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Abstract
A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies 
the entity being modelled by capturing information in real time, or near real time, from the entity, through embedded sensors 
and the Internet-of-Things. Many applications of digital twins in the manufacturing industry have been investigated. This 
article focuses on, and contributes to, the development of product digital twins to reduce the impact of quantity, quality, and 
demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional 
requirements for a product digital twin for remanufacturing and proposes a Unified Modelling Language (UML) model 
of a generic asset to be remanufactured. The model is used in an example which highlights the need to translate existing 
knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing 
process planning.
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1  Introduction

The optimal process for minimising remanufacturing 
costs and maximising profits varies with core availability, 
quality, and demand [1]. Yet, the quantity and quality 
of returned cores are unpredictable, so the outcome of 
the remanufacturing operation is highly uncertain [2]. 
This affects remanufacturing forecasting and operations 
management [3]. Improving certainty of core quantity 
[4] and quality [5] using through life data is seen as an 
opportunity to make “smart” decisions on end-of-life 
(EoL) product processing [6].

Key smart remanufacturing enablers include cyber 
physical systems (CPS), the Internet of Things (IoT), 
artificial intelligence (AI), and big data analytics 
(BDA) [7]. Using these emerging technologies enables 
the identification [8], location [9], and determination 
of the condition [10] of in-use middle-of-life (MoL) 
remanufacturable products and allows for a level of 
remote interaction [11], or EoL processing [2, 12], that 
has previously been unavailable. This has the potential to 
extract more value to feed the remanufacturing business 
[13, 14].

As the IoT can digitally link suppliers and customers [15], 
it may support remanufacturing, providing greater visibility 
of core availability and quality, reducing reverse supply chain 
risks [16]. The proliferation of these technologies can enhance 
remanufacturing forecasting using forward information to alle-
viate the dual-source uncertainties they face [17]. Embedded 
sensors combined with condition monitoring can contribute 
to management in remanufacturing by reducing uncertainties 
[18]. However, currently, the capturing of accurate, complete, 
and timely whole lifecycle data presents a challenge [19], as 
does effectively mining and utilising this information using 
BDA [20]. Currently, data flows generally breakdown once 
the product is delivered to the user, and during the MoL stage, 
it experiences different operating conditions [21] resulting in 
variance in EoL attributes. Additionally, a level of intelligence 
and decision-making is required to provide meaningful prod-
uct MoL information for EoL processing [9].

The digital twin (DT) is identified as a Gartner stra-
tegic technology for 2019 [22]. They combine some of 
the Industry 4.0 (I4.0) technologies to generate a virtual 
representation of a product, process, or system from incep-
tion, through production, to operation (MoL) and finally 
disposal [23]. DTs have also been proposed to virtually 
represent operators in human-interfacing CPS [24]. Inter-
estingly, DTs may be applied to conventional products, 
processes, people, or systems, but its presence does not 
necessarily imply or preclude intelligent collaborations.

Whist the definition of the DT and associated stand-
ards are still in development [25–28], industry leaders are 

already exploring the concept in high-value asset appli-
cations such as wind turbines [29] and jet engines [30]. 
However, as the maturity level of the DT concept is so 
low, there exists many challenges to implementation in this 
sector [31]. Additionally, competing, but potentially syn-
onymous concepts battle for research resources including 
the emerging Asset Administrative Shell (AAS) [32] that 
forms part of the Reference Architectural Model Industrie 
4.0 (RAMI 4.0) [33] and the evolving CPS. Both concepts 
are subtly different from the DT, but have the potential to 
be harmonised and integrated to become one and the same 
[34]. It is worth noting that RAMI 4.0 offers an archi-
tecture for I4.0 product and process management, based 
on existing standards, within the production environment 
(with little to no apparent consideration for products des-
tined for non-production environments). RAMI 4.0 defines 
the structure that the product or process should exhibit. 
However, the architecture remains very generalised and 
provides limited information regarding practical imple-
mentation [35], enabling others to exploit the gaps and 
offer alternatives [36].

As remanufacturing has a greater chance of success in the 
same high-value sectors [37], and assuming more of these 
entities reach EoL with associated DTs, it may be possible to 
consider exploiting the DTs for remanufacturing purposes, 
as suggested in previous reviews [38]. What is clear is that 
production planning and control in remanufacturing are 
more complicated to manage than in manufacturing [4]. 
There is also a general expectation that the assessment, 
measuring, capturing, modelling, and presenting of product 
health and degradation information through advanced 
technologies that support life extension strategies [39] 
could be leveraged [40, 41]. To target the unique issues 
faced by the remanufacturing industry, it is necessary to first 
understand them. The research question is then, how can 
product DTs enable smarter remanufacturing?

Following a literature review to highlight issues with 
uncertainties in remanufacturing and the potential to 
use DTs to mitigate them, this article will determine the 
functional requirements for a DT fit for high-value asset 
remanufacturing and propose a DT model of a generic asset 
expressed in the Unified Modelling Language (UML). The 
article will conclude with an example to illustrate a possible 
application of the proposed model and identify where it 
could be improved.

2 � Literature review

The complications in production planning and control for 
remanufacturing over manufacturing relate to several issues 
including:
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•	 uncertainty in timing and quality of returns
•	 the need to balance returns with demand
•	 inherent issues found during the disassembly of returned 

entities
•	 uncertainties in materials recovered from returned items
•	 the requirement for a reverse logistics network
•	 complications of material matching restrictions
•	 problems of stochastic routings for materials for 

remanufacturing operations leading to highly variable 
processing times [4]

Current manually based data acquisition approaches, 
widely used during asset recovery only, are inaccurate, 
and untimely, so decisions based on such data are usually 
ineffective [21].

2.1 � Timing and quality of returns

Research suggests that through implementing emerging 
technologies, the timing of returns can be incentivised [42], 
encouraged, and even managed [43]. The timing of returned 
cores is dependent on a number of factors including sales 
profile, life expectancy, MoL utilisation, the host envi-
ronment, and life-extension activities [44]. Other factors 
include the articulation of actions taken by entities them-
selves based on their awareness, perception, intelligence, 
and extroversion of their environment [14]. The approach 
taken by the OEM or remanufacturers to manage (or not) 
the return profile also affects the quality of cores available 
[45] and subsequent profitability [46]. Currently, before 
(proactive) or after (reactive) the cores arrive at the reman-
ufacturer, quality classification is conducted to determine 
remanufacturability and to facilitate purchasing (Fig. 1).

During the life of high-value entities, advancements in 
technology will occur whereby more efficient offerings will 
become available. The scale of the difference between the 
product in use and the new, state-of-the-art, more advanced 

model, will affect the duration of the former’s life as users 
balance investing in life extension methods against purchas-
ing new [47]. The application of life extension techniques 
on only some components within a host asset is associated 
with an increase in unexpected/unpredictable failure modes, 
issues with spare parts availability and loss of original man-
ufacturing data, further complicating EoL timing and quality 
predictions [44].

2.2 � The need to balance returns with demand

The demand profile for the remanufactured entities is also 
volatile, affecting core inventory planning and acquisition 
[48]. A high demand can allow remanufacturers to 
increase the selling price but against a low supply it can 
force them into processing more cores of inferior quality, 
increasing costs [1]. Contrastingly, low demand and high 
returns generally offer better quality cores but ties up cash 
in inventory. Influencing factors include the sequence 
of processing the cores of different quality classification 
[1], changes in the condition of existing in-use entities 
(deterioration etc.), core availability, market behaviour, and 
the shifting needs of the customers or society [49]. This is 
further complicated in mixed or hybrid manufacturing and 
remanufacturing operational environments [50, 51] where 
the impact of returns can affect the provisioning for the next 
generation in terms of volume and quality [42], and when 
the capacity and capability of the facility is overlaid [46].

2.3 � Issues found during the disassembly of returns

Disassembly is a significant step in the remanufacturing 
process [52]. The level of disassembly can vary from 
partial to complete performed using destructive or non-
destructive methods [53]. However, there are several 
factors that influence the disassemblability of an asset [54] 
that may not be recognised until the process is underway. 

Fig. 1   Current quality classification methods used in remanufacturing
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These include the solidification of supposedly removable 
fasteners [55], wear, or cross-threaded components. Other 
potential hurdles that may or may not be recognised before 
the process commences include one-way fittings, the use of 
welded joints or adhesives, and modifications made to the 
asset during the MoL phase.

Disassembly using robots is a growing research subject 
[56] but additional functionality is required to deal with 
the issues found in-process. Researchers have proposed 
smart [57], reconfigurable [58], collaborative [59–62], and 
moveable [63] factories to manage these uncertainties; 
however, robotics in remanufacturing, and automated testing 
before disassembly, is not commonplace. Pre-disassembly 
testing can be performed to minimise the risk of finding 
issues later in the remanufacturing process. Multi-level 
inspection cells that contain highly automated testing and 
scanning equipment [44], combined in some cases with 
additive manufacturing (AM) facilities [64], have been 
proposed. Structural integrity of components can also be 
assessed using ultrasonic inspection methods [65]; however, 
issues are generally identified during a predominantly 
manual inspection process [54], and are dealt with on a case-
by-case basis.

2.4 � Uncertainties in materials recovered from returns

Intellectual property rights can be a barrier to obtaining 
asset data that can be used to facilitate remanufacturing 
[66]. This barrier is even higher if the remanufacturers are 
not partnered with the OEM [67]. Without this information 
cores can still be processed but the level of uncertainty in 
the properties of the materials contained within the product 
can be high.

The state of the materials recovered from returns will 
be dependent on the core quality, and MoL component 
exchanges/upgrades. However, the material type depends on 
the components original manufacturing process. Knowing 
this information is particularly important if the asset contains 
hybrid materials or structures [68].

2.5 � The reverse‑logistics network

Successful management of the reverse supply chain is one 
way to improve customer perception and loyalty [69–71]. It 
can also play a large part in the profitability of opportunistic 
3rd party remanufacturers [72]. The recovery or purchasing 
of core and its disassembly forms a large part of this network 
but the design of this system depends on the remanufacturing 
strategy, the original design philosophy, incentives, and 
legislative drivers [72].

Other uncertainties that affect the reverse-logistics net-
work include the state of the asset and its whereabouts 
with respect to the remanufacturing facility [73]. In order 

to recover the asset, there needs to be a trigger to start the 
process that makes the remanufacturing agent aware of its 
availability and location [74]. Once on-site, the manage-
ment of cores remains a challenge and the tracking of the 
disassembly through the process needs to be optimised and 
controlled [75].

2.6 � The complications of material matching restrictions

Second generation entities can be formed from multiple 
cores, and multi-parameter evaluation metrics have been 
proposed aimed at identifying the best EoL asset to reman-
ufacture [76]. The tracking of components from an asset 
through the remanufacturing process is also desirable [77]. 
However, ensuring traceability is particularly important in 
remanufacturable safety critical entities like battery packs 
[78] or aircraft engines [79]. In the aerospace industry, 
where identicality and functionality of the remanufactured 
asset must be proven, a higher level of testing and certifica-
tion is applied [80] making the material matching, tracking, 
and labelling more complex.

2.7 � Highly variable processing times

Due to the issues discussed in Sects. 2.1–2.6, there is great 
variability in remanufacturing routings and processing 
times. As soon as an asset reaches EoL its routing is 
likely to differ as its location and state will drive different 
reverse logistics or disposal requirements [74]. Once at the 
remanufacturing facility, the objective (to remanufacture-
to-order or disassemble-to-order etc.) will also drive 
different solutions [2].

The disassembly process, whether it be manual or auto-
mated, smart or otherwise, needs to be planned with its opti-
misation being a popular topic [81] and on-line re-planning 
may be beneficial [82]. However, the stochastic nature of 
the volume and quality of the returns makes fully automated 
disassembly challenging [83]. The remanufacturer can aim 
to minimise the variability or allow it to exist and install flex-
ible solutions [84], but much of this is currently performed 
manually, in-process, by the operations team which is why 
the process times are highly variable.

2.8 � The digital twin

There is growing interest in the fusion of sensors and data to 
form DTs [85] for products [86], people [24], or processes [77] 
in manufacturing that can be applied to remanufacturing [87].

The DT concept first proposed in the early 2000s com-
prises three main elements (Fig. 2):

•	 a real product in real space
•	 a virtual product in virtual space
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•	 the connections of data and information that tie the 
“products” together [88].

This has been expanded, and DTs can now represent indi-
vidual components, products (assets), operators, systems, or 
processes [89] referred herein as “entities.” They can also 
be combined depending on the insight required; e.g. product 
and production processing data can be leveraged to represent 
operational performance [90]. NASA justified the need to 
develop DTs in 2012 for advancing fleet design and manage-
ment through virtually mirroring the life of the real aircraft, 
describing the DT as an integration of ultra-high-fidelity 
simulations with the aircraft’s on-board health management 
system, maintenance history, and all available historical and 
fleet data [91]. If a fleet, in a space agency/military envi-
ronment, is a collection of ships, aircraft, or vehicles that 
operate under a unified control [92], in non-military terms, 
this could translate to a family of similar products that are 
operated, managed, or owned by the same organisation. The 
DT concept first proposed for the management of military 
fleets has already started to crossover into non-military 
applications [93]. In this manuscript, “fleet” will be used to 
describe aggregates of the military and non-military kind. In 
summary, the DT structure relies on connectivity to the real 
asset, where local systems perform condition monitoring 
and management considering the immediate environment, 
where real-time performance data is collected and fed into 
simulation tools and or, storage for performance predictions 
calculations and historic analytics, respectively. The data 
store can also accept fleet data for analysis of the real entity 
with others in the field (Fig. 3).

With the exception of people, the real and virtual assets are 
expected to be connected from creation, to manufacturing, 
through in-use operation and finishing at EoL [94] forming 
a through life digital thread [95]. DTs can exist as a single 

instance corresponding to a specific asset (DTI), an aggregate 
of similar entities (DTA), or an environment (DTE) applicable 
to both the DTIs and DTAs depending on its purpose [94].

In summary, different strategies to mitigate the uncertain-
ties in remanufacturing have been explored but findings sug-
gest these are generally visionary. Additionally, research pub-
lished in 2019 suggested that no tool had yet been designed, 
proposed or recognised as a complete solution [79], and only 
6% of articles focused on remanufacturing decision-making 
considered two or more uncertainty types in 2020 [96]. The 
AAS from RAMI 4.0 has been described by some as a DT, 
but it remains immature. The term “digital twin” is refer-
enced only once in the standard [97], lacks implementation 
detail, and is focused on manufacturing industry based equip-
ment, processes and systems only.

There are many benefits to be had from enabling asset 
visibility throughout its lifecycle. In remanufacturing, these 
are associated with planning and controlling operations and 
assessing an entities suitability for processing [19]. There 
does not appear to be any research published on leveraging 
DTs to resolve some of the uncertainties in remanufacturing, 
and there is a clear requirement to demonstrate the benefits 
of I4.0 for this sector. It is for these reasons that the DT as 
potential solution will be explored to reduce uncertainties 
in high value asset remanufacturing planning and control.

3 � Requirements for DTs in high‑value asset 
remanufacturing

This section defines the functional requirements for DTs to 
reduce the impact of the challenges found in remanufactur-
ing. Section 3.1 derives boundary conditions and assump-
tions from the information presented in Sect. 2.8. Section 3.2 
translates the findings from the literature review (Sects. 

Fig. 2   The three elements of a digital twin
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2.1–2.7) into high-level requirements and discusses how they 
may be fulfilled with respect to product life cycle manage-
ment. Section 3.3 considers the need for instantaneous digi-
tal instances, and Sect. 3.4 allocates out the requirements to 
develop a simple UML model of a generic asset.

3.1 � Asset criteria

There is a base level of technical capability needed from the 
asset to support the generation of associated DTs. Similarly, 
there are certain requirements from the initial manufacturing 
process needed to populate the early life of the DT. It is 
therefore necessary to define some assumptions that are 
made about the asset to be remanufactured. The assumptions 
based on the findings in [38] are as follows:

•	 the asset to be remanufactured has been designed using 
CAD techniques, manufactured using processes that 
provide digital in-process verification measurements and 
are tested to applicable standards.

•	 the asset to be remanufactured is sensorised, and key 
performance indicators are monitored.

•	 the environment in which the asset is utilised is controlled 
(and is known) or is also monitored with data available to 
reference.

•	 that some form of connectivity to the internet is available 
once the asset has been manufactured (towards the end 
of its BoL phase), but before it reaches the customer, and 
during the MoL and EoL phases.

With these capabilities, an asset can be considered a 
candidate for digital twinning, but the detailed requirements 
and how they may be fulfilled, are yet to be defined.

3.2 � Translating high‑value asset remanufacturing 
issues to requirements

The basic requirements of the DT, extracted from Sect. 2, are 
presented in Table 1. Categorised by issue, each of the 16 
requirements have been given an ID and a short explanation 
of what they would enable. Whilst the requirements would 
need to be fully completed by the time the product reaches 
remanufacturing, some can be attained early in the product’s 
life and remain static, whilst others will need to come later 
and may need to be dynamic. Mapping the requirements 
against a closed-loop product lifecycle offers an insight into 
where the information to fill them can be found (Fig. 4). 
The BoL, MoL, and EoL stages are also shown for clarity 
in discussion.

At the BoL, the product type CAD and engineering BoM  
(eBoM) can provide asset design information at compo-
nent, sub, and complete assembly level, useful for reman-
ufacturing process design. Model order reduction may 
well be needed to balance accuracy, accessibility, and 
speed for real-time connectivity and decision-making but  
at least the baseline information already exists. Addition-
ally, the manufacturing BoM (mBoM) and as-built data 
provides information on the realised, uniquely identifiable, 

Fig. 3   Data flows in a basic 
digital twin
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asset, and its components. This is necessary as it captures 
deviations within tolerances and non-conformance entities 
that have been processed with waivers. Examples of useful 
information include, as-machined geometry for component 
repair [98], originally applied torques for implied unscrew-
ing requirements [99] and key product characteristics to 
manufacture/purchase replacement parts [100]. The as-
shipped performance results (from physical tests or simu-
lation) may be obtained (from OEM PLM, MES, or similar 
database) to support remanufacturing expectation limits for 
functionality assessment. The real asset will be connected 
to the IoT before being released to the marketplace with 
its DT (stored locally or remotely) already populated with 
its BoL data.

The unique identification of the core and the remanu-
facturable components within it is necessary to enable 

monitoring and processing through remanufacturing. Seri-
alised RFID is a popular solution to store the ID [6, 9], but 
there are other methods that deserve consideration including 
basic 2D codes through to more advanced self-sensing tags 
[101]. Either way, the unique ID, issued during manufactur-
ing, will be linked to metadata that describes the asset and 
supports the evaluation of its performance against others 
in the field. To accurately evaluate, the existence and loca-
tion of the entities in the field can be made visible during 
distribution.

Once in-use the asset needs to be connected to the IoT 
to emit status, performance, and residual life estimates. 
Useful in this domain is the asset quality metric, key to 
evaluating remanufacturability. There is growing tendency 
to use data recorded in electronic devices to form part of a 

Table 1   Summary of requirements for DT to support remanufacturing

Issue Req. ID Requirement Enable

Timing and quality of returns a To understand the quantity and quality of 
the entities in the field

The visibility of MoL status and performance

b To predict when an asset is likely to 
require remanufacturing

An estimate of remaining useful life

c To understand the quality of the asset during 
MoL and at EoL

An asset quality metric

The need to balance returns with 
demand

d To understand the profile of potential 
returns considering the original sales 
volume

Visibility of the quantity and quality of 
entities in MoL at customer, and at EoL in 
remanufacturing stream

e To improve demand and opportunity 
forecasting

Visibility of future entities that share 
components with the current generation

f To support proactive remanufacturing 
operations planning

Mapping of core requirements against 
facility capacity and capability

Issues found during the disassembly of 
returns

g To understand the quantity and type of 
components and fastening methods used 
in the asset before processing

Access to the original CAD models and 
BoM

h To identify potential disassembly issues 
before the process starts

Visibility of the as-built in-process verification 
results

Uncertainties in materials recovered 
from returns

i Ensure MoL service/upgrades are visible 
and to enable rectification / machining 
and additive manufacturing (AM) process 
success

Access to the latest BoM containing 
component material level data

The reverse-logistics network j Proactively manage core collection Location and readiness of the of asset when 
it reaches EoL

k Track through the remanufacturing process 
and to allocate data

Unique identification of entities

The complications of material matching 
restrictions

l Enable multiple generations of parts to 
exist in the same product

Uniquely identify remanufacturable 
components within an asset

m Ensure alignment with the real asset 
through multiple life cycles

Enable the “remanufacturing” of the digital 
asset

n Support functionality testing Access the entities original as-shipped 
performance results

Highly variable processing times o Virtually plan and manage routings based 
on core quantity and quality data

Access to a remanufacturing facility model

p Optimise disassembly sequence and process 
parameters

Disassembly process simulation results
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remanufacturing pre-inspection process but this is still rare 
[102]. These can be used to estimate remaining useful life 
that in turn can indicate quality [103], but generally, the met-
ric comes in the form of a quality classification bestowed 
on the asset following a physical inspection at EoL [51]. 
Typically, the classes are pre-determined, and the inspec-
tion process is assumed to be perfect; however, the classifi-
cation methods themselves depend on the quality distribu-
tion, and human errors are inevitable [51]. Consequently, 
this mismatch has led to the development of a “certainty of 
product quality” (CPQ) metric, populated using MoL data 
captured from sensors providing visibility of status, perfor-
mance, quality, and quantity to support confident data-driven 
decision-making [5].

Location, and or, readiness of the of asset when it reaches 
EoL can be supported by the integration of RFID tags and 
sensors read by mobile data systems, Wi-Fi, or GPS to 
support traceability of return flows [6, 104] or inventory 
through the remanufacturing process [75, 105, 106]. The 
asset locating data can flow into the DT to allow for earlier 
purchasing and process management decisions.

For EoL processing, the most recent BoM is required, 
but this is not necessarily the original mBoM. Changes may 
have occurred during MoL utilisation. (Lejon, Jeppsson 
[107] propose a concept that enables MoL information 
to be integrated to a virtual product representation within 
TeamCenter PLM.) Access to the most recent BoM can 
help formulate a service BoM, the process of which could 
be applied to the development of a remanufacturing BoM 
(rBoM) [56]. Depending on the level of remanufacturing 
expected, the component level content of the asset may 
be enough. However, the release of sub-assemblies for 

secondary processing and coordination with purchasing 
becomes complicated, and where component repair 
through subtractive, additive, or hybrid machining methods 
is expected, material level data would have to be available 
to be truly beneficial without the need to employ reverse 
engineering techniques.

Once an asset has reached its EoL, its DT can be updated 
to reflect this. Some aspects of the DT may enter a state 
of suspended animation at this point, as in-use data is 
no-longer generated. However, it would be beneficial to 
retain frequently updated location information at least up 
until a decision has been made on how it will be processed. 
If the asset is disposed of, then the DT can also be deleted 
(unless a viable EoL use for the data is also established 
[108]). However, if the asset is to be remanufactured, the 
reverse logistics network needs to be utilised to recover it 
and the DT needs to be saved.

Making the manufacturing Bill of Process (BoP) 
available at the entities EoL may not help remanufacturing 
routings. As the process of remanufacturing includes both 
disassembly and assembly operations, the remanufacturing 
BoP (rBoP) is significantly different to the manufacturing or 
reverse assembly BoP. The potential for selective or partial 
disassembly processes also drives different equipment 
requirements, and applications. However, disassembly 
process planning required to formulate the rBoM and 
rBoP would benefit from information that describes the 
relationships between components within the asset [109] 
and the as-built data (previously described), along with a 
current state remanufacturing facility model. This would 
allow mapping of the core’s requirements against the 
facility capacity and capability and to allow disassembly 

Fig. 4   Assignment of requirements for remanufacturing to different PLM stages
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simulations to be analysed [110]. The real remanufacturing 
process can also be represented as a DT updated with real-
time information [37, 77]. However, issues found during 
the disassembly process are complex making it difficult to 
develop specific elements of a DT to assist. Tightly linked 
material physics level DTs may offer some support, but 
current CAx systems struggle replicating material warping 
and fastener solidification etc. Adaptive geometry modelling 
is being developed to allow nominal models to be updated 
with measured data [111] but assessing material level 
change is not practical when the asset is in-use. Furthermore, 
sensorising the real asset to feed back this data is equally 
challenging. This limits the impact of the DT in reducing 
disassembly uncertainties. Looking further afield, visibility 
of future entities that share components with the current 
generation could be useful to predict demand, as big data 
systems offer tools for fusing diverse information streams, 
improving forecasting for remanufacturing [112].

3.3 � The need for instantaneous digital instances

At every stage of the asset’s life, there is a need to update 
the virtual twin to match that of the real one. However, as 
can be seen from the previous section, current state informa-
tion alone is insufficient. There is still a need to access data 
from previous key points in the asset’s life. For example, 
should a DT be sufficiently advanced to reflect a worn valve 
seat in a cylinder-head assembly, without the original as-
built data an alternative method of identifying the need for 
metal deposition and/or machining will need to be found to 
remanufacture the part. Additionally, BoL data can be used 
by remanufacturers to ensure they supply an asset that meets 
the definition of “remanufactured” by matching or surpassing 
“as-new” performance. This may be best managed by a set 
of digital instances (siblings) that reflect the real asset (cur-
rent state), previous, simulated, and potential future states. 
The digital siblings can remain in a suspended state, with-
out modification, to be called on at EoL (Fig. 5). This way 

remanufacturers have visibility of the previous state, current 
state, and potential future states of the asset whether that be 
a component, product, system, or process.

3.4 � Assignment of digital twin requirements

Component and product DTs can be combined, just like 
their real counterparts, to form an aggregate process or sys-
tem DT. It is therefore advantageous to set boundaries for 
future work by distributing the requirements between those 
that best relate to the component/product, or system/process 
level DT. It should be recognised that some cross-over is 
expected and will be scenario and environment dependent. 
Taking inspiration from Goodall et al. [87], Kusiak [113], 
and Kiritsis et al. [114], a generic asset and the DT remanu-
facturing requirements are modelled using a Visio UML class 
diagram (Fig. 6). UML provides a standard approach to pre-
senting both conceptual and real processes, functions, and 
schemes for software systems and the UML Class diagram 
has been selected because they can document the key static 
elements of any object-oriented design [115]. The structure, 
metadata, and connections shown in the UML model need to 
be set up before the build is released to production or prior to 
shipment. The model is developed based on the information 
gathered from the literature review and following an iterative 
design process when applied to the example. The attributes 
and relationships of the model are described below.

Figure 6 is divided into three sections: level 1 “real,” level 
2 “virtual,” and level 3 “process.” The relationships between 
the classes are denoted by the association, direct association, 
inheritance, aggregation, and composition connection lines 
arrows as documented in [116]. As can be seen from the 
figure, information flows back and forth between the 3 dif-
ferent levels. This close coupling of the physical and virtual 
products along with the wider process is what makes the 
digital twins so useful in this application.

The classes in level 3 process show key remanufacturing  
process functions that are likely to pre-exist. As a result, 

Fig. 5   Key digital instances that need to remain in a suspended state for remanufacturing
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Fig. 6   UML class diagram model of DT enabled asset in remanufacturing
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the attributes and operations for each class have not been 
defined. In summary, labour (Human_Resource), mate-
rials (Material_Resource), and equipment (Equipment_
Resource) combine to form the remanufacturing resources 
(Resources) with a mixture of attributes reflecting skill 
levels, availability performance and quality. Not all 
resources are required, but to add value to the core, there 
needs to be at least one. The capability (Real_Reman_
Capability) is exclusively dependent on these resources. 
The capability of the facility is also a function of the pro-
cess that has been established (Reman_Process) at the cur-
rent time and location (Reman_Time_Location), the capac-
ity (Real_Reman_Capacity), which is itself a function of 
the current work-in-progress (Reman_WIP). The process 
and the remanufacturing BoM (Reman_BoM) are related, 
both dependent on the requirements of the inbound core 
(Reman_Core) and demand (Demand).

The classes in level 1 real, towards the bottom of 
Fig. 6, also represent likely pre-existing remanufacturable 
product functions. However, identified attributes have been 
defined as they are needed for upstream processing. All 
attributes are denoted as public at this stage. High-value 
products go through detailed design iterations, but when 
the product is manufactured, it is done so to a standard set 
of requirements (As_Designed_Entity). The As_Designed_
Entity class needs to be identifiable and specific to the 
remanufacturable asset. As previously described, CAD, 
BoM, test specifications (Test_Spec), and operating limits 
(Operating_Limits) can be useful to remanufacturers 
but so too could the asset manual (Manual), the details 
of interfaces and connections for test processes (Test_
Interfaces), a list of fluids, lubricants, oils, pneumatics 
settings used (FLOPS), the related material safety data 
sheets (MSDS), any software details (Software_Spec), 
and the identity of the parent parts the child entity could 
belong to (Compatible_Parent_ID_Type).

The class As_Built_Entity derives from the As_Designed_
Entity and reflects the specific assembly details of the entity 
Real_Entity. The key attributes from this class needed for reman-
ufacturing include characteristics (critical or special) and test 
results, details of any deviations (Approved_Deviations) from the 
As_Designed_Entity, and specific details like firmware level. The 
class Real_Entity exists to represent the physical asset in its cur-
rent state with attributes relating to its release date (approximately 
start of MoL), the entities parent part (Parent_ID) if applicable, 
and when it became associated with the parent (Child_of_Parent_ 
Since). This becomes relevant if an asset has been modified 
from the As_Built_Entity state and is now a hybrid assembly (i.e. 
MoL maintenance activity). Every Real_Entity has a unique ID 
(Real_ID) and an ID_TYPE, necessary to communicate the for-
mat method (human-readable, RFID, QR (Quick Response) code 
etc.). They could belong to many groups (Entity_Groups) that 
are made up of entities that have the same As_Designed_Entity 

attributes, generally referred to as “product type” or “family” in 
industry.

As already described, for an asset to support a DT, it needs 
at least one sensor (Sensor). The attributes of the sensors need 
to be well defined to assess accuracy of measurement and 
confidence at both instance and aggregate level DT, whist 
Sensor_Data provides the value (Sensor_value) and associated 
timestamp (Meas._Timestamp). Both the current time and 
location (Entity_Time_Location) feeds the information 
related to the asset in its current state (Current_Status) that 
itself contains an incarnation attribute (Incarnations) to 
capture the number of life cycles the asset has been through 
previously, its status (Status), e.g. operational, stand-by, 
offline, and unserviceable and its readiness (Availability) for 
remanufacturing. Completing this section, modification to the 
asset during MoL is captured in Field_Activity for the events 
triggered by servicing, maintenance, or user reconfiguration, 
or in In_MoL_Mod_Entity for self-adjusted (where the asset 
makes changes to itself). Both classes support the changes 
that will occur in the Real_Entity following the modification/
reconfiguration and do so by capturing a timestamp and 
description. Additionally, In_MoL_Mod_Entity contains 
three Boolean attributes, DMM_Init._Activity and Field_
Init_Activity, that indicate whether or not the self-adjustment 
was enacted as a result of decisions made in the virtual 
environment (Decision_Making_Module) or the field activity 
respectively, and Auto_Release that defines whether the 
change activity was managed solely by the asset or involved 
secondary, probably human, approval and release.

The final middle section (level 2 virtual) functions in the 
digital world. It takes information from both the real asset 
and remanufacturing business, evaluates it, and then makes 
decisions on future activities. Starting with the digital, 
exclusive representation of the real asset, the As_Built_
Entity combined with the Field_Activity data flows through 
the Real_Entity to populate the Virtual_Entity. Each virtual 
asset will require a unique ID (Virtual_ID) that would 
benefit for being linked to Real_ID. From the data available 
at this stage, different simulations (Entity_Simulation) 
can be triggered with the relevant simulation parameters 
(Sim._Parameters). The results from the simulations 
(Sim._Results) can formulate a vision and estimate of 
the future state (eFuture_State). Key predictions for 
remanufacturing process management include an estimate 
of RUL (eRUL). This drives the predicted EoL date (eEoL). 
To exemplify how the DT information could enable data-
driven decision making for remanufacturing, consider the 
following. If the predicted EoL date coincided with a gap 
in the work schedule of the remanufacturing facility, the 
product could be actively targeted for recovery. Similarly, 
if a product simulation identified a future failure mode that 
the remanufacturing business specialised in rectifying, 
or where the manufacturer had unallocated replacement 
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parts in stock, the product could again be targeted over 
others with different potential failure modes. An estimate 
of quality (eQuality) and failure mode (eFailure_Mode) at 
eEoL are linked and may be possible simulation outputs. 
The estimation of quality at EoL may not always be zero 
as the failure mode may affect only part of the product. 
For example, a piston seizure can cause a catastrophic 
failure and unrecoverable engine; however, a valve seizure 
is likely to need only a cylinder head replacement making 
remanufacturing a more realistic proposition. Errors in 
accuracy, precision, and resolution of the measurements 
taken by the sensors, those embedded in the virtual 
models and simulation algorithms amongst others need to 
be appreciated. This warrants a confidence level attribute 
(EoL_Confidence) at this class.

The eFuture_State class can offer an insight into the 
potentially recoverable parts of the asset. Virtual_Core 
takes this information and extracts the associated parts 
from Virtual_Entity to generate a virtual core that can be 
utilised to assess remanufacturing BoM, processing and 
resource requirements, opportunities, and risks (Reman_
Opportunities). These can be assessed through the normal 
channels. Alternatively, the virtual core could be pulled 
into a process simulation (Process_Simulation) to assess 
the same, with a decision-making module (Decision_Mak-
ing_Module) that considers the outputs of the future state 
estimates to feed into the In_MoL_Mod_Entity enabling 
asset self-enlightenment and adjustment, with the aim 
to balance RUL with remanufacturing optimisation. The  
Decision_Making_Module can utilise the fleet data to trig-
ger the most relevant simulation to run in Entity_Simulation.  
The trigger could be the eFuture_State data being above or 
below thresholds that relate to the distribution of the fleet’s 
performance and that of the remanufacturing opportuni-
ties from Reman_Opportunities. The details of how the 
Decision_Making_Module would function in reality need 
further exploration.

The UML Class diagram has been formulated from the 
DT requirements. To illustrate its potential and to identify 
areas of improvement, an example of how it can be applied 
is described in the next section.

4 � Example

This section utilises the remanufacturing of engines for 
large off-road applications as an example to analyse the 
applicability of the proposed model and to identify areas 
where it could be improved.

4.1 � Overview

With a global footprint, company A employs over 100 k 
people and generated USD53billion in global sales and 
revenue in 2019, supplying products and services in 
construction, power generation and transportation. With over 
1 million connected assets, it already utilises internet-based 
support systems and encourages sustainable and circular 
business practices including remanufacturing.

Large industrial and off-road engines form part of the 
company’s portfolio. They tend to have long life spans, meet 
the basic asset criteria defined in Sect. 3.1 and fit the high-
value asset description that is the focus of this work. With 
design, development, manufacturing, and remanufacturing 
facilities in the UK, this company offers an applicable, local 
insight into current OEM practices that could be leveraged. 
It is therefore possible to evaluate the model by overlaying 
the pre-existing product attributes and business systems.

4.2 � Model implementation

The manufacturing and remanufacturing functions exist in 
different locations and parts of the business. This makes the 
sharing of relevant information more complex. Additionally, 
it was not possible to use the same engine that is currently 
being designed and manufactured in one facility, as that 
being remanufactured in the other as they belonged to dif-
ferent product families. Instead, two different engines have 
had to be used from the same company, and an assumption 
made that the high-level manufacturing process and remanu-
facturing process are the same for both products. The model 
is populated with example data from both the manufacturing 
and remanufacturing functions (Fig. 7).

Starting with the product design (As_Designed_Entity), 
each product does belong to a family (Entity_Group), 
referred to as the 4006-23TAG3A. Design activity occurs 
in Creo (formerly Pro-Engineer). This package allows for 
structural, thermal, and modal analysis on 3D CAD designs 
in the same environments. In parallel with development, 
the product manual, testing, and operating requirements are 
defined and managed using internal quality systems and ISO 
9001:2015. This product can be installed in many different  
systems, but a popular compatible parent product is the 
P800P1.

The As_Built_Entity data can be populated from the man-
ufacturing execution system (MES) that manage the semi-
automated assembly lines. All critical and special charac-
teristic torques are applied using monitored tooling; results 
are captured and available for post processing or querying. 
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Fig. 7   UML class diagram model of DT containing example information
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Similarly, test results, certificates, and deviation approvals 
are available in the quality management system (QMS).

Each product is released to the build-line with its own 
unique ID, generated from the family, order number, manu-
facturing location, and year of manufacture information. 
This is available on the data-plate as human-readable only. 
(RFID chips in bolt heads fitted to the products are used 
in some facilities to allow process data transmission, but 
most in-service products have only the data-plate.) Some 
major components that form the product also have unique 
IDs (and many are both human and machine-readable with 
dot-matrix, bar or QR code etching), but many of the parts 
are referenced at an Entity_Type level and contain no part 
information or unique identifier.

The finished product is sensorised measuring key param-
eters including torque, speed, temperatures, and pressures, all 
linked to the engine control unit (ECU). Slave sensors are also 
fitted for engine performance testing but are not available in 
MoL. The on-product sensors that exist when it enters MoL 
are designed to feed PID (proportional–integral–derivative) 
controllers for optimising performance.

At the remanufacturing facility human and material 
resources, BoM and WIP are managed by the cloud ERP 
(Enterprise Resource Planning) system “QAD Next Genera-
tion,” whilst equipment resources, capability, and capacity 
planning along with process design are managed by the man-
ufacturing engineering team using Excel spreadsheets. The 
process itself remains highly manual, with discrete worksta-
tions that are managed at a shop-floor level. There is little 
to no use of simulation tools to plan the remanufacturing 
process and no system to provide visibility of inbound core 
quality, failure mode, or automated decision making on what 
could be salvaged at unit level.

The Virtual_Entity is utilised in the Entity_Simulation. 
In this fabricated scenario, fleet data suggests engines in 
similar environments all suffer from valve failure. With this 
information, the Decision_Making_Module triggers a CFD 
(Computational Fluid Dynamics) and FEA (finite element 
analysis) simulation to be run in Entity_Simulation to esti-
mate valve guide life as per Roth [117]. In this scenario, 
RUL and EoL are estimated to be 3 × 109 cycles and June 
2030 respectively with a current quality (eQuality) of 70%. 
The failure (eFailure_Mode) assessed by the Entity_Simu-
lation indicates valve or guide wear as the leading mode, 
with an EoL confidence (EoL_Confidence) level of 65%. 
EoL_Confidence is a function of time of latest data update, 
accuracy of readings, the similarities between this asset and 
others in the fleet, and the results of the simulations. The 
Available_Core would list all potentially remanufacturable 
components from this engine should the failure mode be 
realised. Those components would then be used to populate 
the virtual core (Virtual_Core) for remanufacturing process 
simulation.

4.3 � Discussion

Using the above example and engine failure scenario, an 
assessment of the proposed model can be made. Several 
gaps can be identified. Currently, many parts that constitute 
the product do not possess unique IDs. The product itself 
does not have an online presence. It does not have GPS or 
a clock for Entity_Time_Location data. Field_Activity and 
In_MoL_Mod_Entity data cannot be digitally populated cur-
rently (although service systems do exist). The CAD models 
that are available represent only the family, not the individual 
product. The sensors that are fitted are there for performance 
optimisation, not fault detection, and design (As_Designed_
Entity) and production (As_Built_Entity) information exists 
but it is decentralised and inaccessible remotely. Some of the 
remanufacturing planning is done on an integrated cloud-
based ERP, but much of it remains on human-driven Excel 
spreadsheets. Whist effective, it lacks integration and auton-
omy. It is possible to extract a unique virtual ID from the real 
product ID but beyond that the extraction of the Virtual_Core 
from the Virtual_Entity, the relationships it has with the 
information from the eFuture_State, Process_Simulation, 
Reman_Opportunities and the Decision_Making_Module 
need to be further defined and explored.

5 � Conclusion

Cyber Physical Systems, Asset Administrative Shells, and 
digital twins are emerging from the Industry 4.0 paradigm, 
competing, and often overlapping in the same development 
space. In this work, the digital twin (DT) has been proposed 
as the tool to improve and automate decision-making for 
remanufacturing, improving visibility of inbound core 
quantity, quality, demand, and processing opportunities. 
Although the DT concept appears less mature than the other 
two, greater emphasis is placed on its simulation capabilities 
which is a significant attribute when predicting life expec-
tancy, failure modes, and processing outcomes for remanu-
facturing cores.

Both remanufacturing and DTs are growing in popularity 
among researchers. Despite this, there are significant gaps 
in the definition and development of the DT and its imple-
mentation in the remanufacturing industry. This work offers 
a first step towards filling these gaps by first clarifying the 
remanufacturing issues, translating them into DT require-
ments, creating a universal DT model, and evaluating the 
model using an example. The main challenge to DTs being 
utilised for remanufacturing purposes is access to BoL and 
MoL data. Intellectual property rights as well as MoL data 
privacy and security are a sensitive subject and are unlikely 
to be resolved with current technologies and systems in 
many applications (e.g. military).
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A limitation of this work is that it utilises only one example 
to evaluate the model. Whilst it offers a useful insight into one 
business that has a strong and celebrated remanufacturing pres-
ence in the UK, it should not be deemed representative of the 
entire sector. There are several potential future work streams 
including assessing the model for other existing or prospective 
remanufacturing businesses, including independent remanufac-
turers, and looking at how the lessons learned can be translated 
to other sectors. To suit different sectors, an extension to the 2D 
UML models presented herein may be necessary. The use of 3D 
UML could be explored to improve the visualisation of the data 
flows. Applying the model to other use cases to close the gaps 
identified between the model and the demonstration asset as 
documented in the discussion section would also be worthwhile. 
There needs to be more research into the decision-making mod-
ule to enable the automated decision-making process to utilise 
data to choose whether an EoL product is remanufactured or not. 
Additionally, quantitative estimates of the benefits are needed 
to evaluate the real potential of DT for high-value assets. This 
too requires real-world data over extended periods of time or 
the extrapolation of models and assumptions that could not be 
obtained during this research. However, the main gaps relate to 
the metadata that needs to be derived, and how the individual 
business systems that currently manage the entire product life-
cycle are coupled closer together to enable a product DT that 
supports remanufacturing.
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