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Abstract. The railway sleeper is an important part of the railway track system, which distributes 

the wheel load to the substructure. The prestressed concrete sleeper is the most commonly used 

type around the world, which is usually designed for 50 years of service life. Prestressed 

concrete sleepers experience various environmental and loading conditions. Meanwhile, the 

material properties degrade with time. The premature failures of prestressed concrete sleepers 

could happen and result in a series of problems especially cracking. Tensile strength of 

prestressed concrete sleeper is much lower than compressive strength like other concrete 

structures. During service, impact loads could cause cracking in rail-seat or centre area of a 

prestressed concrete sleeper. Therefore, it is important to understand tensile stress at different 

prestressed levels. This paper presents a tensile stress assessment method for prestressed 

concrete sleepers. The outcomes of this paper will improve the concrete sleeper maintenance 

and inspection criteria. 

Keywords: Railway infrastructures; Prestressed concrete; Bursting effects; Tensile stress; 
cracking.  

1. INTRODUCTION 

Nowadays, railway is believed the safest form of transportation for either passengers or 

goods, which provides the safe, economical, and comfort ride of trains (Remennikov et al., 

2012). Conventional railway track (also called ‘ballasted railway track’) can be divided into 
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two main parts: superstructure and substructure. Superstructure consists of rails, rail pads, 

prestressed concrete sleepers, fastening systems. Substructure includes ballast, sub-ballast, and 

formation (subgrade). The typical conventional railway track structure is illustrated in Figure 

1. 

 

Figure 1. Typical conventional railway track 

Railway sleepers (or called ‘railroad ties’) are the main component of railway track structures 

(Gustavson, 2004; Kaewunruen & Remennikov, 2009a, 2009b; Kaewunruen et al., 2014; 

Remennikov & Kaewunruen, 2007; Remennikov et al., 2012). Concrete sleepers can be seen 

as concrete transverse beam laying on ballast. Railway sleepers can also be manufactured 

using timber and steel. However, prestressed concrete sleepers are the most commonly used 

type because of their high load carrying capacity, stability, and low maintenance costs.  

In general, the life span of prestressed concrete sleepers is designed to be 50 years. However, 

many prestressed concrete sleepers do not reach their expected life span due to damage or 

deterioration (Remennikov & Kaewunruen, 2014; Thun, 2006). The most critical problems 

related to concrete sleepers worldwide are ranked in Table 1 according to a survey conducted 

by Van Dyk (Van Dyk et al., 2012). It is obvious that cracking from dynamic loads is a 

significant problem in concrete sleepers. Cracking in prestressed concrete sleepers is usually 

caused by impact loads (Murray & Cai, 1998). When trains run at high speed and with heavy 

haul, the rail-wheel interactions can induce much higher magnitude of loads than simple quasi-

static loads (Remennikov & Kaewunruen, 2008). The typical magnitude of impact loads can 

vary between 100kN and 750kN. The midspan and rail-seat section of railway sleepers are the 

most likely sections for cracking to occur (Montalbán Domingo et al., 2014).  

This paper aims to investigate the crack behaviour of prestressed concrete sleepers. The 

tensile stresses inside prestressed concrete sleepers at midspan is analysed. In this paper, a 
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numerical study is rigorously executed to comprehensively assess the structural performance 

of prestressed concrete sleepers. The finite element sleeper model was developed and validated 

by the capacity experiment (Jing et al., 2021; Li et al., 2021). 

Table 1. Most critical causes of concrete sleeper failures (ranked from 1 to 8, with 8 being 

the most critical) 

Main causes Problems Worldwide response 

Lateral load Abrasion on rail-seat 

Shoulder/fastening system wear or 

fatigue 

3.15 

5.5 

Vertical dynamic load Cracking from dynamic loads 

Derailment damage 

Cracking from centre binding 

5.21 

4.57 

5.36 

Manufacturing and 

maintenance defects 

Tamping damage 

Others (e.g., manufactured defects) 

6.14 

4.09 

Environmental 

considerations 

Cracking from environmental or 

chemical degradation 

4.67 

 

2. NUMERICAL MODEL 

2.1. Fracture Analysis and Methods 

Cracks happen in a component due to imperfections. These imperfections can result from 

inclusions, grain boundary mismatches, differential thermal expansion or any other 

mechanisms. The growth of a crack throughout the volume of the structure could result in 

failure.  

In crack simulations, fracture toughness replaces the material strength in fracture 

calculations. The stress intensity factor (SIF) which determines the fracture toughness subject 

to linear-elastic fracture mechanics (LEFM) is a function of the stress on the flaw, flaw size, 

and structural geometry. The stress intensity factor can be calculated by: 

 𝐾𝐼𝐶 = 𝜎𝛽√𝜋𝛼                    (1) 



 4 

where 𝜎  is the applied stress; 𝛽  is the dimensionless correction factor dependent on 

specimen geometry; and 𝛼 is the crack length. 

2.2. Crack Simulation Methods 

The extended finite element method (XFEM) is often used in fracture simulation, without 

updating the mesh, instead of traditional cohesive zone modelling (CZM) (Bergara et al., 2017). 

The extended finite element method eliminates the need for remeshing crack tip regions and it 

defines an extended finite element enrichment area around a crack tip and in regions where it 

is plausible that the crack tip might grow (Ansys, 2018). In this way, a finer mesh is created by 

splitting existing cells instead of remeshing. However, the enrichment area usually takes a long 

time to compute, and so in large projects with large enrichment areas, the simulation becomes 

very slow.  

The new Unstructured Mesh Method (UMM) in Ansys mechanical was introduced to 

generate mesh on crack fronts. With the Unstructured Mesh Method, all-tetrahedral mesh for 

crack fronts can be generated automatically which reduces pre-processing time. Based on the 

Unstructured Mesh Method, the Separating Morphing and Adaptive Remeshing Technology 

(SMART) crack growth simulation was developed. This method automatically updates the 

mesh according to crack-geometry changes due to crack growth at each solution step instead of 

using the enrichment area derived from XFEM (Ansys, 2018; Kulakov et al., 2021). The 

SMART crack simulation can be applied in large projects, unlike XFEM.  

2.3. Finite Element Sleeper Model 

In this paper, a 2600-mm long Chinese Type III prestressed concrete sleeper with 7mm 

diameter tendons (Figure 2) is utilised in the crack simulation. This type of railway sleeper, 

which is an integrated concrete block using pre-tensioning technology, is widely used in China. 

The material properties are shown in Table 2. Modelling is performed a model which is as close 

to the actual sleeper as possible.  
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Figure 2. Geometrical features of the prestressed concrete sleeper 

Table 2. Material properties of the prestressed concrete sleeper 

Material properties Basic variables Value 

Concrete 

Mean compressive strength 65MPa 

Modulus of elasticity 33GPa 

Prestressed wire 

Yield strength 1570MPa 

Modulus of elasticity 200GPa 

Prestressing force 420kN 
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2.4. Crack Model 

An experimental study investigated crack propagation in the Chinese Type III prestressed 

concrete sleeper. The static capacity test of the railway sleeper was executed in accordance with 

EN 13230-2 (Standardization, 2009). Using the experimental procedure, the crack propagation 

of prestressed concrete sleepers under capacity experiment is simulated. Figure 3 presents the 

simulation of crack propagation in the sleeper model at midspan.  

 

Figure 3. Simulation of crack propagation in the sleeper model at midspan 

The comparison of the numerical and experimental results on crack propagation is presented 

in Figure 4. Numerical model basically simulated the crack propagation in comparison with the 

experimental results. In the simulation, the numerical model has a good correlation with the 

initial crack point and ultimate crack point, with the difference being only 6.31% and 4.34% 

respectively.  
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Figure 4. Comparison of the crack propagation in the numerical and experimental results 
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3 RESULTS AND DISCUSSION 

Using the crack model in section 2, the tensile stresses of the prestressed concrete sleeper 

can be illustrated in Figure 5 for crack propagation at midspan. Figure 5 presents the bursting 

effects of prestressed concrete sleepers at midspan.  
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Figure 5. Tensile stresses of prestressed concrete sleepers 

4 CONCLUSIONS 

Cracking from dynamic loads at midspan is one of the most common forms of railway 

sleeper damage in conventional tracks. The challenge for railway engineers is to improve the 

performance of railway sleepers to fulfil crack resistance requirements. In this study, numerical 

and experimental investigations into the bursting effects of prestressed concrete sleepers were 

conducted. A full-scale model of Chinese Type III prestressed concrete sleepers was modelled 

and validated. The outcome of this paper will enhance the reliability and safety of track 

components, and railway sleeper manufacturers could use the numerical model to assess their 

product designs. 
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