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Abstract
Let k be an algebraically closed field of characteristic p > 2. Let G be one of
the classical algebraic groups GLn(k), SLn(k), Spn(k), On(k) or SOn(k), and let
g = LieG. We determine the maximal G-stable closed subvariety V of the nilpotent
cone N of g such that the G-orbits in V are in bijection with the G-orbits of sl2-
triples (e, h, f ) with e, f ∈ V . This result determines to what extent the theorems
of Jacobson–Morozov and Kostant on sl2-triples hold for classical algebraic groups
over an algebraically closed field of “small” odd characteristic.

Keywords Lie algebras · Algebraic groups · sl2-triples · Positive characteristic

Mathematics Subject Classification (2010) 17B10 17B20 17B50

1 Introduction

The theory of sl2-triples has been a key tool in the study of nilpotent orbits in the Lie
algebra g of a reductive algebraic group G over C. This theory is underpinned by the
famous theorems of Jacobson–Morozov, [10, Theorem 2] and [4, Theorem 3], and
Kostant, [8, Theorem 3.6]. These theorems combine to show that any nilpotent e ∈ g

can be embedded in an sl2-triple (e, h, f ) in g, which is unique up to the action of
the centralizer of e in G.

Subsequently there was a great deal of interest in extending the theorems of Jacobson–
Morozov and Kostant to the setting of a reductive algebraic group G over an alge-
braically closed field k of characteristic p > 2. Recently the problem of determining
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under what restriction on p the theorems of Jacobson–Morozov and Kostant remain
true was solved in the work of Stewart–Thomas. To state this result we let g = LieG

and let N denote the nilpotent cone of g. In [17, Theorem 1.1] it is shown that there
is a bijection

{G-orbits of sl2-triples in g} −→ {G-orbits in N } (1)

sending the G-orbit of an sl2-triple (e, h, f ) to the G-orbit of e if and only if p >

h, where h is the Coxeter number of G. A notable earlier result of Pommerening
established the existence of sl2-triples containing a given e ∈ N under the hypothesis
that p is good for G, see [11, §2.1]. We also mention that earlier bounds on p for
there to be a bijection as in (1) were as follows: p > 4h − 3 given by Springer–
Steinberg in [16, III.4.11]; and p > 3h − 3, given by Carter, using an argument of
Spaltenstein, in [1, Section 5.5].

It is a natural question to consider to what extent the map from the set of G-orbits
of sl2-triples (e, h, f ) with e, f ∈ N to the set of G-orbits inN sending the G-orbit
of an sl2-triple (e, h, f ) to the G-orbit of e fails to be a bijection in the case where
p ≤ h. A key problem is to determine the maximal G-stable closed subvarieties V of
N such that the restriction of this map to

{G-orbits of sl2-triples (e, h, f ) with e, f ∈ V} −→ {G-orbits in V} (2)

is a bijection. In this paper we solve this problem for the cases where G is one of
GLn(k), SLn(k), Spn(k), On(k) or SOn(k). We determine a maximal subvariety V
of N such that the map in (2) is a bijection, and observe that V is in fact the unique
maximal such subvariety. We note that it is possible to give a general argument to
prove that V is unique, see Remark 2.3.

Our main theorem is stated in Theorem 1.1. First we give some notation required
for its statement.

Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k), where we assume n

is even in the Spn(k) case. The Jordan normal form of any element inN corresponds
to a partition λ of n, we recall that this uniquely determines a G-orbit inN , except in
the case whereG = SOn(k) and λ is a very even partition, for which there are twoG-
orbits. We recall the parametrization of G-orbits in N in more detail in Section 2.2,
and for now just mention that we use the notation x ∼ λ to denote that the partition
of n given by the Jordan normal form of x is λ. The subvarieties of N required for
the statement of Theorem 1.1 are

N p−1 := {x ∈ N | xp−1 = 0}, (3)

and
1N p := {x ∈ N | x ∼ (λ1, λ2, . . . , λm), λ1 ≤ p, λ2 < p}. (4)

Theorem 1.1. Let k be an algebraically closed field of characteristic p > 2. Let
(G, g,V) be one of the following.

(a) G = GLn(k), g = gln(k), V = N p−1,
(b) G = SLn(k), g = sln(k), V = N p−1,
(c) G = Spn(k), g = spn(k), V = N p−1,
(d) G = On(k), g = son(k), V = 1N p,
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(e) G = SOn(k), g = son(k), V = 1N p.

Then the map

{G-orbits of sl2-triples (e, h, f ) with e, f ∈ V} −→ {G-orbits in V} (5)

given by sending theG-orbit of an sl2-triple (e, h, f ) to theG-orbit of e is a bijection.
Moreover, V is the unique maximal G-stable closed subvariety of N that satisfies
this property.

As we frequently consider G-stable closed subvarieties V of N such that the map
in (5) is a bijection, we introduce a shorthand for such varieties, and say that such a
variety satisfies the sl2-property. Then Theorem 1.1 determines the unique maximal
G-stable closed subvariety V of N that satisfies the sl2-property. Or in other words
it states that for e ∈ V , there exists a unique sl2-triple (e, h, f ) in g with f ∈ V up to
conjugacy by the centralizer of e in G, and moreover, V is maximal with respect to
this property.

We remark that the variety V in Theorem 1.1 is equal to N if and only if p > h.
With a small argument to show that, for p > h, any sl2-triple (e, h, f ) in g satisfies
e, f ∈ N , the classical cases in [17, Theorem 1.1] can be deduced.

We mention that Theorem 1.1 can be used to deduce a result about G-completely
reducible subalgebras of g isomorphic to sl2(k). We do not go into details here and
just say that Theorem 1.1 can be used to show that if a subalgebra s ∼= sl2(k) of g has
basis {e, h, f } such that e, f ∈ V , then s is G-completely reducible; and moreover, V
is maximal for this property. We refer to the introduction of [17] for some discussion
and references on G-complete reducibility. We also mention a connection with the
theory of good A1-subgroups as introduced in the work of Seitz in [14], see also
the theory of optimal SL2-homomorphisms in the work of McNinch in [9]. Using
Theorem 1.1 it can be shown that if a subalgebra s ∼= sl2(k) of g has basis {e, h, f }
such that e, f ∈ V , then s = Lie S for some goodA1-subgroup S ofG; and moreover,
V is maximal with respect to this property.

The theory of standard sl2-triples as introduced by Premet–Stewart in [13, §2.4] is
discussed in Section 2.3, and is used for part of our proof of Theorem 1.1. As a conse-
quence of this theory it can be deduced that the sl2-triples occurring in Theorem 1.1
are all standard sl2-triples. Also it can be used to show that there is a unique maximal
G-stable closed subvariety of N satisfying the sl2-property, see Remark 2.3.

In future work we intend to investigate the problem of determining maximal V ⊆
N satisfying the sl2-property in the case G is of exceptional type. We also mention
that one may consider analogous problems for sl2-subalgebras rather than sl2-triples.
For example in [17, Theorem 1.3], precise conditions are given for there to be a
bijection between G-orbits in N and G-orbits of sl2-subalgebras.

We give a summary of the structure of this paper, in which we outline the ideas in
our proof of Theorem 1.1.

In Section 2.1, we recall some required representation theory of sl2(k), and give
some notation. Then in Section 2.2 we recap the parametrization of nilpotent orbits
for classical groups, and also recall the closure order on these orbits. In Section 2.3,
we discuss the theory of standard sl2-triples, from which we deduce that if V satisfies
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the sl2-property, then V is a subvariety of the restricted nilpotent cone N p := {x ∈
g | xp = 0}, see Proposition 2.2. In Section 2.4 we consider sl2-triples for the
case G = SLp(k), and recall a known result that for e ∈ N with e ∼ (p) there
are multiple sl2-triples (e, h, f ) up to conjugacy by SLp(k). This can be used to
show that if V satisfies the sl2-property, then V cannot contain a nilpotent element
that is regular in a Levi subalgebra of g whose derived subalgebra is slp(k), see
Proposition 2.4. It turns out that Propositions 2.2 and 2.4 are precisely what is needed
to prove the maximality of the subvarieties V in Theorem 1.1.

In Section 3 we consider the cases where G is GLn(k) or SLn(k). For the case
G = GLn(k), we consider the algebraA := U(sl2(k))/〈ep−1, f p−1〉, and use thatA
is a semisimple algebra to prove that V = N p−1 has the sl2-property in Corollary 3.9.
The semisimplicity of A is given by a theorem of Jacobson, [5, Theorem 1], see also
[1, Theorem 5.4.8], though we provide an alternative proof of this. Our proof involves
determining a lower bound for dim(A/ radA) and an upper bound for dimA, which
are equal, and from this we can deduce that Jacobson radical ofA is zero. We are then
able to complete the proof of Theorem 1.1(a) by noting that Proposition 2.4 implies
maximality of N p−1 satisfying the sl2-property. In Section 3.4 we explain that the
case G = SLn(k) in Theorem 1.1(b) follows quickly.

In Section 4 we consider the cases where G is one of Spn(k), On(k) or SOn(k). A
useful result for us is Lemma 4.1, which states that two sl2-triples in spn(k) (respec-
tively n(k)) are conjugate by an element of GLn(k) if and only if they are conjugate
by an element of Spn(k) (respectively On(k)). Using Lemma 4.1 and Theorem 1.1(a)
we are able to quickly show that for G = Spn(k) or On(k), we have that N p−1

satisfies the sl2-property. Then for G = Spn(k) we complete the proof of Theo-
rem 1.1(c) by using Propositions 2.2 and 2.4 to deduce maximality. We move on to
deal with the case G = On(k) in Section 4.2, where more work is needed to consider
the case where e ∼ λ = (λ1, . . . , λm) such that λ1 = p, λ2 < p. This requires a
detailed analysis of certain sl2(k)-modules, which is completed in the proof of Propo-
sition 4.5. This proposition shows that V = 1N p−1 does satisfy the sl2-property. We
then deduce maximality of V similarly to the previous cases to complete the proof
of Theorem 1.1(d). We are left to deduce Theorem 1.1(e) which is done in Proposi-
tion 4.6. The key step in the proof of this proposition is to observe that the splitting
of On(k)-orbits of sl2-triples (e, h, f ) in son(k) with e, f ∈ N into SOn(k)-orbits
lines up exactly with the splitting of On(k)-orbits in N into SOn(k)-orbits.

2 Preliminaries

Throughout the rest of this paper k is an algebraically closed field of characteristic
p > 2. All algebraic groups and Lie algebras we work with are over k. The prime
subfield of k is denoted by Fp. We use the notation s = sl2(k).

2.1 sl2-Triples and Some Representation Theory of sl2(k)

We recall the definition of an sl2-triple in a Lie algebra g. We say that (e, h, f ) is
an sl2-triple in g if e, h, f ∈ g and [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. In
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other words an sl2-triple in g is the image of the standard ordered basis (e, h, f ) of
s = sl2(k) under a homomorphism s → g. We note that there is a conflict of notation
in that we are using e, h and f to denote both elements of the standard basis of s,
and also elements of g. This abuse of notation does not tend to cause confusion, so
we allow it in this paper.

We give some notation for s-modules and related sl2-triples that is used in this
paper. Given an s-module M and x ∈ s, we write xM ∈ gl(M) to denote the linear
transformation given by the action of x on M . Then we have that (eM, hM, fM) is
an sl2-triple in gl(M), and in fact lies in sl(M) as s is equal to its derived subalgebra
and sl(M) is the derived subalgebra of gl(M).

We next recall some aspects of the representation theory of s that we require later.
This involves explaining the classification of simple s-modules on which e and f act
nilpotently, and some information about extensions between these simple modules.
The reader is referred to [6, Section 5] for more details, and an explanation of the
classification of all simple s-modules, though our notation is a bit different.

As above we write {e, h, f } for the standard basis of s. Then the universal envelop-
ing algebra U(s) of s has PBW basis {eahbf c | a, b, c ∈ Z≥0}. The p-centre of U(s)

is the subalgebra of the centre of U(s) generated by {ep, hp − h, f p}, and is in fact
the polynomial algebra generated by these elements.

Given any simple U(s)-module M the linear transformations e
p
M , h

p
M − hM and

f
p
M must act as scalars by Quillen’s Lemma. Thus if eM and fM act nilpotently,

then e
p
M = 0 and f

p
M = 0. Therefore, the simple modules for U(s) on which e

and f act nilpotently are precisely the modules for U�,0(s) := U(s)/〈ep, f p〉. In
fact there exists d ∈ k such that M is a module for the reduced enveloping algebra
Ud,0(s) := U(s)/〈hp −h−dp, ep, f p〉. Since hp −h, ep and f p lie in the centre of
U(s) we see that U�,0(s) has basis {eahbf c | a, b, c ∈ Z≥0, a, c < p} and Ud,0(s)

has basis {eahbf c | a, b, c ∈ Z≥0, a, b, c < p}.
Let b := kh⊕ke, which is a Borel subalgebra of s. Define U�,0(b) := U(b)/〈ep〉.

For d ∈ k, the 1-dimensional U�,0(b)-module k1d is defined by e · 1d := 0
and h · 1d := d1d . Then the baby Verma module Z(d) is defined as Z(d) :=
U�,0(s)⊗U�,0(b)k1d and has basis {vi := f i ⊗1d | i ∈ {0, . . . , p−1}}. The elements
of s act on this basis as

h · vi = (d − 2i)vi

e · vi =
{
0 if i = 0

i(d − i + 1)vi−1 if i > 0

f · vi =
{

vi+1 if i < p − 1

0 if i = p − 1.

Thus, by using that any submodule of Z(d) contains a vector that is killed by e, it can
be seen that Z(d) is simple unless d ∈ Fp \ {p − 1}. Further, for d ∈ Fp, we have
that Z(d) has a unique simple quotient V (d) of dimension d + 1, where we identify
Fp = {0, 1, . . . , p −1} ⊆ Z to make sense of this dimension. This determines all the
simple U�,0(s)-modules on which e and f act nilpotently.



S.M. Goodwin, R. Pengelly

For c, d ∈ {0, 1, . . . , p − 2}, it is known that
Ext1s(V (c), V (d)) = 0 except in the case d = p − c − 2, (6)

see for example [17, Lemma 2.7]. We note that it is well-known that the action of
the Casimir element, which lies in the centre of U(s), can be used to show that
Ext1s(V (c), V (d)) = 0 for d �= c, p−c−2. Also we note that Ext1s(V (d), V (d)) = 0
can be deduced fairly quickly from Corollary 3.7, for d ∈ {0, 1, . . . , p − 2}.

2.2 Nilpotent Orbits for Classical Groups

Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k) (where we assume n is
even in the Spn(k) case), let g = Lie(G) and let N be the nilpotent cone of g. We
give an overview of the well-known parametrization of G-orbits in N in terms of
Jordan types, for more details we refer the reader to [7, Section 1].

In this paper by a partition we mean a sequence λ = (λ1, λ2, . . . , λm) of positive
integers λi such that λi ≥ λi+1 for i = 1, . . . , m − 1; we have the convention that
λi = 0 for i > m. We say that λ is partition of λ1 +λ2 +· · ·+λm. We sometimes use
superscripts to denote multiplicities in partitions, so for example may write (32, 2, 13)
as a shorthand for (3, 3, 2, 1, 1, 1). For a partition λ and i ∈ Z>0, we define mi(λ) to
be the multiplicity of i in λ. Given partitions λ and μ we define λ|μ to be the partition
with mi(λ|μ) = mi(λ) + mi(μ) for all i ∈ Z>0

Let x ∈ N . Then x has a Jordan normal form, which determines a partition λ of
n. We refer to λ as the Jordan type of x and write x ∼ λ. We also use the notation
λ(x) to denote the Jordan type of x.

It is well-known that in the cases G = GLn(k) or G = SLn(k), the G-orbits inN
are parameterized by their Jordan type. Also in the cases G = Spn(k) or G = On(k)

the G-orbits in N are parameterized by their Jordan types, and the Jordan types that
can occur are known explicitly. For a partition λ of n, there is a nilpotent element
x ∈ spn(k) (respectively son(k)) with Jordan type λ if and only if mi(λ) is even for
all odd i (respectively mi(λ) is even for all even i). To describe the parametrization
in the case G = SOn(k), we note that the On(k)-orbit of x ∈ N is either a single
SOn(k)-orbit, or splits into two SOn(k)-orbits. The former occurs if the centralizer
of e in On(k) contains an element of On(k) \ SOn(k) whilst the latter occurs if
the centralizer of e in On(k) is contained in SOn(k). The centralizer of e in On(k)

is contained in SOn(k) precisely when all parts of λ are even; such partitions are
referred to as very even as all parts are even and have even multiplicity.

We recall the partial ordering on the set of partitions called the dominance order.
Given partitions λ and μ we write μ  λ if

r∑
i=1

μi ≤
r∑

i=1

λi for all r ∈ Z>0.

We next state a theorem essentially due to Spaltenstein, which shows that the closure
order on nilpotent orbits is determined by the dominance order on partitions. In the
statement we use the notationOλ for theG-orbit inN of elements with Jordan type λ.
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Theorem 2.1. Let G be one of GLn(k), SLn(k), Spn(k) or On(k). Let λ and μ be
partitions of n that parameterize aG-orbit inN . ThenOμ ⊆ Ōλ if and only ifμ  λ.

To explain why this theorem holds, we first note that there is a Springer isomor-
phism from the variety U of unipotent elements in G to N ; that is a G-invariant
isomorphism of varieties U ∼−→ N . We refer for example to [3, §6.20] for a state-
ment on existence of Springer isomorphisms and note also that explicit examples
of Springer isomorphisms for GLn(k), SLn(k), Spn(k) and On(k) are given there.
A result of Spaltenstein, [15, Theoreme 8.2], establishes that the dominance order
on partitions determines the closure order for the unipotent classes; we refer also to
[1, Section 13.4], where this result of Spaltenstein is covered. Thus Theorem 2.1 can
be deduced using a Springer isomorphism.

We note that the closure order on the nilpotent orbits for the case G = SOn(k) is
also covered in the result of Spaltenstein. Here we have that if λ and μ are distinct
partitions of n that parameterize G-orbits Oμ and Oλ in N , then Oμ ⊆ Ōλ if and
only if μ  λ. In the case where λ is a very even partition, then the two nilpotent
orbits corresponding to λ are incomparable. We note that this can also quickly be
deduced from the G = On(k) case with a key step being to note that if λ and μ

are both very even, then there exists some not very even partition κ parameterizing a
nilpotent On(k)-orbit such that μ  κ  λ.

2.3 Standard sl2-Triples

Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k) (where we assume n is
even in the Spn(k) case), let g = Lie(G) and let N be the nilpotent cone of g. We
recall that the p-power map on g is given by taking the pth power of a matrix, so we
just write this as x �→ xp.

We discuss standard sl2-triples as introduced by Premet–Stewart in [13, §2.4]. This
theory of standard sl2-triples is based on the theory of optimal cocharacters associ-
ated with nilpotent elements developed by Premet in [12, Section 2]. We note that
the material in [13, §2.4] is stated only for the case G is a simple group of excep-
tional type, and that some of [12, Section 2] works under the assumption that the
derived subgroup of G is simply connected and there is a non-degenerate G-invariant
symmetric bilinear from on G. However, the results that we cover go through in our
setting, see for instance the arguments given in [12, §2.3]. On the other hand the
results we state below can be proved more generally to cover groups of exceptional
type, but this requires some modification to our arguments.

We recap the construction of standard sl2-triples given in [13, §2.4]. Let e ∈ N and
let τ : k× → G be an optimal cocharacter for e, where by optimal we mean optimal
in terms of the Kempf-Rousseau theory as explained in [12, §2.2]. By [12, Theorem
2.3], we may, and do, choose τ so that τ(t) · e = t2e. Let hτ := dτ(1) ∈ g, then we
have [hτ , e] = 2e. Let Ge be the centralizer of e in G, let CG(τ) be the centralizer
of τ in G, and let Ce := Ge ∩ CG(τ). Let T e be a maximal torus of Ce and let
L := CG(T e). Then L is a Levi subgroup such that e is distinguished nilpotent in
the Lie algebra l′ of the derived subgroup L′ of L, that is, the only Levi subalgebra
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of l′ containing e is l′ itself. As explained in [13, §2.4] there is a unique f ∈ l′ such
that (Ad τ(t))f = t−2f for all t ∈ k×, and [e, f ] = hτ . An sl2-triple of the form
(e, hτ , f ) is called a standard sl2-triple.

Let (e, hτ , f ) be a standard sl2-triple in g. It is shown in [13, §2.4], that we have
f p = 0, and also that if ep = 0, then e is conjugate to f by G. The first of these
facts is shown by noting that f p centralizes e and (Ad τ(t))f p = t−2pf p, but τ has
positive weights on ge. The second is proved by using that {e, hτ , f } spans the Lie
algebra of a connected subgroup of G of type A1.

Since f p = 0 we can consider exp(sf ) ∈ G for s ∈ k, see for example the start
of the proof of [13, Proposition 2.7]. Let N (e, h, f ) := {ae + bh + cf | a, b, c ∈
k, b2 = −ac} denote the image of the nilpotent cone of s = sl2(k) in g. Standard
calculations show that by conjugating e by τ(t) for t ∈ k× and then by exp(sf ) ∈ G

for s ∈ k, we obtain that

N (e, h, f ) \ kf = {t2(e − sh − s2f ) | t ∈ k×, s ∈ k} ⊆ (AdG)e. (7)

It thus follows that f ∈ (AdG)e and so (AdG)f ⊆ (AdG)e.
Now suppose that ep �= 0. We can also find a standard sl2-triple (f, hτ ′ , e′). Since

f p =0, we have that e′ is conjugate to f , so that (e′)p =0, and thus e′ is not conjugate
to e by G. Hence, the sl2-triples (f, −h′, e′) and (f, −h, e) are not conjugate by G.

Suppose now that V ⊆ N is a G-stable closed subvariety that contains e, and
thus also contains f and e′, because (AdG)e′ = (AdG)f ⊆ (AdG)e. Then we
see that the map in (5) is not injective by considering the G-orbits of (f, −h′, e′)
and (f, −h, e), which are distinct, and both map to the G-orbit of f . This argument
implies the following proposition, where in the statement we use the notationN p :=
{x ∈ g | xp = 0}.

Proposition 2.2. Let V ⊆ N be a G-stable closed subvariety that satisfies the sl2-
property. Then V ⊆ N p.

Remark 2.3. We explain how Proposition 2.2 can be used to give a general argument
to prove that there is a unique maximal G-stable closed variety V of N that satisfies
the sl2-property.

Suppose that V and V ′ are two such maximal G-stable closed subvarieties of N .
We consider V ∪ V ′, which is a G-stable closed subvariety of N , and it suffices to
show that it satisfies the sl2-property. Let (e, h, f ) and (e, h′, f ′) be sl2-triples in
g with e, f, f ′ ∈ V ∪ V ′. Without loss of generality we assume that e ∈ V . By
Proposition 2.2, we have that V ∪ V ′ ⊆ N p, and thus f ∈ N p so that f p = 0.
Thus we can apply the exponentiation argument above to obtain (7), and deduce that
f ∈ V . Similarly we can deduce that f ′ ∈ V . Hence, as V satisfies the sl2-property,
we have that (e, h, f ) and (e, h′, f ′) are conjugate by G. Therefore, we have that
V ∪ V ′ satisfies the sl2-property as required.

2.4 sl2-Triples for SLp (k)

We consider sl2-triples for SLp(k) and recap the known result that for the case e ∼
(p) there are multiple sl2-triples (e, h, f ) in slp(k) up to conjugacy by SLp(k). We
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present just two non-conjugate such sl2-triples, but note that by using the baby Verma
module as described in Section 2.1, it can be shown that there is an infinite family
of non-conjugate such sl2-triples. In Proposition 2.4 we explain how this restricts the
possible subvarieties V of N that satisfy the sl2-property. We use the notation from
Section 2.1 throughout this subsection.

We let (e0, h0, f ) := (eZ(0), hZ(0), fZ(0)) be the sl2-triple in gl(Z(0)) determined
by the baby Verma module Z(0). We view (e0, h0, f ) as an sl2-triple in slp(k) using
the basis of Z(0) given in Section 2.1. Similarly there is an sl2-triple (ep−1, hp−1, f )

in slp determined by the baby Verma moduleZ(p−1) and the basis ofZ(p−1) given
in Section 2.1. We note that the f in these sl2-triples is the same, and that e0 ∼ (p −
1, 1) and ep−1 ∼ (p). Therefore, the sl2-triples (e0, h0, f ) and (ep−1, hp−1, f ) are
not conjugate by SLp(k), and thus the sl2-triples (f, −h0, e0) and (f, −hp−1, ep−1)

are not conjugate by SLp(k). We note here that this implies that V = N does not
satisfy the sl2-property for the case G = SLp(k), as the SLp(k)-orbits of the sl2-
triples (f, −h0, e0) and (f, −hp−1, ep−1) are distinct, and map to the same SLp(k)-
orbit under the map in (2).

Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k). Suppose that G has a
Levi subgroupLwhose derived subgroupL′ is isomorphic to SLp(k). By identifying
the Lie algebra l′ of L′ with slp(k), we may consider the sl2-triples (e0, h0, f ) and
(ep−1, hp−1, f ) inside g. In the cases where G is one of GLn(k) or SLn(k), we have
that e0 ∼ (p −1, 1n−p+1), ep−1 ∼ (p, 1n−p) and f ∼ (p, 1n−p); whilst in the cases
G is one of Spn(k), On(k) or SOn(k), we have that e0 ∼ ((p−1)2, 1n−2p+2), ep−1 ∼
(p2, 1n−2p) and f ∼ (p2, 1n−2p). Thus we see that e0 is not conjugate to ep−1 by
G, and thus the sl2-triples (e0, h0, f ) and (ep−1, hp−1, f ) are not conjugate by G.
Therefore, the sl2-triples (f, −h0, e0) and (f, −hp−1, ep−1) are also not conjugate
by G. Hence, if V is a G-stable closed subvariety of N that contains f , then we see
that the map in (5) is not a bijection, so that V does not satisfy the sl2-property.

As a consequence of the above discussion we obtain the following proposition.

Proposition 2.4. Let G be one of GLn(k), SLn(k), Spn(k), On(k) or SOn(k), and
let V be a G-stable closed subvariety of N . Suppose that V contains an element of
Jordan type (p, 1n−p) (respectively (p2, 1n−2p)) if G is one of GLn(k) or SLn(k)

(respectively Spn(k), On(k) or SOn(k)). Then V does not satisfy the sl2-property.

We remark that a strengthening of Proposition 2.4 to incorporate groups of
exceptional type is also known, though we choose not to go into that here.

3 The General and Special Linear Groups

For the main part of this section we consider the case G = GLn(k) and work towards
proving Theorem 1.1(a). Then in Section 3.4 we consider the case G = SLn(k) and
deduce Theorem 1.1(b).

To prove Theorem 1.1(a) we work with the algebra

A := U(s)/〈ep−1, f p−1〉,
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where we recall that s = sl2(k). In Corollary 3.7 we see that A is semisimple, we
note that this is given by [5, Theorem 1], though we give an alternative proof.

We note that we write elements of A as linear combinations of monomials in e,
h and f , so there is a possibility of a conflict of notation with elements of U(s).
However, when considering elements, of U(s) or A, we ensure it is clear from the
context which algebra they are from.

3.1 Simple A-Modules and a Lower Bound for the Dimension of A

In the following lemma we give a set of pairwise non-isomorphic simple A-modules.
The simple s-modules V (d) in the statement of the lemma are as recalled in
Section 2.1.

Lemma 3.1. V (0), V (1), . . . ,V (p − 2) are pairwise non-isomorphic simple A-
modules.

Proof For 0 ≤ d ≤ p − 2, we have that ed+1 and f d+1 act as zero on V (d). Hence
ep−1 and f p−1 act as zero on V (d), thus V (d) is an A-module, and it is simple as
an A-module as it is simple as an s-module. For c �= d we have that V (c) and V (d)

have different dimensions, so are certainly not isomorphic.

In the following corollary we establish a lower bound for dim(A/ radA), where
radA denotes the Jacobson radical of A. We achieve this by applying Wedderburn’s
theorem to the semisimple algebra A/ radA. For background on the representation
theory used here we refer to [2, Sections 3 and 5].

Corollary 3.2. The dimension of A/ radA is greater than or equal to
∑p−1

i=1 i2.

Proof We have that A/ radA is semisimple and using Lemma 3.1 we have that V (0),
V (1), . . . , V (p − 2) are simple modules for A/ radA. From Wedderburn’s theorem
we deduce that

dim(A/ radA) ≥ dim(V (0))2 + dim(V (1))2 + · · · + dim(V (p − 2))2 =
p−1∑
i=1

i2.

3.2 A Spanning Set for A and an Upper Bound for the Dimension of A

We define the subsets

Sk := {f ahkec | a, c < p − 1 − k}
of A for each k < p − 1. The following proposition is proved at the end of this
subsection.

Proposition 3.3. S := ⋃p−2
k=0 Sk is a spanning set for A.
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We note that |Sk|= (p − 1 − k)2, thus |S|= ∑p−1
i=1 i2, which is equal to the lower

bound of A/ radA given in Corollary 3.2. Therefore, by combining Corollary 3.2 and
Proposition 3.3, we are able to deduce that S is a basis of A so dim(A) = ∑p−1

i=1 i2.
Further, we have that radA = 0, so that A is semisimple. Hence we have that
{V (0), V (1), . . . , V (p − 2)} is a complete set of inequivalent simple A-modules.
This is all stated in Corollary 3.7, and is then used to prove that N p−1 satisfies the
sl2-property in Corollary 3.9.

In order to show that S is a spanning set for A, we start with a lemma which gives
some relations in U(s).

Lemma 3.4. Within U(s), for any k ∈ Z>0, we have

(a) [ek, h] = −2kek ,
(b) [ek, f ] = khek−1 − k(k − 1)ek−1, and
(c) [hk, f ] ∈ span{f hi | i = 1, . . . , k − 1}.

Proof (a) We note that e is an eigenvector of adh with eigenvalue 2, so ek is an
eigenvector of adh with eigenvalue 2k. Thus [ek, h] = −2kek .

(b) We use a simple induction on k. For k = 1, we have [e, f ] = h. Suppose that
[ek, f ] = khek−1 − k(k − 1)ek−1. Then

[ek+1, f ] = [ek, f ]e + ek[e, f ] = khek − k(k − 1)ek + ekh.

From (a) we have that ekh = hek − 2kek , hence [ek+1, f ] is equal to
khek−k(k−1)ek+hek−2kek =(k+1)hek−(k2+k)ek =(k+1)hek−k(k+1)ek .

(c) Let b− := kf ⊕ kh, which is a Borel subalgebra of s. We have that [hk, f ]
is an element of U(b−), and has degree k for the PBW filtration. Also let τ :
k× → S = SL2(k) be the cocharacter such that Ad(τ (t))e = t2e, Ad(τ (t))

h = h and Ad(τ (t))f = t−2f . Then [hk, f ] is an eigenvector of adh with
eigenvalue −2. Then for the extension of the action of S on s to U(s), we see
that Ad(τ (t))[hk, f ] = t−2[hk, f ]. Thus by considering a PBW basis of U(b−)

we must have that [hk, f ] lies in the span of {f hi | i = 1, . . . , k − 1}.

We move on to prove a lemma giving spanning properties of the sets Sk . Before
stating and proving this lemma we explain, in the following remark, how we use an
antiautomorphism of U(s) to reduce the amount of work required.

Remark 3.5. Consider the antiautomorphism σ : U(s) → U(s) determined by

σ(e) = f, σ (h) = h, σ (f ) = e.

So for any a, b, c ∈ Z≥0 we have

σ(f ahbec) = σ(e)cσ (h)bσ (f )a = f chbea .

As σ stabilizes 〈ep−1, f p−1〉 it gives an automorphism of A, which we also denote
by σ . Using σ we have that for any relation in A we can find an equivalent relation
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where the powers of e and f are swapped. More precisely, if we have some ra,b,c ∈ k
such that

∑
a,b,c ra,b,cf

ahbec = 0, then

0 = σ

⎛
⎝∑

a,b,c

ra,b,cf
ahbec

⎞
⎠ =

∑
a,b,c

ra,b,cf
chbea .

Using this, we note that for any relation on elements of A written in the form of a
linear combination of monomials f ahbec, there is another relation determined by
swapping the powers of e and f . We also observe here that Sk is stable under σ for
all k.

Lemma 3.6. Let k ∈ Z≥0. Within A = U(s)/〈ep−1, f p−1〉, we have
(a) if k < p and either a ≥ p − 1− k or c ≥ p − 1− k, then f ahkec ∈ span(S0 ∪

· · · ∪ Sk−1), and
(b) if k ≥ p, then f ahkec ∈ span(S0 ∪ · · · ∪ Sp−2) for any a, c ≥ 0.

Proof We work by induction to show that for k ∈ Z≥0 with k < p, if a ≥ p − 1 − k

or c ≥ p − 1 − k, then f ahkec ∈ span(S0 ∪ · · · ∪ Sk−1).
Note that this is clear for k = 0, as ep−1 = 0 = f p−1 in A.
To demonstrate the argument we also cover the case k = 1. We just show that

f ahep−2 ∈ span(S0) for any a < p − 1 as then we have the analogue for f p−2hec

using Remark 3.5. We have ep−1 = 0, therefore using Lemma 3.4(b) we see

0 = [f aep−1, f ] = f a[ep−1, f ] = (p − 1)f ahep−2 − (p − 1)(p − 2)f aep−2

hence we have

f ahep−2 = −2f aep−2 ∈ span(S0),

and we are done.
Now let k ∈ Z≥0 with k < p. For our inductive hypothesis, we suppose that for

all i < k, if a ≥ p − 1 − i or c ≥ p − 1 − i, then f ahiec ∈ span(S0 ∪ · · · ∪ Si−1).
We first show that

f ahkep−1−k ∈ span(S0 ∪ · · · ∪ Sk−1) for any a < p − 1. (8)

In order to show this, we first consider some arbitrary x ∈ A and show that, if there
is some j ≤ k such that x ∈ span(S0 ∪· · ·∪Sj ), then [x, f ] ∈ span(S0 ∪· · ·∪Sj+1).
It is enough to show that [f ahj ec, f ] ∈ span(S0 ∪ · · · ∪ Sj+1) for any j ≤ k,
a, c < p − 1 − j .

Using Lemma 3.4(c) there exist some ai ∈ k such that

[f ahj ec, f ] = f a([hj , f ]ec + hj [ec, f ])

= f a

⎛
⎝

⎛
⎝j−1∑

i=1

aif hi

⎞
⎠ ec + chj+1ec−1 − c(c − 1)hj ec−1

⎞
⎠ . (9)

For i < j ≤ k we have that f a+1hiec ∈ span(S0 ∪ · · · ∪ Sj−1) using our inductive
hypothesis if needed. As a, c − 1 < p − 1 − (j + 1) we have f ahj+1ec−1 ∈ Sj+1,
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and f ahj ec−1 ∈ Sj . Hence we can conclude that each of the terms in (9) is in
span(S0 ∪ · · · ∪ Sj+1) and hence

[f ahj ec, f ] ∈ span(S0 ∪ · · · ∪ Sj+1). (10)

We nowmove on to prove (8). By our inductive hypothesis, we have that f ahk−1ep−k

∈ span(S0 ∪ · · · ∪ Sk−2), hence by (10) we have that [f ahk−1ep−k, f ] ∈ span(S0 ∪
· · · ∪ Sk−1). Thus

[f ahk−1ep−k, f ] = f a[hk−1, f ]ep−k + f ahk−1[ep−k, f ] ∈ span(S0 ∪ · · · ∪ Sk−1).
(11)

We show that the first term on the right-hand side of (11) is in span(S0 ∪ · · · ∪ Sk−2).
This is done by noting that if i < k−1 then f a+1hiep−k ∈ Si and hence in span(S0∪
· · · ∪ Sk−2), and thus, using Lemma 3.4(c) we see that

f a[hk−1, f ]ep−k ∈ span(S0 ∪ · · · ∪ Sk−2).

By rearranging (11) we obtain that f ahk−1[ep−k, f ] ∈ span(S0 ∪ · · · ∪ Sk−1), we
then use Lemma 3.4(b) to see

f ahk−1[ep−k, f ] = −kf ahkep−k−1 − k(k + 1)f ahk−1ep−k−1. (12)

Note that f ahk−1ep−k−1 ∈ Sk−1. Thus, we can rearrange (12) to see

kf ahkep−k−1 ∈ span(S0 ∪ · · · ∪ Sk−1).

As we have assumed that 0 < k < p, we have that k �= 0 in k, and so we deduce (8)
We next show that (8) can be used to prove that if c ≥ p−k−1 we have f ahkec ∈

span(S0∪· · ·∪Sk−1). We know by (8) that we can find some scalars ri,b,j ∈ k so that

f ahkep−1−k =
∑

0≤b≤k−1
i,j<p−1−b

ri,b,j f
ihbej .

We consider f ahkel for l > p − 1 − k, and have that

f ahkel =
∑

0≤b≤k−1
i,j<p−1−b

ri,b,j f
ihbej+(l−p−1−k).

Using the induction hypothesis f ihbej+(l−p−1−k) ∈ span(S0 ∪ · · · ∪ Sb), and hence
f ahkel ∈ span(S0 ∪ · · · ∪ Sk−1).

We can use the antiautomorphism σ from Remark 3.5 to show that f ahkec ∈
span(S0∪· · ·∪Sk−1) when a ≥ p−1−k, and so we have completed the proof of (a).

In fact we have proved that for any k ∈ Z≥0 with k < p and any a, b ∈ Z≥0
that we have f ahkeb ∈ span(S0 ∪ · · · ∪ Sp−2). As a particular case, we have that
hp−1 ∈ span(S0 ∪ · · · ∪ Sp−2). Now given f ahkeb with k ≥ p, we can repeatedly
substitute hp−1 as an expression in span(S0 ∪ · · · ∪ Sp−2) and obtain f ahkeb as a
linear combination of terms f ihbej with b ≤ p − 1. From this we can deduce that
f ahkeb ∈ span(S0 ∪ · · · ∪ Sp−2) using part (a) of the lemma. Thus we have proved
part (b) of the lemma.

Using Lemma 3.6 we are now able to show that S is a spanning set for A, and
hence prove Proposition 3.3.
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Proof of Proposition 3.3 We have that {f ahbec | a, b, c ∈ Z≥0} is a basis for U(s),
hence as A is obtained from U(s) by taking the quotient by 〈ep−1, f p−1〉 we see that

{f ahbec | a, c < p − 1, b ∈ Z≥0}
spans A. By Lemma 3.6, every element in this set is contained in the span of S.
Hence, S is a spanning set for A.

3.3 Proof of Theorem 1.1(a)

Let G = GLn(k). We recall that N p−1 is defined in (3). In Corollary 3.9 it is
stated that N p−1 has the sl2-property. To prove this corollary we use the fact that A

is semisimple. The semisimplicity of A is stated as part of the following corollary,
which is proved as explained after the statement of Proposition 3.3.

Corollary 3.7. We have that S is a basis of A, so the dimension of A is equal to∑p−1
i=1 i2. Further, we have that A is semisimple, and the simple modules of A are

V (0), V (1), . . . , V (p − 2).

Remark 3.8. We note that further results can be proved using the arguments for the
proof of Corollary 3.7 (or deduced from its statement). For any m < p, it can be
shown that U(s)/〈em, f m〉 is a semisimple algebra with simple modules V (0), V (1),
. . . , V (m − 1); also this statement can be proved for the case of s = sl2(C) for any
m ∈ Z>0. These results are also covered in [5, Theorem 2].

We now explain howA-modules relate to sl2-triples in g. Any A-moduleM can be
considered as an s-module, and thus we obtain an sl2-triple (eM, hM, fM) in gl(M),
as explained in Section 2.1. Moreover, we have e

p−1
M = 0 = f

p−1
M , as M is an

A-module and ep−1 = 0 = f p−1 in A. Suppose that dimM = n and choose an
identification M ∼= kn as a vector space, then we can view (eM, hM, fM) as an sl2-
triple in g. Further, given twoA-modulesM andN , both of dimension n, we have that
M ∼= N if and only if the sl2-triples (eM, hM, fM) and (eN , hN, fN) are conjugate
by an element of G.

Hence, there is a bijection from the set of n-dimensional A-modules up to isomor-
phism to the sl2-triples (e, h, f ) in g with e, f ∈ N p−1 up to conjugacy by elements
of G. Thus proving that N p−1 satisfies the sl2-property is equivalent to proving that
for each partition λ of n such that mi(λ) = 0 for all i ≥ p, there is an n-dimensional
A-module Mλ on which e acts with Jordan type λ, and this module is unique up to
isomorphism.

By Corollary 3.7, each A-module is semisimple and hence a direct sum of the
simple modules V (0), . . . , V (p−2). So any n-dimensional A-module satisfies M ∼=⊕p−2

d=0 V (d)⊕sd for some sd ∈ Z≥0 with
∑p−2

d=0(d + 1)sd = n. We have that e acts on
M with Jordan type λM , where md(λM) = sd−1 for each d .

Thus we see the desired module is Mλ := ⊕p−2
d=0 V (d)⊕md+1(λ). Hence, we have

proved the following corollary.
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Corollary 3.9. Let G = GLn(k). Then N p−1 satisfies the sl2-property.

We now explain that N p−1 is maximal satisfying the sl2-property to complete
the proof of Theorem 1.1(a). Suppose that V is a G-stable closed subvariety of N
such that V �⊆ N p−1. Thus there must exist some e′ ∈ V with Jordan type λ =
(λ1, λ2, . . . , λm) such that λ1 ≥ p. Hence, by Theorem 2.1, there exists e ∈ V with
Jordan type (p, 1n−p). Thus, using Proposition 2.4, we deduce that V does not satisfy
the sl2-property.

3.4 Deduction of Theorem 1.1(b)

In this short subsection we deal with the case G = SLn(k) and explain that
Theorem 1.1(b) follows quickly from Theorem 1.1(a). We let G = GLn(k) and
g = Lie(G).

We note that the nilpotent cone N in g is the same as the nilpotent cone of g,
and that two elements in N are conjugate by G if and only they are conjugate by G,
because G is generated by G and Z(G). Also we note that any sl2-triple in g must
lie in the derived subalgebra of g, which is equal to g. Thus for any G-stable closed
subvariety V ofN , we have that the set of G-orbits in V is equal to the set of G-orbits
in V and the set of G-orbits of sl2-triples (e, h, f ) with e, f ∈ V is equal to the set
of G-orbits of sl2-triples (e, h, f ) with e, f ∈ V . It is now clear that Theorem 1.1(b)
follows from Theorem 1.1(a).

4 The Symplectic, Orthogonal and Special Orthogonal Groups

In this section we deal with the cases where G is one of Spn(k), On(k) or SOn(k)

and prove parts (c), (d) and (e) of Theorem 1.1.

4.1 Proof ThatN p−1 Satisfies the sl2-Property for Spn (k) and On(k),
and Deduction of Theorem 1.1(c)

Let G be one of Spn(k) or On(k). In Proposition 4.2 we show that N p−1 satisfies
the sl2-property; we recall that N p−1 is defined in (3). To prove this we want to
relate G-conjugacy of sl2-triples in g with GLn(k)-conjugacy of sl2-triples in g, so
that we can apply Theorem 1.1(a). This link is given in Lemma 4.1 and is based
on [7, Theorem 1.4], which tells us that two elements of g are conjugate by G if
and only if they are conjugate by GLn(k). With minor modifications the proof of
[7, Theorem 1.4] goes through to prove the lemma below.

Lemma 4.1. Let G be one of Spn(k) or On(k), and let (e, h, f ) and (e′, h′, f ′) be
sl2-triples in g. Then (e, h, f ) and (e′, h′, f ′) are in the same G-orbit if and only if
they are in the same GLn(k)-orbit.

We move on to prove the main result in this subsection.
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Proposition 4.2. Let G be one of Spn(k) or On(k). Then N p−1 satisfies the sl2-
property.

Proof By the result of Pommerening in [11, §2.1], or the theory of standard sl2-
triples recapped in Section 2.3, we have that the map in (5) for V = N p−1 is
surjective.

Let (e, h, f ), (e, h′, f ′) be sl2-triples in gwith e, f, f ′ ∈ N p−1. By Corollary 3.9,
these sl2-triples are conjugate by GLn(k), and thus by Lemma 4.1 are conjugate by
G. This implies that the map in (5) for V = N p−1 is injective.

Now let G = Spn(k). We complete the proof Theorem 1.1(c) by explaining that
N p−1 is the maximal G-stable closed subvariety of N satisfying the sl2-property.
Let V be a G-stable closed subvariety of N such that V � N p−1. Then there is an
element in V which has Jordan type λ = (λ1, λ2, . . . , λm), where either λ1 > p, or
λ1 = λ2 = p. Using Theorem 2.1, we deduce that there is an element in V with
Jordan type (p+1, 1, . . . , 1) or (p, p, 1, . . . , 1). For the first possibility we can apply
Proposition 2.2 to deduce that V does not satisfy the sl2-property, whilst in the second
case we can apply Proposition 2.4 to deduce that V does not satisfy the sl2-property.

4.2 Proof of Theorem 1.1(d)

Let G = On(k) and recall that 1N p is defined in (4). In Proposition 4.5, we prove
that 1N p satisfies the sl2-property. This proof requires some analysis of underlying
s-modules, where we recall that s = sl2(k), and we note that the ideas in the proof
have some similarities with those in the proof of [17, Lemma 6.2].

In the proof of Proposition 4.5 we apply some well-known general results on mod-
ule extensions, which are stated in Lemma 4.3 for convenience of reference. We only
state this lemma for s-modules, though it is of course applicable more generally.

Before the statement of Lemma 4.3 we introduce some notation. We use the nota-
tion M ∼= A|B for s-modules M , A and B, to mean there is short exact sequence
0 → B → M → A → 0. When using this notation, we identify B with a fixed
submodule of M and A as the corresponding quotient. We also use the notation to
cover three (or more) modules, so consider s-modules of the form A|B|C, where A,
B and C are s-modules, and note there is no need to include brackets in the notation
A|B|C. In part (a) of the statement of Lemma 4.3 we should really define the module
A|C occurring there. This can be defined as the quotient of A|B|C by the submodule
B given by the splitting B|C ∼= B ⊕ C; or equivalently as the submodule of A|B|C
corresponding to the submodule A of A|B given by the splitting A|B ∼= A ⊕ B. The
modules A|B, A|C and B|C in parts (b) and (c) are defined similarly.

Lemma 4.3. Let M , A, B, and C be s-modules.

(a) Suppose that M ∼= A|B|C, and that A|B ∼= A ⊕ B and B|C ∼= B ⊕ C. Then
M ∼= (A|C) ⊕ B.

(b) Suppose that M ∼= (A ⊕ B)|C and that B|C ∼= B ⊕ C. Then M ∼= (A|C) ⊕ B.
(c) Suppose that M ∼= A|(B ⊕ C) and that A|B ∼= A ⊕ B. Then M ∼= (A|C) ⊕ B.
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We note that (a) can be proved by using splitting maps B → B|C and B|C → C

for the short exact sequence C → B|C → B to construct a short exact sequence
B → A|B|C → A|C. Then a splitting map A|B → B for the short exact sequence
B → A|B → A can be used to construct a splitting map A|B|C → B for the
short exact sequence B → A|B|C → A|C. We have that (b) and (c) are immediate
consequences of (a).

We also require an elementary well-known lemma about the action of nilpotent
elements in s-modules, which is stated in Lemma 4.4. We only state this lemma for
s-modules, though it is of course applicable more generally. In the statement we use
the notation given in Section 2.1 and Section 2.2.

Lemma 4.4. Let M , A and B be s-modules and let x ∈ s. Suppose that M ∼= A|B
and that xA and xB are nilpotent. Then xM is nilpotent and λ(xA)|λ(xB)  λ(xM).

We give an outline of how this lemma can be proved. First we identify M and
A⊕B as vector spaces. We then note that xA+xB is in the closure of the GL(M)-orbit
of xM , we see this by observing that xA +xB lies in the closure of {(Ad τ(t))xM | t ∈
k×}, where τ : k× → GL(M) is the cocharacter such that τ(t)a = a for all a ∈ A

and τ(t)b = tb for all b ∈ B. The proof concludes by noting that λ(xA + xB) =
λ(xA) λ(xB) and then applying Theorem 2.1.

We are now ready to state and prove our main result in this subsection.

Proposition 4.5. Let G = On(k). Then 1N p satisfies the sl2-property.

Proof By the result of Pommerening in [11, §2.1], or the theory of standard sl2-
triples recapped in Section 2.3, the map in (5) for V = 1N p is surjective. The rest of
the proof is devoted to proving that this map is in fact injective.

Let (e, h, f ) be an sl2-triple in g = son(k) with e, f ∈ 1N p. Let V ∼= kn be the
natural module for G = On(k), and consider V as a an s-module by restriction to the
subalgebra of g spanned by {e, h, f }. Write (· , ·) for the G-invariant non-degenerate
symmetric bilinear form on V .

The idea of the rest of the proof is to determine the structure of the s-module V ,
and observe that it is determined uniquely up to isomorphism by the Jordan type of
e. Then at the end of the proof we use this and Lemma 4.1 to deduce that the map in
(5) is injective.

Let M ≤ V be a maximal isotropic s-submodule of V , and consider M⊥ := {v ∈
V | (v, m) = 0 for all m ∈ M} ≤ V , which is an s-submodule of V . As M is
isotropic we have the sequence of submodules

0 ≤ M ≤ M⊥ ≤ V . (13)

We have an s-module homomorphism φ : V → M∗ defined by φ(v)(m) = (m, v),
where M∗ denotes the dual module of M . This induces an isomorphism V/M⊥ ∼=
M∗, and so by an abuse of notation we write M∗ for V/M⊥. Also we write N for
the s-module M⊥/M , and note that (· , ·) induces an s-invariant non-degenerate sym-
metric bilinear form on N , which we also denote by (· , ·). Thus the quotients in the
sequence in (13) are M , N and M∗, or in other words V ∼= M∗|N |M .
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We first consider the s-module M . Suppose that ep−1
M �= 0. Then λ(eM) contains a

part of size p or greater. We note that λ(eM) = λ(eM∗), so that λ(eM∗) also contains
a part of size p or greater. Using Lemma 4.4, we deduce that λ(eV ) must have first
and second parts greater than or equal to p, but this is not possible as e = eV ∈ 1N p.
Thus we have that ep−1

M = 0. Similarly, we have f
p−1
M = 0.

It now follows that from Corollary 3.7 that we have a direct sum decomposition
of the s-module

M = M1 ⊕ · · · ⊕ Mr

where each Mi is simple, and Mi
∼= V (di) for some di ∈ {0, 1, . . . , p − 2}. We have

a corresponding direct sum decomposition

M∗ = M∗
1 ⊕ · · · ⊕ M∗

r

of M∗, where M∗
i

∼= V (di) and is dual to Mi via (· , ·) for each i.
Next we consider the s-module N , which we recall has a non-degenerate symmet-

ric invariant bilinear form. LetA be a simple submodule ofN , and considerA⊥ ≤ N ,
which is also a submodule of N . Thus A ∩ A⊥ is a submodule of N , and as A is
simple we have A ∩ A⊥ is equal to 0 or to A. Suppose that A ∩ A⊥ = A, so that
A is an isotropic subspace of N . Let A be the submodule of M⊥ corresponding to
A ≤ M⊥/M . Then A is isotropic and this contradicts that M is a maximal isotropic.
Therefore, A ∩ A⊥ = 0, so that A is non-degenerate, and thus N = A ⊕ A⊥.

Hence, N is a semisimple s-module and in fact we have an orthogonal direct sum
decomposition

N = N1 ⊕ · · · ⊕ Ns, (14)

where each Ni is a simple s-module and is a non-degenerate subspace for (· , ·).
Since e, f ∈ 1N p, using Lemma 4.4, we have that e

p
N = 0 = f

p
N , and that

λ(eN) and λ(fN) have at most one part of size p. It follows that for each i we have
Ni

∼= V (ci) for some ci ∈ {0, 1, . . . , p − 2} with the possible exception of one j for
which Nj = V (cj ) where cj ∈ k \ {0, 1, . . . , p − 2}.

We note that for i such that Ni
∼= V (ci) for some ci ∈ {0, 1, . . . , p − 2}, we must

have that ci is even, because eNi
∈ so(Ni) and λ(eNi

) = (ci + 1), so ci + 1 must be
odd as explained in Section 2.2.

If there is a j for which Nj = V (cj ) where cj ∈ k\{0, 1, . . . , p−2}, then we can
show that we must have cj = p − 1. To see this we consider hNj

∈ so(Nj ), which
is a semisimple element of so(Nj ) with eigenvalues cj , cj − 2, . . . , cj − 2p + 2.
The eigenvalues of a semisimple element of so(Nj ) must include 0 (and also the
multiplicity of an eigenvalue a must be equal to the multiplicity of the eigenvalue
−a). It follows that we must have cj = p − 1.

Next we show that ci �= cj for i �= j . Suppose that we did have Ni
∼= Nj

for some i �= j . We denote Ni,j = Ni ⊕ Nj and consider the s-module N ′
i,j =

N ′
i ⊕ N ′

j , where N ′
i = Ni and N ′

j = Nj as s-modules, but we give N ′
i ⊕ N ′

j a
non-degenerate s-invariant symmetric bilinear form so that Ni and Nj are isotropic
spaces that are dual to each other. We fix an isomorphism N ′

i,j
∼= Ni,j as vector

spaces with non-degenerate s-invariant symmetric bilinear forms. This can be used to
view xN ′

i,j
as an element of so(Ni,j ) for any x ∈ s. By definition we have that Ni ⊕

Nj
∼= N ′

i ⊕ N ′
j as s-modules, which implies that the sl2-triples (eNi,j

, hNi,j
, fNi,j

)
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and (eN ′
i,j

, hN ′
i,j

, fN ′
i,j

) both viewed inside so(Ni,j ) are conjugate by GL(Ni,j ). Now

we can apply Lemma 4.1 to deduce that (eNi,j
, hNi,j

, fNi,j
) and (eN ′

i,j
, hN ′

i,j
, fN ′

i,j
)

are conjugate by O(Ni,j ). Under the identification N ′
i,j

∼= Ni,j ≤ N , we have that N ′
i

is an isotropic s-submodule of N . However, then the corresponding submodule N̄ ′
i of

M⊥ is isotropic, and this contradicts the maximality of M as an isotropic submodule
of V .

To summarize our findings about N , we have that the orthogonal direct sum
decomposition in (14), satisfies that Ni

∼= V (ci) for some ci ∈ {0, 2, . . . , p − 1} for
each i and that ci �= cj for i �= j .

Our next goal is to prove that

M⊥ ∼= M ⊕ N ∼= M1 ⊕ · · · ⊕ Mr ⊕ N1 ⊕ · · · ⊕ Ns . (15)

For j ∈ {1, . . . , r} we define Aj = ⊕
i �=j Mi ≤ M . We consider M⊥/Aj and aim

to show that
M⊥/Aj

∼= Mj ⊕ N (16)

Noting that M⊥/Aj
∼= N |Mj , we see that by repeated application of Lemma 4.3(c)

we can deduce (15) from (16). Thus our aim is to establish (16).
Using (6) and the fact that the summands in (14) are pairwise non-isomorphic,

there is at most one i for which Ext1s(Mj , Ni) is non-zero.
If Ext1s(Mj , Ni) = 0 for all i, then we have Ni |Mj

∼= Ni ⊕ Mj for all i, and thus
we obtain (16) by repeated application Lemma 4.3(b).

If Ext1s(Mj , Ni) �= 0 for some i, i.e. ci = p − dj − 2, then without loss of
generality, we may assume that i = 1. Using Lemma 4.3(b) we can deduce that

M⊥/Aj
∼= (N1|Mj) ⊕ N2 ⊕ · · · ⊕ Ns . (17)

We may assume thatN1|Mj is a non-split extension ofN1 byMj otherwise we obtain
(16). We have that dim(N1|Mj) = p and we can use Corollary 3.7 to say that eN1|Mj

or fN1|Mj
has Jordan type (p). Without loss of generality we assume that eN1|Mj

has Jordan type (p). We next consider the s-module A⊥
j /Aj on which (· , ·) induces

a non-degenerate form. There an isomorphism A⊥
j /M ∼= (M⊥/Aj )

∗ via (· , ·), and
also an isomorphism N ∼= N∗ as (· , ·) is non-degenerate on N . Thus we have that

A⊥
j /M ∼= (M∗

j |N1) ⊕ N2 ⊕ · · · ⊕ Ns . (18)

Using (17) and (18) along with repeated applications of Lemma 4.3(b) and (c) we
deduce that

A⊥
j /Aj

∼= (M∗
j |N1|Mj) ⊕ N2 ⊕ · · · ⊕ Ns .

From the isomorphism A⊥
j /M ∼= (M⊥/Aj )

∗ we obtain an isomorphism M∗
j |N1 ∼=

(N1|Mj)
∗. Thus we deduce that eMj ∗|N1 has Jordan type p.

Next we consider eM∗
j |N1|Mj

. We can choose a basis for N1|Mj containing a basis
of Mj and such that the matrix of eN1|Mj

with respect to this basis is a single Jordan
block Jp of size p; we denote this matrix by [eN1|Mj

], and use similar notation for
other matrices considered here. We can pick a basis of M∗

j such that the matrix [eM∗
j
]

of eM∗
j
is a single Jordan block Jdj +1 of size dj + 1. By choosing a lift of the basis
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of M∗
j to M∗

j |N1|Mj and combining with the basis of N1|Mj we obtain a basis of
M∗

j N1|Mj for which the matrix of eM∗
j |N1|Mj

has block form

[eM∗
j |N1|Mj

] =
(

Jp X

Jdj +1

)
,

whereX is some p×(dj +1)matrix. We can consider the matrix eMj ∗|N1 with respect
to the basis obtained by projecting our basis of M∗

j |N1|Mj to M∗
j |N1, and we have

[eMj ∗|N1] =
(

Jc1+1 X′
Jdj +1

)
,

where X′ consists of the bottom c1 + 1 rows of X. The Jordan type of eMj ∗|N1 is (p),
so by considering [eM∗

j |N1] we see that the bottom left entry of X′ must be non-zero.
Thus the bottom left entry of X is non-zero. By considering [eM∗

j |N1|Mj
], we deduce

that the Jordan type of eM∗
j |N1|Mj

is (p + dj + 1). Now using Lemma 4.4, we deduce
that the first part of λ(eV ) has size greater than p, which is a contradiction because
eV = e ∈ 1N p. From this contradiction we deduce that N1|Mj is in fact a split
extension, and so we obtain (16) as desired.

We have now proved (15). Also note we have an isomorphism V/M ∼= (M⊥)∗ via
(· , ·), and an isomorphism N ∼= N∗ since (· , ·) is non-degenerate on N . Thus from
(15) we obtain

V/M ∼= M∗ ⊕ N .

Hence, by applying Lemma 4.3(a) we obtain that

V ∼= M∗|M ⊕ N .

Our next step is to prove that M∗|M ∼= M∗ ⊕ M . Let us suppose that this is not the
case, then, using Lemma 4.3(b) and (c) we can find i and j such that the subquotient
M∗

i |Mj of M∗M is a non-split extension. Using (6) and the fact that Mi
∼= M∗

i we
have that i �= j . Without loss of generality we can assume that i = 1 and j = 2,
and then we have that d1 = p − d2 − 2. We consider the subquotient M1,2 =
(M∗

1 ⊕M∗
2 )|(M1⊕M2) ofM∗|M . By using that Ext1s(M1, M

∗
1 ) = 0 = Ext1s(M2, M

∗
2 )

along with Lemma 4.3(b) and (c), we obtain that M1,2 ∼= (M∗
1 |M2) ⊕ (M∗

2 |M1). We
have that (· , ·) induces a non-degenerate bilinear form on M1,2 and that (M∗

1 |M2)

and (M∗
2 |M1) are isotropic subspaces of M1,2, which are dual via (· , ·). By assump-

tion we have that M∗
1 M2 is a non-split extension, and it has dimension p. Then by

Corollary 3.7 we have that eM∗
1 |M2 or fM∗

1 |M2 has Jordan type (p). Without loss of
generality we assume that eM∗

1 |M2 has Jordan type (p). Since (M∗
2 |M1) ∼= (M∗

1 |M2)
∗,

we also have that eM∗
2 |M1 has Jordan type (p). By using Lemma 4.4, we deduce that

λ(eV ) must have first and second parts greater than or equal to p, but this is not
possible as e = eV ∈ 1N p. This contradiction implies that M∗|M ∼= M∗ ⊕ M as
desired.

We have thus far proved that the s-module V is semisimple and has the direct sum
decomposition

V = (M∗
1 ⊕ · · · ⊕ M∗

r ) ⊕ (N1 ⊕ · · · ⊕ Ns) ⊕ (M1 ⊕ · · · ⊕ Mr)
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where Mi
∼= V (di) ∼= M∗

i for each i and Nj
∼= V (cj ) for each j . Hence, we see that

the isomorphism type of V is uniquely determined by the Jordan type of e.
Let (e, h′, f ′) be an sl2-triple in so(N) with f ′ ∈ 1N p. Then writing V ′ for the V

viewed as an s-module for span{e, h′, f ′}, we have that V ′ is isomorphic to V . From
this we deduce that (e, h′, f ′) is conjugate to (e, h, f ) via GL(V ) = GLn(k), and
thus by Lemma 4.1 is conjugate via O(V ) = On(k). This gives the desired injectivity
of the map in (5), and completes this proof.

All that is left to do to prove Theorem 1.1(d) is to prove that 1N p is the unique
maximal G-stable subvariety of N satisfying the sl2-property. To show this let V be
a G-stable closed subvariety ofN such that V �

1N p. Then there is an element in V
which has Jordan type λ = (λ1, λ2, . . . , λm), where either λ1 > p, or λ1 = λ2 = p.
Using Theorem 2.1, we deduce that there is an element in V with Jordan type (p +
2, 1, . . . , 1) or (p, p, 1, . . . , 1). For the first possibility we can apply Proposition 2.2
to deduce that V does not satisfy the sl2-property, whilst in the second case we can
apply Proposition 2.4 to deduce that V does not satisfy the sl2-property.

4.3 Deduction of Theorem 1.1(e)

We are left to deal with the case G = SOn(k), and we prove that 1N p satisfies
the sl2-property in Proposition 4.6. This is deduced from Proposition 4.5 along with
considerations of how On(k)-orbits of sl2-triples (e, h, f ) in g = son(k) with e, f ∈
N split into SOn(k)-orbits.

Proposition 4.6. Let G = SOn(k). Then 1N p satisfies the sl2-property.

Proof We know that the map in (5) for V = 1N p is surjective, for the same reasons as
the corresponding statement in Proposition 4.5, that is, by the result of Pommerening
in [11, §2.1], or the theory of standard sl2-triples recapped in Section 2.3.

As explained in Section 2.2 the On(k)-orbit of x ∈ son(k) is either a single
SOn(k)-orbit, or splits into two SOn(k)-orbits, with the former case occurring pre-
cisely when there exists g ∈ On(k) with det g = −1 such that gx = xg. The
underlying argument can also be applied to sl2-triples in son(k). Thus we have
that for an sl2-triple (e, h, f ) in son(k) the On(k)-orbit of (e, h, f ) is either a
single SOn(k)-orbit or splits into two SOn(k)-orbits. Moreover, we have that the
SOn(k)-orbit of (e, h, f ) is equal to the On(k)-orbit if and only if there exists some
g ∈ On(k) with det g = −1, ge = eg, gh = hg and gf = fg.

Let λ be the Jordan type of a nilpotent element in 1N p. Using λ we construct a
specific realization of some e ∈ 1N p with e ∼ λ and an sl2-triple (e, h, f ).

Let V = kn be the natural module for On(k). Let m′
i (λ) = mi(λ)

2 for even i. We
can form an orthogonal direct sum decomposition of V of the form

V =
⊕
i odd

mi(λ)⊕
j=1

Vi,j ⊕
⊕
i even

m′
i (λ)⊕

j=1

(Ui,j ⊕ U ′
i,j ), (19)
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where for odd i each Vi,j is a non-degenerate subspace of dimension i, and for even
i the pair Ui,j and U ′

i,j are isotropic subspaces of dimension i, which are in duality
under the symmetric bilinear form on V . Corresponding to this decomposition of V

we have a subgroup

H ∼=
∏
i odd

Oi (k)mi(λ) ×
∏

i even

GLi (k)m
′
i (λ)

of On(k). The Lie algebra of H is

h ∼=
⊕
i odd

soi (k)⊕mi(λ) ⊕
⊕
i even

gli (k)⊕m′
i (λ), (20)

and is a subalgebra of son(k).
We choose e ∈ h to be regular nilpotent in each of the summands in (20). Then by

construction we see that e ∼ λ. We can find an sl2-triple (e, h, f ) in h, for example
this now follows from Theorem 1.1(a) and (d). By Proposition 4.5 we know that
(e, h, f ) lies in the unique On(k)-orbit of sl2-triples in son(k) with e ∼ λ.

Suppose that λ has an odd part, and let i ∈ Z>0 be odd and such that mi(λ) > 0.
Then we can define g ∈ On(k) by declaring that g acts on Vi,1 by −1 and on all other
summands in (19) by 1. We see that det g = −1, and g lies in the centre of H so that
ge = eg, gh = hg and gf = fg. Hence, the SOn(k)-orbit of (e, h, f ) is equal to
the On(k)-orbit, and hence is the unique SOn(k)-orbit of sl2-triples with e ∼ λ.

Now suppose that λ is very even. Then we know that the On(k)-orbit of e splits
into two SOn(k)-orbits, and we let e′ ∈ son(k) be a representative of the other
SOn(k)-orbit in (AdOn(k))e. There is an sl2-triple (e′, h′, f ′), which lies in the
On(k)-orbit of (e, h, f ). Also (e′, h′, f ′) is not in the SOn(k)-orbit of (e, h, f ), as
e is not conjugate to e′ via SOn(k). It follows that the On(k)-orbit of (e, h, f ) splits
into two SOn(k)-orbits, and these are the SOn(k)-orbits of (e, h, f ) and (e′, h′, f ′).
Now using Proposition 4.5 we deduce that the SOn(k)-orbit of (e, h, f ) is the only
orbit mapping to the SOn(k)-orbit of e by the map in (5); and that the SOn(k)-orbit
of (e′, h′, f ′) is the only orbit mapping to the SOn(k)-orbit of e′ by the map in (5).

We have shown that for each e ∈ 1N p, there is a unique SOn(k)-orbit of sl2-
triples (e, h, f ) with e, f ∈ 1N p which maps to the SOn(k)-orbit of e under the map
in (5). This shows that the map in (5) is injective for V = 1N p, and hence that 1N p

satisfies the sl2-property.

To complete the proof of Theorem 1.1(e), we are just left to show the maximality
of V = 1N p subject to satisfying the sl2-property, but this can be done using the
arguments at the end of Section 4.2.

Hence, we have completed the proof of all parts of Theorem 1.1.
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