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Abstract  13 

Condition of drainage asset systems can have substantial impact on the structural and operational integrity of railway tracks. It is 14 

therefore important to ensure that the various components of the drainage system are well-maintained. To this end, decision makers 15 

in the railway industry have been moving towards predictive, risk-informed drainage asset management. The approach aims to 16 

optimise the allocation of the limited time and financial resources for maintenance works. To achieve this more research is required 17 

to develop predictive condition models for railway drainage assets.  18 

This paper describes the development of data-driven condition prediction models using drainage pipe asset records. The models 19 

were tested for both structural and service condition prediction. Nine input factors were considered in the prediction models. 20 

Significance of the factors was evaluated using Connection Weight Analysis. Four Machine Learning (ML) algorithms, namely, 21 

Neural Networks, Decision Trees, Bagged Trees, and K-Nearest Neighbour, were compared based on their condition prediction 22 

performance for pipe drainage assets. The models were developed and tested using field data collected from the UK owner of rail 23 

assets, Network Rail. The results demonstrate that Bagged Trees performed best on a balanced dataset with 87% overall accuracy 24 

for structural condition prediction and 72% accuracy for service condition prediction. It was found that pipe length, previous 25 

condition, years since previous condition and maintenance are the most significant factors in predicting condition.  26 

Introduction and Background  27 

Although the impact of poor drainage on railway track is well known, only a few researchers, e.g. Usman et al. (2017) and Sañudo 28 

et al. (2019), have focused on understanding the failure modes of drainage assets and their impact on a track. According to the UK 29 

railway drainage standards, performance of drainage system describes the physical ability of the system to carry flow from rainfall 30 

and runoff from adjacent areas and groundwater as to not disturb the stable operation of other rail infrastructure. Further, the drainage 31 

system should prevent any pollutants from leaving the system in uncontrolled manner. Poor performance of a drainage system 32 



causes a myriad of problems including ballast deterioration, subgrade failure (Usman et al., 2015), loss of track geometry 33 

degradation, corrosion of track elements, earthwork failures, electric system failures and even derailments (Sañudo et al., 2019). 34 

Poor drainage performance is not only caused by incidental defects and collapses of drainage assets, but it also occurs because of 35 

natural deterioration experienced by the drainage assets (Ana and Bauwens, 2010). Level of performance for a drainage asset is 36 

usually reflected through a condition scoring system, where asset inspectors allocate a condition score depending on the observed 37 

condition of the asset. Asset management is a complex process consisting of periodic inspections, routine and emergency 38 

maintenance, enhancement, and renewal activities with a direct impact on reliability and safety of railway operation (Fecarotti and 39 

Andrews, 2017). These activities need to be arranged or strategised efficiently such that to maintain a given level of service and 40 

safety within budget constraints (Fecarotti and Andrews, 2017, Jovanonic and Guler, 2006). Jovanonic and Guler (2006) stated that 41 

for efficient management of railway assets, work on two items is crucial: 1) improvement of performance monitoring, 2) having 42 

reliable condition assessment and prediction leading to optimised maintenance and rehabilitation planning and resource allocation. 43 

For the first, Kovacevic et al. (2016) developed a methodology to asses railway infrastructure using Ground Penetrating Radar 44 

(GPR), seismic refraction and drones to evaluate track performance features including ballast fouling, soil water content, slope 45 

geometry and drainage condition. While this is important to move away from subjective assessments of railway assets, there is still 46 

a gap in predictive condition modelling for railway drainage assets. Wu et al. (2021) utilised the statistical Markov chains for 47 

assessment of rail drainage asset service condition at cohort level. However, it is prudent to address structural condition in addition 48 

to service condition. Further, through development of a two stage framework for railway track geometry maintenance optimisation, 49 

Fecarotti and Andrews (2017) emphasised the importance of individual-asset condition assessment prior to any network-level 50 

strategy evaluation. 51 

Currently, there is shift from corrective or reactive maintenance strategies towards proactive and condition-based strategies. 52 

Predictive condition models are a step in this direction. Consilvio et al. (2016) developed a risk-based predictive maintenance 53 

framework using petri nets for rail assets and utilised deterioration curves for condition assessment as a basis for the point in time 54 

when asset requires maintenance. Asset condition evaluation is, therefore, a main part for asset risk-assessment. A study undertaken 55 

by Xu and Sinha (2019) incorporated asset performance modelling as an integral part of a risk framework for water mains. Within 56 

the railway context, Papathanasiou and Adey (2021) proposed the use of event tree for risk assessment of switches, track sections, 57 

and bridges. The study accounted for temperature and traffic as hazards but did not account for flood damage. Oslakovic et al. 58 

(2013) addressed climate change impact on railway infrastructure, through identifying incidental failures due to weather events like 59 

storms, snow, temperatures and the failure modes like short circuits. However, the study did not account for the condition of the 60 

drainage assets, which is a potential cause of the problem. Wang et al. (2021) studied the hazard of floods, earthquakes, and typhoons 61 

on railways, using seismic and fluvial flood hazard maps to quantify risk in terms of expected annual damage at a network scale. 62 

Koks et al. (2019) also performed a similar study to estimate exposure and risk imposed by natural disasters on a global level. 63 

Neither of these studies looked at risk on an individual asset level. Therefore, a drainage asset condition prediction model forms a 64 

basis for a risk assessment in railway infrastructure.  65 



Furthermore, with recent development in digital technologies, models which incorporate the use of Big Data  for railway asset 66 

condition assessment , such as Machine Learning (ML), are indispensable as decision support tools for asset managers (Thaduri et 67 

al., 2015, and Mcmahon et al., 2020). Within railway, Consilvio et al. (2020) used ML cluster analysis for a data-driven condition 68 

classification of railway earthworks. ML was used as part of a decision support system for strategic asset management using petri 69 

nets. The study achieved 22% improvement in distinction between condition classes within a cluster. The application, however, was 70 

limited to a two-dimensional cluster analysis utilising track geometry top and alignment standard deviation and soil moisture index 71 

for clustering earthworks. Furthermore, Bukhsh et al. (2018) used Random Forests, an ML method, for prediction of railway 72 

crossings maintenance needs. It involved a binary classification to determine whether a maintenance intervention was warranted, 73 

given the exploratory variables: age, condition state and historic maintenance records of problems. The study achieved 87% accuracy 74 

rate and 92% F-score in prediction of maintenance need. Thereon, it would be pertinent to see an extension of the work for prediction 75 

of type of maintenance need. Kalathas and Papoutsidakis (2021) used Decision Trees, another ML algorithm, for improving 76 

maintenance of rolling stock of traction/braking system. The study achieved 80% accuracy in prediction of the rolling stock 77 

maintenance need as either control maintenance or urgent repair. The considered predictors were kilometres of travel, kilometres 78 

travelled when malfunction appeared, and total annual malfunctions of equipment. Alawad et al. (2020) used Decision Trees for 79 

safety analysis of railway stations. The study achieved 89% accuracy in prediction of accident type using historic accident records 80 

containing passenger traits and details of travel timings. Ferreño et al. (2021) also utilised multiple ML algorithms for determination 81 

of dynamic stiffness of rail pads. The regression problem used experimental in-service condition of rail pads as predictors, including 82 

temperature, frequency, axle load and toe load. The result show that Gradient Boosting ML achieved R2 of 0.0995. Arshad and 83 

Ahmed (2021) achieved 95% overall accuracy using ML for prediction of train delay minutes before start of journey based on 84 

historic delays and weather data. Furthermore, Neural Networks, an ML method, was used by Mittal and Rao (2017) for detecting 85 

track defects, mapping of switches and signals, and monitoring track health using digital images. The study demonstrates the 86 

incorporation of ML as an asset management decision support tool which considers the trade-off between financial limitation and 87 

maintenance criticality through detailed evaluation of performance. For e.g., the ability of ML to detect all sun kink defects and 88 

switches is crucial as failure to do so could cause derailment. Therefore, the model had to show high retrieval ability, which was 89 

achieved at 100% recall of sun kinks (although with very limited dataset) and 93% recall for switches. On the other hand, for loose 90 

ballast defects, it was more pertinent to avoid false alarms as they warrant maintenance dispatch, which was achieved at 95% 91 

precision classification rate. 92 

The above literature demonstrates the wide applicability of ML methods for various assessment and condition predictions of railway 93 

assets, in addition to their seamless integration as part of an asset management decision support tool. However, ML methods have 94 

not been used for railway drainage assets. There is a substantial volume of drainage inventory inspection records available in the 95 

UK, which could be used for ML condition modelling of individual drainage assets. Therefore, research on predictive condition 96 

 in the field of railway drainage asset management. 97 



To this end, this paper proposed a data-driven railway asset structural and service condition prediction model which was verified 98 

using drainage pipe asset records. The study targets individual rail assets  condition prediction to help asset managers identify 99 

candidate assets that are in critical condition for inspection and maintenance prioritisation, and hence help with better allocation of 100 

limited resources within asset management strategies.  101 

Thereon, the following section reviews the existing condition prediction models for urban pipe assets (sewers, drainage and water 102 

mains), followed by a description of the adopted methodology for this study within context of rail assets using ML models 103 

(Methodology Section). A case study in which four ML condition prediction algorithms were trialled is reported in Case Study 104 

Section. The results and comparisons between the four ML methods are presented in Results and Comparisons Section, before 105 

drawing the conclusions in the Conclusion Section. 106 

Overview of Existing Condition Models for Drainage Systems 107 

Infrastructure condition models can be divided into three categories: physical, statistical and ML models (Yang, 2004).  All three 108 

models have been used to model storm water/wastewater pipe condition, focusing mainly on urban/road drainage systems. The 109 

applications of the three types of models in literature are reviewed in this Section, mainly Empirical model, Markov models and 110 

ML models.  111 

Physical empirical condition models (such as linear and exponential models) are based on physical mechanisms that govern pipe 112 

deterioration (Tran et al., 2007). They require relatively large amount of specific type of data to fully capture the deterioration 113 

behaviour, but such a data is often unavailable (Ana and Bauwens, 2010). Moreover, failure mechanisms of pipes are very complex 114 

as they are the result of interaction between numerous factors with randomly occurring damage propagation (Rajani and Kleiner, 115 

2001, Madanat et al., 1997). An example of these empirical model is the ExtCorr linear model developed by Konig (2005), which 116 

gives an estimate of  external corrosion of concrete pipes due to environmental factors. The validation of the model was not reported 117 

in the article and hence it is not possible to comment on its accuracy. Furthermore, Vollersten and König (2005) stated  that in such 118 

a model there is high level of uncertainty associated with the external conditions .   119 

Statistical models on the other hand allow for randomness in behaviour of deteriorating pipes. They assume a stochastic behaviour 120 

where predictions are based on past distribution of occurrences. The applications of various prediction techniques and models 121 

gathered from the literature are summarised in Table 1. The commonly used statistical pipe condition model is the Markov chains 122 

model (Wu et al., 2021). Markov model assumes the current state of the asset fully captures all the information regarding the factors 123 

that influence future condition and hence, future condition depends solely on current condition (Ana and Bauwens, 2010, Meegoda 124 

et al., 2004). Wu et al. (2021) uses Markov Chains for simulations of transition probabilities of railway drainage assets. 125 

Moghtadernejad et al. (2021) also uses Markov chains for estimation of deterioration curves of railway supporting structures like 126

retaining walls. Markov model assumes no maintenance will take place so the asset condition cannot improve but can only 127 

deteriorate or maintain the current condition. There are two main types of Markov models; Homogeneous Markov chains which are 128 

time-independent and non-homogeneous Markov chains in which transition probability from one condition to the other changes 129 

with the age of an asset (Ana and Bauwens, 2010). Cohort survival model which is used by Baur and Herz (2002) for sewer condition 130 



forecasting is based on statistical regressions methods utilizing survival probability of pipes (Xu and Sinha, 2021). The method 131 

estimates the duration that an asset remains in a certain condition until it moves to the next condition, which is presented as a survival 132 

curve (Baur and Herz, 2002). Xu and Sinha (2021) used Weibull proportional hazards model (WPHM) as a survival analysis on 133 

pipe break records to predict  mean time to failure. Xu and Sinha (2020), Xu and Sinha (2021) described the main issue with 134 

survival analyses for pipes is the missing data points in historical records, i.e., left truncation statistical problem. To address this, 135 

Xu and Sinha (2021) have used Artificial Neural Networks for imputation of missing data which significantly reduced error from 136 

14% to 2%. 137 

ML models, a subsection of Artificial Intelligence (AI), are data-driven models, which are meant to complement or replace 138 

knowledge-driven models when describing a physical phenomenon, such as deterioration of an asset (Solomatine and Ostfeld, 139 

2008). ML simulates the acquisition of knowledge similar to human brain learning which enables continuous improvement of model 140 

performance (Liu et al., 2019). They learn the hidden patterns behind the observed data, which enables them to make predictions 141 

(Tran, 2007). ML methods are suitable for identifying complex non-linear relationships between input and output data (Lee et al., 142 

2021). They are tolerant of imprecise, subjective, and limited noisy data and can handle both real values and categorical/ordinal 143 

input (Tran et al., 2007, Ellis et al., 2008). Unlike statistical methods, ML methods make no assumptions about the data distribution 144 

or the required explanatory variables (Asnaashari et al., 2013, Tran, 2007, Solomatine and Ostfeld, 2008). There is a wide range of 145 

successful applications of ML methods, mainly using Artificial Neural Networks (ANN), Support Vector Machine (SVM), K-146 

Nearest Neighbours (KNN) and Ensemble Classifiers which include Decision Trees (DT), Bagged Trees (BT), Random Forests 147 

(RF), Gradient Boosted Trees (GBT) and AdaBoost. Table 2 summarises these applications and their measures of performance. 148 

These studies highlight the suitability and success of ML algorithms as condition prediction models. This study introduces the use 149 

of ML for condition prediction of rail drainage assets. Thereon, this study provides a comprehensive approach to develop data-150 

driven prediction models for rail drainage assets.  151 

Parameters Affecting Pipe Condition 152 

Davies et al. (2001a) highlights that there is no single parameter, or even small group of parameters, which stand out as having a 153 

particularly strong influence on pipe condition. Rather, it is a process resulting from the interaction of many factors. These factors 154 

are categorised into four groups according to Ana and Bauwens (2010), Davies et al. (2001a), Rajani and Kleiner (2001), as follows: 155 

 physical factors: pipe age, pipe shape, pipe size, pipe depth, pipe length, pipe material, pipe slope, pipe type, joint type and 156 

material; 157 

 environmental factors: groundwater level infiltration/exfiltration, presence of trees, traffic and surface loadings and soil 158 

condition including soil type, pH, density, resistivity, aeration; 159 

 operational factors: sediment level, sewage characteristics of flow, maintenance, and repair strategies. water pressure, surge 160 

pressures, summer and winter air and water temperatures, wheel loads, vehicle impact factor and frost load factor; and   161 

 installation factors: installation method, standard of workmanship, laying condition, load factor, coefficient of horizontal 162 

stress at rest, coefficient of sliding friction.  163 



Factors considered in statistical and ML applications are summarised in Table 1. Although previous condition and maintenance 164 

parameters are missing from existing condition models, Morcous et al. (2002) highlights their influence on infrastructure condition. 165 

Therefore, in this study both factors are taken into consideration in the analysis (Inputs Section). 166 

Methodology 167 

Following the result of literature review process, this study was structured to trial the suitability of the following ML methods for 168 

predicting the condition of rail drainage assets:  169 

- NN as a popular form of deep learning in recognising patterns between input and outputs (Dawood et al., 2018),   170 

- DT as a basic form of Tree-like models,   171 

- BT as an ensemble classifier, and  172 

- KNN as a simple and powerful form of non-parametric model for large datasets (Parvin et al., 2008).   173 

Additionally, this study addresses some gaps in previous applications of ML to produce robust models with interpretable results. 174 

Models which measure performance using statistical tests and metrics (e.g., Coefficient of determination, Mean Square Error) often 175 

evaluate the overall performance of a model (Caradot et al., 2018). Since pipe condition assessment is based on a multi-class ranking 176 

system in which some classes are of higher criticality, it becomes essential to independently 177 

each class. Evaluations and comparisons of models based on individual class predictions were undertaken using a set of appropriate 178 

measures as discussed in Performance Evaluation section. The study also addresses the issue of black-box or lack of interpretability 179 

associated with ML through a significance analysis of input parameters (discussed in Significance of Input Factors Section). 180 

Furthermore, it tackles the issue of class-imbalance in Issue of Class Imbalance section. This is often observed in asset networks, 181 

where few pipes would be observed in critical condition which can lead to biased predictions (Caradot et al., 2018). To this end, the 182 

following steps were followed:  183 

1. Identify potential ML algorithms for condition prediction of rail drainage assets (Description of Classifiers). 184 

2. Define measures for performance comparisons of algorithms (Performance Evaluation). 185 

3. Construct case study data from rail asset database with a focus on pipe assets. (Case Study). 186 

4. Apply data balancing techniques on case study data to tackle issue of class imbalance (Issue of Class Imbalance). 187 

5. Perform case study runs to examine the proposed algorithms (Description of Runs). 188 

6. Perform comparisons using predefined performance measures (Results and Comparisons). 189 

7. Perform significance analysis of input factors (Significance of Input Factors and Discussion of Input Significance). 190 

Description of Classifiers 191 

The following subsection describes the chosen ML algorithms for modelling railway drainage asset condition.  192 

 Neural Networks (NN) 193 

A basic neural network consists of an input layer, a hidden layer and an output layer (Svozil et al., 1997). Feed Forward Back 194 

Propagation technique is used to train the Network, in which the training input data is fed into the network iteratively at 195 



-196 

during iteration (Svozil et al., 1997). Studies show that one hidden layer is good enough for approximating most non-linear 197 

functions like pipe condition (Tran, 2007, Asnaashari et al., 2013, Svozil et al., 1997, Xu and Sinha, 2021). The number of 198 

hidden neurons in the hidden layer requires parameter tuning. For this study 20 hidden neurons were found optimal. Fig. 1 199 

shows the structure of NN.  200 

 Decision Trees (DT) 201 

They are classification algorithms graphically structured in the form of tree with a root node, decision nodes and terminal 202 

nodes known as leaf nodes (Quinlan, 1990). The classification decision is governed by if-then rules which are learned through 203 

the training process. Training involves recursive partitioning of the data based on the input variables until the leaf node (class) 204 

is reached (Quinlan, 1990). The maximum number of decision splits for the decision tree training was set at 100. Fig. 2 shows 205 

the structure of DT.  206 

 Bagged Trees (BT) 207 

Bagged trees or bootstrap aggregated trees are ensembles of multiple decision trees. The method aims to improve the 208 

performance of decision trees by reducing the variance observed in an individual decision tree through bootstrapping the 209 

training data into N  samples N  (Hastie et al., 2009, Miller et al., 2016). After 210 

 (Miller et al., 2016). Multiple 211 

were trialled, N=30 Learners was found enough to achieve an acceptable outcome. Fig. 3 shows the structure of BT. 212 

 K-Nearest Neighbours (KNN) 213 

It stores all available data as feature vectors and measures how far off the test vector is from each of the stored vectors using 214 

Euclidean distance (Zhang, 2016). The test vector is then classified based on the most voted classification of K  of its nearest 215 

neighbours (Zhang, 2016, Ahmed et al., 2021). After trials of di216 

acceptable results. Fig. 4 shows a representation of KNN.  217 

Performance Evaluation 218 

There are two main testing outputs of ML classification algorithms, confusion matrix and Receiver Operator Characteristic curve 219 

(ROC), which are described in the following Sections. Derived from these are five measures to be used as bases for performance 220 

comparison of individual classes, namely: Overall Accuracy, Recall, Precision, F-score and Area Under the Curve (AUC). For 221 

regression problems, most ML applications (Table 2) evaluate overall model performance using Mean Squared Error (MSE) and 222 

Root Mean Square Error (RMSE), as in Lee et al. (2018), Wang et al. (2020), Mazari and Rodriguez (2016), Fathi et al. (2019), 223 

Ferreño et al. (2021), and Asnaashari et al. (2013). For classification problems, overall accuracy is predominantly used for 224

performance evaluation (Table 2), as in Wu et al. (2015), Mohammadi et al. (2020), Liu et al. (2018), Asadi et al. (2019), and 225 

Alawad et al. (2020). However, in multi-class p226 

for each individual class (Grandini et al., 2020). It is especially important for a model to prove reliability in prediction of critical 227 



condition class in order to be accepted to inform asset management decisions. The studies which addressed prediction reliability in 228 

the reported parameters are as follows: 229 

- Allah Bukhsh et al. (2019); where F-score was used in addition to overall accuracy,  230 

- Caradot et al. (2018), and Harvey and McBean (2014); where Recall was used,  231 

- Xu and Sinha (2021), and Rokstad and Ugarelli (2015); where AUC was used.  232 

- Kalathas and Papoutsidakis (2021), and Mittal and Rao (2017); where recall and precision were used. 233 

Thereon, the following subsections describes the five adopted measures of performance and their derivations.  234 

Confusion Matrix 235 

A confusion matrix is a visual summary of the trained model . Table 3 shows the configuration of the confusion 236 

matrix used in this study. It is customised based on the five possible outcomes for asset condition prediction. Overall Accuracy, 237 

Precision and Recall are calculated from the confusion matrix, using Equations (1), (2), and (3), respectively. 238 

Overall accuracy provides a broad overview of the model performance (1). On the other hand, precision and Recall provide insight 239 

into individual class performance by dissecting the confusion matrix into prediction rows and target columns (Davis and Goadrich, 240 

2006). Precision is concerned with the exactness or relevance of predictions to an individual class (Raghavan et al., 1989). 241 

Meanwhile, Recall is concerned with the class retrieval ability of the model (Raghavan et al., 1989). In condition prediction 242 

problems, there is usually a trade-off between precision and Recall (Buckland and Gey, 1994). F-score is useful to reflect the average 243 

of both parameters (4). 244 

         (1) 245 

          (2) 246 

          (3) 247 

         (4) 248 

ROC Curve  249 

ROC shows the True Positive Rate (i.e., Recall) against the False Positive Rate (FPR, i.e., false alarms). FPR calculation from 250 

confusion matrix is shown in Equation (5). Fig. 5 shows the ROC curve from one of the NN simulations in this study. As a rule of 251 

thumb, the highest point above the diagonal ROC, would be expected to have the least randomness in the classifications (Harvey 252 

and McBean, 2014). Thereon a larger AUC indicates higher performance (low randomness). AUC is one of the adopted measures 253 

of comparison in this study. 254 

         (5)  255 



Significance of Input Factors 256 

In order to tackle the issue of the Black-Box associated with ML, i.e. lack of interpretability of internal work mechanism and 257 

identification of causal relationships, significance of factors was investigated in this study (Adadi and Berrada, 2018, Ana and 258 

Bauwens, 2010, Allah Bukhsh et al., 2019). Olden et al. (2004) developed a method called Connection Weight Analysis (CWA). 259 

This approach achieves Interpretable ML (IML) by analysing individual model components (Molnar et al., 2020). It uses the 260 

generated weight to compare the relative significance of the input parameters (Olden et al., 2004). Tran et al. (2009) further 261 

developed CWA to make it applicable to multiclass output prediction. Table 4 lists the steps of CWA for an example network of 3 262 

Hidden Neurons (HN) as described by Tran et al. (2009). CWA was used in this study to compare the significance of the input 263 

parameters towards the prediction, as demonstrated in the case study (Results and Comparisons Section).264 

Issue of Class Imbalance  265 

Often in multi-class real training datasets, one or more output classes are represented with more samples than the other classes, 266 

creating data imbalance  (Guo and Viktor, 2004). The imbalance can have detrimental impact on performance of model (Buda et 267 

al., 2018) it causes the trained model to favour the over-represented classes in predictions, while, the minority class may be the 268 

critical class in asset condition datasets. In such case, the overall accuracy measure ceases to be a suitable indicator of performance. 269 

Imbalance creates the illusion of high performance when in reality the model fails to retrieve the critical-condition observations 270 

(Guo and Viktor, 2004). 271 

From a performance analysis point of view, Recall, precision, and AUC are reflective measures of individual class performance and 272 

are therefore considered in addition to overall accuracy. However, from a performance enhancement point of view, class imbalance 273 

requires attention. Previous pipe condition modelling studies have not yet addressed this problem in the datasets. There are two 274 

data-level methods suggested to fix class imbalance, namely: under sampling and over-sampling (Buda et al., 2018).  Under-275 

sampling cuts down the size of majority-class data to match the size of the minority class data (Buda et al., 2018). This is an 276 

unreasonable option when the difference in representation is substantial which will leave very little data for training the models. 277 

Two common over-sampling methods are replication and Synthetic Minority Over-sampling Technique (SMOTe) (Buda et al., 278 

2018). Using replication, as the name implies, the underrepresented classes samples are replicated repeatedly to reach the size of 279 

the over-represented class. Replication can make the model prone to overfitting as it reduces the decision region (Chawla et al., 280 

2002). Whereas SMOTe is an advanced method that avoids over-fitting (Buda et al., 2018, Chawla et al., 2002). It augments the 281 

dataset by creating a statistical space between a pre-specified number of neighbouring feature points of the minority class and 282 

interpolates new synthetic data points. Both methods can be applied using MATLAB R2020a (Michio, 2020). In this study, the 283 

impacts of both the aforementioned over-sampling methods on performance are compared to that of the unbalanced dataset. 284 
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Case Study  285 

Data Source  286 

The data used for case study was obtained from the UK Network Rail s (NR) drainage asset database DAMBUSTER The database 287 

records 50% of the rail drainage assets that NR manages in the UK. The retrieved records are structured into 11 individual datasets, 288 

covering 11 routes from the main geographical regions in the UK, namely: Wales, Scotland, Wessex, Sussex, Western, Anglia, 289 

Kent, East Midlands (EM), London North Eastern (LNE) and London North Western South coast (LNWS), London North Western 290 

North coast (LNWN). 291 

The parameters recorded during routine inspections describe the physical structure of the assets, surrounding area, flow, and the 292 

condition score. Both service and structural conditions are assessed on a scale of 1  to 5 . Table 5 lists the description of the 293 

condition scores according to drainage asset inspection standards by NR. It shows that conditions 3 and 4 are critical and 294 

condition 5 shows failure. 295 

Since the focus of the study reported here is on prediction of pipe condition, only asset records identified as pipes were extracted to 296 

The records examined spanned from 2010 to 2020; period during which many assets have had 297 

multiple inspection entries with a range of conditions. Thus, a temporal dimension to the model inputs has been provided. The 298 

parameters extracted from the records were length, type of effluent, topography, material, size, shape, service condition, structural 299 

condition, and date of inspection. 300 

 Datasets 301 

In order to construct the datasets for analysis, the records obtained were filtered based on: 302 

 Length: only used records of pipes that are equal or under 100m long. Due to the subjective nature of survey inspections, 303 

the inspector would survey consecutive pipes of the same observed condition as one continuous length. Therefore, the 304 

100m cap was introduced on recommendation by NR expert on the common pipe lengths. 305 

 Condition state: discarded records with condition class 0 indicating the pipes were inaccessible for survey.  306 

After filtering, two following datasets were extracted from each route database: one was used for service condition prediction 307 

(SRVC) and the other for structural condition prediction (STRC). The datasets from each individual route were combined into one 308 

large dataset of all routes. Fig. 6 and Fig. 7 show the sample size contribution of each route towards the collective dataset for STRC 309 

and SRVC, respectively. Fig. 8 and Fig. 9 show the distribution of samples across the five condition classes for STRC and SRVC, 310 

respectively. The data imbalance (discussed in Issue of Class Imbalance Section) is reflected in the distinct unequal split of samples 311 

across the five classes. Conditions 1 and 2 are over-represented while critical conditions 3, 4 and 5 are significantly under-312 

represented in both service and structural datasets.  313 
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Inputs  314 

After filtering, the six following basic inputs were directly extracted from database; Effluent Topography size material and 315 

shape These are all categorical variables except for length being a scale parameter, as shown in Table 6. Slope, tree count and soil 316 

type were considered as significant factors in previous literature (Tran et al., 2006, Tran et al., 2009, Baik et al., 2006, 317 

Wirahadikusumah et al., 2001, Davies et al., 2001a, Angarita et al., 2017, Micevski et al., 2002, Rokstad and Ugarelli, 2015). 318 

However, data for these factors could not be sourced for this study. Two additional parameters, Previous Condition  and Years 319 

since previous recorded condition  were derived from the data by matching asset ID and used as input.  320 

The temporal inspection data was used as proxy for age of an asset, if age was unknown, by treating the previous condition as an 321 

age reference point. Thus, the two factors previous condition  and years since previous condition  intrinsically account for the 322 

change in deterioration rate with age and initial condition. Finally, Maintenance  parameter was derived by comparing the derived 323 

Previous Condition  with the current condition for each record. The observed inconsistency was that for some records, the previous 324 

condition was worse than the current condition. In these cases, it was assumed that 325 

taken place between the two inspections which led to improvement in condition. Another explanation could be the subjectivity in 326 

inspector . Furthermore, this assumption was not to eliminate the possibility that maintenance had taken place previously, 327 

in fact it could have taken place while maintaining the same condition. However, this cannot be confirmed due to the lack of relevant 328 

maintenance data in the UK. Therefore, for the purpose of this work the assumption was only made to explain discrepancies. 329 

Maintenance  was added as a dichotomous variable indicating whether maintenance was assumed to have taken place. A total of 330 

nine inputs were extracted, which are described in Table 6.   331 

Description of Runs  332 

A total of 12 training runs were performed, one for each combination of classifier (out of four), type of prediction (service or 333 

structural) and data balance (unbalanced, balanced with replication, balanced with SMOTe). A comparison of the results is discussed 334 

in Results and Comparisons Section. The datasets for NN were split into 60% training, 15% validation and 25% testing following 335 

the methodology adopted by Tran (2007), Liu et al. (2018), and Caradot et al. (2018), Moghtadernejad et al. (2021). The validation 336 

dataset is required as part of NN for Early-Stopping of training to avoid over-fitting the model while updating the neural weights 337 

(Svozil et al., 1997). In DT, BT and KNN the validation dataset is the same one used for testing; therefore, datasets were split into 338 

75% training and 25% hold-out as a test dataset, similar to the ranges used by Fathi et al. (2019), Asnaashari et al. (2013), Assaad 339 

and El-adaway (2020), Harvey and McBean (2014), and Xu and Sinha (2021). All the runs were performed using the Neural Net 340 

Pattern Recognition and Classification Learner toolboxes on MATLAB R2020a. 341 

Results and Comparisons 342 

For each run, the overall accuracy, precision, Recall and AUC for each class were obtained from the confusion matrix and ROC 343 

(Performance Evaluation Section). The following subsections describe performance comparisons between the classifiers and the 344 

data-balancing techniques based on the five measures. 345 
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Accuracy Comparison  346 

Fig. 10 and Fig. 11 show the comparison of accuracy across the runs for STRC and SRVC, respectively. Structural prediction models 347 

generally performed better than service models. The highest achieved accuracy for structural condition was attained by BT, using 348 

the balanced dataset, which was 87% while for service condition it was 72%.  349 

Before balancing, all classifiers were seen to perform at about the same accuracy. After balancing, NN and DT exhibited similar 350 

behaviour across the runs in which the accuracy drops with introduction of balanced datasets. As the data becomes evenly distributed 351 

among classes, each class has an equal contribution towards the calculation of overall accuracy. Therefore, post-balancing accuracy 352 

was considered a better representative of the actual prediction ability of the model. The reduced accuracy showed the masked 353 

underperformance of NN and DT pre-balancing. Alternatively, KNN and BT showed a similar pattern of accuracy improvement 354 

post-balancing. BT showed highest performance both before and after balancing. Hence, it reflects the sophistication of ensemble 355 

classifiers as a result of collective voting and reduced variance. Wu et al. (2015) observed superior performance of ensemble 356 

classifiers for pipe classifications over single models for pipe defect classification. Perhaps the insignificance of the observed change 357 

in accuracy of BT after application of SMOTe implies high resilience of the classifier when subjected to unbalanced datasets.  358 

The high performance of KNN may be explained with it being a lazy classifier (Perrizo et al., 2002). While Lazy classifiers do 359 

not entail a training process, they use a richer hypothesis space compared to eager classifiers which make predictions using the 360 

trained generalised single-hypothesis model (Shreemali et al., 2021). The inconsistency in post-balancing behaviour between 361 

NN/DT and KNN/BT indicates that NN and DT are more sensitive to class imbalance in the training dataset. 362 

Recall Comparison 363 

Recall gives insight into the performance at an individual-class level. Fig. 12 and Fig. 13 demonstrate the change in Recall rates at 364 

a class-level for STRC and SRVC, respectively. Results show that for unbalanced runs, Recall rates of classes 3, 4 and 5 are 365 

significantly lower than the rates for classes 1 and 2. Thus, highlighting the unreliability of overall accuracy as a performance 366 

measure when class imbalance is present. From an asset management point of view, high Recall of pipes in critical condition is 367 

crucial. Since the critical classes are the minority group 3, 4 and 5, the imbalance-induced low Recall is emphasised as a deficiency 368 

in the model. The highest Recall for STRC, prior to balancing, is in class 1, which makes up to 67% of the data distribution (Fig. 369 

8). Similarly, for SRVC, the highest Recall is in classes 1 and 2, with a smaller gap between the two because the class distribution 370 

is more even (Fig. 9).  371 

After balancing, the recall rates for classes 3, 4 and 5 increase drastically. The increase is larger when using replication. However, 372 

bearing in mind the identical nature of generated samples using replication compared to the synthetic new data generated with 373 

SMOTe, the model is therefore less likely to over-fit with SMOTe . Chawla et al. (2002) demonstrated this conclusion through a 374 

DT application by visually comparing the decision regions created with both replication and SMOTe. The synthetic examples cause 375 

the classifier to create larger and less specific decision regions, allowing better generalisation of model (Chawla et al., 2002). Hence, 376 

SMOTe is likely to produce a more realistic and reliable model than replication.  377 
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Conversely, Recall for class 1 reduces after balancing. Although, KNN displays a smaller reduction in post-balancing Recall for 378 

condition 1 than BT, both classifiers demonstrate the same net level of post-balancing Recall for classes 379 

consistently high Recall rates across the classes suggest they are the best performing classifiers. 380 

Precision Comparison  381 

Comparison of precision for STRC and SVRC, respectively shown in Fig. 14 and Fig. 15, indicate that post-balancing precision 382 

reduced significantly across the five classes for NN and DT. KNN and BT experienced minor drops and some major improvements, 383 

specifically with KNN. The drastic precision improvement in condition 5 for STRC paralleled with a precision drop for SRVC is a 384 

discrepancy which may have been caused by the lack of test samples in STRC 5 pre-balancing. Consequently, no frame of reference 385 

existed for the change in precision of STRC 5 post-balancing.  386 

The observed reduction in precision and improvement in Recall (Recall Comparison Section) for critical classes 3 and 4, reflects a 387 

trade-off dilemma between the two measures. From a risk point of view, the ability of the model to identify more of the critical 388 

pipes (high risk of failure) bears more advantage than the disadvantage of false alarms. Whereas, from a financial viewpoint, false 389 

alarms incur higher costs associated with unnecessary inspections. Therefore, the models should be enhanced to achieve a balance 390 

of high precision and high Recall. This may be best achieved with BT and KNN. The high overall accuracy achieved with these two 391 

models further highlights their acceptable performance and appropriateness.  392 

F-score Comparison  393 

F-score provides a good representation of the model performance by combining both precision and Recall (Sokolova and Lapalme, 394 

2009). Fig. 16 and Fig. 17 show F-score for STRC and SRVC conditions, respectively. Across all classifiers, balancing has resulted 395 

in a slight reduction in F-score for classes 1 and 2. Whereas it has increased the F-score for classes 3, 4 and 5. It can be therefore 396 

concluded that balancing increases individual class predictive performance. The highest performance is observed for KNN and BT. 397 

for STRC, F-scores are 78%, 87% and 95% for classes 3, 4 and 5, respectively. For SRVC, F-scores for the three critical classes are 398 

59%, 67% and 71%, respectively.399 

AUC Comparison  400 

AUC for each class for STRC is shown in Fig. 18 while for SRVC, it is shown in Fig. 19. In STRC models, AUC improved across 401 

all classes after balancing. The improvement indicates that balancing reduces the randomness in classification for all classes. This 402 

is especially interesting for classes 1 and 2 where the Recall rate reduced after balancing (Recall Comparison Section) while AUC 403 

improves. This could possibly indicate that there was some level of randomness in classification with the unbalanced set. Rokstad 404 

and Ugarelli (2015) specifies that AUC less and equal to 0.5 is a random classification. Harvey and McBean (2014) proposes 0.8 as 405 

threshold for an excellent classifier . In light of this, comparing AUC for the different classifiers after balancing shows KNN and 406 

BT to exhibit the highest performance, especially for critical classes 3, 4 and 5. 407 
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Discussion of Input Significance  408 

CWA (described in Significance of Input factors Section) was applied on the NN training weights in order to analyse the significance 409 

of each of the nine input factors towards the prediction ability. Although NN did not show the highest performance, the model still 410 

showed an AUC greater than 0.75 which indicate the predictions by NN are not arbitrary. Therefore a significance analysis of input 411 

parameters based on NN Connection weights is valid. Olden et al. (2004) performed a comparison between multiple methods to 412 

quantify 413 

Sensitivity Analysis, Stepwise Addition and Elimination (Olden et al., 2004). It was found that CWA was the only method that 414 

consistently identified the correct ranked importance of all predictor variables (Olden et al., 2004). Fig. 20 shows a comparison 415 

between the significance of the inputs for both service and structural models. The following six basic inputs; length, effluent type, 416 

topography, pipe size, material and shape are evidently more pertinent to structural condition prediction than service condition 417 

prediction. This indicates that for service condition, other factors need to be considered like soil type, pipe slope and tree count. 418 

Table 7 summarises the observed order of significance using CWA. The rest of the section discusses the findings in light of the 419 

literature. 420 

Significance of Input Factors for Serviceability Prediction  421 

Tran et al. (2008) used the Wald test Z-statistic to evaluate the significance of input factors towards service condition prediction 422 

using an ordinal regression model. Age, slope, location, climatic condition, Thornthwaite Moisture Index (TMI), and structural 423 

condition were found to be significant for serviceability prediction while pipe size, depth, soil type and tree count were found 424 

insignificant. Tran et al. (2008) explained that tree count and soil type are inherently reflected through Location and TMI. Similarly, 425 

depth and size are correlated factors and are reflected through structural condition, when used as an input. Current study shows low 426 

significance of location (presented as topography in case of railway) towards service condition. This indicates that a simple 427 

cutting/embankment description is not enough. More nuance is required regarding degree of slope and type of cover. There is a link 428 

between topography and slope of earthwork as well as type of cover. Higher slope increases intensity of surface erosion due to 429 

surface runoff (Cheng et al., 2017). Eco-hydrologic simulations by Bieger et al. (2015) showed that increase in forested area, reduces 430 

surface runoff and erosion. Whereas, deforested hillslopes are more susceptible to erosion (Alavez-Vargas et al., 2021). Moreover, 431 

material impacts pipe rate of siltation due to material roughness, thus affecting serviceability condition. None of the other significant 432 

factors for serviceability prediction used in this study were identified in the literature. Effluent type and shape of pipe is expected 433 

to affect degree of sedimentation for service condition. Length could be significant for service condition when considering flow 434 

pressure, which in turn affects level of sedimentation. Longer pipe runs have an increased hydraulic head loss, thus reducing flow 435 

velocity and increasing sedimentation. 436 

Significance of Input Factors for Structural Condition Prediction 437 

For structural predictions, comparisons were drawn with Baik et al. (2006), Davies et al. (2001a), Tran et al. (2006), Tran et al. 438 

(2009). Tran et al. (2009) applies CWA on the NN model for structural condition of storm water pipes. Tran et al. (2006) used 439 

univariate analysis for significance analysis with probabilistic NN while it used stepwise method with the discriminant model. 440 
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(Davies et al., 2001b) studied significance of the factors for sewer pipe condition through a stepwise multivariate logistic regression. 441 

Baik et al. (2006) ipe 442 

condition prediction. Table 8 shows a summary of the significance analysis for the factors used in the literature.  443 

Pipe size, length and material are the factors that were used both in the literature and in this study as shown in Table 8.  Size of a 444 

pipe seems to be significant across all the previous studies (Micevski et al., 2002, Baik et al., 2006, Davies et al., 2001a). Despite 445 

the consensus around the significance, there are contradicting views around the nature of impact the pipe size has on pipe condition. 446 

Micevski et al. (2002) found that smaller pipes experience greater deterioration due to underestimation of design requirements in 447 

terms of loadings and cover. Angarita et al. (2017) made a similar observation, particularly for pipes smaller than 500 mm. Baik et 448 

al. (2006) however, explained that larger pipes are more likely to have higher rates of deterioration. Davies et al. (2001a) provided 449 

two contradicting views: one stated that larger sewers were more structurally sound, the other provided evidence that risk of 450 

structural failure is higher for larger pipes due to installation difficulties.  451 

Pipe length, which was considered by Baik et al. (2006) and Davies et al. (2001a) showed high significance for condition prediction, 452 

similar to the current analysis. With regards to the nature of impact of pipe length on pipe condition, Baik et al. (2006) suggests that 453 

shorter pipe section runs induce faster condition deterioration due to increased number of connections. Similarly, Davies et al. 454 

(2001b) claimed that sewage pipes with length more than 1.5 m are less likely to be in failing condition, as shorter individual sewer 455 

pipe runs indicate greater number of joints per unit length of sewer. This was linked with infiltration of soils and sedimentation 456 

being more likely through joints/connections. On the other hand, Davies et al. (2001a) described that the higher length to diameter 457 

ration causes increased structural bending stress and hence, worse structural condition. The two opposite views on nature of impact 458 

on hydraulic and structural conditions make it difficult to make a recommendation on the optimal pipe length. However, they 459 

indicate that there is trade-off between the two during design process.  460 

Conversely, pipe material was found insignificant by both Baik et al. (2006) and Davies et al. (2001a). However, Micevski et al. 461 

(2002) and Wirahadikusumah et al. (2001) both used material as a grouping criteria when applying the Markov chains for storm 462 

water-pipe prediction and showed that it was a statistically significant factor in pipe condition. Angarita et al. (2017) also showed 463 

that material is a significant factor. The findings of this study, however, confirm the significance of material as an input factor. The 464 

type of pipe material affects the experienced rate of structural corrosion. 465 

Effluent type was found to be significant in this study. Davies et al. (2001a)466 

three categories: foul water, surface water and combined. It was shown to be among the top 10 significant factors, from the 18 tested 467 

factors. Angarita et al. (2017) also confirmed its significance through a linear regression study of explanatory variables.  468 

Topography was not used in any other studies, except for Davies et al. (2001a) and Tran et al. (2009). Both showed location to be 469 

a significant factor. These studies considered storm water and wastewater systems in urban and suburban areas, in which location 470 

depended on the use of the area, mainly reflecting the impact of traffic load and type of cover on structural condition of pipes. In 471 

472 
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experience tree-root penetration compared to embankments. Thus, explaining the observed significance of the parameter towards 473 

structural condition in this study. 474 

Shape was found to be of high significance in this study, possibly because it influences the load distribution or because it is indicative 475 

of other significant factors that are unaccounted for, like installation and connection workmanship. 476 

Factors that were found significant in other studies but are not included in the current study are slope, soil type and tree count. Slope 477 

was found to be significant in Probabilistic Neural Networks (PNN) (Tran et al., 2006) and ordered probit model used with Markov 478 

chains (Baik et al., 2006). Baik et al. (2006) explained that steeper slopes are associated with higher flows and lower stability, 479 

leading to increased rate of deterioration and consequently condition reduction. 480 

Soil type has conflicting views around it. Tran et al. (2009) identified soil type as significant towards NN but insignificant towards 481 

the ordered probit model. Tran et al. (2006) also identified soil type as insignificant towards both PNN and discriminant model. 482 

Whereas, Davies et al. (2001a) listed two soil-related factors in the top ten most significant factors in pipe deterioration; soil fracture 483 

potential and soil corrosivity. Micevski et al. (2002) also confirmed the significance of soil type. Similarly, Wirahadikusumah et al. 484 

(2001) stressed the importance of using soil type in grouping cohorts when using the Markov chains for pipe condition modelling.  485 

Tree count only showed significance towards NN model in Tran et al. (2009) but not towards the ordered probit model, discriminant 486 

model or PNN (Tran et al., 2006, Tran et al., 2009). It is an interesting finding since tree root interference is a major cause of 487 

structural damage in pipes (Davies et al., 2001a, Rokstad and Ugarelli, 2015). Angarita et al. (2017) also reflected the high impact 488 

of tree root489 

prevalent in railway drainage, considering the substantial portion of earthworks using green cover for stabilisation. Tree count is 490 

therefore a parameter worth sourcing.  491 

Age is a matter of controversy, although it is a central factor in any Markov chain model (Baik et al., 2006, Micevski et al., 2002, 492 

Wirahadikusumah et al., 2001, Tran et al., 2010, Le Gat, 2008, Kannapiran et al., 2008), it was determined insignificant in Tran et 493 

al. (2006), Tran et al. (2009) and Davies et al. (2001a). Baik et al. (2006) also noted that age parameter becomes less significant 494 

when pipe is in worse condition. Tran (2007) suggested that age is more a reference point for monitoring and that pipe condition is 495 

affected by a combination of many factors and damaging events which are independent of pipe age.  496 

Based on the literature review, it seems that tree count, pipe slope, and soil type as well as age, despite the contradicting views, are 497 

parameters which should be investigate for future development of the model.  498 

Hydraulic or serviceability condition as an input parameter for structural condition prediction was found significant by Tran et al. 499 

(2006) and Tran et al. (2009). Davies et al. (2001a) also reflected on the significance of hydraulic condition, although indirectly, 500 

Micevski et al. (2002) on the other hand 501 

found hydraulic condition to have insignificant influence on structural condition. However, they still explain a need to consider both 502 

structural and service condition for maintenance strategies.  503 

The importance of hydraulic condition and structural condition as inputs for structural prediction and service prediction, 504 

respectively, can be explained with the bidirectional correlation between the two factors. On the one hand, more structural damage 505 
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(cracks) allows for more intrusion of material that hinders the flow of water in the pipe. Furthermore,  deteriorating hydraulic 506 

condition may cause frequent surcharges due to blockages and intrusion which, in turn, cause a need for rehabilitation or replacement 507 

(Micevski et al., 2002). Despite their importance, the reason for not including these factors as inputs is that the primary objective of 508 

the study was to predict the structural and service condition of drainage, therefore the developed model treats them as output rather 509 

than input parameters.  510 

Finally, with respect to the derived parameters, Previous condition shows highest significance towards both the structural and service 511 

-highest significant factor for STRC. It shows lower significance towards SRVC. Maintenance shows 512 

high significance towards both models. It shows higher significance towards service prediction which is a rational result since 513 

regular maintenance mainly entails serviceability-related works, like rodding and jetting to improve hydraulic behaviour of pipes. 514 

Conclusion 515 

In this paper a comparison between the performance of NN, DT, BT and KNN for condition prediction of railway drainage pipes 516 

was conducted using nine input factors. Data was obtained from the UK NR drainage and lineside asset database. The results show 517 

that for structural condition prediction BT performs the best on balanced dataset with 87% overall accuracy. On unbalanced dataset 518 

NN, BT, DT showed similar performance within 70%-80% accuracy range. Similarly, for service condition, BT performs the best 519 

with 72% accuracy on balanced dataset.  520 

The input factors (Shape, Material, Length, Size, Effluent and Topography, Previous condition, Years since previous condition and 521 

Maintenance) were found to be more relevant to structural condition prediction. This was confirmed with the CWA which also 522 

showed that length, effluent type, topography, pipe size, and shape were not significant in predicting service condition. The derived 523 

parameters previous condition , maintenance  and years  show the highest significance towards prediction of both service and 524 

structural conditions.  525 

The impact of data balancing was analysed by investigating Recall and precision of individual condition classes. Balancing 526 

improved the Recall rate of condition classes 3, 4 and 5 while reducing the Recall rate of classes 1 and 2. Precision tended to drop 527 

across all the classes for all the classifiers except for KNN, for which it showed an improvement. The F-score is used as a mean 528 

measure of Recall and precision. When balancing using SMOTe, F-score has improved significantly for critical classes, but it 529 

reduces slightly for classes 1 and 2.  When improving the model, high F-score and high AUC should be aimed for the critical class 530 

as they characterize a reliable classifier performance. 531 

Contributions: 532 

This study has had the following contributions to the knowledge in the field of railway asset management: 1) It addresses predictive 533 

railway drainage condition assessment at an asset-level, making use of extensive historic inspection records in data-driven ML 534

models while addressing some of the problems traditionally faced when using ML methods, e.g. data imbalance and black box. 2) 535 

It provides a high-performance predictive decision-support tool for the railway drainage asset managers to identify locations of 536 

critical assets using four ML algorithms. Thus, allowing optimisation of time and money allocations for the maintenance and 537 
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inspection works. 3) It paves the way for data-driven risk-assessment for quantification of criticality of individual assets. 4) Further, 538 

it provides a detailed descriptive analysis of parameter importance for condition prediction. Hence, making recommendations to 539 

railway drainage asset managers about parameters to be included in the inspection surveys. 5) Finally, this work forms the stepping-540 

stone for the future of efficient data-driven predictive asset management as opposed to reactive asset management. Adoption of ML 541 

algorithms allows for seamless integration of ig Data  and IoT into railway drainage asset management.  542 

Limitations 543 

The following are some points of consideration for future extension of this study: 544 

1) In this study the only maintenance record involved was the assumption that maintenance took place when condition was 545 

improved. However, maintenance could have taken place at other points in time where condition did not necessarily 546 

improve, or improvement was not reported. Therefore, investigating the significance of maintenance intervention on  547 

condition remains a prospect for further research. This requires accurate historical data regarding maintenance intervention.  548 

2) Handling dataset imbalance is normally concerned with the target output parameters which was the scope of this work. 549 

Further extension of the work could be on investigating the imbalance in individual input parameters. It could enhance 550 

prediction performance by expanding the dataset and exposing the classifier to more variations in input vectors. Higher 551 

variation and representation of different input parameters could result in a better analysis of significance of the input 552 

parameters.  553 

3) CWA was the chosen method to investigate input significance based on NN connection weights as an attempt to tackle the 554 

black-box issue associated with NN. Other methods like stepwise elimination/ addition analysis or sensitivity analysis 555 

could be applied to other models to investigate parameter significance.  556 
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Table 1. Summary of existing pipe condition models 806 

Utilised 
method 

Study  Considere
d asset  

P
ipe size (diam

eter) 

P
ipe m

aterial 

P
ipe shape 

P
ipe lining 

P
ipe protection  

L
ocation 

R
oute 

A
sset subclass

a 

T
ype of subgrade 

P
resence of trees 

T
raffic load 

C
onstruction period 

T
ype of effluent 

S
erviceability condition 

C
orrosion -related 

properties 

A
ge 

C
over depth 

B
ackfill m

aterial 

G
roundw

ater level 

L
ength 

G
radient 

L
and use 

M
aintenance 

S
ojourn tim

e 

T
hornthw

aite M
oisture 

Index (T
M

I) 

Homogen
eous 
Markov 
Chains 

Wu et al. 
(2021) 

Rail 
drainage 
assets 
(channel, 
chamber, 
culvert, 
pipe) 

X X X   X X X     X             

Micevski 
et al. 
(2002) 

Storm 
water 
pipes  

X X       X     X X           

Meegoda 
et al. 
(2004) 

Urban 
Drainage 
Culverts  

X     X         X X          

Wirahadi
kusumah 
et al. 
(2001) 

Sewers  X               X X X       

Altarabsh
eh et al. 
(2016) 

Sewers                X        X  

Baik et al. 
(2006) 

Sewers X X              X    X X     

Tran et al. 
(2008), 
Tran et al. 
(2010) 

Stormwat
er pipes 

X     X          X X    X     

Non-
homogen
ous 

Le Gat 
(2008) 

Urban 
drainage 
pipes 

X           X X             
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Markov 
chains 

Kleiner et 
al. (2006) 

Water 
mains 

X X              X          

Determini
stic 
Linear 
model  

Vollerste
n and 
König 
(2005) 

Concrete 
sewer 
pipe 

           X   X  X  X       

Cohort 
Survival 
model 

Baur and 
Herz 
(2002) 

Sewer 
pipes 

X X X   X  X    X X        X     

Xu and 
Sinha 
(2021) 

Water 
mains 

X   X X       X   X     X      

Fuzzy 
method 

Xu et al. 
(2020) 

Water 
mains 

X X  X     X  X    X X X  X       

Ensemble 
Classifier 

Mohamm
adi et al. 
(2020) 

Sewer 
pipes 

X X             X X X  X X X     

Neural 
networks 

Tran et al. 
(2008), 
Tran et al. 
(2007), 
Tran et al. 
(2006), 
Tran et al. 
(2009), 
Tran et al. 
(2010) 

Stormwat
er pipes 

        X X    X           X 

aFor chambers and channels807 
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Table 2. Applications of ML for various infrastructure assets 808 

Study ML Application  Data split Measure of 
performance  

Assaad and El-adaway 
(2020) 

ANN 
KNN 

Prediction of bridge deck 
condition  

80% 
training/validation 
20% testing  

Accuracy= 91%  

Asadi et al. (2019) AdaBoost Quantification of 
deterioration in concrete 
bridge deck  

unspecified Precision Vs. Recall 
trade-off curve, 

 
Piryonesi and El-Diraby 
(2021) 

 Gradient 
Boosted Trees 
(GBT) 

Prediction of International 
Roughness Index (IRI) and 
Pavement condition index for 
pavement deterioration  

90% training  
10% testing  

Accuracy=88% 

Lee et al. (2018) ANN 
SVM 

Prediction of Track 
deterioration as Track Quality 
Index   

85% training  
15% test 

R2 =0.86 MSE=0.03  

Fathi et al. (2019) ANN  
RF 

Pavement deterioration 
prediction of Alligator 
Deterioration Index (ADI) 

75% training  
25% testing 

R2 =0.79 RMSE=14.43 

Caradot et al. (2018) RF Sewer pipe condition  60%training 
40% testing  

Recall of pipes in bad 
condition=67% 

Mazari and Rodriguez 
(2016) 

RF Pavement deterioration 
prediction (IRI)  

unspecified R2= 0.994and RMSE= 
0.049 

Wang et al. (2020) NN 
DT 
RF 

Prediction of road roughness 
(IRI) 

10-fold cross 
validation 

R2 =0.92 NN 
R2 =0.9 DT 
R2 =0.93 RF 

Allah Bukhsh et al. (2019) DT  
RF 
GBT 

Predict maintenance needs of 
railway switches  

70% training 
30% testing  

Accuracy= 84% 
F-score=86%   

Moghtadernejad et al. 
(2021) 

NN  
KNN 
RF 

Conversion of condition from 
old scheme to new rating 
scheme for railway 
supporting structures 

66% training 
33% testing 

F-score= 0.5-0.8 

Asnaashari et al. (2013) NN Forecasting watermain failure 
rate 

50% training 
25% validation 
25% testing 

R2=0.94 

Ahmed et al. (2021) KNN 
NN 
SVM 
RF 

Prediction of tunnel condition  80% 
training/validation  
20% testing 

Accuracy= 
KNN 80.12% 
RF 85.38% 
NN 56.14% 
SVM 56.73% 

Rokstad and Ugarelli 
(2015) 

RF Structural condition of sewers Unspecified  ROC Area under 
curve=60% 

Harvey and McBean (2014) RF Pipe condition prediction  70% training  
30% testing 

Recall=82% 

Mohammadi et al. (2020) GBT Prediction of sewer pipe 
condition  

80% training 
20% testing 

Accuracy=87% 

Wu et al. (2015) RF Pipe defect classifications  Four-fold cross 
validation 

Accuracy=80% 

Xu and Sinha (2021) ANN  Imputation of pipe failure 
records for pipe failure 
occurrence (classification) 
and year of failure 
(regression) 

70% training  
30% testing  

AUC=0.88 
MSE=29.79 

Tran et al. (2008), Tran et 
al. (2007), Tran et al. 
(2006), Tran et al. (2009), 
Tran et al. (2010) 

NN Storm water pipe condition  60% training 
15% validation  
25% testing 

Accuracy=81% 

Ferreño et al. (2021) Multiple 
Linear 

Prediction of rail pads 
stiffness 

80% training 
20% testing 

R2= 
MLR 0.452 
KNN 0.628 
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Regression 
(MLR)  
KNN 
Regression 
Tree (RT) 
RF 
GBT 
ANN 
Support 
Vector 
Machine 
(SVM) 

RT 0.923 
RF 0.965 
GBT 0.995 
ANN 0.990 
SVM 0.060  

Alawad et al. (2020) DT Safety analysis of railway 
stations 

80% training 
20% testing 

Accuracy= 88.7%  

Kalathas and Papoutsidakis 
(2021) 

DT  
RT 

Maintenance prediction of 
railway traction/braking 
system 

Not specified Accuracy= 80% 
Weighted Precision= 
0.8 
Weighted Recall= 0.8 
 

Mittal and Rao (2017) NN Detection of track defects, 
switches and signals and 
monitor track health 

80% training 
20% testing 

Defect detection: 
Precision= 95% 
Recall= 25% 
Signal detection: 
Accuracy= 93%  
Precision= 99% 
Switch Detection: 
Precision= 94% 
Recall= 83%  

Arshad and Ahmed (2021) LR  
GBT 
DT  
RF 

Prediction of train delay due 
to weather impact 

Not available Accuracy=  
LR 90% 
GBT 92% 
DT= 94% 
RF 96% 

Liu et al. (2018) RF Quantify susceptibility of 
railway to rainfall-induced 
hazards  

60% testing 
40% validation 

Accuracy=95% 

Table 3. Confusion matrix used in this study  809 

  
Target class 

P
re

di
ct

ed
 c

la
ss

 

p t 1 2 3 4 5 

1 TP1 
FP1,2 

(FN1,2) 
FP1,3 

(FN1,3) 
FP1,4 

(FN1,4) 
FP1,5 

(FN1,5) 

2 
FP2,1 

(FN2,1) 
TP2 

FP2,3 

(FN2,3) 
FP2,4 

(FN2,4) 
FP2,5 

(FN2,5) 

3 
FP3,1 

(FN3,1) 
FP3,2 

(FN3,2) 
TP3 

FP3,4 

(FN3,4) 
FP3,5 

(FN3,5) 

4 
FP4,1 

(FN4,1) 
FP4,2 

(FN4,2) 
FP4,3 

(FN4,3) 
TP4 

FP4,5 

(FN4,5) 

5 
FP5,1 

(FN5,1) 
FP5,2 

(FN5,2) 
FP5,3 

(FN5,3) 
FP5,4 

(FN5,4) 
TP5 

Note: FPp,t: False Positive (e.g. FP1,2 means false positive with respect to predicted class 1, actual 
class is 2) 
FNp,t: False Negative (e.g. FN1,2 means false negative with respect to target class 2, misclassified 
as 1)  
TP: True Positive 

Table 4. Common steps of CWA  810 

Step Factor Xj HN1 HN2 HN3 
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1 Connection weights between the input factor Xj and HN from NN code A1 A2 A3 

2 Connection weights between HN and the output neuron C from NN code B1 B2 B3 

3 Local Significance measure Zj,c of input factor Xj to output neuron C 
 

4 Overall significance measure OZj of input factor Xj to NN model 
 

Source: Reprinted with permission from Tran et al. (2009)  

Table 5.  Description of condition scores  811 

Condition 
score 

Structural description Service description 

0 Not inspected Not inspected 
1 No defects Clear 
2 Superficial defects Superficial deposits 
3 Minor defects Performance slightly reduced 
4 Major defects Performance severely reduced 
5 Not fit for purpose/unsafe Blocked 
Source: Adapted from Network Rail unpublished drainage inspection standards, 2018 

Table 6. Input data into the developed model  812 

Input Description Possible values 
Length Scale (0 m-100 m) 
Effluent Categorical (1-3) 1; Surface water 

2; Combined 
3; Foul water 

Topography Categorical (1-3) 1; At Grade 
2; Cutting  
3; Embankment 

Size Categorical (1-4) Ranges between (<150 mm->451 mm) 
Material Categorical (1-11) Steel, uPVC, Concrete, Cast Iron, Vitrified Clay, Pitch Fibre, Spun 

Iron, Asbestos Cement, lined Brick, Unlined Brick, other. 
Shape Categorical (1-4) 1; Circle 

2; Rectangle 
3; Square 
4; egg 

Previous Recorded condition Ordinal (1-5) 1, 2, 3, 4, 5 
Years since previous recorded 
condition  

Scale Number of years since the previous recorded condition 
 (0 if not matched) 

Maintenance  Dichotomous 1; If condition improved since last recorded condition  
0; If else 

Table 7. Order of significance of input factors  813 

Order of 
significance 

STRC SRVC 

1 
Previous 
condition 

Previous condition 

2 Length Maintenance 

3 
Years since 

previous 
condition 

Years since 
previous condition 

4 Shape Shape 
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5 Maintenance Material 

6 Size Length 

7 Topography Size 

8 Effluent Effluent 

9 Material Topography 

814 
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Table 8. Significance of input factors towards STRC in the literature compared with the findings of the current study 815 

Literature Pipe 
Size 

Pipe 
Length 

Pipe 
Material 

Effluent 
type 

Location Pipe 
Shape 

Slope Soil 
type 

Tree 
count 

Age Depth  Groundwater 
table 

Climatic 
condition 

Road 
traffic 

Hydraulic 
condition 

(Baik et al., 2006) x x -    x   x      

(Davies et al., 
2001a) 

x x  x x          x 

(Tran et al., 2006) -    -  x - - - x  -  x 

(Tran et al., 2009) x -   x  - x x -      

(Micevski et al., 
2002) 

x  x     x     x  - 

(Wirahadikusumah 
et al., 2001)  

  x     x   x x    

(Angarita et al., 
2017) 

x  x x x           

(Ugarelli et al., 
2013) 

x   x    x x x    x  

Mohammadi et al. 
(2020) 

x x x    x -  x x x    

Current study 
from CWA 

x x - x x x          

Note: x indicates the factor has been considered and was found significant  
- indicates the factor has been considered and was found insignificant  

816 
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