00 1.00 1.00 1.00 3.37 2.71 H4 0.00 0.00 0.00 0.00 0.08 0.23 

H5 8 - 20% H5 1.00 1.00 1.00 1.00 4.33 1.67 H5 0.00 0.00 0.00 0.00 0.06 0.21 
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This is a successful experiment, and the overall system adapts very well to the changes in input. Compared 

with the results of Example 2a, E1 and E2 are ranked after A1, A2, and H1, at the end of the first layer. Likewise, 

F is ranked at the very end of the second layer. 

6.1.3 Example 3 

In the last example, Product C has 22 parts, as shown in Figure 6(b). The recommended DSP is shown in 

Table 9. This would be a sensible sequence, but for B1 and B2 being removed before the top half of the 

assembly. The reason for recommending this sequence is that the algorithm considers this remote interference 

to be ignored under the condition that the initial values of feasibility and confidence are fixed, respectively. 

However, the conditions of remote interference are not exactly the same, e.g., remote interference varies with 

the geometry and size of the assembly, so further refinement is needed according to the actual situation. 

Table 9. Results of Example 3 

 

D) The layered candidate set for Example 3 

{N1, N2, N3, B4, B5, B6, B7 | W3, W4, B1, B2, B3, W6 | C1, S1, S2, C2, W1, W2, C3, C4, W5} 

E) The recommended DSP for Example 3 

Component N1 N3 N2 B4 B7 B5 B6 W3 W6 W4 B3 B1 B2 W2 W5 W1 C4 C3 C1 S2 C2 S1 

Direction Z- X- Z- Z- Z- Z- Z- Z- X- Z- X+ Z+ Z+ Z+ X+ Z+ X+ Z+ Z+ Z+ Z- Free 

The above examples demonstrate FDSPA's ability to sequence re-planning under uncertainties by 

constantly updating the actual state of the product through learning from historical knowledge and thus 

recommending valid disassembly sequences. Furthermore, for the same product, when the CoFs of its 

components are different, the system can adapt well to such changes and form new valid sequences, e.g., 

Example 1b concerning Example 1a and Example 2b with respect to Example 2a. 

CoF

10 - 15% 6.66 6.66 6.66 6.66 6.40 8.18 0.19 0.19 0.19 0.19 0.39 0.68 

10 - 15% 2.46 1.86 1.26 1.26 2.96 1.91 0.47 0.27 0.07 0.07 0.31 0.29 

10 - 15% 1.85 2.45 1.25 1.25 2.96 1.89 0.27 0.47 0.07 0.07 0.31 0.28 

10 - 15% 2.50 2.50 2.50 2.50 5.62 3.20 0.14 0.14 0.14 0.14 0.53 0.35 

10 - 15% 2.02 1.42 1.12 1.12 1.66 2.44 0.33 0.13 0.03 0.03 0.21 0.46 

10 - 15% 1.43 2.03 1.13 1.13 1.66 2.44 0.14 0.34 0.04 0.04 0.22 0.46 

10 - 15% 1.85 1.25 1.25 1.25 3.56 1.32 0.27 0.07 0.07 0.07 0.51 0.09 

10 - 15% 1.27 1.87 1.27 1.27 3.58 1.28 0.07 0.27 0.07 0.07 0.52 0.07 

10 - 15% 8.10 6.30 6.00 6.00 2.82 6.00 0.70 0.10 0.00 0.00 0.52 0.00 

10 - 15% 6.60 7.80 6.00 6.00 2.76 6.00 0.20 0.60 0.00 0.00 0.51 0.00 

10 - 15% 1.72 1.12 1.12 1.12 3.80 0.29 0.23 0.03 0.03 0.03 0.60 0.07 

10 - 15% 1.16 1.76 1.16 1.16 3.80 0.39 0.04 0.24 0.04 0.04 0.60 0.08 

10 - 15% 7.72 6.95 5.40 5.40 5.32 9.54 0.56 0.62 0.12 0.12 0.10 1.17 

10 - 15% 6.36 5.90 5.25 5.25 5.25 5.25 0.11 0.28 0.07 0.07 0.07 0.07 

10 - 15% 1.96 5.00 5.00 5.00 5.00 9.80 0.25 0.00 0.00 0.00 0.00 1.60 

10 - 15% 1.06 2.13 1.13 1.13 1.13 1.13 0.01 0.36 0.03 0.03 0.03 0.03 

10 - 15% 2.66 1.31 1.26 1.26 1.26 1.26 0.22 0.09 0.08 0.08 0.08 0.08 

10 - 15% 2.90 0.32 1.13 1.13 1.13 1.13 0.30

A) Training Data 3 B) Compressed mean F 3 C) Compressed mean U 3

 0.09 0.04 0.04 0.04 0.04 

10 - 15% 3.00 3.90 3.00 3.30 3.30 1.56 0.00 0.30 0.00 0.10 0.10 0.13 

10 - 15% 3.90 3.00 3.00 3.30 3.30 1.50 0.30 0.00 0.00 0.10 0.10 0.13 

10 - 15% 3.00 3.90 3.30 3.00 3.30 1.45 0.00 0.30 0.10 0.00 0.10 0.12 

10 - 15% 3.90 3.00 3.30 3.00 3.30 1.45 0.30 0.00 0.10 0.00 0.10 0.12 

X+ X- Y+ Y- Z+ Z- X+ X- Y+ Y- Z+ Z-

C1 C1 C1

S1 S1 S1

S2 S2 S2

C2 C2 C2

W1 W1 W1

W2 W2 W2

W3 W3 W3

W4 W4 W4

B1 B1 B1

B2 B2 B2

N1 N1 N1

N2 N2 N2

C3 C3 C3

C4 C4 C4

B3 B3 B3

W5 W5 W5

W6 W6 W6

N3 N3 N3

B4 B4 B4

B5 B5 B5

B6 B6 B6

B7 B7 B7
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6.2 Performance analysis of the time consumption 

To ensure that the robot can automatically cope with disassembly failures, the algorithm must be able to 

make quick decisions online. In our earlier work [1], the ternary bees algorithm (TBA) was proposed and the 

results showed that TBAs have an advantage over other ad-hoc meta-heuristics in terms of time consumption 

for re-planning. In this paper, we will verify the performance of FDSPA by comparing it with TBAs. 

Considering that the search time does increase significantly without much performance improvement when the 

population size of TBAs increases, TBA-3 is chosen to solve the disassembly re-planning problem [1]. Since 

each component has a chance of failure, the algorithm is run 20 times to calculate the average execution time. 

In this paper, 3 products are studied, where both Product A and Product B have 2 sets of data and Product 

C has one set of data, so there are 5 cases in total. The average execution time of the 2 algorithms on 5 

disassembly cases is shown in Table 10. The results show that the performance of the two algorithms is similar 

in terms of time efficiency. Specifically, the FDSPA is more advantageous when there are fewer parts in the 

product, while the TBA is superior when there are more components. In addition, the re-planning time using 

the FDSPA grows with the number of components in a product, which is consistent with the evolutionary 

mechanism of the algorithm, i.e., when a disassembly operation fails, both the component and its contacting 

components will receive a variable feasibility penalty. The more components are penalized, the more time is 

consumed. Therefore, the FDSPA-based re-planning time grows as the number of components included in the 

product increases. However, this trend does not continue indefinitely as there is an upper limit to the number 

of components in contact with a component due to dimensional and geometry constraints. In contrast, the 

search time of TBA is influenced more by the number of population size and iterations than the number of 

components. 

Table 10. Execution time for the 2 algorithms on 5 disassembly cases (The unit of time is millisecond) 

No. of case 1 2 3 4 5 

TBA-3 68.0811 73.6395 96.8605 102.3686 109.3639 

FDSPA 19.3631 22.1930 87.411 91.413 184.1068 

In summary, the proposed FDSPA performs well in both solution quality and time consumption. Faced 

with uncertain interference conditions of EoL products, FDSPA is able to continuously learn from historical 

operations and combines fuzzy dynamic modeling methods with self-evolutionary strategies, making the 

algorithm capable of coping with failures. The re-planning speed of the FDSPA proves to be very fast and can 

generate new sequences quickly, which ensures the possibility of online re-planning and automatic disassembly. 

7. Conclusion 

This paper proposes a disassembly sequence planning method for products with uncertain interference, 

using a fuzzy ranking scheme to evaluate the predicted product condition. Using two fuzzy dynamic matrices 

combined with a traditional contact matrix, the assembly is defined in 3D space, and informed online removal 

decisions are made based on the previous actions through Monte Carlo forward uncertainty propagation and 
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iterative estimation. The re-planning algorithm is designed for complete disassembly that can be easily adapted 

to different product conditions in real-time. 

It has successfully provided reasonable and creative solutions, including the use of layered candidate sets 

to circumvent the generation of irrational sequences, the introduction of a penalty value matrix to evaluate the 

cost of changing components and directions, recommending disassembly sequences based on steady-state 

matrices, etc., which depict the product condition with greater accuracy than predicted. 

Utilized as an analytical tool in this study, the method proved to generate valid sequences through multiple 

outputs. However, there are still some limitations of this paper. On the one hand, the interference between 

components is not sufficiently detailed, i.e., the definition of remote interference is relatively coarse. On the 

other hand, the current work only considers the space constraints, with the primary goal of obtaining a feasible 

DSP. Future work will take into account the conditions of time, value, and tools to generate sequences that 

satisfy multiple objectives. 
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