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Abstract 

Although cone-beam CT(CBCT) has been used to guide irradiation for pre-clinical 

radiotherapy(RT) research, it is limited to localize soft tissue target especially in a low imaging 

contrast environment. Knowledge of target shape is a fundamental need for RT. Without such 

information to guide radiation, normal tissue can be irradiated unnecessarily, leading to 

experimental uncertainties. Recognition of this need led us to develop quantitative 

bioluminescence tomography(QBLT), which provides strong imaging contrast to localize optical 

targets. We demonstrated its capability of guiding conformal RT using an orthotopic 

bioluminescent glioblastoma(GBM) model. With multi-projection and multi-spectral 

bioluminescence imaging and a novel spectral derivative method, our QBLT system is able to 

reconstruct GBM with localization accuracy <1mm. An optimal threshold was determined to 

delineate QBLT reconstructed gross target volume(GTVQBLT), which provides the best overlap 

between the GTVQBLT and CBCT contrast labelled GBM(GTV), used as the ground truth for the 

GBM volume. To account for the uncertainty of QBLT in target localization and volume 

delineation, we also innovated a margin design; a 0.5mm margin was determined and added to 

GTVQBLT to form a planning target volume(PTVQBLT), which largely improved tumor coverage 

from 75%(0mm margin) to 98% and the corresponding variation(n=10) of the tumor coverage was 

significantly reduced. Moreover, with prescribed dose 5Gy covering 95% of PTVQBLT, QBLT-

guided 7-field conformal RT can irradiate 99.4±1.0% of GTV vs. 65.5±18.5% with conventional 

single field irradiation(n=10). Our QBLT-guided system provides a unique opportunity for 

researchers to guide irradiation for soft tissue targets and increase rigorous and reproducibility of 

scientific discovery. 
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Significance: We have presented a comprehensive approach to systematically tackle the 

challenging of BLT for in vivo target delineation, quantify its uncertainties in localization, and 

demonstrate the practicality for radiation guidance.  
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Introduction  

Several groups, including ours, have initiated efforts to develop small-animal irradiators that 

mimic radiation therapy (RT) for human treatment (1-4). The major image modality used to guide 

irradiation is cone-beam computed tomography (CBCT). Our CBCT-guided small animal 

radiation research platform (SARRP), and others, were transformative for pre-clinical RT research, 

and more than 115 machines are now in use world-wide by some 600 investigators. While CBCT 

provides excellent guidance capability (5-7), it is less adept at localizing soft tissue targets growing 

in a low image contrast environment. This challenging limit RT studies using important orthotopic 

models.  

Bioluminescence imaging (BLI) provides strong image contrast and thus is an attractive 

solution for soft tissue targeting. With the wide availability of genetically engineered mouse 

models, BLI has been used extensively in pre-clinical cancer research to track malignancy and 

assess its activity. BLI is commonly acquired at a non-contact imaging geometry (8-10), based on 

measurement of emitted surface light from an internal source. Although almost all commercially 

available systems use the 2D BLI superimposed onto a textured image of an animal to track target 

activity, this imaging modality are far from being applied to quantify spatial source distributions 

and to guide focal irradiation (11,12). The inadequacy of using BLI for focal irradiation is 

attributed to the optical transport from an internal bioluminescent tumor, which is highly 

susceptible to irregular animal torso and tissue absorption and scattering. 

Recognition of these limitations led us to integrate 3D bioluminescence tomography (BLT) 

with small animal irradiators. BLT allows the recovery of volumetric distribution of 

bioluminescent source based on surface BL emission (13-16). Our first BLT was designed to 
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localize the center of mass (CoM) of an optical target for irradiation (11,17). This advance was 

received with much intrigue, however there was little practical adoption of the BLT system by RT 

researchers. It was clear that the investigators required the unmet need to be addressed, to 

significantly enhance their conduct of research. First, knowledge of target shape is a fundamental 

need for RT. Without such information to guide radiation, large portions of normal tissue can be 

irradiated unnecessarily, leading to undesired experimental uncertainties. It is imperative that we 

advance BLT guidance beyond CoM, to a new and precise level of 3D target shape delineation. 

Second, clinical practice recognizes the importance of complementary use of functional and 

anatomical image such as positron emission tomography (PET)/CT, for radiation treatment 

planning and for tumor response evaluation. BLI measures cellular viability (10), thus it is an ideal 

imaging modality for longitudinally monitoring treatment outcome. However, the quantitative 

information that surface BLI provides for assessment is currently limited or even inaccurate. With 

the novel reconstruction algorithm and calibration methods proposed in this work, we establish a 

new quantitative BLT (QBLT) to address this need. We expect that the QBLT/CBCT-guided 

SARRP will provide investigators unprecedented capabilities to localize soft tissue target, define 

its shape for conformal irradiation, and non-invasively quantify treatment outcome.   

In BLT, a model of light propagation through tissue to the skin surface is employed, in 

conjunction with an optimization algorithm, to reconstruct the underlying 3D source spatial 

distribution, which minimizes the difference between calculated and measured surface BL signal. 

For our QBLT imaging workflow, mice were subject to bioluminescence imaging, and later 

SARRP CBCT imaging, followed by BLI mapped to animal CBCT image and QBLT 

reconstruction to retrieve target distribution. The CBCT image was acquired to generate 
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anatomical mesh for the reconstruction and radiation treatment planning. To apply QBLT as an 

image-guided system for conformal irradiation in vivo, we have optimized hardware configuration, 

algorithm, calibration methods, and radiation margin. 1) A multi-projection and multi-spectral 

bioluminescence imaging system was developed to maximize input data points and improve the 

stability of QBLT reconstruction. 2) The multi-spectral BLT heavily relies on the accurate 

quantification of the emission spectrum of bioluminescent tumor cells and the dynamic change of 

in vivo signal. The investigation and corresponding methodology of quantifying the spectrum and 

in vivo signal are presented. 3) Non-contact imaging geometry is commonly adopted in optical 

tomography, but the challenge of accurately accounting light propagation from tissue surface to 

optical detector remains. A novel spectral derivative (SD) BLT algorithm was proposed recently 

(16) and first applied to animal studies. This new algorithm effectively eliminated the known issue 

of free space light propagation error and significantly facilitated QBLT shape delineation and 

quantitative capability. 4). To ensure radiation coverage and account for QBLT uncertainties in 

target localization, we have systematically devised target margin in line with clinic practice for 

radiation guidance, which made QBLT possible for image-guided RT research.  

An orthotopic glioblastoma (GBM) model was chosen as the testing platform to demonstrate 

the QBLT-guided RT, because its low imaging contrast represents a challenging case for CBCT-

guided system. This work is the first systematic study demonstrating the BLT-guided conformal 

irradiation for orthotopic model in vivo. Our proposed QBLT platform will significantly enhance 

pre-clinical RT research with the capabilities of functional targeting beyond anatomical imaging. 
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Materials and Methods 

System Configuration  

Our optical system consists of an optical assembly, a mobile cart and a transportable mouse bed 

(Fig. 1A). The optical assembly is driven by a 1D motorized stage to dock onto an independent 

mouse bed for optical imaging. The optical assembly includes a CCD camera(iKon-L 936, 16 bit, 

Andor Technology, Belfast, UK) mounted with a 50-mm f/1.2 lens (Nikkor, Nikon Inc., Melville, 

NY), a filter wheel (Edmund Optics Inc., Barrington, NJ), a 3-mirror system (98% reflective, 

protected silver coating) and a light enclosure (Fig. 1B). The filter wheel with optical filters is used 

for multi-spectral image acquisition to improve BLT reconstruction accuracy (15,18,19). The 

optical signal emitted from the surface of an imaged object was directed to the CCD by the 3-

mirror system. Each mirror is 45° relative to optical path as shown by the red dashed line in Fig. 

1B. Four 20-nm FWHM band-pass filters (Chroma Technology Corp., Bellows Falls, VT) with 

center wavelength at 590, 610, 630 and 650 nm were used. The 3-mirror system can rotate 1800 

(from -90° to 90°) around imaged object for multi-projection imaging. The optical image taken at 

top of the mouse bed is labeled as 0° projection imaging. In preparation of the imaging session, 

the imaging chamber was first warmed up by a heat gun (Fig. 1A) and the temperature was 

maintained at 37 °C by a resistor loop built inside the imaging chamber. Four fans were placed at 

the front corners, 2 at each corners, and 3 fans were placed on the front-top end of the chamber to 

circulate the hot air generated from the thermistor to maintain uniform temperature throughout the 

chamber. The calibration procedure for image uniformity was bypassed since ratio image instead 

of conventional spectral image was used as the input data for the SD-method based QBLT 

reconstruction. The detailed characterization of the optical system is described in the 
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supplementary material Sec. 1. 

After optical imaging, the mouse bed (Fig. 1C) with imaged animal can be readily transferred 

from the optical system to the SARRP (Xstrahl Inc., Suwanee, GA) for CBCT imaging and 

irradiation. On the bed, there are 8 imaging markers (Chemical-Resistant Slippery PTFE Balls, 2.4 

mm diameter, McMaster-carr, Santa Fe Springs, CA) used for data mapping purpose to register 

surface BLIs with 3D CBCT image. Our SARRP consists of an X-ray source, a 20.5 x 20.5 cm2 

amorphous silicon flat panel detector with 200-μm pixel (Perkin-Elmer, Waltham, MA) and a 4D 

(x, y, z translation and 360° rotation) robotic couch (Fig. 1D). The X-ray source was performed at 

65-kVp and 7-mA for CBCT imaging and at 220-kVp and 13-mA for irradiation. CBCT imaging 

is acquired by rotating the prone animal between the stationary X-ray source and detector panel. 

The combination of a 360° isocentric gantry and the 4D robotic couch allows SARRP perform 

non-coplanar radiation delivery. Studied animal was anesthetized by anesthetic gas through nose 

cone and gas tube and immobilized during the imaging sessions and transport. The optical system 

was operated within 2 meters to the SARRP to minimize the impact of animal transport on the 

animal position (20). After optical and CBCT imaging, QBLT reconstruction was conducted, and 

the reconstructed bioluminescent tumor volume was used to guide SARRP irradiation.  

Data mapping for multi-projection imaging 

Because CBCT imaging defines the coordinate used for QBLT reconstruction, our geometry 

calibration method published in Ref. (21) was used to map the 2D optical images acquired at 

multiple viewing planes onto the animal surface of the 3D CBCT image. The mapped BLIs were 

used as the input data for QBLT reconstruction. Our method has two steps: 1) mapping the CBCT 

coordinate to the 3D optical coordinate with rigid transformation, and then 2) projecting the 3D 
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optical coordinate to the 2D optical (CCD) imaging plane. After the 3D CBCT and 2D optical 

coordinates are registered, for a given projection, we can then map the surface BLI to the CBCT 

image. The data mapping process requires knowledge of the geometrical parameters of our system. 

The imaging markers on the mouse bed (Fig. 1C) can be located in both CBCT and 2D optical 

images. Inside the optical imaging chamber (Fig 1A), there are LED light sources for photo 

imaging to identify the animal position and the imaging marker. An optimization routine with the 

constrained multivariable optimization function (fmincon, MATLAB, The MathWork Inc., Natick, 

MA) has been developed to retrieve the geometrical parameters by minimizing the difference 

between the calculated and measured marker positions in the 2D optical coordinate; the marker 

positions at -90°, -45°, 0°, 45° and 90° optical projection were used as the measured marker 

positions, and the corresponding marker positions retrieved from the optimization routine based 

on the optimized geometrical parameters and the markers positions in 3D CBCT were used as the 

2D calculated marker positions. The geometric calibration was performed for each animal imaging 

session to ensure accurate data mapping for QBLT reconstruction. 

To validate the accuracy of our data mapping method, 11 plastic imaging markers were placed 

on a mouse phantom (XFM-2, Perkin Elmer Inc., Waltham, MA) and imaged at -90°, 0° and 90° 

projections, which are the projections commonly used in our QBLT. The measured positions of 

these 11 plastic markers on the 2D optical image were used to verify the corresponding marker 

positions calculated from our data mapping method.  

System-specific cell spectrum  

Because of the multi-spectral BLT approach, it is important to quantify the system spectral 

response, including optics, filter and camera, and the emission spectrum of bioluminescent targets. 
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Since the choice of BL wavelength is fairly standard, for simplicity, we used the QBLT (Fig. 1A) 

system to measure the source spectrum, e.g. GBM cells in this work. The measurement includes 

the system and cell spectral response, and we called the resulted spectrum as system-specific cell 

spectrum. Therefore, the wavelength dependent BLIs can be normalized to the measured spectrum 

weighting, used as the input data for our reconstruction algorithm. We measured the system-

specific spectral weights of GL261-Luc2 cells at 590, 610, 630 and 650nm in petri dishes (NuncTM 

cell culture treated multidishes, ThermoFisher Scientific, Waltham, MA, 35mm in diameter, 1x106 

cells/dish, 50l luciferin/dish at 30mg/ml). We acquired the BLIs in our imaging chamber kept at 

37 oC (Fig. 1A). Open field images without filters were taken before and after each spectral BLI 

to quantify the in vitro signal variation over time. The time point for each image was recorded and 

the open field images were used to generate an in vitro time-resolved signal curve. To eliminate 

the change of the in vitro spectral signal as function of luciferin incubation time, we normalized 

the intensity of the multi-spectral BLIs taken at different time points to the in vitro time-resolved 

curve. The measured spectrum of the GL261-Luc2 at 590, 610, 630 and 650 nm at 37 °C are 1, 

0.916 ± 0.014, 0.674 ± 0.019, 0.389 ± 0.012(n = 20), respectively. It is worthwhile to mention that 

even for the same cell line, with different luciferase, the BL spectrum can be different. For the 

sake of readers’ interest, the measured spectrum of GL261 cells tagged with another luciferase 

gene RedFluc is shown in Fig. S2. 

To assess the spectrum change as function of ambient temperature, we compared two conditions 

24 and 37 °C which represent our BLT system setting without and with the thermo system turned 

on. We also confirmed the system temperature reading by measuring the temperature of the 

phosphate buffer solution incubated with cells during the BLI acquisition using an infrared 
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thermometer (Lasergrip 774, ETEKCITY, Anaheim, CA, USA).     

Quantify in vivo bioluminescence signal variation overtime 

Because in vivo bioluminescence signal can vary overtime and the change can be animal 

specific, it is important to quantify the time-resolved in vivo signal for having accurate input data 

for QBLT reconstruction. For this purpose, a time-resolved bioluminescence signal curve was 

established for each imaged animal. To build the time-resolved curve for each projection during 

BLI acquisition, open field images taken before and after each spectral image along with the time 

points when the images were taken were used to record the signal variation overtime. A region of 

interest (ROI) was chosen in the open field image. Because the ROIs in different projection was 

not from the same physical location of animal surface, the time-resolved curves between two 

adjacent projections were linked by extrapolating the light intensity from the time-resolved curve 

of the first projection to the time point when the first open field image at the second projection was 

measured. The light intensity recorded from the second projection at this time point was scaled 

according to the extrapolated light intensity from the first projection. By using this method, we 

can combine the time-resolved curves among different projections and quantify the dynamic 

change of in vivo bioluminescence signal during the optical image course. Based upon the time-

resolved signal curve, we can correct the intensity of each spectral image taken at certain time 

point.  

Mathematical framework for QBLT reconstruction 

Because light transport in tissue is dominated by scattering, Diffusion Approximation (DA) of 

the light transport equation was applied in our work to model the light propagation in tissue media 

(22). In continuous wave mode, the DA with the Robin-type boundary condition is expressed as: 
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{
−∇ ∙ 𝐷(𝑟)∇Φ(𝑟) + 𝜇𝑎(𝑟)Φ(𝑟) = 𝑆(𝑟), 𝑟 ∈ Ω

Φ(𝜉) + 2𝐴𝑛̂ ∙ 𝐷(𝜉)∇Φ(𝜉) = 0, 𝜉 ∈  𝜕Ω
 (1) 

where Φ(𝑟) is the photon fluence rate at location r in domain Ω, 𝐷(𝑟) = 1/(3(𝜇𝑎 + 𝜇𝑠
′ )) is the 

diffusion coefficient, and 𝜇𝑎  and 𝜇𝑠
′  are absorption and reduced scattering coefficients, 

respectively at a given wavelength λ. 𝑆(𝑟) is the bioluminescence source distribution. ξ represents 

points on the tissue boundary, and coefficient A can be derived from Fresnel’s law, depending on 

the refractive index of tissue and air. 𝑛̂ is the unit vector pointing outward, normal to the boundary 

𝜕Ω. Equation 1 can be further expressed in the form of linear function:  

 𝐺𝜆𝑤𝜆𝑆 =  𝜑𝜆 (2) 

where 𝐺𝜆  is the mapping function describing the changes of boundary/surface fluence rate 𝜑𝜆 

related to source S for a given wavelength λ, and 𝑤𝜆 is the relative spectrum of the light source of 

interest. 𝐺𝜆 can be constructed from prior knowledge of the optical property of subject. 

In non-contact imaging geometry as shown in Fig. 1B, one major challenging is accounting for 

the light propagation from animal surface to the optical detector (e.g. camera in our system). We 

have developed a new approach (16) in which the spectral derivative of that data (the ratio of the 

surface images at adjacent wavelengths) is used, as bioluminescence at similar wavelengths 

encounters a near-identical system response. The system response can be expressed by rewriting 

the fluence rate 𝜑𝜆 =  𝑏𝜆𝑛, where n is a measurement point specific angular dependent offset to 

account for the difference between actual surface fluence rate 𝜑𝜆 and BLI measurement 𝑏𝜆, and n 

is assumed to be spectrally invariant. The Eq. (2) becomes 

 𝐺𝜆𝑤𝜆𝑆 = 𝑏𝜆𝑛 (3) 

. By applying logarithm to Eq. (3) and considering the ratio of the data between two neighboring 
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wavelengths λi and λi+1, we can write the spectral derivative form of Eq. (3) as Eq. (4): 

 [
log 𝑏𝜆𝑖

𝑛

𝑏𝜆𝑖
𝑛

𝐺𝜆𝑖
𝑤𝜆𝑖

−
log 𝑏𝜆𝑖+1

𝑛

𝑏𝜆𝑖+1
𝑛

𝐺𝜆𝑖+1
𝑤𝜆𝑖+1

] 𝑆 = log
𝑏𝜆𝑖

𝑏𝜆𝑖+1

 (4) 

. The source distribution S in the spectral derivative form (Eq. 4) can be iteratively solved by 

applying CSCG optimization algorithm (23) with multi-spectral and multi-projection data. The 

mapping function (also often referred to as weight or sensitivity function) was generated by a 

modified version of the open source NIRFAST software (24).  

In vivo QBLT validation 

In vivo procedures were carried out in accordance with the Johns Hopkins Animal Care and 

Use Committee. To establish GBM model, GL261-Luc2 cells (1.2 x 105 cells in 2l phosphate-

buffered saline, PH 7.4, gibco, ThermoFisher Scientific, Waltham, MA) was stereotactically 

implanted into the left striatum of mouse (C57BL/6J, female, 6-8 weeks old) at 3mm depth. The 

GBM-bearing mice 2 weeks after cell implantation were subject to QBLT imaging session. Before 

optical imaging, mouse hair was shaved, followed by hair depilation. D-Luciferin (125l, 30mg/ml 

injection for 25g mouse to reach 150mg/kg, XenoLight D-Luciferin K+ Salt, PerkinElmer, Inc., 

Waltham, MA) was administrated via intraperitoneal injection. Mouse at prone position was 

subject to BL imaging 10 minutes after the luciferin injection. During imaging, mouse was 

anesthetized with 1-2% isoflurane (Fluriso, MWI Veterinary Supply Co. Boise, ID) in oxygen. 

Multi-spectral BLIs at 590, 610, 630 and 650 nm and open field images at multi-projection (0°, 

90° and -90°) were acquired at 8x8 pixel binning (approximately 1 mm at our imaging plane). The 

imaging acquisition time for our GL261-Luc2 model at 2-weeks old (tumor volume range: 4-18 

mm3) is about 2-20 and 10-120 sec for open and spectral image, respectively, to achieve 
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approximate 3800-28000 and 1800-18000 image counts after background subtraction.  

Photo images at -90°, -45°, 0°, 45° and 90° projections were taken to retrieve the positions of 

fiducial markers for the geometrical calibration after the BLIs acquisition. Because the in vivo 

signal at 590 nm was weak compared to that of other spectral image, which affects the stability of 

the spectral derivative method, for the results presented following, we chose the images at 610, 

630, and 650 nm for QBLT reconstruction process. The BLIs were then mapped onto the 3D mesh 

surface of the imaged mouse generated from the CBCT image. At the overlapped region on the 

mesh surface, for a given node between two mapped images from different projections, the 

maximum value of the two images was chosen as the value on that surface node. The mapped 

surface data larger than 10% of the maximum value among all the surface points were used as 

input data for QBLT reconstruction. The published values (25) of 𝜇𝑎 0.1610, 0.0820 and 0.0577 

mm-1 and 𝜇𝑠
′  1.56, 1.51 and 1.46 mm-1 of mouse brain for 610, 630 and 650 nm, respectively, were 

used for QBLT reconstruction. The detail of numerical parameters used in QBLT reconstruction 

can be found in supplementary material Sec. 3.  

Contrast CBCT was used to define the gross target volume (GTV) of GBM bearing mice as the 

ground truth to validate the accuracy of QBLT target localization. After QBLT imaging session, 

imaged mouse was moved to our in-house high resolution CBCT system (26) for the contrast 

imaging. Iodixanol agent 160l at 320mgI/ml (Visipaque, GE Health Care, Chicago, IL) was 

administrated through retro-orbital injection. The mouse was imaged 1 minute after the injection. 

Mouse head region was cropped in both SARRP CBCT image and contrast CBCT image, and the 

cropped contrast CBCT image was registered to that of SARRP CBCT image by General 

Registration (BRAINS) module in 3D Slicer (27). The GTV was first segmented in 3D Slicer (see 
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supplementary material Sec. 4 for detail) and then compared that to the GTV reconstructed by 

QBLT (GTVQBLT). We determined the threshold, based upon maximum value of QBLT 

reconstructed power density distribution (S, Eq. (3)), which best delineates the GTVQBLT, by 

analyzing the Dice coefficient between GTVQBLT and GTV, as 2(GTVQBLT ∩ GTV)/(GTVQBLT +

GTV). 

In vivo QBLT-guided conformal irradiation 

A margin accounting for the uncertainty of QBLT target localization (e.g. positioning and target 

volume determination) was added to GTVQBLT to form a planning target volume (PTVQBLT) for 

radiation guidance. We generated 7 field conformal radiation plan using SARRP treatment 

planning system, MuriPlan, with the goal of 5Gy as the prescribed dose to cover 95% of the 

PTVQBLT and 100% of the GTVQBLT. To qualitatively confirm the QBLT-guided GBM irradiation, 

we perform the pathological analysis with immunohistochemical staining (see supplementary 

material Sec. 5 for the detail of staining procedure) to visualize cell nuclei and DNA double-strand 

breaks using 4’, 6-diamidino-2-phenylindole (DAPI) and γ-H2AX, respectively. 

Data distribution and statistical analysis 

Non-parametric box plots (MATLAB R2019b, MathWorks, Natick, MA) were used to display 

distributions of the Dice coefficients as function of threshold values, tumor and normal tissue 

coverage as function of PTVQBLT margin size, and dosimetric parameters for single field and 

QBLT-guided plan comparison. The area between the bottom (25th percentile), and top (75th 

percentile) of the box edge indicates the degree of data spread. The “black band” within the box 

represents the 50th percentile, or the median number. The outlier is defined as the data falling 

outside the range of q3 + w × (q3 – q1) to q1 – w × (q3 – q1), where w is the maximum whisker 
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length, and q1 and q3 are the 25th and 75th percentiles of the sample data, respectively. The default 

value of w equal to 1.5 was used in our study which corresponds to approximately 99.3% coverage 

if data are normally distributed, but it is not assumed in our study. 

Statistical significance of differences in averages was determined using a two-tailed paired 

student t test (t.test function, Microsoft® Excel® 2016, Microsoft Co. Redmond, WA). A p value 

less than 0.05 was considered significant for all statistical analysis. 

Results 

Data registration: 2D BLIs mapped to the mesh surface from 3D CBCT  

The procedure and validation of 2D BLIs mapped to the mesh surface generated from 3D CBCT 

is demonstrated in Fig. 2. Fig. 2A shows 8 fiducial markers used to retrieve the geometrical 

parameters of our optical system for data mapping. To assess the accuracy of the data registration, 

we taped 11 plastic balls on the phantom. The positions of these 11 plastic balls were directly 

measured from the 2D optical images taken at -90°, 0° and 90° projection, and were compared to 

the corresponding positions (Fig. 2B) calculated by our calibration routine. The average and 

standard deviation between the measured and calculated positions of the plastic balls is 0.26 ± 

0.03mm (n=6). The maximum deviation is 0.56 mm over all the plastic balls and the test samples. 

This result indicates we can register 2D optical to 3D CBCT coordinate at sub millimeter accuracy. 

A mouse phantom embedded with a self-illuminated rectangular light source (9.8mm x 2.8mm 

x 2mm, Trigalight, Mb-Microtec ag, Niederwangen, Switzerland) was chosen to demonstrate the 

data mapping procedure for multi-projection QBLT. Fig. 2C and D show, respectively, the BLIs 

of the mouse phantom taken at -90°, 0° and 90° projections, and mapped to the numerical mesh 

surface generated of the phantom CBCT image. The mapped data (Fig. 2D) is the input data for 
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QBLT reconstruction. 

The impact of ambient temperature and the quantification of inter-animal signal variation 

In this section, we demonstrate the impact of ambient temperature on the system-specific cell 

spectrum and the importance of quantifying inter-animal signal variation for quantitative BLT. 

Fig. 3A shows in vitro BL intensity of the GL261-Luc2 cells can increase significantly as the 

ambient temperature increased; from 24 °C to mouse body temperature 37 °C, the intensity can be 

increased by 2-fold. Beyond maintaining normal physiological function, keeping animal at the 

body temperature during BL imaging session is also favorable to shorten the image acquisition 

time, and therefore increase throughput. Fig. 3B further illustrates the emission spectrum of the 

GL261-Luc2 cells can be red-shifted, when ambient temperature is increased. This result 

emphasizes to achieve QBLT, it is critical to maintain a consistent temperature control between in 

vitro cell spectrum measurement and in vivo experiment.  

Fig. 3C shows the time-resolved in vivo BL signal, after D-Luciferin was administrated, is 

animal-specific. For each imaged animal, as one can take spectral BLIs at different time points, 

the animal-specific signal variation could largely affect the accuracy of the input spectral BL data. 

We use the mouse 3 from the Fig. 3C as an example to show, with the method described in the 

section of Materials and Methods, we were able to build the animal-specific time-resolved 

bioluminescence curve over the entire multi-projection imaging course. With this curve, we can 

eliminate the effect of inter-animal and physiological variation on each spectral BLI taken at a 

certain time point, used as the input data for QBLT. 

In vivo QBLT 

To demonstrate the QBLT capability in delineating 3D target in vivo, GBM-bearing mice 2 
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weeks after GL261-Luc2 implantation were used for BL imaging and reconstruction. Fig. 4A-B 

shows the BLIs taken at -90°, 0° and 90° 3-mirror position (Fig. 4A), and then mapped to the 

numerical mesh surface generated from the mouse CBCT image (Fig. 4B). The corresponding 

QBLT reconstructed GBM, GTVQBLT, is qualitatively matched to the contrast-labelled GBM, GTV 

(Fig. 4C-E), if a threshold 50% (0.5) of maximum QBLT reconstructed value (BL power density) 

was applied. We further justify the 0.5 threshold as the optimal value for QBLT in target 

delineation using Dice coefficient (Fig. 4F). We observed at threshold 0.5, there is a most 

overlapped volume between the GTVQBLT and GTV. Furthermore, although there is no significant 

difference of the Dice coefficient between the threshold 0.5 and 0.6 groups, the variation of the 

data spread is smaller, and the median value of the Dice coefficient is larger for the threshold 0.5 

group than that for the 0.6 group. These reasons support our choice of picking the 0.5 threshold 

value to delineate the GTVQBLT. As the threshold was continuously increased, GTVQBLT became 

smaller, and deviated from the contrast-labelled GBM GTV, which introduced larger data spread 

as shown in the cases of threshold 0.7-0.8. Moreover, the deviation of CoMs between GTVQBLT 

and GTV is 0.62 ± 0.16 mm for our GBM animal cohort (n=10). The individual 10 mice results of 

the GTVQBLT coverage can also be found in Fig. S3. 

Margin design for PTVQBLT 

Although the GTVQBLT qualitatively matches the true GBM volume GTV (Fig. 4C-E), there is 

still deviation between the two quantities in terms of volume and positioning. To effectively 

account for these deviations and ensure irradiation coverage of the tumor volume, we added a 

uniform margin to GTVQBLT and form the PTVQBLT for radiation guidance (Figs. 5A and S3). We 

also investigated the optimal margin size by evaluating the GBM volume coverage with conformal 
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index of  (PTVQBLT ∩ GTV)/GTV  and normal tissue coverage with (PTVQBLT − PTVQBLT ∩

GTV)/Vhead , where Vhead is the volume of mouse head (Fig. 5B). Without margin (0mm 

expansion), large variation of tumor coverage is expected. We observed with merely 0.5mm 

margin expansion, the GTV can be covered by the PTVQBLT at 97.9 ± 3.5% (capped at 100%) with 

much smaller variation compared to the case of 0mm margin, while the normal tissue inclusion is 

only at 1.2 ± 0.3%. As we further increased the margin, the benefit of tumor coverage is not 

statically significant but obviously, more normal tissue toxicity is introduced. We therefore chose 

0.5mm margin for our QBLT-guided GBM studies described below. 

In vivo QBLT-guided conformal irradiation  

Fig. 6A1-3 show a representative case of a 7-field non-coplanar beam arrangement to cover the 

PTVQBLT on the GBM bearing mice, shown in Fig. 5A. A 5x5 mm2 square beam collimator was 

used, and the CoM of GTVQBLT was set as the beam isocenter (pink points). The corresponding 

dose distributions are shown in Fig. 6B1-B3, where 5Gy (red line) was prescribed to cover 95% 

of the PTVQBLT. Although we were limited by available collimator size, the QBLT-guided 7-field 

conformal plan can still effectively cover the PTVQBLT and GTV. For comparison, we generated 

the dosimetric plan of single beam irradiation (Fig. 6C1-C3), commonly used in radiobiology 

studies (28-30). The single field irradiation was guided by the surgical opening at the skull surface 

indicated in the CBCT, and the 5Gy was prescribed to the cell implementation site 3mm away 

(yellow dots) from the opening. Clearly, the single field plan underdose the GTV (red line vs. blue 

contour), and led to undesired normal tissue irradiation. The dose-volume histogram (DVH, Fig. 

6D) shows 100% of GTV covered by the 5Gy prescribed dose with the 7-field conformal plan, and 

in contrast, only 54% coverage is seen from the single field plan. The GTVQBLT is also 100% 



20 
 

 

 

 

covered by the 7-field plan. It is expected that the 7-field plan introduced larger portion of low 

dose bath in normal tissue region, which is a trade-off for high conformality of target coverage and 

reduction of the normal tissue toxicity at high dose. From our mice cohort (n=10), with QBLT-

guided conformal irradiation, we can achieve 100% of the prescribed dose covering 99.4±1.0% 

(capped at 100%) of GTV versus 65.5±18.5% coverage with the single field irradiation. We further 

compare the target volume coverage for the single field and QBLT-guided 7-field plan using the 

metrics of D100, D50 and D2 (Fig. 6E). Taking the D100 as an example, it is the deposited dose being 

able to cover 100% of the GTV. These metrics indicate the dosimetric heterogeneities introduced 

by a given irradiation technique. The D100 boxplot shows that none of the single-field plan can 

deliver the prescribed dose 5Gy covering 100% of GTV, and 40% of the animals did not even 

reach D100 at 4Gy level. The large box size and extensive D100 variation, 0.1 to 4.9 Gy, renders 

large experimental uncertainty. In contrast, for QBLT-guided 7-field irradiation, D100 of GTV only 

vary from 4.9 to 5.5Gy within 25-75% data range, with minimum 4.5Gy, maximum 6.2Gy, and 

median value at 5.2Gy, which indicates superior tumor coverage and smaller dose variation. The 

larger spread of D50 and D2 shown in both 7-field GTV and GTVQBLT, compared to the single field 

group, can be attributed to the limited size of the available collimators, and the same treatment 

plan (couch and gantry setting) applied for this mice cohort. It led us use different isodose line as 

the prescribed dose to cover PTVQBLT. We further compared the D100, D50 and D2 between the GTV 

and GTVQBLT group, and there is no significant difference between these metrics. It suggests one 

could use GTVQBLT to evaluate the dosimetric coverage of target.  

To demonstrate the radiation delivered by the QBLT-guided 7-field irradiation, Fig. 7 shows 

examples of brain tissue sections, stained by DAPI and γ-H2AX. Due to the limitation of tissue 
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staining, we used two mice to demonstrate the 3D feature of the conformal irradiation. From the 

DAPI images, the high dense DNA area infers the GBM location (Fig. 7A1-2). The high-dense 

DNA region/GBM location is overlapped well with the irradiated area stained by the γ-H2AX (Fig. 

7B1-2, and C1-2). These results confirm the QBLT can guide SARRP effectively irradiate the 

GBM. It is worthwhile to note the γ-H2AX staining is highly sensitive to radiation and it is 

challenging to determine the exact threshold dose inducing the DNA double-strand breaks. We did 

not use γ-H2AX staining as quantitative measure, but a qualitative method to verify the GBM 

irradiation. In fact, even the dose outside GBM is low, γ-H2AX can still reveal one of the radiation 

beam passing through the brain (Fig. 7B2, double line arrow).     

Discussion 

A major challenge facing investigators is to correctly deliver radiation to animal models, so that 

their pre-clinical investigations are closely aligned with clinical practice. While CBCT-guided 

irradiators (1,2,4) provides valuable guidance capability, it is unable to localize soft tissue targets 

growing in a low image contrast environment. One may consider the contrast image for target 

delineation and guidance. It should be note that contrast CBCT is not an ideal modality to guide 

irradiation, due to fast clearance, and the use being limited to well-vascularized tumor models. 

Bioluminescence imaging thus offers an attractive solution. However, the intensity and distribution 

of commonly used surface BLI are nonlinearly dependent on the spatial location of internal source, 

tissue optical properties, animal shape and relative view of the animal to optical camera (31). Thus, 

the spatial distribution of bioluminescent tumor is not directly accessible for quantitation with 2D 

BLI. It is imperative for us to develop the 3D QBLT to accurately quantify the spatial distribution 

of the underlying tumor for radiation guidance. Recently, there are several studies showing the 
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potentiality of applying BLT for radiation guidance (11,17,32-34). The significance of this work 

is that we devised a comprehensive approach to systematically tackle the challenging of BLT for 

in vivo target delineation, quantify its uncertainties in localization, and present the practicality for 

radiation guidance first time.  

Considering the underdetermined nature, a known challenging for diffuse optical tomography, 

we chose the multi-projection and multi-spectral imaging acquisition to maximize input 

information for QBLT reconstruction (15,19). Accurate target reconstruction ultimately depends 

on if we have correct surface images as input. Ambient temperature does not only affect imaging 

acquisition time/experiment throughput (Fig. 3A), but also the accuracy of the multi-wavelength 

BLT reconstruction, closely related to the BL spectrum (Fig. 3B). We also presented that the 

kinetics of in vivo luciferin uptake is animal specific, which can affect the amplitude of the surface 

spectral data taken at different time point and potentially lead to erroneous BLT target localization 

(Fig. 3C-D). Furthermore, in non-contact imaging geometry, one major challenge is accounting 

for the light propagation from the skin to the optical detector. Existing approaches, typically using 

a model of the imaging system are usually computationally intensive or of limited accuracy (35,36). 

We have recently developed a novel approach in which, rather than directly using surface BLIs 

acquired at different wavelengths as used in conventional reconstruction method, the spectral 

derivative of the BLI data (the ratio of the BLIs at adjacent wavelengths) is used (16). As the BLIs 

at adjacent wavelengths encounter a near-identical system response, our approach eliminates the 

need for complicated system modeling. With our comprehensive approaches, we demonstrate the 

QBLT is able to define approximated GBM shape in vivo with the localization accuracy <1mm in 

average (Figs. 4C-E and S3).  
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The distribution of the BLT reconstructed volume depends on the choice of threshold, which 

determines the accuracy of radiation guidance. There are various threshold values used in optical 

tomography studies (37-39). The challenge of threshold selection in BLT is finding the value best 

representing actual target volume throughout study animals. We derived the strategy that 

determines the optimal threshold value 0.5 using dice coefficient for our animal cohort (Fig. 4F). 

Although the optimal threshold provides encouraging result of delineating the GBM volume based 

on the 3D BL distribution (Figs. 4C-E and S3), the QBLT-reconstructed volume is inevitable 

suffered from the resolution limitation and multiple scattering nature of diffusive optical 

tomography where actual tumor shape delineation is not achievable. This difficulty is similar to 

that of using positron emission tomography (PET) standard uptake value (SUV) for target 

delineation in clinical radiation therapy. We therefore innovated designing a radiation margin to 

account for the uncertainties of QBLT in target localization, i.e. positioning and volume. Without 

margin, a large variation of tumor coverage is expected, translated to large experimental 

uncertainties. In contrast, after adding a merely 0.5mm margin, the averaged tumor coverage was 

largely improved from 75 to 98% and the variation was significantly reduced (Fig. 5B).  

The margin is critical that it does not only effectively reduce the variation of target coverage 

and increase study reproducibility, but also provide a practical radiation planning volume PTV to 

make conformal RT possible. It is significant that now we can mimic clinic radiation therapy in 

orthotopic model to reduce normal tissue involvement and align in vivo experiment with clinic 

practice. From Fig. 6B1-B3 vs. C1-C3 and D, the optical-guided conformal irradiation is far 

superior than the traditional single field irradiation which can miss target, and may lead to wrong 

experiment conclusion due to large variation of tumor coverage (Fig. 6E). The similar D100, D50 
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and D2 between the GTV and GTVQBLT coverage further validate that with the PTVQBLT derived 

by proper threshold and margin selection, we can perform high contrast molecular optical-image-

guided irradiation.    

Our current work is limited by available collimator size from the commercial SARRP and 

forward treatment plan scheme. We designed the 7-field conformal plan (Fig. 6A1-3) with manual 

optimized gantry, and couch position, applied for our animal cohort. Ideally, as in modern clinic 

RT, one would use multi-leaf collimator (MLC) combined with inverse planning to design optimal 

collimator opening and beam orientation to provide conformal dose coverage. However, the pre-

clinical radiation research technology is still behind that of clinic RT, and the advances technique 

are still underdeveloped (40-42) and not readily available. With these technologies, one would 

expect the dose conformality (Fig. 6B1-3 and E) can be further improved. 

Although we have demonstrated QBLT-guided RT, the anatomical information provided by 

CBCT is indispensable. Without anatomical information, it could be challenging to guide 

irradiation with optical imaging alone. We utilized the CBCT image to help users identify region 

of interest and provide numerical mesh for BLT reconstruction. CBCT will also be used as the 

complementary imaging to support the interpretation of BLT results, which will allow users to 

distinguish the target bioluminescence from reconstruction artifacts. The importance of 

complementary use of functional and anatomical images, such as PET/CT, for radiation treatment 

planning and tumor response evaluation is well recognized in clinical practice (43,44). BL imaging 

has served as common surrogate of tumor viability in response to cancer therapy. In contrast, the 

anatomical imaging CBCT and MRI cannot detect tumor viability. By recovering 3D source 

distribution, we can use BLT quantity such as BL power to quantify the cell viability in response 
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to therapeutic intervention. We enthusiastically propose the next generation image-guided system, 

QBLT in this work. The QBLT complements CBCT-small animal radiation systems to provide 

researchers new capabilities for defining target shape for conformal RT, and to non-invasively 

quantify treatment outcome. 

Conclusion 

We presented a comprehensive approach to demonstrate QBLT-guided conformal irradiation 

for the orthotopic tumor model. For the first time, we innovated developing a radiation margin 

effectively overcoming the known challenge of target localization/delineation for optical 

tomography, which advances pre-clinical RT research close to clinic practice.  Our proposed 

QBLT platform will significantly enhance pre-clinical RT research with the capabilities of 

functional targeting beyond anatomical imaging as well as facilitating reproducibility of scientific 

studies. 
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Figure 1. System configuration; (A) is the photo of the QBLT system. The optical system consists 

of an optical assembly, a mobile cart and a moveable mouse bed. The optical assembly is motorized 

by the 1D linear stage and docked into the mouse bed. (B) shows the layout of the optical system; 

a 3-mirror system is cantilevered to attach the CCD camera-filter and light enclosure. The rotating 

3-mirror system reflects light from object to CCD camera for multi-projection imaging. (C) is the 

photo of transportable mouse bed with imaging markers (white plastic balls); the nose cone and 

gas tube were used to deliver anesthetic gas. (D) shows SARRP configuration for CBCT 

acquisition.  
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Figure 2. Validation of 2D BLIs mapped to the mesh surface from 3D CBCT; (A) the plastic balls 

taped on the mouse bed, within red rectangles, were used as the fiducial markers to retrieve 

geometric parameters for data mapping, and the balls taped on mouse phantom were used to assess 

the accuracy of the mapping. The axis of optical image coordinate at imaging plane was labeled 

as (u, v). (B) Validation of data mapping; red circles represent the location, directly measured from 

2D optical images, of the plastic balls on the mouse phantom and the blue cross represent the 

corresponding location calculated from our calibration routine by the ball position shown in 3D 

CBCT and optimized geometric parameters. (C) shows 2D BLIs (colormap, 650 nm) from a self-

illuminated rectangular light source embedded in the mouse phantom at -900, 00 and 900 projection. 

(D) shows the image of the 3 projections BLI data (C) mapped onto the surface of the numerical 

mesh generated from the phantom CBCT image. Data with value larger than 10% of the maximum 

value is displayed in Fig. (C and D). 
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Figure 3. Temperature effect on bioluminescence signal in vitro and quantification of inter-animal 

signal variation; (A) is in vitro light intensity of GL261-Luc2 cells vs. ambient temperature (n = 

5). The error bar represents standard deviation. (B) shows the change of normalized emission 

spectrum of GL261-Luc2 for 24 °C (n = 6) and 37 °C (n = 20) in vitro. The error bar represents 

standard deviation. (C) shows the dynamic change of in vivo bioluminescence signal for 3 GBM-

bearing mice, normalized to maximum intensity. (D) Mouse 3 from Fig. C is used as an example 

to illustrate the formation of the overall time-resolved curve combined from 0°, -90° and 90° 

projection. 
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Figure 4. In vivo QBLT reconstruction and threshold determination; (A) is surface BLIs 

(colormap, 650nm) of a 2nd week GBM-bearing mouse taken at -90°, 0°, and 90° projection. (B) 

shows the image of the 3 projection BLIs (A) mapped onto the surface of the numerical mesh 

generated from the mouse CBCT image. Data with value larger than 10% of the maximum among 

all the 3 projections is displayed in (A) and (B). The overlap of QBLT delineated GBM (GTVQBLT, 

heat map) and contrast-delineated GBM (GTV, blue contour) were shown in (C) transverse, (D) 

sagittal, and (E) coronal views. A threshold of 0.5 of maximum QBLT reconstructed value was 

used to display the GTVQBLT. (F) is the boxplot of the Dice coefficient between GTVQBLT and GTV 

vs. threshold of maximum QBLT reconstructed value (n=10); each red circle represents one mouse 

data. The asterisk (*) indicates no significant difference (P > 0.05, n = 10) of Dice coefficient 

between the threshold of 0.5 and 0.6 groups.  
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Figure 5. Margin design for QBLT-guided irradiation; (A) shows a uniform margin 0.5mm added 

to a GTVQBLT (heat map) to form a PTVQBLT (cyan). The GTV is delineated by blue contour. (B) 

is the boxplot of tumor coverage (red circle, left axis) and normal tissue coverage (blue cross, right 

axis) versus margin expansion for 2nd week old GBM; the asterisk (*) indicates no significant 

difference (p>0.05, n=10) of the tumor coverage between 0.5 and 1mm margin groups, and 

between 0.5 and 1.5mm margin groups. Each circle and cross represent one mouse data point, and 

total 10 mice were entered to this study. 
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Figure 6. In vivo QBLT-guided conformal irradiation; (A1-A3) show a representative case (same 

animal as shown in the Fig. 5A) of a 7-field non-coplanar plan for a 2nd week GBM bearing mouse 

in transverse, sagittal and coronal views, respectively; the contrast-labelled GBM is delineated in 

blue contour. Five coplanar fields (couch at 0°, and gantry at -60°, 60°, 90°, 140° and 180°) were 

indicated by the white arrows in Fig. A1-A3 and two non-coplanar fields (couch at -40° and 40°, 

gantry at -60°) were indicated by the yellow dashed arrows in Fig. A3. The weighting of each 

irradiation field is 12.5% except for the beam at couch 0° and gantry 180° with weighting of 25%. 

The corresponding dose distributions are shown in Fig. (B1-B3) with 5Gy as the prescribed dose 

to cover the PTVQBLT. For comparison, (C1-C3) are the dose distributions of single beam delivery, 

5Gy prescribed to the isocenter (yellow dot) 3mm away from the surgical opening. (D) is the 

corresponding DVH of the 7-fields QBLT-guided (B1-B3) and single field (C1-C3) irradiation for 

PTVQBLT, GTVQBLT, GTV, and normal tissue (NT). (E) is the boxplots of dose deposited at 100% 

(D100), 50% (D50) and 2%(D2) of the target volume for GTV under the single field irradiation, GTV 

under the 7-fields QBLT-guided irradiation, and GTVQBLT under the 7-fields QBLT-guided 

irradiation (n=10). Black dashed line indicates the prescribed dose of 5Gy. The asterisk (*) 

indicates no significant difference (P>0.05, n=10) of D100, D50 and D2 between the GTV and 

GTVQBLT groups for the 7-fields treatment plan. 
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Figure 7. Pathological confirmation of in vivo QBLT-guided conformal irradiation; (A1-B1 and 

A2-B2) are DAPI, and γ-H2AX staining in transverse and coronal brain sections from two mice, 

respectively. In (B1-B2), white solid, double dash, and double line arrows point to the GBM, 

normal tissue, and normal tissue irradiated area, respectively. (C1 and C2) are the composited 

images of DAPI and γ-H2AX staining. 
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(For the sake of convenience, the references used in the supplementary section are listed at the 

end.) 

Supplementary material 

1. Characterization of optical system 

1.1 Imaging depth of field and focal plane 

To acquire clear images of imaged object at different projections, we first need to know the 

imaging depth of field (DOF) of our optical system. We used a 45° wedge with line pairs on its 

hypotenuse to measure the imaging DOF (Fig. S1A). The wedge was placed on the mouse bed 

(Fig. 1B). The photo of the ruler was acquired at 0° imaging projection with 1x1 binning. The 

contrast of a line pair is defined as 
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
, where Imax and Imin are the maximum and minimum 

intensity of the white line and black line of a line pair shown in Fig. S1A, respectively. We mapped 

the contrast of the line pairs to the physical height above the mouse bed (Fig. S1B). The DOF is 

defined as the physical range, corresponding to the height above the mouse bed, of the contrast 

larger than 30% of the normalized maximum value, which was calculated from the 1 line pair 

(lp)/mm. The DOF of our optical system is at 21±0.4 mm (n=3). We also use this value as a quality 

control baseline to maintain constant imaging performance. 

1.2 Focal plane 

From our mice (C57BL/6) cohort, the height of mouse head above mouse bed and the width 

of mouse head are 19.2 ± 0.6 and 13.6 ± 0.7 mm (n=10). With the DOF as 21 mm, we set the focal 

plane at 10-15 mm above mouse bed, so we can acquire clear BLIs of mouse head at all three 

projections (-90°, 0° and 90°). Fig. S1B shows a representative result of the image contrast of the 

1 lp/mm line pairs, we estimated the focal plane at 11.3 mm above mouse bed by examining the 
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maximum contrast position of the line pairs. The average focal plane location with standard 

deviation is at 11.1 ± 1.8 mm and image depth range is from 2.6 ± 0.4 to 23.6 ± 0.4 mm (n=3) 

above the mouse bed. 

1.3 Pixel scale 

The pixel scale is the corresponding physical size of CCD pixel at imaging plane. We measured 

the pixel scale with a ruler placed horizontally on the focal plane. The physical distance between 

the scales on the ruler was used to calculate the pixel scale which is about 0.117 mm per CCD 

pixel

1.4 Image distortion 

We placed a paper with a dot grid on the mouse bed (10 × 10 cm2 field of view around the 

image center at mirror 0°). Photo image at 1 × 1 binning is acquired. To examine image distortion, 

we compared the measured distance of the dot center to the image center to the actual distance. No 

distortion was observed in our system. 

1.5 Optical background 

It is important to keep low optical background for BLT application because long exposure time 

may be needed to image cases with weak bioluminescent signal. Any light leaked into the imaging 

chamber can possibly contaminate bioluminescent image (BLI), which affects the BLT 

reconstruction accuracy. To check the optical background signal level of our system, we use 120s 

exposure time to take open field (without filters) images (8x8 binning, 4x pre-amplifier gain and 

1MHz readout rate) at -90°, 0° and 90° projection. A region of interest (ROI, 90 pixel x 90 pixel, 

10 cm x 10 cm) around the image center was selected for data analysis (Fig. S1C). The background 

level is about 860 counts per pixel. We subtracted the background signal from our BLI data during 

post-processing.  
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2. System-specific spectrum of GBM cells tagged with different luciferase genes 

The release of bioluminescent light is based on the interaction of the enzyme luciferase with 

luminescent substrate luciferin. The spectrum of bioluminescence light depends on the type of 

luciferase. We measured the emission spectrum of GL261-Luc2 and GL261-RedFluc 

 

Figure S2. The normalized system-specific spectrum of GL261-Luc2 (yellow square, n = 20) 

and GL261-RedFluc (red circle, n = 5) cells in vitro was measured at 37 0C in our QBLT system. 

The error bar represents standard deviation. 

 

Figure S1. (A) Photo of a 45o wedge with lines pairs (from left to right, the line pairs are 2 lp/mm, 

1 lp/mm and 0.5 lp/mm); the wedge was placed on the mouse bed. The red arrow indicates the 

height increasing direction along with the line pairs. (B) shows the contrast change of the 1 lp/mm 

along the red arrow in (A). (C) is a representative optical background image; the dashed square 

shows the region of interest for background signal analysis. The unit is in CCD counts and the 

maximum count is 65535. 

 



4 
 

(PerkinElmer, Inc., Waltham, MA) with the method described in system-specific cell spectrum 

section using our QBLT system (Fig. S2). It clearly shows the spectrum of GL261-RedFluc cell 

was red-shifted compared to that of GL261-Luc2 cell.  

3. In vivo QBLT results 

In Fig. S3, we present all the in vivo QBLT results of the 2nd week GBM bearing mice (n=10) 

overlapped with contrast CBCT images. These mice were used for statistical analysis in Figs. 4F, 

5B, and 6E. The parameters used in QBLT reconstruction are as follows. 

The mesh generation parameters used in the QBLT reconstruction are listed below: 

1) Lower bound for the angles of surface mesh facets: 30°; 

2) Upper bound for the distances between facet circumcenters and the centers of their surface 

Delaunay balls: 1 mm; 

3) Upper bound for the radius of surface Delaunay balls: 0.7 mm; 

4) Upper bound for the circumradius of mesh tetrahedral elements: 0.76 mm;  

5) Upper bound for the radius-edge ratio of mesh tetrahedral elements: 1. 

The optical properties used in the QBLT reconstruction are listed in Table S1. 

The relative system-specific spectrum of GL261-Luc2 cells at 610, 630 and 650 nm used in 

the QBLT reconstruction are 0.916, 0.674 and 0.389, respectively. 

Table S1. Optical properties of mouse brain 

Wavelength (nm) 610 630 650 

Absorption coefficient, 𝜇𝑎 (mm-1) 0.1610 0.0820 0.0577 

Reduced scattering coefficient, 𝜇𝑠
′  (mm-1) 1.56 1.51 1.46 

Refractive index, n 1.4 
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The parameters used to select surface BLI data as input for the QBLT reconstruction are listed 

below: 

1) Upper bound for the angle between the norm of surface data and camera view direction: 

60°; 

2) Lower bound for the threshold of the maximum detector value used to select surface data 

as the input for QBLT reconstruction: 0.1; 

A numerical stabilized factor of 100 was used to scale up the BLI measurement data as the 

 

Figure S3. The overlap of contrast-delineated GBM (gross target volume, GTV, blue contour) 

and QBLT delineated GBM (GTVQBLT, heat map) were shown in coronal (A1-J1), transverse 

(A2-J2) and sagittal (A3-J3) views for 10 mice. A 0.5mm margin was added to the GTVQBLT to 

form PTVQBLT. 
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input for QBLT reconstruction. In the Eq. (4), the mapping function depends on the term 
log𝑏𝜆𝑖

𝑛

𝑏𝜆𝑖
𝑛

 , 

where 𝑏𝜆𝑖 is BLI data and n is a point specific angular dependent offset (n is between 0 to 1). To 

make the mapping function less sensitive to the value of 
log𝑏𝜆𝑖

𝑛

𝑏𝜆𝑖
𝑛

 and therefore stabilize the 

reconstruction routine, we empirically scaled up the BLI measurement data 𝑏𝜆𝑖by 100. We later 

divided the reconstruction solution by the factor, 100, to eliminate the numerical impact on the 

reconstructed power density.  

4. Image segmentation of tumor volume 

Contrast CBCT was used to define the gross target volume (GTV) of GBM bearing mice. The 

contrast image of the GBM bearing mouse was taken in our in-house high resolution CBCT system 

(1). The mouse head region was cropped from the SARRP CBCT and contrast CBCT image. We 

registered the cropped contrast CBCT image with the SARRP CBCT image based on skull rigid 

alignment using the General Registration (BRAINS) module from 3D Slicer (2), since the SARRP 

CBCT was used for the QBLT reconstruction and radiation treatment planning. After image 

registration, we selected a range of CBCT values to determine the segment mask best representing 

the contrast-labelled tumor region using the Segment Editor module in 3D slicer. The range of the 

CBCT value was chosen to remove skull area and normal tissue region. Within the segment mask, 

a paint brush was used to segment GTV slice by slice, followed by erase tool to manually remove 

normal tissue region not labelled by contrast agent at 3 views (transverse, coronal and sagittal). 

We visually examined the segmented GTV to confirm the GTV contour reasonably overlapped 

with contrast labelled tumor area. We also compared the GTV contour based on the segmentation 

method described in this work to that based on in-house developed iterative approach proposed in 

our previous publication (3) (Fig. S4). The Dice coefficient of the segmented GTV from these two 
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methods is 0.88 ± 0.03 (n = 3). The deviation of CoMs and volumes of the segmented GTV 

retrieved from both methods is 0.14 ± 0.11 mm and 0.6 ± 0.9 mm3 (n = 3), respectively. This result 

suggested that our GBM volume determination is robust and our end-results (Figs. 4F, 5B and 6E) 

are unlikely depending on different segmentation methods. Because there is significant amount of 

labor work involved and the segmentation is pertained to single viewing direction for our 

previously published method, we chose the 3D Slicer approach for the GTV segmentation in this 

work.  

5. Immuno-histochemical staining 

γ-H2AX assay reflects the presence of DNA double-strand breaks (4). We used the γ-H2AX 

assay to detect the γ-H2AX foci in 2D brain tissue section to identify the irradiation area introduced 

by the QBLT-guided RT, and 4’, 6-diamidino-2-phenylindole (DAPI) staining to visualize cell 

nuclei. 

The mouse brain was excised within one hour after irradiation, and the brain was infused in 

10% buffered formalin for 24 hours at room temperature. The fixed brain was sent to the Johns 

Hopkins Oncology Tissue Service Center for paraffin embedding and sectioning at 4-μm intervals. 

 

Figure S4. (A-B) show a representative result of GTV segmentation from the contrast CBCT 

image based on the 3D Slicer method and our previously published method (3), respectively. 

The contours in (A) and (B) indicate the segmented GTV. (C) shows the overlap of segmented 

GTVs from (A) and (B). 
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For γH2AX staining, we deparaffinized and rehydrated the sections in sequence of  “5 min Xylene 

(Fisher Chemical, Fisher Scientific, Fair Lawn, NJ), 5 min Xylene, 3 min 100% EtOH (Pharmco, 

Greenfield Global, Brookfield, CT), 3 min 100% EtOH, 3 min 95% EtOH, 3 min 95% EtOH, 3 

min 70% EtOH, 3 min 50% EtOH and 5 min distilled water”. To retrieve all of antigens (including 

γH2AX and nonspecific binding sites) on the sections, we submerged the sections into 10-mM 

citrate buffer (Dako, Carpinteria, CA) at pH 6 and steamed them for 45 minutes at 95 °C. To block 

nonspecific binding sites for ensuring the binding of primary antibodies to γ-H2AX foci, we 

applied 4% bovine serum albumin (Sigma Life Science, Sigma-Aldrich, St. Louis, MO) to the 

sections for 30 min. After the preprocessing procedures, the section was incubated with primary 

antibody (Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb, 1:500, Cell Signaling 

Technology, Danvers, MA) against phosphorylated γH2AX over night at 4 °C, and followed by 

the secondary antibody (Alexa Fluor 594 goat anti-rabbit IgG (H+L), 1:500, Life Technologies 

Corporation, Eugene, Oregon) for 1 hour at room temperature. The brain section was 

counterstained with DAPI for 30 minutes. After dripping antifade medium Vectashield (Vector 

Laboratories, Burlington, ON, Canada) to the sections, we mounted coverslips onto the sections. 

The edges of coverslips were sealed with clear nail polish. 

The stained brain section was visualized by fluorescent imaging with a 10x objective on a high-

content imager (ImageXpress Micro, Molecular Devices, San Jose, CA). Excitation/emission 

filters were set at 377/447 and 590/617 nm for nuclei and γ-H2AX foci labels, respectively. We 

used the imager to acquire sub images (2.6 μm/pixel) of the tissue section, and then combined the 

sub images to generate an image of the whole tissue section.  
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