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ABSTRACT
Dealing with structural breaks is an essential step in most empirical economic research. This is particularly
true in panel data comprised of many cross-sectional units, which are all affected by major events. The
COVID-19 pandemic has affected most sectors of the global economy; however, its impact on stock markets
is still unclear. Most markets seem to have recovered while the pandemic is ongoing, suggesting that
the relationship between stock returns and COVID-19 has been subject to structural break. It is therefore
important to know if a structural break has occurred and, if it has, to infer the date of the break. Motivated
by this last observation, the present article develops a new break detection toolbox that is applicable to
different sized panels, easy to implement and robust to general forms of unobserved heterogeneity. The
toolbox, which is the first of its kind, includes a structural change test, a break date estimator, and a break
date confidence interval. Application to a panel covering 61 countries from January 3 to September 25,
2020, leads to the detection of a structural break that is dated to the first week of April. The effect of COVID-
19 is negative before the break and zero thereafter, implying that while markets did react, the reaction was
short-lived. A possible explanation is the quantitative easing programs announced by central banks all over
the world in the second half of March. Supplementary materials for this article are available online.
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1. Introduction

1.1. Motivation

This article considers what we believe to be a very common
scenario in practice. We have in mind a researcher that seeks
to infer a linear relationship between a dependent variable and
a set of regressors. The dataset has a panel structure, in which
there are a large number of cross-sectional units, N, that are
observed over a fixed number of time periods, T. This scenario
is relevant because while the number of time periods is always
limited and cannot be increased other than by the passage of
time, statistical agencies keep publishing time series data for
individuals, firms and countries. Thus, while N is usually quite
large, T need not be. One of the concerns here is therefore that T
might not be large enough for many econometric approaches to
work properly. Another concern is the presence of unobserved
heterogeneity and the detrimental effect that this may have if
said heterogeneity is correlated with the regressors. The main
worry, however, is that the coefficients of some or indeed all
of the regressors may be subject to structural change, because
of some major events that may have caused the relationship to
change over time. The present article develops a toolbox that
enables the researcher to test for the presence of a common
structural break and, if a break is detected, to also infer the
date of the break. The tools are extremely easy to implement,

CONTACT Yiannis Karavias i.karavias@bham.ac.uk Department of Economics, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

accommodate general forms of unobserved heterogeneity and
they can be used under quite relaxed conditions on T, provided
that N is large.

Accounting for structural change has always been an impor-
tant issue in economics and elsewhere. Panel data are particu-
larly susceptible to such change, because of the large number of
time series that they contain. In our empirical application, we
consider stock returns for 61 countries, which all plummeted
around March 11, 2020, when COVID-19 was declared a global
pandemic by the World Health Organisation (WHO). Fortu-
nately, the panel data structure not only makes breaks likely, but
it also makes for relatively easy detection. As is well known, with
time series data consistent estimation of the breakpoint is not
possible, but only consistent estimation of the break fraction.
By contrast, in panels breakpoint consistency is usually possible
(Bai 2010). The accuracy of the procedure is therefore greatly
enhanced when compared to the time series case.

The increased estimation accuracy is one of the advantages of
using panel data. Another major advantage is the ability to deal
with unobserved heterogeneity. Such heterogeneity is important
in general, and it is particularly relevant in the type of noisy pan-
els that we have in mind where typically the regressors explain
only a small fraction of the variation in the dependent vari-
able (see Capelle-Blancard and Desroziers 2020, in the context
of COVID-19 and stock returns). This observation motivated
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Antoch et al. (2019), Baltagi, Feng, and Kao (2016), Boldea,
Drepper, and Gan (2020), Hidalgo and Schafgans (2017), and
Li, Qian, and Su (2016) to consider models featuring not only
breaks but also unobserved heterogeneity in the form of com-
mon factors, or “interactive effects.” In particular, while Antoch
et al. (2019), and Hidalgo and Schafgans (2017) propose tests
for the presence of a structural break, Baltagi, Feng, and Kao
(2016), Boldea, Drepper, and Gan (2020), and Li, Qian, and Su
(2016) take the existence of a break as given and focus instead
on the breakpoint estimation problem. But while highly comple-
mentary in terms of the methods they propose, the assumptions
employed are materially different.

Antoch et al. (2019) only require N to be large. However, they
assume instead that the factor loadings are negligible, which
means that strong forms of cross-section dependence are not
permitted.1 It also means that there is no need to account for the
factors, and that their effect on the breakpoint estimation prob-
lem is in this sense trivial. The weak cross-sectional dependence
condition is maintained also in Hidalgo and Schafgans (2017),
who in addition require that N, T → ∞ with N/T2 → 0,
which in practice means that T >> N. Baltagi, Feng, and Kao
(2016) do not require negligible loadings and are therefore more
general in this regard. The way they do this is by applying the
common correlated effects (CCE) approach of Pesaran (2006),
which enables consistent estimation of (the space spanned by)
the unknown factors. But then Baltagi, Feng, and Kao (2016)
require that both N and T are large, which is again rarely the case
in practice. Moreover, the authors only provide a consistency
result and they do not consider the asymptotic distribution of
the estimated breakpoint, which is necessary for the construc-
tion of confidence intervals with correct asymptotic coverage.
The same critique applies to the article of Li, Qian, and Su
(2016), which uses the principal components method instead of
CCE to estimate factors. Boldea, Drepper, and Gan (2020) also
do not consider the asymptotic distribution of their estimated
breakpoint, although in their article T is fixed. Their approach
is similar to the one of Antoch et al. (2019) in the sense that
the estimation is carried out while ignoring the factors. This
simplicity does, however, come at a cost in terms additional
restrictive assumptions. Boldea, Drepper, and Gan (2020) do
not require negligible loadings, but they do assume that the
omitted variables bias caused by the factors is time-invariant,
up to the breakpoint, which limits the type of factors that can be
permitted.

1.2. This Article

Motivated by the discussion in the last section, the present
article develops tools that enable researchers to both test for the
presence of a common structural break, and to infer the break-
point of an existing break. The interactive effects are handled
by using a version of the CCE approach, which is similar yet
clearly distinct from the one employed by Baltagi, Feng, and
Kao (2016). The reason for focusing on CCE as opposed to the
otherwise so popular principal components method is in part
because of the extreme simplicity with which the factors are

1See Chudik et al. (2011) for a detailed treatment of the concepts of weak and
strong cross-section dependence.

estimated in CCE, in part because CCE is valid even if T is fixed
(see, Westerlund, Petrova, and Norkute 2019). Needless to say,
this last feature, which is not exploited by Baltagi, Feng, and Kao
(2016), is an important advantage when wanting to entertain
the possibility that T might not be large. The idea, which is laid
out along with our model and assumptions in Section 2, is to
use the cross-sectional averages of the regressors to estimate the
unknown common factors, and to simply augment the regres-
sion model with these averages.

We begin by considering the problem of estimating the
unknown breakpoint given that a break has occurred. This is
done in Section 3. Most articles in the literature are based on
the ordinary least squares (OLS) breakpoint estimator, and so is
this article. However, instead of minimizing the OLS residuals,
which will generally lead to inconsistency because of the
unattended factors (Kim 2011), we minimize the CCE residuals.
We focus on the results for the case when the magnitude of
the break is bounded from above and below, although we also
allow diverging and shrinking breaks. Moreover, T can be fixed
or tending to infinity. According to the results, the proposed
breakpoint estimator is consistent as N → ∞ with T fixed or as
N, T → ∞ with T/N → 0, and the rate of convergence is given
by 1/N. The asymptotic distribution of the breakpoint estimator
is obtained under the same set of conditions on N and T, and is
used to construct confidence intervals for the true breakpoint.
As far as we are aware, this article is the first to provide the rate
of convergence and asymptotic distribution in the presence of
common factors, and it is the first to establish consistency when
T is fixed.

While in Section 3 we assume that a break has occurred,
in Section 4 we instead consider the problem of testing for
the presence of a break. While very common in the literature,
CUSUM-based test statistics like the one of Hidalgo and Schaf-
gans (2017) can suffer from low power in certain directions (see
e.g., Andrews 1993), and in this article we therefore consider
two Wald-type test statistics instead. One is designed to test the
null hypothesis of no break against the alternative of a known
breakpoint, while in the other the same null is tested against the
alternative of a break at some unknown date. To the best of our
knowledge, these tests are the first that enable break testing in
the presence of common factors. The asymptotic analysis reveals
that, while the consistency and asymptotic distribution of the
breakpoint estimator only require N → ∞, unless N, T → ∞
with T/N → 0, the asymptotic distribution of the Wald test
statistic that treats the breakpoint as unknown is generally not
free of nuisance parameters. Hence, in terms of the size of T,
testing for the presence of a structural break is more demanding
than estimating the breakpoint. This is what theory tells us.
According to the Monte Carlo results reported in the Appendix
in the supplementary materials, however, the new toolbox tends
to perform well even if T is as small as 10, provided that N is large
enough. Hence, even if in theory one of the Wald tests require
T to be large, in small samples this requirement does not seem
very critical.

Section 5 is concerned with our empirical application to
the relationship between stock returns and COVID-19, which
is motivated in part by the many recent calls for econometric
research into the effects of the pandemic (see e.g., the recent
special issue of Journal of Econometrics), in part by existing

https://doi.org/10.1080/07350015.2022.2053690
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empirical research. By the end of February, 2020, COVID-19
had led to a world-wide drop in demand, which in turn brought
down investment and employment. While stock markets ini-
tially reacted to news of the pandemic by losing substantial
value, they quickly regained the vast majority of this loss. The
fact that this rebound took place even though the number of
new cases and deaths were still rising is suggestive of structural
change. Most studies of the stock market reaction to COVID-19
either ignore this possibility altogether or split their sample into
subperiods based on major events (see e.g., Capelle-Blancard
and Desroziers 2020; Ramelli and Wagner 2020). This means
that the breaks are treated as known, if treated at all, which is
risky, as misplaced breaks are just as problematic as omitted
breaks. In the empirical application of the present article, we
offer a more general treatment. This is done by applying the
new toolbox to a sample covering 61 countries across 38 weeks,
from January 3 to September 25, 2020, which means that T is
relatively small. According to the results, the COVID-19-stock
return relationship has been affected by the presence a structural
break in the first week of April, at about the same time as most
central banks announced that they were going to intervene to
save the global economy from collapse. While before the break
stock markets reacted significantly to news about the pandemic,
after the break stock markets became insensitive to such news.
This suggests that central banks play a central role in shaping
stock market behavior in pandemics.

Section 6 concludes the article. All proofs are provided in the
Appendix in the supplementary materials.

2. Model

We consider the following linear panel data model with a struc-
tural break at time b:

yi,t = β ′xi,t + δ′zi,t(b) + ei,t , (2.1)

where i = 1, . . . , N and t = 1, . . . , T index the cross-sectional
units and time periods, respectively. The k×1 vector xi,t contains
the regressors and the r × 1 vector zi,t is defined as

zi,t(b) = R′xi,tI(t > b), (2.2)

where I(t > b) is the indicator function taking the value one
when t > b and zero otherwise, and R is an k × r selection
matrix of zeros and ones with full column rank r that picks out
the elements of xi,t whose coefficients are subject to structural
change. For example, if k > r and R = (0′

r×(k−r), Ir)′, then
(2.1) is a partial structural change model in which only the r
last regressors in xi,t appear in zi,t(b). If, on the other hand,
k = r, then R = Ir , and so the model is one of pure structural
change. In the empirical application of Section 5, yi,t is stock
returns for country i in week t, and xi,t is comprised of controls
and COVID-19 related variables, where the coefficients of the
COVID-19 variables may be breaking. As we explain in that
section, the model can easily be generalized to include multiple
breaks.

The coefficient vectors β and δ are of dimension k × 1 and
r × 1, respectively. In the present article, we follow the bulk
of the previous literature (see, e.g., Antoch et al. 2019; Boldea,
Drepper, and Gan 2020), and assume that these are equal across

the cross-section. One way to relax this assumption in the large-
T case is to follow Pesaran (2006), and to assume that the
unit-specific coefficients are randomly distributed with constant
means. Unfortunately, this is not possible in the current fixed-T
scenario. Moreover, as pointed out by Westerlund, Petrova, and
Norkute (2019), the random slope condition comes at a cost of
other restrictive conditions.

The error ei,t is assumed to admit to a factor structure, which
means that it is allowed to be correlated across i. Specifically,

ei,t = γ ′
i ft + εi,t , (2.3)

where ft and γi are m × 1 vectors of common factors and factor
loadings, respectively, and εi,t is an idiosyncratic error term.
In our empirical application, the presence of ft in (2.3) is just
natural because many well-known models in finance, like the
capital asset pricing (CAPM) and Fama–French three factor
models, imply that returns should have a linear factor structure.
In this section and the next, we assume that all the factors are
unknown. In Section 5, we demonstrate how the toolbox can be
implemented when some of the factors are observed, as when
CAPM holds and one has data on (world) market returns.

We want to entertain the possibility that the factors are cor-
related with the regressors. We therefore follow Pesaran (2006)
and assume that

xi,t = �′
i ft + vi,t , (2.4)

where �i is a m×k factor loading matrix and vi,t is a k×1 vector
of idiosyncratic errors.

For later use, it is convenient to write the above model in
matrix form by stacking the time series observations for each
cross-section. The stacked version of (2.1) is given by

yi = Xiβ + Zi(b)δ + ei, (2.5)

where yi = (yi,1, . . . , yi,T)′ and ei = (ei,1, . . . , ei,T)′ are T × 1,
Xi = (x′

i,1, . . . , x′
i,T)′ is T×k, and Zi(b) = (zi,1(b)′, . . . , zi,T(b)′)′

is T × r. Note that because zi,1(b) = · · · = zi,b(b) = 0r×1, Zi(b)

can be written as Zi(b) = (0′
r×1, . . . , 0′

r×1, x′
i,b+1R, . . . , x′

i,TR)′ =
Xi(b)R, where Xi(b) = (0′

k×1, . . . , 0′
k×1, x′

i,b+1, . . . , x′
i,T)′. Also,

ei = Fγi + εi, (2.6)

where F = (f ′
1, . . . , f ′

T)′ and εi = (εi,1, . . . , εi,T)′ are T × m and
T × 1, respectively. The stacked version of (2.4) is given by

Xi = F�i + Vi, (2.7)

where Vi = (v′
i,1, . . . , v′

i,T)′ is T × k.
The model assumptions depend to a large extent on whether

we are estimating the breakpoint or if we are testing for its
existence. Assumptions 2.1 and 2.2 will, however, be maintained
throughout this article.

Assumption 2.1.

a. vi,t is a covariance stationary process that is independent
across i with absolutely summable autocovariances, E(vi,t) =
0k×1, E(vi,tv′

i,t) = �v,i and E(‖vi,t‖4) < ∞, where ‖A‖ =√
tr(A′A) is the Frobenius norm of any matrix A.

https://doi.org/10.1080/07350015.2022.2053690
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b. εi,t is a covariance stationary process that is independent
across i with absolutely summable autocovariances, E(εi,t) =
0, E(ε2

i,t) = σ 2
ε,i > 0 and E(ε4

i,t) < ∞.
c. εi,t and vj,s are independent for all i, j, s and t.

Assumption 2.2.
a. T−1F′F is positive definite with probability approaching one

(w.p.a.1) for all T.
b. E(‖ft‖4) < ∞.
c. ft is independent of εi,s and vi,s for all i, s and t.

Assumption 2.1 is standard in the interactive effects litera-
ture (see, e.g., Baltagi, Feng, and Kao 2016). The only excep-
tion known to us is Baltagi, Kao, and Liu (2017). They do
not allow for cross-section dependence, but they do allow xi,t
and εi,t to be unit root nonstationary. We allow for serial cor-
relation and possibly even unit roots in ft (more later) and
hence in xi,t (and yi,t), but not in vi,t and εi,t . Bai (1997a) has
shown that the existence of both serially correlated errors and
lagged dependent variables leads to inconsistent estimation of
the break date. Assumption 2.1(c) therefore assumes that xi,t
is strictly exogenous (conditional on the factors). Without unit
roots Assumption 2.1(a)–(c) are the same as Assumptions 1–
3 in Baltagi, Kao, and Liu (2017). Assumption 2.2(a) and (b)
are met if ft is stationary and not collinear, which is again a
standard requirement in the literature (see, Baltagi, Feng, and
Kao 2016, Assumption 8). Stationarity is not necessary, though.
Note in particular how stationarity is not required if T is fixed.
In fact, ft does not even have to be stochastic but can also be
deterministic. Assumption 2.2(c) is an identifying condition
that is not particularly restrictive. It ensures that ft is the only
source of cross-section dependence.

3. Breakpoint Estimation

Let us denote by b0 the true value of b. The purpose of this
section is to make inference regarding this parameter.

Assumption 3.1. b0 ∈ B = [r, T − r − 1].
Assumption 3.2.
a. rank(�̄) = m ≤ k for all N, including N → ∞.
b. ‖γi‖ < ∞ and ‖�̄‖ < ∞.

Assumption 3.1 requires only that each regime contains at
least as many observations as the number of free parameters. It
is therefore very general. Baltagi, Feng, and Kao (2016) allow for
common factors in very much the same way as we do. However,
they require that the loadings follow certain probability laws,
and that they are independent of all other random elements of
the model. In this section, we treat the loadings as fixed, which
means that we do not make any assumption regarding their
distribution or their correlation with the other random elements
of the model. The main restriction is that xi,t must load on the
same factors as yi,t , and that the number of regressors must be
at least as large as the number of factors. This ensures that the
factors can be estimated by applying CCE to xi,t , as we will now
explain.2

2Strictly speaking, the assumption that ei,t and xi,t load on the same set of
factors is not necessary. Factors that are unique to either ei,t or xi,t can be
accommodated by imposing zero restrictions on γi and �i . This means that

Unlike in Antoch et al. (2019), where the factor loadings are
assumed to be negligible, under our conditions valid inference
on b0 is not possible without proper accounting for ft . The rea-
son is that the factors make xi,t correlated with ei,t , which means
that (2.1) cannot be estimated consistently using OLS. However,
we note that xi,t has a pure factor model representation, suggest-
ing that the factors can be estimated using methods designed
for such models. In this article, we follow Baltagi, Feng, and Kao
(2016), and use the CCE approach of Pesaran (2006), which is
based on using the cross-sectional average of the observables to
estimate the space spanned by ft . The difference is that we do not
include the cross-sectional average of yi,t , which in the current
context is uninformative regarding ft . This is shown in the
Appendix in the supplementary materials. Hence, in contrast to
Baltagi, Feng, and Kao (2016), in the current article we only use
x̄t , where Āt = N−1 ∑N

i=1 Ai,t is the cross-sectional average of
any variable Ai,t . In view of (2.4), this average can be written as

x̄t = �̄′ft + v̄t . (3.1)

Let A+ denote the Moore–Penrose inverse of any matrix A. If
Assumption 3.2 is true, so that �̄ has full row rank, the Moore–
Penrose inverse of �̄ is given by �̄+ = �̄′(�̄�̄′)−1. Hence,
�̄�̄+ = Im, which in turn means that (3.1) can be solved for
ft by left-multiplication by �̄′+. It follows that if Assumption 2.1
is also true, so that ‖v̄t‖ = op(1), then

‖�̄′+x̄t − ft‖ = ‖�̄′+v̄t‖ ≤ ‖�̄′+‖‖v̄t‖ = op(1). (3.2)

We say that x̄t is “rotationally consistent” for ft , because it is
consistent up to an invertible rotation matrix. Hence, by aug-
menting (2.1) with x̄t , provided that N is large, we can control for
ft , and in this way break the correlation between the regressors
and the error term.

Define MX̄ = IT − X̄(X̄′X̄)−1X̄′ and Ãi = MX̄Ai for any
T-rowed matrix Ai. The augmented model to be estimated can
now be written as

ỹi = X̃iβ + Z̃i(b0)δ + ẽi. (3.3)

This model can be stacked also over the cross-section, giving

Ỹ = X̃β + Z̃(b0)δ + Ẽ, (3.4)

where Ỹ = (ỹ′
1, . . . , ỹ′

N)′ and Ẽ = (ẽ′
1, . . . , ẽ′

N)′ are NT × 1, X̃ =
(X̃′

1, . . . , X̃′
N)′ is NT × k and Z̃(b0) = (Z̃1(b0)

′, . . . , Z̃N(b0)
′)′

is NT × r. Let us further introduce MX̃ = INT − X̃(X̃′X̃)−1X̃′.
With b0 known, the CCE estimator of δ, which is identically the
OLS estimator obtained from (3.4), and the associated sum of
squared residuals are given by

δ̂(b0) = (Z̃(b0)
′MX̃Z̃(b0))

−1Z̃(b0)
′MX̃Ỹ , (3.5)

SSR(b0) = (Ỹ − Z̃(b0)δ̂(b0))
′MX̃(Ỹ − Z̃(b0)δ̂(b0)). (3.6)

there might be factors in ei,t that are not captured by our CCE approach,
and the theory provided here does not consider this possibility. However,
this does not mean that our toolbox cannot handle unattended factors. In
fact, intuition suggest that the approach should work well as long as there
are no unattended factors in xi,t , so that the regressors are conditionally
exogenous given the factors, and our unreported Monte Carlo evidence
supports this.

https://doi.org/10.1080/07350015.2022.2053690
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Of course, in many scenarios of empirical relevance, b0 is not
known. The estimator that we will use in its stead is obtained by
minimizing SSR(b) over all possible values of b;

b̂ = arg min
b∈B

SSR(b). (3.7)

We begin by showing that b̂ is consistent. For this to be
possible, however, in addition to Assumptions 2.1–3.2, we need
to ensure that the inverse appearing in δ̂(b) is well-behaved.
This is where Assumption 3.3 comes in. It demands that the
regressors in xi,t have enough variation across both i and t after
projecting out all variation that can be explained by ft . This rules
out cross-section-invariant regressors in xi,t .

Assumption 3.3. (NT)−1X̃′X̃ and (NT)−1Z̃(b)′MX̃Z̃(b) are pos-
itive definite w.p.a.1 for all b ∈ B, N and T.

We are now ready to state our first main result.

Theorem 3.1. Suppose that Assumptions 2.1, 2.2 and 3.1–3.3 are
met. Then, the following results hold:

a. If N → ∞ and T is fixed, or as N, T → ∞ with
√

N‖δ‖ →
∞ when m = k,

|b̂ − b0| = Op(‖δ‖−2N−1). (3.8)

b. If N, T → ∞ with
√

N‖δ‖ → ∞ and T/(N‖δ‖2) → 0
when m < k,

|b̂ − b0| = op(‖δ‖−2N−1). (3.9)

Theorem 3.1 states that b̂ is consistent and that the rate of
convergence is ‖δ‖−2N−1 or better. The fact that consistency is
possible even if T is fixed is very useful in practice, because it
means that breaks can be detected very quickly. When T → ∞
it matters whether m < k or m = k. Note in particular how the
rate of convergence is faster when m < k then when m = k, and
that this is true even if T/(N‖δ‖2) → 0 under m = k, so that
the conditions for (a) and (b) are the same. The reason is that
when m < k, unlike what one would expect based on standard
theory for regressions in stationary variables, the effect of the
redundant cross-section averages contained in X̄ are not negligi-
ble but impact the asymptotic theory in very much the same way
as unit root regressors do in a spurious regression. Moreover, the
redundant averages are correlated with the breaking regressors
in Zi(b), and this increases the signal coming from Z̃i(b). As
far as we are aware, this is the first time redundant regressors
have been shown to lead to increased accuracy in breakpoint
estimation.

If we are not interested in the distinction between m < k or
m = k, the results contained in Theorem 3.1 can be stated as in
Corollary 3.1.

Corollary 3.1. Suppose that conditions of Theorem 3.1 are met,
and that T/(N‖δ‖2) → 0 and

√
N‖δ‖ → ∞. Then, as N → ∞

with T fixed, or as N, T → ∞,

|b̂ − b0| = Op(‖δ‖−2N−1). (3.10)

Remark 3.1. As already mentioned, Baltagi, Feng, and Kao
(2016) consider a model that is very similar to ours and that
is estimated using CCE. They show that b̂ is consistent for b0;
however, they only consider the case when N, T → ∞, and they
do not provide the rate of convergence. Bai (2010) is the only
other article that we are aware of that proves consistency under
both fixed and large T; however, his model is very simple in that
it does not contain any regressors except for a breaking constant.
Under stationarity, the model considered by Baltagi, Kao, and
Liu (2017) is very similar to ours but without interactive effects.
The rate given in Corollary 3.1 is consistent with the one given
in their Theorem 2.

Remark 3.2. Corollary 3.1 requires that T/(N‖δ‖2) → 0 and√
N‖δ‖ → ∞. The latter condition is similar to Assumption

2 in Bai (2010), and is tantamount to requiring δ = N−αδ0
with α < 1/2 and ‖δ0‖ ∈ (0, ∞). Hence, while we allow for
it, we do not require ‖δ‖ → 0, which is in contrast to studies
such as Antoch et al. (2019), where the magnitude of the break
must be shrinking. The condition that T/(N‖δ‖2) → 0, which
is similar in spirit to Assumption 2 in Baltagi, Feng, and Kao
(2016), restricts the relative rate of expansion of N and T, and
is only needed when T is large. For example, if ‖δ‖ = O(1),
then we require that T/N → 0, as otherwise the error coming
from the estimation of the factors will tend to accumulate as we
sum over time. We also see that the larger is ‖δ‖, the weaker the
condition on T/N, as to be expected, because a larger break is
easier to discern. If T is fixed, then T/(N‖δ‖2) → 0 is implied
by

√
N‖δ‖ → ∞.

As Corollary 3.1 makes clear, provided that T/(N‖δ‖2) → 0
and

√
N‖δ‖ → ∞, consistency holds irrespectively of whether

m = k or m < k, which is of course very useful in practice,
as m is unknown here. This invariance is reflected also in the
asymptotic distribution of the estimated break date, as our next
theorem, Theorem 3.2, makes clear. Before we take the theorem,
however, we need to introduce a few more conditions, which are
given in Assumption 3.4.

Assumption 3.4.

a. E(εi,tεi,s) = 0 for all i and t 	= s.
b. N−1 ∑N

i=1 σ 2
ε,iE(xi,tx′

i,t) → 
X as N → ∞ for all t.
c. N−1 ∑N

i=1 E(xi,tx′
i,t) → �X as N → ∞ for all t, where �X is

positive definite.

Assumption 3.4 is restrictive, but is similar to the conditions
used in the previous literature (see, e.g., Bai 1997a, 2010). It
demands that εi,t is serially uncorrelated and that the moments
of xi,t do not depend on time. While indeed quite strong, because
of the presence of ft , which may be serially correlated, the first
condition does not rule out serial correlation in ei,t . The second
requirement is stronger than necessary, and can be relaxed to
accommodate moments that are constant within break regimes
but potentially varying between regimes, as in, for example, Bai
(1997a), and Yamamoto and Perron (2013).

Theorem 3.2. Suppose that Assumptions 2.1, 2.2 and 3.1–3.4 are
met, and that T/(N‖δ‖2) → 0 and

√
N‖δ‖ → ∞. Then, as

N → ∞ with T fixed, or as N, T → ∞ with T/N → 0,
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(δ′R′�XRδ)2

δ′R′
XRδ
N(b̂ − b0) →d arg max

v∈[−V ,V]⊂R

(
−|v|

2
+ B(v)

)
(3.11)

where B(v) is standard two-sided Brownian motion on v ∈
[−V , V] ⊂ R.3

Remark 3.3. Most articles stop at consistency and do not report
the asymptotic distribution of the estimated breakpoint. Bai
(2010), Baltagi, Feng, and Kao (2019), and Kim (2011) are
exceptions. However, they assume that there are no regressors
other than a breaking constant or that the errors are cross-
sectionally independent. All three articles require that T is large
in their distributional analyses. As far as we are aware, the
asymptotic distribution reported in Theorem 3.2 is the first
to allow for general regressors and common factors in panels
where only N is required to be large.

Theorem 3.2 can be used to construct confidence intervals
for b0 with asymptotically correct coverage. Under Assump-
tion 3.4, consistent estimators of �X and 
X can be constructed
in the following obvious manner:

�̂X = 1
NT

N∑
i=1

X′
iXi, (3.12)


̂X = 1
NT

N∑
i=1

σ̂ 2
ε,iX

′
iXi, (3.13)

where σ̂ 2
ε,i = T−1ε̂′

i ε̂i with the T ×1 vector ε̂i being the ith block
of the NT × 1 vector ε̂ = (ε̂′

1, . . . , ε̂′
N)′ = MX̃(Ỹ − Z̃(b̂)δ̂(b̂)).

The probability density function of arg maxv(−|v|/2 + B(v)) is
known analytically and is given in Bai (1997a). Let us denote by
cα the (1 − α/2)th percentile of this distribution function, and
let �x� be the integer part of x. In analogy to Bai (1997a), an
asymptotically correctly sized 100(1 − α)% confidence interval
for b0 can now be constructed as[

b̂ −
⌊

cα · δ̂(b̂)′R′
̂XRδ̂(b̂)

N(δ̂(b̂)′R′�̂XRδ̂(b̂))2

⌋
− 1,

b̂ +
⌊

cα · δ̂(b̂)′R′
̂XRδ̂(b̂)

N(δ̂(b̂)′R′�̂XRδ̂(b̂))2

⌋
+ 1

]
. (3.14)

4. Break Testing

Testing for the existence of a structural break is a key first
step before estimating the date of the break. In terms of the
parameters of (2.1), the null hypothesis of no structural change
is given by H0 : δ = 0r×1. The alternative hypothesis can be
formulated in (at least) two ways. We begin by considering the
alternative that there is a single structural change (δ 	= 0r×1)
at a given date b, which may or may not be equal to b0. This
hypothesis, henceforth denoted H1(b), can be tested using the
following Wald test statistic:

W(b) = NTδ̂(b)′�̂δ(b)−1δ̂(b), (4.1)

3The two-sided Brownian motion B(v) satisfies B(0) = 0, and B(v) = B1(v)

for v > 0 and B(v) = B2(v) for v < 0, where B1(v) and B2(v) are two
independent standard Brownian motions.

where �̂δ(b) is a consistent estimator of the asymptotic
covariance matrix of δ̂(b), whose construction will be discussed
later. Interestingly, W(b) will not have the expected asymptotic
Chi-squared distribution with r degrees of freedom, henceforth
denoted χ2(r), under H0. The intuition behind this result goes
as follows. As already pointed out, because of the presence of ft in
both (2.3) and (2.4), X̃i is generally endogenous. The exception
is in large-N samples, since here X̄ is rotationally consistent
for F, and in this sense X̃i is “asymptotically exogenous.” The
problem is that while the use of MX̄ takes care of the factors in Xi,
it does not take care of those in Zi(b), which are breaking. This
is a problem because it means that while X̃i is asymptotically
exogenous, Z̃i(b) is not, which in turn invalidates inference
based on W(b). Because of the consistency of b̂, in Section 3 the
endogeneity of Z̃i(b) was not an issue. Of course, if we knew that
there was a break present, as we did in Section 3, there would be
no need to test for it in the first place. The situation considered
here is therefore quite different and this requires some changes.

The first change we make when compared to Section 3, which
is quite natural given the discussion of the last paragraph, is
to replace X̄ with H̄(b) = (X̄, Z̄(b)) and Ãi = MX̄Ai with
Ãi(b) = MH̄(b)Ai. The definitions of δ̂(b) and W(b) are adapted
accordingly. The idea here is that by augmenting X̄ with Z̄(b), we
can eliminate the factors in both Xi and Zi(b), which means that
the endogeneity issue is gone. For this to happen, however, we
need some additional assumptions. In order to appreciate this,
note that(

xi,t
zi,t(b)

)
=

(
�′

i 0k×m
0r×m R′�′

i

) (
ft

ftI(t > b)

)

+
(

vi,t
R′vi,tI(t > b)

)
, (4.2)

where (f ′
t , f ′

t I(t > b))′ are the factors in (x̄′
i,t , z̄i,t(b)′)′. Hence,

provided that rank(�̄) = rank(�̄R) = m, such that the (k +
r) × 2m matrix (

�̄′ 0k×m
0r×m R′�̄′

)
(4.3)

has full column rank 2m ≤ k + r, analogous to the discussion
of Section 2, (x̄′

t , z̄t(b)′)′ is rotationally consistent for (f ′
t , f ′

t I(t >

b))′. We also need to restrict the type of heterogeneity that can be
permitted in γi. The way we do this is by assuming that γi admits
to a random coefficient representation, similarly to, for example,
Pesaran (2006). Assumption 4.1 below replaces Assumption 3.2
and is enough to ensure that the effect of the estimation of ft is
asymptotically eliminated.

Assumption 4.1.

a. rank(�̄) = m ≤ k and rank(�̄R) = m ≤ r for all N,
including N → ∞.

b. ‖�̄‖ < ∞.
c. γi is independent across i, and of εj,t , vj,t and ft for all i and j

with E(γi) = γ and E(‖γi‖2) < ∞.

Another difference when compared to Section 3, where T
could be fixed or large, is that here we focus on the case when
T is large. The main reason is that while we can show that
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the asymptotic null distribution of W(b) for a given b is χ2(r)
regardless of whether T is fixed or going to infinity, which we do
in the Appendix in the supplementary materials the supremum
version of this test that we are going to consider for the unknown
break case is generally not free of nuisance parameters when
T is fixed. Fortunately, the Monte Carlo results reported in the
Appendix in the supplementary materials suggest that our large-
T theory provides a very good approximation to actual test
behavior even when T is as small as 10. We therefore focus on
this theory here and put the fixed-T analysis of W(b) in the
Appendix in the supplementary materials.

The required moment conditions, which are less restrictive
than the serial uncorrelatedness and time invariant moment
conditions of Assumption 3.4, are stated in Assumption 4.2. We
also require that Assumption 3.3 holds when H̄(b) is used in
place of X̄.

Assumption 4.2.

(a.(NT)−1 ∑N
i=1 E(V ′

i�ε,iVi) → 
V as N, T → ∞, where
�ε,i = E(εiε

′
i).

b. (NT)−1 ∑N
i=1 E(V ′

i Vi) → �V as N, T → ∞, where �V is
positive definite.

Assumption 4.3. (NT)−1X̃(b)′X̃(b) and (NT)−1Z̃(b)′MX̃(b)Z̃(b)

are positive definite w.p.a.1 for all b ∈ B′, N and T.

In Section 3, we only required that b ∈ B, which meant that
in the large-T case b/T could take on any value in [0, 1]. Here
this is not possible, for it is only when b/T is bounded away from
zero and one that W(b) converges in distribution (see Andrews
1993, for a discussion). In this section, we therefore assume that
b ∈ B′, where

B′ = {b : b = �τT� with τ ∈ T = [ε, 1− ε] and ε > 0}. (4.4)

The main implication of this in practice is that we have to
truncate, or “trim,” the range of values considered for b at both
beginning and end. A very common way to do this is to set
ε = 0.15, so that the first and last 15% of the observations are
discarded (see e.g., Andrews 1993; Bai 1997a). The condition
that b/T should bounded away from zero and one should hold
for all b, including b0. The following assumption reflects this.

Assumption 4.4. b0 = �τ0T�, where τ0 ∈ T0 ⊂ T .

We now have all the conditions we need in order to obtain
the asymptotic distribution of W(b).

Theorem 4.1. Suppose that H0 holds, and that Assumptions 2.1,
2.2 and 4.1–4.4 are met. Then, uniformly in b ∈ B′, as N, T →
∞ with T/N → 0,

W(b) →d
[J(τ ) − τ J(1)]′[J(τ ) − τ J(1)]

τ(1 − τ)
, (4.5)

where J(τ ) is a r × 1 vector standard Brownian motion on τ ∈
T ⊂ (0, 1).

Because J(τ ) is a standard Brownian motion, J(τ )−τ J(1) =d
N(0r×1, τ(1 − τ)Ir), where =d signifies equality in distribution.

Hence, for a given b, [J(τ )− τ J(1)]′[J(τ )− τ J(1)]/τ(1 − τ) =d
χ2(r), which in turn implies that

W(b) →d χ2(r). (4.6)

Theorem 4.1 requires that N, T → ∞ with T/N → 0.
As alluded to earlier, however, the large-T requirement here
is not necessary. In particular, as we show in the Appendix
in the supplementary materials, (4.6) continues to hold even
if T is fixed and only N diverges. The conditions needed are
more general than those required for Theorem 4.1 to hold. For
example, when T is fixed it is not necessary that b ∈ B′, but it
is enough that b ∈ B. The result in (4.6) therefore holds under
very general conditions, and the Monte Carlo results reported
in the Appendix in the supplementary materials confirm this.

So far we have taken the date of the break as given. If the
date of the break is unknown, as it usually is in practice, H0 can
be tested against the alternative hypothesis of a single structural
break at some unknown date b ∈ B′, which we can formulate
as H1 :

⋃
b∈B′ H1(b). Many researchers follow Andrews (1993)

and take the supremum of Wald test statistics over all possible
breakpoints, and therefore so shall we. The test statistic that we
will be considering is therefore given by

SW = sup
b∈B′

W(b). (4.7)

The asymptotic distribution of this test statistic depends on the
distribution of W(b), and is presented in the following corollary
to Theorem 4.1.

Corollary 4.1. Suppose that H0 holds, and that the conditions of
Theorem 4.1 are met. Then, as N, T → ∞ with T/N → 0,

SW →d sup
τ∈T

[J(τ ) − τ J(1)]′[J(τ ) − τ J(1)]
τ(1 − τ)

. (4.8)

The limiting distribution in Corollary 4.1 is the supremum of
the square of a standardized tied-down Bessel process of order r,
which has appeared previously in Andrews (1993), and Hidalgo
and Schafgans (2017), among others. The critical values only
depend on r and ε, and can be found in Table I of Andrews
(1993).

The above results rely on the availability of a consistent
estimator �̂δ(b) of the asymptotic covariance matrix of δ̂(b),
which, in terms of the notation of Assumption 4.2, is given by
�δ = �−1

V �V�−1
V . A natural approach in the current large-T

setting is to take

�̂δ(b) = �̂V(b)−1�̂V(b)�̂V(b)−1, (4.9)

where

�̂V(b) = (NT)−1Z̃(b)′MX̃Z̃(b), (4.10)

�̂V(b) = �̂V ,0(b) +
T−1∑
j=1

k
(

j
ST

)
(�̂V ,j(b) + �̂V ,j(b)′),

(4.11)

�̂V ,j(b) = 1
NT

N∑
i=1

T∑
t=j+1

ε̂i,t(b)ε̂i,t−j(b)z̃i,t(b)z̃i,t−j(b)′. (4.12)

https://doi.org/10.1080/07350015.2022.2053690
https://doi.org/10.1080/07350015.2022.2053690
https://doi.org/10.1080/07350015.2022.2053690
https://doi.org/10.1080/07350015.2022.2053690
https://doi.org/10.1080/07350015.2022.2053690
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Here k(·) is a real-valued kernel, ST is the bandwidth param-
eter, ε̂i,t(b) is the tth row of the T × 1 vector ε̂i(b) =
(ε̂i,1(b), . . . , ε̂i,T(b))′, which is in turn the ith block of the NT×1
vector ε̂(b) = (ε̂1(b)′, . . . , ε̂N(b)′)′ = MX̃(b)(Ỹ(b) − Z̃(b)δ̂(b)),
and the 1 × r vector z̃i,t(b)′ is the corresponding row of the
NT×r matrix MX̃(b)Z̃(b). Alternatively, �̂δ(b) may be estimated
nonparametrically, as in Pesaran and Tosetti (2011).

Remark 4.1. In the special case when εi,t is independently and
identically distributed across both i and t with variance σ 2

ε , �δ

reduces to �δ = σ 2
ε �−1

V , which can in turn be estimated using

�̂δ(b) = σ̂ 2
ε (b)�̂V(b)−1, (4.13)

where σ̂ 2
ε (b) = (NT)−1ε̂(b)′ε̂(b).

Once the presence of a break has been established and its
location determined, it is possible to make inference regarding
θ = (β ′, δ′)′. Let us therefore, define wi,t(b) = (x′

i,t , zi,t(b)′)′,
such that (2.1) can be written as

yi,t = θ ′wi,t(b0) + ei,t . (4.14)

The CCE estimator of θ is given by θ̂ = θ̂ (b̂), where

θ̂ (b) = (W̃(b)′W̃(b))−1W̃(b)′Ỹ , (4.15)

with W̃(b) = (W̃1(b)′, . . . , W̃N(b)′)′ being NT × (k + r),
W̃i(b) = MH̄(b)Wi as before, and Wi(b) = (wi,1(b)′, . . . ,
wi,T(b)′)′ being T × (k + r). By using the results of Westerlund,
Petrova, and Norkute (2019), we can show that under the con-
ditions of Section 3 with W̃(b) in place of X̃, as N → ∞,

√
N(θ̂ − θ)|F →d N(0(k+r)×1, �−1

W �W�−1
W ), (4.16)

where

�W = lim
N→∞

1
N

N∑
i=1

E(W̃i(b0)
′W̃i(b0)|F), (4.17)


W = lim
N→∞

1
N

N∑
i=1

E(W̃i(b0)
′�ε,iW̃i(b0)|F). (4.18)

Hence,
√

N(θ̂ − θ) is asymptotically normal conditionally on F,
which means that it supports standard normal and Chi-squared
inference. If T → ∞, then the asymptotic distribution of θ̂ is
the one given by Theorem 4 of Pesaran (2006).

5. Application Stock Market Reaction of COVID-19

5.1. Motivation

COVID-19 broke out in China in December 2019. Roughly
one year later, WHO (2021) reports 94 million confirmed cases
and over two million deaths. Moreover, because of lockdowns,
travel restrictions and social distancing policies, in 2020 GDP
dropped by 4.2% globally and real world trade contracted by
10.3% (OECD 2020).4 The economic impact of the pandemic
has therefore been substantial. This is what we know. There

4By comparison, the lowest global GDP growth rate during the 2007–2009
global financial crisis was −1.7% in 2009.

are some signs of recovery in the years to come; however, the
global outlook is extremely uncertain, even in the short term.
As an indication of this, the 2020 OECD world GDP projections
for 2021 ranges from −2.75% to 5%, depending on, among
other things, the evolution of the pandemic, the actions taken to
contain the spread of the virus and their economic impact, and
the time until effective vaccines can be deployed. Hence, even
now, more than a year after the outbreak, much is uncertain.

The uncertainty we face today is nothing compared to what
it was in the beginning of the pandemic. At this time, little
was known about the new virus, but it was clear that it was
very infectious and deadly, as, in contrast to previous infec-
tious disease outbreaks, most countries begun to announce
the number of cases and deaths on a daily basis. Many were
chocked by how quickly these numbers were increasing. Gov-
ernments scrambled with emergency actions, such as closing
schools and workplaces, travel bans, or even complete curfews,
to try to contain the spread. However, since their effectiveness
was far from clear and they made it impossible for firms and
workers to continue their operations without knowing if and
when they would be compensated, these actions added to the
already existing uncertainty, leading to widespread public fear
(see Mamaysky 2020; Phan and Narayan 2020). This was visibly
apparent with news coming in of supermarkets being stocked
out of toilet paper (Aggarwal, Nawn, and Dugar 2020).

In times of extreme uncertainty, stock markets often respond
dramatically to news about the underlying economic and mar-
ket conditions (see Mamaysky 2020). This is what happened
during the global financial crisis of 2007–2009 and it happened
again in the initial stages of the pandemic. In January 2020, the
news reporting was comparable to what it was in the beginning
of the SARS (severe acute respiratory syndrome) and Ebola epi-
demics. By February, however, COVID-19 started to dominate
newspaper discussions of the economy, and by March, almost
all such discussions were about COVID-19 (Baker et al. 2020).5
Stock markets responded violently. On March 16, the Chicago
Board Option Exchange’s volatility index, the so-called “VIX,”
surged past the prior all-time peak reached during the global
financial crisis more than a decade ago. The second-worst day
ever of the Dow Jones industrial index happened on March 16,
and three of the 15 worst days ever of the U.S. market occurred
between March 9 and 16 (Wagner 2020). Stock markets all over
the world reacted similarly.

The unprecedented stock market behavior in the initial stage
of COVID-19 has attracted considerable attention not only in
the news but also in research. The bulk of the evidence seem to
suggest that stock markets have generally responded negatively,
although the channel through which this effect works is still
largely unknown. Ashraf (2020a) uses data for 64 countries and
finds that stock prices have reacted negatively to the pandemic,
but only when measured by the number of confirmed cases, as

5Not all news were about the economy and many were just rumors, but
they still attracted considerable attention and were therefore important in
setting the public sentiment at the time. For example, on February 17, a run
on toilet paper in Hong Kong was mentioned for the first time, and became
a highly contagious story. Some people in locked-down China reportedly
were reduced to searching for minnows and ragworms to eat. In Italy, there
were stories of medical workers in overwhelmed hospitals being forced to
choose which patients would receive treatment (Shiller 2020).
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opposed to the death count. This is largely in agreement with
the results of Erdem (2020). Ashraf (2020b) employs data for
77 countries. He finds that the COVID-19 effect operates not
only through the number of cases, but also through government
actions, such as social distancing measures, containment and
health responses, and economic support packages. Similar find-
ings have been reported by Aggarwal, Nawn, and Dugar (2020)
and Capelle-Blancard and Desroziers (2020).6

The purpose of the current application is to contribute to
the above mentioned literature. This is done in three ways.
First, we account for the rebound of returns. Faced with near
economic collapse, starting with the Federal Reserve’s decision
on March 16 to buy USD 700 billion worth of U.S. treasury
bonds and mortgage-backed securities, central banks around
the world announced aggressive quantitative easing programs
(see Rebucci, Hartley and Jiménez 2020). These announcements
were followed by an abrupt increase in stock prices. The U.S.
S&P500 stock market index, for example, increased by 29%
between March 24 and April 17, a surge that left the index
back where it stood in August of 2019 when the U.S. economy
was booming. The fact that this rebound took place while the
pandemic was still ongoing is suggestive of a structural break.
Most studies ignore this. The only exceptions known to us
are Capelle-Blancard and Desroziers (2020), Mamaysky (2020),
and Ramelli and Wagner (2020), who divide their samples into
subperiods based on major events. The breaks are therefore
treated as known, which is risky, as misplaced breaks are just
as problematic as omitted breaks.

The second contribution of this application is that we account
for general forms of unobserved heterogeneity. Many studies
recognize the problem but assume that it can be handled using
country and period fixed effects. However, fixed effects do not
work in general when pair-wise cross-section covariances of
the regression errors differ across countries, and there is plenty
of evidence to support this (see e.g., Zhang, Hu, and Ji 2020).
Capelle-Blancard and Desroziers (2020) use robust standard
errors but they can only handle weak cross-section dependence.

The third contribution is that we account for the smallness
of T. As alluded to earlier, with COVID-19 being such a recent
phenomenon, studies of it are constrained to data sets with short
time span (see e.g., Salisu and Vo 2020, for a discussion). Some
“compensate” by using a relatively high frequency, such as daily
data, but not all. To take an extreme example, Aggarwal, Nawn,
and Dugar (2020) use monthly data from December 2019 to
May 2020, which means that T = 6. Moreover, even if data are
daily, the subperiods considered are very short. It is therefore
important to use appropriate small-T techniques.

5.2. Data

Our dependent variable is stock returns (RET), which we com-
pute as the log difference of the price index.7 We use four

6Many studies focus on single countries. There are also those that focus
on the volatility of stock returns, as opposed to stock returns themselves.
These are not reviewed here.

7We experimented using excess returns. However, because the results were
qualitatively the same, and since the previous literature focuses almost
exclusively on raw returns, here we only report the results based on using
raw returns as the dependent variable.

control variables; the U.S. Dollar exchange rate (ER), stock
market volatility (VOL), which we proxy using the Chicago
Board Options Exchange’s CBOE volatility index, world market
returns (MRET), as measured by the cross-country average
of RET, and the U.S. three-month treasury bill rate (TBILL)
(see e.g., Aggarwal, Nawn, and Dugar 2020; Capelle-Blancard
and Desroziers 2020; Mamaysky 2020; Salisu and Vo 2020, for
similar control variable lineups). ER is motivated by the theo-
retical work of Dornbusch and Fischer (1980), which says that
exchange rates will influence stock returns because they capture
the value of firms’ future cash flows. VOL can be motivated in
part by its ability to predict returns (see e.g., Bollerslev, Tauchen,
and Zhou 2009; Bollerslev, Xu, and Zhou 2015), in part by the
theory of Glasserman, Mamaysky, and Shen (2020), according
to which information shocks can lead to large drops in stock
prices and increases in volatility. TBILL captures both the risk-
free interest rate and the importance of the United States in
shaping stock markets around the world. The need to control
for MRET is due to CAPM.8

We use all available measures of COVID-19 that have suffi-
cient time series data. A total of six variables meet this criterion.
The first two capture the spread of the virus. They are the
number of confirmed cases (CASE) and deaths (DEATH). The
next four variables are indices that capture government response
to COVID-19; a government stringency index (STR), a con-
tainment and health index (CONT), a government economic
support index (ECON), and an overall government response
index (RESP). STR records the strictness of government policies
that primarily restrict people’s behavior, such as school and
workplace closures, stay-at-home requirements, and travel bans.
CONT captures mainly social distancing restrictions, but also
health system policies such as testing policy, contact tracing,
short term investment in healthcare and investments in vaccine.
ECON is an index that captures government income support
and debt relief. RESP captures all of the above. All indices are
on a scale of 0 to 100 with a larger value indicating greater
stringency, greater commitment to health, greater economic
support, and greater overall government response. All data are
obtained from Datastream, except for TBILL, which is from
Federal Reserve Bank St Louis. The data are weekly and cover
N = 61 countries.9 As in many other empirical scenarios, the
number of time periods is limited and cannot be increased other
than by the passage of time. We take the largest sample period
available to us, which covers T = 38 weeks, from January 3
to September 25, 2020. The smallness of T in this case means
that it is important to use techniques that work even if T is
not large. The Monte Carlo results reported in the Appendix in

8While the COVID-19 variables are clearly exogenous, the controls are not.
Because of this we tried lagging the controls, which reduces the risk of
reversed causality. The results were, however, unaffected by this.

9The included countries are Argentina, Australia, Austria, Belgium, Brazil,
Bulgaria, Canada, Chile, China, Croatia, Cyprus, Czech Republic, Denmark,
Egypt, Estonia, Finland, France, Germany, Greece, Hong Kong, Hungary,
Iceland, India, Indonesia, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kenya,
Kuwait, Latvia, Luxembourg, Malaysia, Mexico, Morocco, the Netherlands,
New Zealand, Norway, Oman, Pakistan, Peru, the Philippines, Poland, Por-
tugal, Romania, Russia, Singapore, Slovakia, Slovenia, South Africa, South
Korea, Spain, Sri Lanka, Sweden, Switzerland, Thailand, Tunisia, Turkey, and
the United Kingdom.
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the supplementary materials suggest that the proposed toolbox
should work well here.

5.3. Implementation

Both theory and empirical observations stress the importance of
news (see, e.g., Mamaysky 2020). We therefore follow the bulk
of the existing literature and express all regressors in innovation
form by taking first differences. Ashraf (2020b) considers the
same stringency, containment and health, and economic sup-
port indices as we do. While he includes all three indices at the
same time, we do not. The reason is that STR, CONT and RESP
are highly collinear with correlations that range from 0.949 to
0.978. We therefore include them one at a time (see Capelle-
Blancard and Desroziers 2020, for a similar approach).

VOL, MRET and TBILL do not vary by country but only
by week. We therefore want to treat these as observed common
factors, a possibility that we did not consider in Sections 2–4. As
pointed out in Section 2, the type of factors that can be permitted
under Assumption 2.2 is very broad. This suggests that there is
no need to discriminate between known and unknown factors,
but that one can just as well treat them all as unknown to be
estimated from the data. In fact, this is the main rationale for
writing (2.1) and (2.4) in terms of (the unknown) ft only. The
main drawback of this fully unknown factor treatment is that it
puts strain on the Assumption 3.2 condition that m ≤ k, as k is
fixed and additional factors increase m even if they are known.
For this reason, it may be preferable to be able to distinguish
between known and unknown factors. Fortunately, in CCE this
is very easy. Let us therefore assume that there are two sets of
factors, ft and dt , where ft is a m × 1 vector of unknown factors,
just as before, while dt is a n × 1 vectors of known common
regressors, which in this section is comprised of a constant
(country fixed effects), VOL, MRET and TBILL. Hence, now the
total number of factors is equal to m + n, out of which n are
known. In order to account for the fact that some of the factors
are now known, instead of using MX̄ to purge the effect of F in
the estimation of b, we use M(D,X̄), where D = (d1, . . . , dT)′
is T × n. Similarly, to account for the known factors in the
break tests we replace MH̄(b) with M(D,D(b)H̄(b)), where D(b) =

(d1I(1 > b), . . . , dTI(T > b))′. The effect of these changes is
that Assumption 3.2 only applies to the unknown factors; that
is, we do not require m + n ≤ k but only m ≤ k

The above discussion suggests that in terms of the known
factor-augmented version of (2.1), in this section yi,t is RET, dt
is a constant, VOL, MRET and TBILL, and xi,t is ER, CASE,
DEATH, ECON, and one of STR, CONT and RESP. We allow
the coefficients of the COVID-19 spread and response variables
to be breaking, but not the coefficient of ER. The date of the
break is treated as unknown not only in the estimation but also
on the testing. We therefore focus on the SW test, which we
implement using 15% trimming (ε = 0.15) (as in e.g., Andrews
1993; Bai 1997a). Based on its good performance in the Monte
Carlo study reported in the Appendix in the supplementary
materials the asymptotic covariance matrix of δ̂(b) is computed
based on the Bartlett kernel with the bandwidth parameter ST
set equal to ST = �T1/3�. Similarly to us, Bai (2010) focuses on
the single break case, although he also discusses the possibility
of having multiple breaks. As he remarks, if the number of
breaks is given, the one-at-a-time approach of Bai (1997b) can
be used to estimate the breakpoints, and if the number of breaks
is unknown, a test for existence of a break can be applied to
each subsample before estimating another breakpoint. The same
approach can be used also in the current more general context.
The results are discussed in the next section.

5.4. Results

We begin this section by considering the descriptive statistics
reported in Table 1. The first set of results include the mean,
standard deviation, minimum and maximum of each variable.
RET has a mean value of −0.392 with a standard deviation
of 4.44. The fact that the mean is negative indicates that the
pandemic has affected stock markets negatively. The mean val-
ues of CASE and DEATH are positive, as expected because the
pandemic has not settled down yet. The results for the response
variables show that governments have responded to the pan-
demic. Table 1 also reports the results obtained by applying the
CD test of Pesaran (2021), which tests the null hypothesis of no
remaining cross-sectional correlation after controlling for fixed

Table 1. Descriptive statistics.

Variable Mean SD Min Max UR CD corr

RET −0.392 4.440 −26.795 17.656 −5.769∗∗∗ 161.010∗∗∗ −0.007
CASE 99.125 1314.487 −20289 28789 −4.137∗∗∗ 13.631∗∗∗ 0.020
DEATH 275.842 985.860 −1507 8101 −2.098∗ 63.246∗∗∗ 0.023
STR 1.348 9.163 −47.2 88.9 −5.768∗∗∗ 114.333∗∗∗ −0.007
RESP 1.543 6.732 −30.3 64.3 −5.633∗∗∗ 117.615∗∗∗ −0.007
CONT 1.501 7.207 −35.4 70.8 −5.651∗∗∗ 108.350∗∗∗ −0.007
ECON 1.796 10.293 −50 100 −5.263∗∗∗ 55.289∗∗∗ −0.005
ER 0.460 41.260 −740 1155 −5.930∗∗∗ 4.418∗∗∗ 0.003
VOL 1.663 20.841 −33.678 85.372 −4.160∗∗∗ – –
TBILL 0.399 0.535 0.100 1.520 −3.405∗∗ – –
MRET −0.392 3.515 −14.864 5.479 −4.312∗∗∗ – –

NOTE: “Mean,” “SD,” “Min,” and “Max” refer to the sample average, the standard deviation, the minimum value and the maximum value of each variable. The column
labeled “UR” reports some unit root test results. If the variable exhibits cross-sectional variation we employ the CIPS test of Pesaran (2007), which allows cross-sectional
dependence in the form of a common factor. If the variable only varies over time, we employ unit root test of Elliott, Rothenberg, and Stock (1996). Both tests are
augmented with four lags to capture any serial correlation in the regression errors. “CD” and “corr” refer to Pesaran’s (2021) test for cross-sectional correlation and the
average pair-wise cross-correlation coefficient after defactoring. The CD and corr results for VOL, TBILL and MRET are not reported as these variables do not vary by
country. The column The variables are stock returns (RET), cases (CASE), deaths (DEATH), government stringency (STR), overall government response (RESP), government
containment and health (CONT), government economic support (ECON), the U.S. dollar exchange rate (ER), stock market volatility (VOL), the three-month U.S. treasury
bill rate (TBILL) and average stock returns (MRET).

https://doi.org/10.1080/07350015.2022.2053690
https://doi.org/10.1080/07350015.2022.2053690
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Table 2. Main results.

Regressor Coeff Spec 1 Spec 2 Spec 3

CASE β −0.001∗∗ −0.002∗∗∗ −0.002∗∗∗
(0.000) (0.001) (0.001)

δ 0.001∗∗∗ 0.002∗∗∗ 0.002∗∗∗
(0.000) (0.001) (0.001)

DEATH β −0.002∗ −0.002∗∗ −0.002∗∗
(0.001) (0.001) (0.001)

δ 0.002∗ 0.002∗∗ 0.002∗∗
(0.001) (0.001) (0.001)

ECON β 0.056∗∗ 0.070∗∗∗ 0.060 ∗ ∗
(0.028) (0.027) (0.026)

δ −0.068∗∗ −0.082∗∗∗ −0.073∗∗∗
(0.029) (0.027) (0.027)

STR β −0.077∗∗∗
(0.020)

δ 0.075∗∗∗
(0.022)

RESP β −0.075∗∗∗
(0.028)

δ 0.066∗∗
(0.031)

CONT β −0.065∗∗∗
(0.023)

δ 0.056∗∗
(0.024)

r 4 4 4
n 4 4 4
SW 31.182∗∗∗ 24.108∗∗∗ 24.096∗∗∗
b̂ April 5 April 5 April 5
95% CI [March 29, [March 29, [March 29,

April 12] April 12] April 12]
Unreported controls: Country fixed effects, VOL, TBILL, MRET and ER

NOTE: The dependent variable is stock returns (RET). The main regressors are
cases (CASE), deaths (DEATH), government stringency (STR), overall government
response (RESP), government containment and health (CONT) and government
economic support (ECON). All specifications include country fixed effects, the U.S.
dollar exchange rate (ER), stock market volatility (VOL), the three-month U.S. trea-
sury bill rate (TBILL) and average stock returns (MRET) as controls. As estimates
of the unobserved factors we use the main regressors of each specification and
ER. All specifications also include country fixed effects, VOL, TBILL and MRET as
observed common factors. β and δ refer to the pre-break slope and the size of
the break, respectively. r and n refer to the number of panel data regressors and
observed common factors, respectively. SW refers to the sup-Wald test for the
existence of a structural break, b̂ refers to the estimated breakpoint and “95% CI”
refers to the associated 95% confidence interval. The reported dates refer to the
last day of the relevant week. The numbers within parentheses are the standard
errors. Finally, ∗ , ∗∗ and ∗∗∗ denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

effects. The null is rejected at all conventional significance levels
for all variables, suggesting that, as expected given the above
discussion, fixed effects are not enough to account for the cross-
section correlation. The results of the unit root tests of Elliott,
Rothenberg, and Stock (1996), and Pesaran (2007) confirm that
all the variables are stationary. The latter test allows for common
factors in very much the same way as CCE, by using cross-
sectional averages to estimate and remove any factors before
testing for unit roots. This makes it ideal for our purposes, as
it only tests the idiosyncratic errors, which we have assumed
to be stationary. In order to also get a feeling for the validity
of the interactive effects assumption, Table 1 reports the aver-
age correlation coefficient for all pairs of countries after factor
removal. If the interactive effects assumption is correct, the
defactored data should be cross-country uncorrelated, whereas
if the assumption is incorrect there should be some remaining
cross-country correlation. Hence, only if the defactored data
are cross-country uncorrelated can we conclude in favor of

the interactive effects assumption. According to the results, the
average correlation coefficients are very small in absolute value,
between −0.007 and 0.023, suggesting that there are no major
violations of the interactive effects assumption.

Table 2 contains our main results. It reports the estimated
coefficients and their significance, the SW test values and their
significance, the estimated break date, and the associated 95%
break date confidence interval.10 The table only contains the
results for the COVID-19 variables, which are our main regres-
sors. The controls are included but we do not report their results.
Three specifications are considered, one for each of STR, CONT
and RESP.

The first thing to note is that the SW test is highly significant
in all three specifications and that the break date is estimated to
the first week of April, which starts on March 30 and ends on
April 5. This is consistent with the quantitative easing interven-
tions of major central banks and the sharp stock market rise that
followed. For example, the S&P 500 stock market index lost 34%
of its value between February 19 and March 23, but abruptly
regained the vast majority of this loss, rising 29% between
March 24 and April 17. Stock markets all around the world
experienced similar surges (see International Monetary Fund,
IMF 2020). There may be confounding factors that have affected
stock returns positively. However, we note that the quantitative
easing announcements were among the largest news items at
the time (Mamaysky 2020). A full table of announcements can
be found in Rebucci, Hartley and Jiménez (2020). The dates of
some notable announcements in March 2020 are the European
Central Bank on the 18th, the Bank of England and the Reserve
Bank of Australia on the 19th, the Reserve Bank of New Zealand
on the 23rd, the Bank of Korea on the 25th, and the Federal
Reserve and the Bank of Canada on the 27th. Most of the
emerging economies’ central banks made their announcements
during the last 10 days of March. Our estimated break date is
located directly after these announcements.

Quantitative easing pushes interest rates down and this has
(at least) two effects, which both result in an increase in stock
prices (see e.g., Bernanke 2012. First, by decreasing the discount
rate, quantitative easing increases the present value of future
cash flows. Second, quantitative easing makes relatively safe
assets unattractive, which creates an incentive for investors to
rebalance their portfolios to include more stocks, and this in
turn pushes stock prices up. We therefore speculate that it was
the quantitative easing announcements that caused the break in
the stock return-COVID-19 relationship.11 As explained earlier
in this section, the SW test is applied not only to the full
sample but also to the pre- and post-break periods. However, no
significant breaks were found in the pre- and post-break periods,
and so we conclude that there is just one break.

Another observation is that all the COVID-19 regressors
enter significantly but only before the break. Specifically, the
estimated pre-break coefficients (β) are all significant, as are
the estimated breaks (δ), but they sum up to zero, and the
sum is insignificant in all cases. In other words, the estimated

10After the break date was estimated, the Stata command xtdcce2 by Ditzen
(2018) was used to obtain the regression results.

11We also note that our estimated breakpoint does not coincide with
the sample splits considered by Capelle-Blancard and Desroziers (2020),
Mamaysky (2020), and Ramelli and Wagner (2020).
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Figure 1. Plotting the cross-sectional averages of RET, STR, CONT and RESP.
NOTE: The figure plots the weekly cross-sectional averages of stock returns (RET), government stringency (STR), government containment and health (CONT) and overall
government response (RESP). The break date estimate and the associated 95% confidence interval are taken from Table 2. The reported dates refer to the last day of the
relevant week.

post-break effects (β + δ) are insignificant. Consider CASE
and DEATH. Their pre-break effect is significantly negative,
which is consistent with existing results (see e.g., Ashraf 2020a,
2020b; Capelle-Blancard and Desroziers 2020; Erdem 2020).
Hence, as expected, stock markets initially responded negatively
to the news of the outbreak of the virus. This negative effect is,
however, completely eliminated by the break, which is estimated
to be of the same magnitude but of opposite sign. The post-
break effect of CASE and DEATH is therefore estimated to
zero, suggesting that the central bank interventions have had a
substantial positive effect on stock markets.

Let us now move on to the response regressors, STR, CONT,
ECON and RESP. The estimated pre-break effect of ECON
is significantly positive, meaning that stock markets initially
responded positively to news of increased government support,
which is again in accordance with our a priori expectations.
After the break, however, stock markets became insensitive to
such news. Similarly, while initially markets responded nega-
tively to announcements of stricter and more extensive gov-
ernment restrictions, as measured by STR and RESP, after the
break they did not respond at all. The same is true for CONT,
which is probably due to the fact that while this variable captures
both social distancing restrictions and investments in health-
care, the restrictions are weighted higher in the construction
of the index and they did came first. As an illustration of the
effect of STR, CONT and RESP, in Figure 1 we plot the cross-
sectional averages of these variables against that of RET. We see
that while before the break the co-movement between average
RET on the one hand and STR, CONT and RESP on the other
hand is clearly negative, after the break the co-movement is
much weaker. These results are quite different from existing

ones. Capelle-Blancard and Desroziers (2020) find that STR has
a positive but insignificant effect, which becomes significant
only in the absence of fixed effects or other control variables.
Ashraf (2020b) reports a significantly negative effect of STR, a
significantly positive effect of CONT and an insignificant effect
of ECON. However, these other studies only allow for fixed
effects and they do not take into consideration our estimated
breakpoint, which could very well explain the observed differ-
ences in the results.

According to the results of Baker et al. (2020) and Mamaysky
(2020), in the early phase of the pandemic (late February to late
March) stock market movements were driven by news about
the virus. In fact, markets were “hypersensitive” and overreacted
not only to news themselves but also to other markets’ reaction
to news (Mamaysky 2020). “Markets started to oscillate wildly,
and people suddenly realized that the virus could affect them
directly. Panic selling in the stock market went hand-in-hand
with panic buying in supermarkets” (Wagner 2020, p. 440). This
explains why initially stock markets reacted significantly to all
COVID-19 related news (CASE, DEATH, STR, CONT, ECON
and RESP). The powerful central bank interventions acted as a
wake-up call. They signaled a clear commitment to deal with
the pandemic, thereby bringing some certainty to an otherwise
extremely uncertain future. Stock markets reacted positively and
progressed on a path to recovery. This is noteworthy because the
economic conditions have been steadily deteriorating as a result
of closures and social distancing (see IMF 2020). As Krugman
(2020) puts it, “[t]he relationship between stock performance—
largely driven by the oscillation between greed and fear—and
real economic growth has always been somewhere between
loose and nonexistent.”
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The explanation for our results given in the previous para-
graph is consistent with (at least) two theories. The first is the
so-called “overreaction” hypothesis of Daniel, Hirshleifer, and
Subrahmanyam (1998), and Hong and Stein (1999), which states
that investors overreact to negative shocks, such as those that
hit stock markets in the early phase of the pandemic. As more
information becomes available, however, and the central bank
announcement were very informative, investors correct their
behavior, which leads to market recovery. The second theory is
that of Glasserman, Mamaysky, and Shen (2020). It states that
information shocks, such as the outbreak of COVID-19, can
lead to large drops in prices and increases in volatility, which in
turn cause prices to become hypersensitive to newsflow. How-
ever, information can also push prices out of hypersensitivity,
and our results show that in the post-break regime returns are
no longer reacting to news of the pandemic.

6. Conclusions

The main aim of this article is to provide a toolbox that meets
the basic needs of researchers interested in a linear panel data
model with a possible structural break. The toolbox allows
researchers to test for the presence of a break, and, if a break is
detected, to also estimate the location of the break and construct
a confidence interval for the true breakpoint. The toolbox does
not require that the data are independent, nor that T is large,
which means that it is widely is applicable.

The new toolbox is employed to investigate the relationship
between stock market returns and COVID-19 in a sample
covering 61 countries across 38 weeks. Stock markets all over
the world plunged in the early phase of the pandemic but they
quickly rebounded, and this rebound took place although the
end of the pandemic is still not in sight. Our analysis shows that
while initially responsive, the effect of COVID-19 stopped dead
at the end of March–beginning of April 2020. We attribute this
break to the massive quantitative easing programs announced
by central banks around the world in the second half of
March.

Supplementary Materials

This supplement provides (a) the proofs of the results reported in Sections 3
and 4 of the main article, (ii) some additional theoretical results that are
commented on but not reported in the main article, and (iii) a Monte Carlo
study.
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