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ABSTRACT
The exploration vs exploitation dilemma is to balance exploring
new but potentially less �t regions of the �tness landscape while
also focusing on regions near the �ttest individuals. For the tunable
problem class S�����L����O��, a non-elitist EA with tournament
selection can limit the percentage of “sparse” local optimal indi-
viduals in the population using a su�ciently high mutation rate
(Dang et al., 2021). However, the performance of the EA depends
critically on choosing the “right” mutation rate, which is problem
instance-speci�c. A promising approach is self-adaptation, where
parameter settings are encoded in chromosomes and evolved.

We propose a new self-adaptive EA for single-objective optimisa-
tion, which treats parameter control from the perspective of multi-
objective optimisation: The algorithm simultaneously maximises
the �tness and the mutation rates. Since individuals in “dense” �t-
ness valleys survive highmutation rates, and individuals on “sparse”
local optima only survive with lower mutation rates, they can co-
exist on a non-dominated Pareto front.

Runtime analyses show that this new algorithm (MOSA-EA) can
e�ciently escape a local optimum with unknown sparsity, where
some �xed mutation rate EAs become trapped. Complementary
experimental results show that the MOSA-EA outperforms a range
of EAs on random NK�L�������� and k-S�� instances.

CCS CONCEPTS
• Theory of computation → Optimisation with randomised
search heuristics;

KEYWORDS
Evolutionary algorithms, self-adaptation, multi-modal functions
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1 INTRODUCTION
Evolutionary algorithms (EAs) can be good solvers for multi-modal
optimisation problems if they balance exploring new but potential
∗Authors are listed in alphabetical order.
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less �t regions of the �tness landscape while also focusing on the
regions near the �ttest individuals [28]. In the past decade, several
studies in the area of runtime analysis investigated how EAs can
cope with local optima. In addition to mechanisms like crossover
[2, 10], stagnation detection [3, 26] and adapting population size
[19], a large mutation rate was shown to help some mutation-EA
only escaping certain local optima. For example, the (1+1) EA can
be sped up on J���k by using the larger mutation rate k/n rather
than 1/n [3]. However, a too large mutation rate may lead to failed
optimisation. For non-elitist EAs, there are error thresholds of muta-
tion rate values [21], where if the mutation rate is above the error
threshold, the runtime of the algorithm is exponential.

Non-elitist EAs can “jump” a large Hamming distance. But they
can potentially also maintain less �t individuals in the population,
allowing the population to cross a �tness valley. They might keep
some currently low but potentially high �tness individuals in the
population and optimise them “smoothly”. Recently, a tunable prob-
lem class S�����L����O�� was proposed to describe a kind of
�tness landscapes with sparse deceptive regions (local optima) and
dense �tness valleys [9]. Informally, every search point in a dense set
has many neighbours in that set, and every search point in a sparse
set has few members in any direction. Dang et al. [9] show that EAs
with a non-linear selection and a su�ciently high mutation rate,
i.e., close to the error threshold, can cope with sparse local optima.
Non-linear selection is a type of non-elitist selection, in which the
probability of each individual to be selected is based on its rank in
the population, e.g., tournament and linear ranking selections [23].
Typically, the �tter individual has a higher probability to be selected,
but the worse individual still has some chance to be chosen. From
their analysis, non-linear selections and su�ciently high mutation
rates can limit the percentage of “sparse” local optimal individuals
in the population by choosing a su�ciently high mutation rate. The
reason is that the sparse local optimal individuals can have a higher
chance to be selected but can only survive a small percentage of
such individuals after mutation, while the dense �tness valley indi-
viduals may have less chance of being selected but can have higher
chance of surviving mutation. However, the performance of the
EA depends critically on choosing the “right” mutation rate, which
should be su�ciently high but below the error threshold. Moreover,
�nding such a mutation rate might be di�cult or infeasible for
some problem instances with not too sparse local optima.

The self-adaptive parameter control mechanism is a promising
method to con�gure parameters. It encodes the parameters in each
individual and evolves the parameters together with its solution
through variation operators. There exist a few theoretical studies
of self-adaptation in the decade. Dang and Lehre [12] �rst present
that a self-adaptive population using two mutation rates can per-
form well on the P�����LO function which is a simple arti�cial
two-peak function. As a comparison, they also proved that the al-
gorithm using neither �xed mutation rate nor uniformly selected

https://doi.org/10.1145/3512290.3528836
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Table 1: Theoretical results of EAs on P�����LOm,k (for some constant c, � > 0)

Algorithm P�����LOm,k Runtime T Theorem

(µ + �) EA Any k  n and k,m 2 �(n) Pr (T  e
cn )  e

��(n) Theorem 2
(µ, �) EA Any k  n and k,m 2 �(n) Pr (T  e

cn )  e
��(n) Theorem 3

2-tour. EA Any k < (ln(3/2) � � )n and k,m 2 �(n) Pr (T  e
cn )  e

��(�) Theorem 4
(µ, �) MOSA-EA Any n � k 2 �(n), dme < 2A (1 + ln(pinc)/ln(�0) � o(1))k 2

E[T ] = O
�
n
2 log(n)

�
Theorem 5

mutation rate will fail on this problem. Doerr et al. [17] rigorously
analysed a self-adaptation mechanism on (1, �) EA, in which the
mutation rate r/n is mutated multiplying a constant or dividing a
constant (uniform random selection) before mutating the solution.
They prove that the algorithm optimises O��M�� in expected time
O (n log(n)) runtime, which is the best possible results for evolu-
tionary algorithms. Another recent rigorous analysis from Case
and Lehre [5] showed that the self-adaptation of mutation rate
over a continuous interval can be e�ective on the unknown struc-
ture version of L������O��� function. Their analysis divides the
search space of solution and mutation rate into two-dimensional
levels. They then use the level-based theorem [7] to obtain the run-
time, which is asymptotically optimal among all unary unbiased
black-box algorithms.

Mutation rate

Fitness

Dense fitness valley

Sparse local optima 
with high fitness

Sparse local optima 
with low fitness

Optimising

Figure 1: Intuition of MOSA-EA

Case and Lehre [5] also showed that the self-adaptation can �nd
the (nearly) maximal “right” mutation rate for each search point on
some benchmark functions. We say the “right” mutation rate for a
search point is below a threshold, where the expected number of
non-worse o�springs of an individual with a mutation rate below
this threshold is greater than 1. For S�����L����O��, the maximal
“right” mutation rate for dense �tness valleys can be higher, while
the maximal “right” mutation rate for sparse local optima may be
lower. In self-adaptation, individuals can be con�gured to di�erent
mutation rates. If we maximise the mutation rates for both sparse
local optima and dense �tness valleys, then the sparse local optimal
individual and the dense �tness valley individual could potentially
co-exist in a non-dominated Pareto front (Figure 1). Therefore, we
can treat parameter control from the perspective of multi-objective
optimisation to �nd the optimal solution and the maximal “right”
mutation rates for each search point simultaneously.

In this paper, we propose the multi-objective self-adaptive EA
(MOSA-EA) for single-objective optimisation, which treats param-
eter control from the perspective of multi-objective optimisation:
The algorithm simultaneously maximises the �tness and the muta-
tion rates. To present advantages of the MOSA-EA, we �rst propose
the P�����LOm,k function, which is a version of P�����LO [12]
with tunable sparsity, where the �tness value ism if a local optimal
individual x = 0k⇤n�k and is L������O��� value otherwise, where
⇤ represents an arbitrary bit. The sparsity of the local optima can
be tuned by the sparse parameter k 2 [n]. With the P�����LOm,k
2For some constants pinc < 2/5, � � 4, A > 1 based on restrictions in Theorem 5.

function, we simulate a situation in that algorithms have already
been trapped into unknown sparse local optima and estimate the
expected time to reach the global optimum. The runtime analy-
ses show that the MOSA-EA can cope with local optima for any
k 2 �(n), while the elitist EA, the (µ, �) EA, and the tournament
EA fails for some k 2 �(n). Table 1 demonstrates the theoretical re-
sults obtained in this study. The used parameters for the algorithms
can be found in the corresponding theorems. The experimental
results show that the MOSA-EA can outperform the (1+1) EA, the
non-elitist EAs and the UMDA on two challenging combinatorial
optimisation problems, random NK�L�������� and random k-S��
instances.

2 PRELIMINARIES
We �rst de�ne some notations which are used later. For any n,m 2
N satisfying n � m > 0, we de�ne [n] := {1, . . . ,n}, [0..n] :=
{0} [ [n], [�1..n] := {�1} [ [0..n] and [m..n] := [0..n]\[0..m � 1].
We use H(·, ·) to denote the Hamming distance. The natural log-
arithm and the logarithm to the base 2 are denoted by ln(·) and
log(·), respectively. Let f : X ! R be any pseudo-Boolean func-
tion, where X = {0, 1}n is the set of bitstrings of length n. De-
�ne L������O���(x) :=: LO(x) := Õn

i=1
Œi

j x j . For self-adapting
mutation rate, we are interested in an extended search space of
Y := X ⇥ [�, 1/2] which includesX and the space of mutation rates.
Appendices mentioned can be found in the supplementary material.

2.1 P�����LOm,k problems
Dang and Lehre [12] proposed a two-modal function P�����LOm
where the �tness value ism if a peak individual x = 0n and LO(x)
otherwise. The “density” of the �tness valley can be tuned bym.
In this section, we introduce a more general version of P�����LO,
where the “sparsity” of the peak individual can be tuned by a pa-
rameter k . Let ⇤ represent an arbitrary bit. Then the problem class

is de�ned as P�����LOm,k (x) :=
⇢
m if x = 0k⇤n�k ,
LO(x) otherwise, for

any k 2 [n] and any 1 < m 2 R. The P�����LOm function [12]
is a special case of P�����LOm,k where k = n. Similarly to [12],
we assume that the algorithm is initiated from the search points
0k⇤n�k . It is unlikely that the algorithm will end up on this par-
ticular local optima if the population is initialised uniformly at
random. However, here, we are interested in the capability of an
algorithm to escape a local optimum, wherever it is encountered.
Our assumption is therefore reasonable for the purposes of analysis.

2.2 Non-elitist EAs
Non-elitism means that the �tness individual in a generation is not
always copied to the next generation. There exist many studies on
non-elitist selection [8, 9, 11, 15, 22]. In this paper, we show that
�xed mutation rate non-elitist EAs are ine�cient when optimising
P�����LOm,k when initialised from 0k⇤n�k . We take the (µ, �) EA
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and the 2-tournament EA as examples to show this, which can be
described as Algorithm 6 (shown in Appendix C) with “plugging”
Algorithms 8 and 9 (shown in Appendix C) into Line 4, respectively.
The non-elitist selection mechanisms can also be applied to the
self-adaptive EAs which is introduced in the next section.

2.3 Level-based theorem
The level-based theorem [7, 16] is a runtime analysis tool used to
obtain upper bounds on the runtime of population-based EAs on
many problems [9, 13, 22]. The theorem applies to algorithms that
follow the scheme of Algorithm 7 (shown in Appendix C). Let D
be some mapping from the set of all possible populations Z� into
the space of probability distributions over ofZ, whereZ is a �nite
state space. Thus, we can consider that each individual in Pt+1 is
sampled from a distribution D(Pt ) which responds to Lines 4-5 of
Algorithm 6.

T������ 1 ([7]). Given a partition (A1,A2, . . . ,Am ) of a �nite
state space Z, let T := min{t� | |Pt \ Am | > 0} be the �rst point in
time that the elements ofAm appear in Pt of Algorithm 7. If there exist
z1, . . . , zm�1, � 2 (0, 1], and �0 2 (0, 1) such that for any population
P 2 Z� ,
(G1) for each level j 2 [m � 1], if |P \A�j | � �0� then

Pr
�⇠D(P )

�
� 2 A�j+1

�
� zj ,

(G2) for each level j 2 [m�2], and all� 2 (0,�0], if |P\A�j | � �0�
and |P \A�j+1 | � �� then Pr

�⇠D(P )
�
� 2 A�j+1

�
� (1 + � )� ,

(G3) and the population size � 2 N satis�es � �
⇣

4
�0� 2

⌘
ln

⇣
128m
z⇤� 2

⌘
,

where z⇤ := minj 2[m�1]
�
zj

 
,

then E[T ] 
⇣
8
� 2

⌘ Õm�1
j=1

⇣
� ln

⇣
6��

4+zj��

⌘
+ 1

zj

⌘
.

3 MULTI-OBJECTIVE SELF-ADAPTIVE EA
This section will introduce the multi-objective self-adaptive evo-
lutionary algorithm (MOSA-EA). The basic idea of the MOSA-EA
is to treat the parameter optimisation task as another objective,
i.e., maximising �tness mutation rate simultaneously. Compared to
existing self-adaptive EAs, the MOSA-EA is characterised by the
population sorting method. Previous self-adaptive EAs [5, 12, 17]
sort the population by considering the �tness of individuals �rst,
then the mutation rate. In contrast, the MOSA-EA sorts the popu-
lation by a non-dominated sorting (Algorithm 2) where we have
adapted from two famous multi-objective EAs [14, 27].

3.1 Framework of self-adaptive EAs
There exist three self-adapting mutation rate non-elitist EAs in the
theory community. They are the 2-tournament self-adaptive EA
using twomutation rates [12], the (µ, �) self-adaptive EA [5] and the
(1, �) self-adaptive EA [17]. In each generation t , they all essentially
�rst sort the population Pt by some sorting mechanism based on
�tness function f and mutation rate �

n . Then, each individual in the
next population Pt+1 is produced via selection and mutation. The
selection mechanism is based on the order of the sorted population.
Then, the selected individual changes its mutation rate based on
the same self-adapting mutation rate strategy and is bit-wisely
�ipped with the probability of a new mutation rate. To describe

the above processes, we summarise a framework of self-adaptive
EAs (Algorithm 1). In this framework, we can customise the sorting
mechanism Sort , the selectionmechanism Psel and the self-adapting
mutation rate strategy Dmut. The MOSA-EA can also be based on
this framework. Similarly to non-elitist EAs, we can also consider
that each individual in Pt+1 is sampled from a distribution D(Pt )
in Theorem 1 which corresponds to Lines 4-6 of Algorithm 1.

Algorithm 1 Framework of self-adaptive EAs
Require: Fitness function f . Population sizes � 2 N. Sorting mech-

anism Sort . Selection mechanism Psel. Self-adapting mutation
rate strategy Dmut. Initial population P0 2 Y� .

1: for t in 0, 1, 2, . . . until termination condition met do
2: Sort(Pt , f )
3: for i = 1, . . . , � do
4: Sample It (i) ⇠ Psel ([�]); set (x, �/n) := Pt (It (i)).
5: Sample �

0 ⇠ Dmut(� ).
6: Create x 0 by independently �ipping each bit of x with

probability �
0/n.

7: Set Pt+1(i) := (x 0, � 0/n).

3.2 Sorting mechanism
The MOSA-EA aims to maximise �tness and mutation rates simul-
taneously. To achieve this goal, we apply a multi-objective sorting
mechanism to sort the population before producing the next popu-
lation, as shown in Algorithm 2. Speci�cally, the multi-objective
sorting mechanism uses the strict non-dominated sorting (Algo-
rithm 3) based on maximising two objective functions, i.e., the
�tness value of the solution f1(x, � ) := f (x) and the mutation rate
of the individual f2(x, � ) := � .

6
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!!"
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Figure 2: Illustration of multi-objective sorting

After multi-objective sorting described in Algorithm 2, we can
get a series of strict non-dominated fronts F t

0 , F t
1 , . . . of Pt . In

each strict non-dominated Pareto front, Algorithm 3 guarantees
that there do not exist two individuals with the same �tness value
and mutation rate, and individuals are put in a �tness increasing
sequence. Note that we assume that the aim is to maximise all
objectives in Algorithm 3, and we say an individual a dominates
another individual b, written as a � b if (1) the objective values
of a are no lower than b for all functions, and (2) at least one
objective value of a is strictly higher than that objective value in b.
Figure 2 illustrates an example of the order of a population after
multi-objective sorting. Note that the points in the same cell have
the same �tness value and the same mutation rate.
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The main di�erence between the fast non-dominated sorting al-
gorithm used in NSGA-II [14] and the strict non-dominated sorting
algorithm shown in Algorithm 3 is that the latter can avoid too
many similar or copies of the same individual, i.e., same objective
values in all functions, in one front, by Lines 9-11. This character-
istic can avoid the situation that some individuals dominate the
population, i.e., occupying the top positions of the sorted popula-
tion. In other words, the strict non-dominated sorting algorithm
can increase the diversity of the population.

After calculating the strict non-dominated fronts, we sort the
individuals in each front based on the �tness function f (Line 3
in Algorithm 2), since the priority of optimisation is to �nd better
solutions. Then we get a sorted population, in which any individual
a is ranked before an individual b if a has a higher �tness value or
a higher mutation rate than b.

Algorithm 2Multi-objective sorting mechanism

Require: Population sizes � 2 N. Population Pt 2 Y� . Fitness
function f .

1: Sort Pt into strict non-dominated fronts F t
0 , F t

1 , . . . based on
f1(x, � ) := f (x) and f2(x, � ) := �

2: for F = F t
0 , F t

1 , . . . do
3: Sort F such that f1 (F (1)) > f1 (F (2)) > . . ..
4: Pt :=

⇣
F t
0 , F t

1 , . . .
⌘
.

5: return Pt .

Algorithm 3 Strict non-dominated sorting

Require: Population sizes � 2 N. Population P 2 Z� , where Z
is a �nite state space. Objective functions f1, f2, . . . : Z ! R
(assume to maximise all objective functions).

1: for each individual P(i) do
2: Set Si := ; and ni := 0
3: for i = 1, . . . , � do
4: for j = 1, . . . , � do
5: if P(i) � P(j) based on f1, f2, . . . then
6: Si := Si [ {P(i)},
7: else if P(j) � P(i) based on f1, f2, . . . then
8: ni := ni + 1,
9: else if f`(P(i)) = f`(P(j)) where ` = 1, 2, . . . then
10: if P(i) < Sj then Si := Si [ {P(i)} else ni := ni + 1.
11: if ni = 0 then F0 = F0 [ {P(i)}.
12: Set k := 0.
13: while Fk , ; do
14: Q := ;.
15: for each individual P(i) 2 Fk and P(j) 2 Si do
16: Set nj := nj � 1.
17: if nj = 0 then Q := Q [ {P(j)}.
18: Set k := k + 1, Fk := Q .
19: return F0, F1, . . ..

Algorithm 4 Self-adapting mutation rate strategy

Require: Parameters A > 1, � > 0 and pinc 2 (0, 1). Mutation
parameter � .

1: �
0 =

(
min(A�, �nAblogA( 1

2� )c ) with probability pinc,
max (�/A, �n) otherwise.

2: return �
0.

Algorithm 5 Self-adapting mutation rate strategy (theoretical)
Require: Parameters A > 1, � > 0, pinc2 > 0, pinc > 0 and pinc +

pinc2 < 1. Mutation parameter � .

1: �
0 =

8>>><
>>>:

min(A�, �nAblogA( 1
2� )c ) with probability pinc,

�nA
blogA( 1

2� )c with probability pinc2,
max (�/A, �n) otherwise.

2: return �
0.

3.3 Self-adapting mutation rate
Self-adapting mutation rate is the key step of self-adaptive EAs.
Case and Lehre [5] and Doerr et al.[17] use a strategy to increase the
mutation rate by a multiplicative factorA > 1with some probability
pinc, decrease otherwise. We apply a similar strategy in Algorithm 4
on the MOSA-EA in experiments (Section 6), where adapting muta-
tion rate from � to nearly 1/2. To make theoretical analysis easier,
we adopt Algorithm 5 on the MOSA-EA in Theorem 5. The di�er-
ence is that Algorithm 5 has an additional tiny probability pinc2 to
increase the mutation rate to the highest of possible mutation rates.

Finally, we say the MOSA-EA is Algorithm 1 using the multi-
objective sorting mechanism (Algorithm 2). In this paper, we only
consider the (µ, �) MOSA-EA with using comma selection (Algo-
rithm 8). For self-adapting mutation rate strategy, we apply Algo-
rithms 4 and 5 in Sections 6 and 5, respectively.

4 INEFFICIENCY OF FIXED MUTATION RATE
The (µ + �) EA and the (µ, �) EA are proved ine�cient when op-
timising the BBF����� function which belongs to the S������
L����O�� problem class [8, 9]. We use similar proof ideas to prove
the ine�ciency on P�����LOm,k for (µ + �) EA and (µ, �) EA,
which is shown in Theorems 2 and 3, respectively. Furthermore,
the tournament EA can solve S�����L����O�� problems with very
“sparse” local optima [8, 9]. In Theorem 4, we show the 2-tournament
EA with any �xed mutation rate cannot handle a too sparse local
optimum on P�����LOm,k . Due to the page limit, the proofs in
this section are omitted and can be found in Appendix D.

T������ 2. The expected runtime of the (µ + �) EA with �, µ 2
poly(n), �/µ � 1, initial population P0 = {0k⇤n�k }µ , and mutation
parameter � 2 O(1) on P�����LOm,k with any k  n and k,m 2
�(n) satis�es Pr(T  e

cnd )  e
��(n) for some constants c,d > 0.

T������ 3. For any constant � > 0, the (µ, �) EA with �, µ 2
poly(n), �/µ = �0 where �0 > 1 is a constant, mutation parameter
0 < � < [ln(�/µ) � � , ln(�/µ) + � ], and initial population P0 =
{0k⇤n�k }� has runtime Pr (T  e

cn )  e
��(n) on P�����LOm,k

with any k  n and k,m 2 �(n) for some constant c > 0.
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T������ 4. For some constant � 2 (0, 2/3), any k  an where
a = ln(3(1 � � )/2) is a constant andm 2 �(n), the runtime of the
2-tournament EA with population size � 2 poly(n) on P�����LOm,k
with the initial population P0 = {0k⇤n�k }� and any �xed mutation
rate satis�es Pr (T  e

cn ) = e
��(�) for a constant c > 0.

5 EFFICIENCY OF MOSA-EA
We now analyse the runtime of the MOSA-EA on P�����LOm,k
(Theorem 5). In a previous study, Case and Lehre [5] derived an
upper bound on the runtime of the (µ, �) self-adaptive EA on an
unknown structure version of L������O��� function via the level-
based theorem [7]. They �rst divide the search space Y into a
two-dimensional level partition including �tness levels and muta-
tion rate sub-levels. Then they de�ne two threshold values �1(j)
and �2(j) which is an ideal range of mutation rate to improve the
solution for each �tness level. Informally, they count the number
of generations to increase the mutation rate to enter this ideal mu-
tation rate range, and the number of generations to improve the
solution to the next �tness level if with an ideal mutation rate.

T������ 5. For some constant � 2 (0, 1), Algorithm 1 using
the multi-objective sorting mechanism (Algorithm 2), self-adapting
mutation rate strategy described in Algorithm 5 and the (µ, �) selection
(Algorithm 8) with �

µ = �0 � 4 and c log2(n)  � 2 poly(n) where
�0 is a constant and c is a large enough constant, has expected runtime
O

�
n� log(n) log (log(n)) + n2 log(n)

�
on P�����LOm,k started with

any initial population, if satisfying
- pinc 2

⇣
1+�
�0
, 25

⌘
, A > (1 +

p
1/(�0(1 � pinc))) are constants,

- � = b
n , pinc2 =

d
n for any small constants b,d > 0,

- dme <
⇣
ln

⇣
�0pinc
1+�

⌘⌘
/
⇣
2A ln

⇣
�0
1��

⌘⌘
k � ln

⇣
�0pinc
1+�

⌘
+ 1, where k =

an for any constant a 2 (0, 1].

Although the MOSA-EA analysed in Theorem 5 is signi�cantly
di�erent from the (µ, �) self-adaptive EA, e.g., di�erent sorting
mechanisms and di�erent self-adapting mutation rate strategies, we
can use a similar proof idea for these two varieties of L������O���.
We �rst divide the search space Y into regions based on k and
m of P�����LOm,k . Then we partition each region into �tness
levels and mutation rate sub-levels. We formally de�ne these in
Section 5.1. Section 5.2 de�nes some threshold values and functions,
similaly to [5], and we also introduce some useful lemmas. Finally,
in Section 5.3, we apply the level-based theorem (Theorem 1) to the
level partition to get an upper bound of runtime on P�����LOm,k .

5.1 Partitioning the search space into levels
We partition the two-dimensional search spaceY = X⇥[�, 1/2] into
“levels". We �rst divide the search spaceY into three partsA0,A and
Bk based on �tness value and mutation rate, which are coloured by
yellow, blue and grey in Figure 3, respectively. Note that Figure 3 is
an informal illustration since the formal de�nitions are complicated.
Formally, we de�ne the regions with the P�����LOm,k parameters
k,m and a threshold value � 02 as
• A

0
j := {(x, � ) | LO(x) = j and x , 0k ⇤n�k and � < �

0
2} for

j 2 [0..dme � 1];
• A

0
dm e := {(x, � ) | x = 0k ⇤n�k and � < �

0
2};

• Aj := {(x, � ) 2 X | LO(x) = j and x , 0k ⇤n�k and � � �
0
2} for

j 2 [0..dme � 1];
• Aj := {(x, � ) | LO(x) = j}, for j 2 [dme ..n];
• Bk := {(x, � ) | x = 0k ⇤n�k and � � �

0
2}.

We will de�ne � 02 in the next subsection. Note that Bk contains no
level which is applied in the level-based theorem, and we will prove
that there are not too many individuals in Bk region later.

A� (�m�,1)

A� (�m�,2)

A� ( �m�,d� �m�)

A� (0,1)

A� (0,d� 0)

A� (0,2)

A� (1,d� 1)

A� (1,1)

A� 

(�m��1,d� �m��1)

A� (�m��1,2)

A� (�m��1,1) A(�m�,1)

A(�m�,2)A� (1,2)

A( j,1)
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A( j,dj )
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�� 
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A
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�� �
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A
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�
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� �
� �
� � �

�
�
�

��
�

�
�

� �
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�( j)

�
�
�
�
�

�
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�

�
n
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Figure 3: Informal illustration of the level partition on
P�����LOm,k function (Regions A0, A, Bk are coloured by
yellow, blue, grey, respectively)

To describe the ranking of sub-levels, we de�ne that any level
in A is higher than all levels in A

0, any sub-level in Aj is higher
than all sub-levels in Aj�1, and any sub-level in A

0
j is higher than

all sub-levels in A
0
j�1 for j � 1.

Now, we de�ne sub-levels in regionsA0 andA. For regionA0, we
�rst de�ne the depth d 0j of levels A

0
j :

• For j 2 [0..dme � 1], d 0j := min{` 2 N | �A` � �
0
2};

• For j = dme, d 0dm e := min{` 2 N | �A` � �
0
1}.

The depth of level in A
0 implies the number of sub-levels to enter

higher region, i.e., A. Then,
• For j 2 [0..dme � 1], we de�ne the sub-levels for ` 2 [d 0j ] as
A
0
(j ,`) := A

0
j ⇥ [�A`�1,min(�A`, � 02)),

• For j = dme, we de�ne the low levels for ` 2 [d 0j�1] asA0
( dm e,`) :=

A
0
dm e ⇥ [�A`�1,min(�A`, � 01)), and we de�ne the edge level as

A
0
( dm e,d 0

�1)
:= A

0
dm e ⇥ [� 01,min( 12 , � 02)].

To de�ne sub-levels in region Aj , we use two threshold values
�1(j) and �2(j) which will be de�ned in the following subsection.
Similarly to [5], �1(j) and �2(j) imply the ideal range of mutation
rate to mutate the solution to level Aj . We also begin at de�ning
the depth dj of levels Aj ,
• For j 2 [0..dme � 1], dj := min{` 2 N | � 02A` � �1(j)};
• For j 2 [dme ..n � 1], dj := min{` 2 N | �A` � �1(j)}.
The depth of level implies the number of sub-levels to tune the
mutation rate from the lowest to an ideal mutation rate.
• For j 2 [0..dme � 1], we de�ne the low levels as A(j ,`) := Aj ⇥
[� 02A`�1,min(� 02A`, �1(j))), for ` 2 [dj � 1], and de�ne the edge
levels asA(j ,dj ) := Aj⇥[�1(j),min( 12 , �2(j))][A>j⇥(min( 12 , �2(j+
1)),min( 12 , �2(j))].

• For j 2 [dme ..n � 1], we de�ne the low levels as A(j ,`) := Aj ⇥
[�A`�1,min(�A`, �1(j))), andwe de�ne the edge levels asA(j ,dj ) :=
Aj⇥[�1(j),min( 12 , �2(j))][A>j⇥(min( 12 , �2(j+1)),min( 12 , �2(j))].
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• We let An contain only one sub-level A(n,1) := Aj ⇥ [�, 1/2].

5.2 De�nitions and useful lemmas
We now de�ne the functions �1, � and �2 for levels Aj where j 2
[0..n � 1], and the values � 01, �

0 and � 02 for levels A
0
dm e , which use

in the levels de�nitions above.
• For Aj where j 2 [n � 1], let

�(j) := 1
2A

 
1 �

✓
1 + �
�0pinc

◆ 1
j
!
, �1(j) :=

�(j)
A
, �2(j) := 1 � q

1
j , where

q :=
1 � �

�0
, r0 :=

1 + �
�0 (1 � pinc � pinc2)

, � := 1 � �0(r0)1+
p
r0

• For A0, let �(0) be any function such that �(0) = �(1)
A � o(1), and

we de�ne �1(0) := �(0)
A , and �2 := �2(1)

A .
• For A0

dm e , we de�ne �
0 := �(k), � 01 := �1(k) and � 02 := �2(k).

For convenience, let x 0 ⇠ pmut(x, � ) denote that individual x 0 is
sampled by independently �ipping each bit of x with probability
�/n, which is another expression of Line 6 in Algorithm 1. Then, for
all individuals (x, � ) inAj where j 2 [0..n�1] and � 2 [�n,n/2], we
de�ne the survival probability as r (j, � ) := minx 2Aj Prx 0⇠pmut(x ,� )(x 0 2
A�j ), and for all individuals (x, � ) in A

0
j , where j 2 [0..dme] and

� 2 [�n,n/2], we de�ne the survival probability as r 0(j, � ) :=
minx 2A0

j
Prx 0⇠pmut(x ,� )(x 0 2 A

0
�j ).

We then explain that condition dme <
⇣
ln

⇣
�0pinc
1+�

⌘⌘
/
⇣
2A ln

⇣
�0
1��

⌘⌘
k�

ln
⇣
�0pinc
1+�

⌘
+ 1 in Theorem 5 essentially implies � 02 < �1(j) for all

j 2 [0..dme � 1] by Lemma 1 (the proof can be found in Appen-
dix D.4). Informally, it means that the local optima is “sparse” and
the �tness valley is “dense”.

L���� 1. Assume that the parameters A, �0 and pinc satisfy the
constraints in Theorem 5. For any constant � 2 (0, 1), if dme <⇣
ln

⇣
�0pinc
1+�

⌘⌘
/
⇣
2A ln

⇣
�0
1��

⌘⌘
k � ln

⇣
�0pinc
1+�

⌘
+ 1, where k = an for

any constant a 2 (0, 1], then � 02 < �1(j) for all j 2 [0..dme � 1].
Then we introduce three lemmas to support the proofs for con-

ditions (G2) and (G1) of Theorem 1. Due to the page limit, the
lemmas and their proofs can be found in Appendices D.5, D.6 and
D.7. Lemma 6 presents some useful inequalities, and Lemmas 7
and 8 can be used to prove conditions (G2) and (G1), respectively.
The lemmas and the proofs may look similar to [5], but they are
separate statements since di�erent algorithms and level partitions
are considered in Theorem 5 and [5].

Too many individuals with high �tness but incorrect mutation
rate would ruin the progress of the population. We therefore need
to prove that there are not too many such “bad” individuals in
the population. We �rst de�ne a “bad” region B ⇢ Y containing
search points with a mutation rate that is too high, and we say an
individual (x, �/n) 2 B has too high mutation rate. For the constant
� 2 (0, 1), let
B :=

�
(x, �/n) 2 Aj ⇥ [�, 1/2] |

(j 2 [0..n � 1] ^ 8� 2 X\{0k⇤n�k } Pr
x 0⇠pmut(�,� )

(x 0 2 A�j ) <
1 � �

�0
)

_ (8� = 0k ⇤n�k Pr
x 0⇠pmut(�,� )

(x 0 = 0k⇤n�k ) < 1 � �

�0
)
 
. (1)

By �2(j), � 02 and Bk , the region B can also be expressed as

B = [n�1j=0A>j ⇥ (min(1/2, �2(j + 1)),min(1/2, �2(j))] [ Bk . (2)

We show that too many such individuals in the population is rare
by Lemma 9 (shown in Appendix D.8).

5.3 Applying the level-based theorem
Now, we use Lemmas 6, 7, 8 and 9 to prove Theorem 5 via Theorem 1.

P���� (T������ 5). We say that a generation t is “failed" if the
population Pt contains more than (1 � � /2) µ individuals in region
B. We will optimistically assume that no generation fails. Under this
assumption, we will prove that the conditions of Theorem 1 hold,
leading to an upper bound on the expected number of function
evaluations t0(n) until a search point inA(n,1) is created. In the end
we will use a restart argument to account for failed generations.

Each strict non-dominated front has at most
⌃
logA (1/2�)

⌥
=

c
0 log(n) individuals where c 0 > 0 is some constant, so there are at
least �/(c 0 log(n)) 2 � (log(n)) fronts. Let c 0 :=

⌃
logA

� n
2�

�⌥
/log(n),

where c 0 log(n) is the maximal number of individuals in a front.
Let �0 := b

0/log(n) for some constant 0 < b
0 < � /(2�0c 0). By the

assumption, the number of individuals are not in region B and have
chance to be selected is at least � µ/2. Since �0� = b

0
�/log(n) <

� �/(2�0c 0 log(n)) = � µ/(2 log(n)) < � µ/2, therefore any individual
ranked in the �rst �0� positions will be selected with probability 1

µ
by the (µ, �) selection.

By the ranking mechanism, if an individual (x, � ) ranked in the
�rst �� positions where � 2 (0,�0], then any individual (x 0, � 0)
where either f (x 0) > f (x) or � 0 > � will be ranked in the �rst ��
positions, which guarantees individuals in A

0
>(j ,`) are ranked in

the �rst �� positions if there are at least �� individuals in A
0
�(j ,`),

and guarantees individuals in A>(j ,`) are ranked in the �rst ��
positions if there are at least �� individuals in A�(j ,`).

Now we consider (G1)-(G2) of Theorem 1 in regions A0 and A.
Region A

0: For � 2 (0,�0], if there are �� individuals in level
A
0
>(j ,`) for some j 2 [0..dme] and ` 2 [d 0j ], then the probability

of selecting an individual from A
0
>(j ,`) is ��0. Since |Pt \ B | 

(1 � � /2)µ, it follows that all �� < (� /2)µ individuals of A0
�(j ,`) are

among the µ �ttest in the population. Therefore, the probability
of selecting an individual from A

0
>(j ,`) indeed is ��/µ = ��0. We

assume that the current population has at least �0� individuals
in levels A0

�(j ,`). To verify condition (G2), we must estimate the
probability of producing an o�spring in levels A0

>(j ,`), assuming
that there are at least �� individuals in levels A0

>(j ,`), for any � 2
(0,�0]. We distinguish �ve cases:
• Case 1: j 2 [0..dme �1] and ` 2 [d 0j �1]. Assuming that the parent
(x, �/n) is in A

0
(u ,�) ✓ A

0
�(j ,`+1). Since �/n < �

0
2 < �1(j) < �(j)

by �
2, � and Lemma 1, it is “safe" to increase the mutation

rate. For a lower bound, we therefore pessimistically only ac-
count for o�spring where the mutation parameter is increased to
min(� , �nAblogA( 1

2� )c ). The probability of producing an o�spring
in levels A0

�(j ,`+1) is at least pinc(1 �A�/n)j > pinc(1 �A�
0
2)j >

pinc(1 �A�(j))j � (1 + � )/�0.
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• Case 2: j 2 [0..dme �1] and ` = d 0j . We use a stronger assumption
that there are at least �� individuals inA�(j ,1) for any � 2 (0,�0],
which is a subset of A0

>(j ,d 0
j )
. To produce an o�spring in lev-

els A�(j ,1), it su�ces to �rst select a parent from A�(j ,1), and
secondly create an o�spring in levels A�(j ,1). The probability of
selecting such a parent is at least��0. By Lemma 7, the probability
of producing an o�spring in levels A�(j ,1) is at least (1 + � )/�0.

• Case 3: j = dme and ` 2 [d 0j � 2]. Similarly to Case 1, it is “safe"
to increase the mutation rate, since �/n < �

0. For a lower bound,
we therefore pessimistically only account for o�spring where
the mutation parameter is increased to min(A� , �nAblogA( 1

2� )c ).
The probability of producing an o�spring in levels A0

�( dm e,`+1)
is at least 1 + �/�0.

• Case 4: j = dme and ` = d 0j � 1. By Lemma 7, the probability of
producing an o�spring in levels A0

�( dm e,d 0
dme )

is at least 1+�
�0

.

• Case 5: j = dme and ` = d
0
dm e . We use a stronger assumption

that there are at least �� individuals inA�(0,1) for any � 2 (0,�0],
which is a subset of A0

>( dm e,d 0
dme )

. The probability of producing

an o�spring in levels A�(0,1) is at least (1 + � )/�0.
To produce an o�spring in levelsA0

>(j ,`), it su�ces to �rstly select a
parent (x, �/n) fromA

0
>(j ,`), and then create an o�spring (x

0, � 0/n)
in levels A0

>(j ,`). The probability of selecting such a parent is at
least��0. Thus, the probability that the o�spring (x 0, � 0/n) in levels
A
0
>(j ,`), is at least ��0

1+�
�0
= � (1 + � ), which (G2) is satis�ed.

For condition (G1) of Theorem 1, we assume that there are �0�
individuals in Pt in A

0
�(j ,`) where j 2 [0..dme] and ` 2 [d 0j ]. To

verify condition (G1), we assume that the parent (x, �/n) is inA0
(j ,`),

and we distinguish four cases:
• Case 1: j 2 [0..dme � 1] and ` 2 [d 0j � 1]. The probability of the
o�spring in levelsA0

�(j ,`+1) is at least pinc(1� �/n) dm e�1 = �(1).
• Case 2: j 2 [0..dme�1] and ` = d 0j . The probability of the o�spring
in region A, i.e., A�(j ,1), is at least pinc(1 � �/n) dm e�1 = �(1).

• Case 3: j = dme and ` 2 [d 0j � 1]. The probability of the o�spring
in levels A0

�( dm e,`+1) is at least pinc(1 � �/n) dm e�1 = �(1).
• Case 4: j = dme and ` = d 0dm e . The probability of the o�spring in

levelsA�(0,d0) is at leastpinc2(1�(1�1/2) dm e�1) = �(1/n), where
the mutation parameter is changed to min(�, �nAblogA( 1

2� )c ) and
at least one 0-bit of �rst k bit-position is �ipped.

Thus, a lower bound of the probability of producing an o�spring
in higher levels, i.e., A0

>(j ,`), is �0�0� (1/n) = � (1/n log(n)) =:
z
0(dme,d 0dm e ) and �0�0� (1) = � (1/log(n)) =: z0 (j, `) except the
case of j = dme and ` = d 0dm e .

Region A: To verify condition (G2), we distinguish two cases for
all j 2 [0..n � 1] and ` 2 [dj ]:
• Case 1: ` 2 [dj � 1]. Firstly, we need to estimate the proba-
bility of producing an o�spring in levels A�(j ,`+1), assuming
that there are at least �� individuals in levels A�(j ,`+1), for any
� 2 (0,�0]. To produce an o�spring in levels A�(j ,`+1), it su�ces
to �rst select a parent (x, �/n) from A�(j ,`+1), and secondly cre-
ate an o�spring (x 0, � 0/n) in levels A�(j ,`+1). The probability of
selecting such a parent is at least ��0. Assuming that the parent

is in level A(u ,�) ✓ A�(j ,`+1), and applying Lemma 7 to level
A(u ,�), the probability that the o�spring (x 0, � 0/n) is in levels
A(u ,�) ✓ A�(j ,`+1) is (1+� )/�0 for some � 2 (0, 1). Thus the prob-
ability of selecting a parent in levelsA�(j ,`+1), then producing an
o�spring in levelsA�(j ,`+1), is at least ��0 (1 + � ) /�0 = � (1+� ),
so condition (G2) is satis�ed.

• Case 2: ` = dj . We assume that there are at least �� individuals
in levels A�(j+1,1), for � 2 (0,�0]. We again apply Lemma 7 to
show the probability of selecting an individual fromA�(j+1,1) and
producing a new individual also in A�(j+1,1) is at least � (1 + � ),
showing condition (G2) is satis�ed.
To verify condition (G1), we assume that there are�0� individuals

in Pt in A�(j ,`) where j 2 [0..n � 1] and ` 2 [dj ]. If the parent
(x, �/n) is in A�(j ,`), then
• Case 1: ` 2 [d 0j � 1]. The probability of the o�spring in levels
A�(j ,`+1) is at least (1 + � )/�0 = �(1).

• Case 2: ` = d
0
j . By Lemma 8, the probability of the o�spring in

A�(j+1,1) is at least � (1/j).
Thus, a lower bound of the probability of producing an o�spring
in higher levels, i.e., A(j ,dj ) is �0�0� (1) = � (1/log(n)) =: z

�
j,dj

�
for j 2 [0..dme], and �0�0� (1/j) = � (1/j log(n)) =: z (j, `) for
j 2 [0..dme] and ` 2 [dj � 1].

To verify that � � c log2(n) is large enough to satisfy condition
(G3), we �rst must calculate the number of total sub-levels m0.
The depth of each level j is no more than d

0
j < dlogA

� n
2�

�
e =

O (log(n)) for all j 2 [0..dme] and dj < dlogA
� n
2�

�
e = O (log(n)) for

all j 2 [0..n � 1]. Therefore, by �0 = � (1/log(n)),m0 = O (n log(n))
and zmin = � (1/n log(n)), we know that � � c log2(n) satis�es
condition (G3) for a large enough c > 1.

Overall, assuming no failure, the expected time to reach the last
level can be calculated by considering regions A0 and A separately,
which is no more than

t0(n) 
8
�2

 dm e�1’
j=0

d 0
j’

`=1

 
� log

 
6��

4 + z0(j ,`)��

!
+

1
z
0
(j ,`)

!

+

d 0
j�1’
`=1

 
� log

 
6��

4 + z0( dm e,`)��

!
+

1
z
0
( dm e,`)

!

+ � log ©≠
´

6��
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j )
��

™Æ
¨
+

1
z
0
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+
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O

✓
� log

✓
1
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+

1
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+
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� log(�) + 1
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=O(n� log(n) log (log(n)) + n2 log(n)).
Finally, we account for “failed" generations where our assump-

tion that there are less than (1 � � /2)µ individuals in region B

does not hold. We refer to a sequence of 2t0(n)/� generations as
a phase, and call a phase good if for 2t0(n)/� consecutive genera-
tions there are fewer than (1 � � /2)µ individuals in region B. By
Lemma 9 and a union bound, a phase is good with probability
1�2t0(n)/�e��(µ) = �(1), for µ = � (log(n)). By Markov’s inequal-
ity, the probability of reaching a global optimum in a good phase is
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at least 1/2. Hence, the expected number of phases required, each
costing 2t0(n) function evaluations, is O(1). ⇤

6 EXPERIMENTS
The theoretical analysis considers an idealised scenario, and it is
interesting to evaluate its performance on problems with more
complex structure. In this section, we empirically analyse the per-
formance of the MOSA-EA on two well-known combinatorial opti-
misation problems, random NK�L�������� and k-S�� instances.
We also compare the performances of the MOSA-EA with other
popular randomised search heuristics.

6.1 Problems
TheNK�L�������� problem [20] can be described as: givenn,k 2 N
satisfying k  n, and a set of sub-functions fi : {0, 1}k ! R for
every i 2 [n], to maximise NK�L��������(x) := Õn

i=1 fi (� (x, i)) ,
where the function � : {0, 1}n, [n] ! {0, 1}k returns a bit-string
containing k right-side neighbours of the i-th bit of x , i.e., xi , . . . ,
x(i+k�1) mod n . Typically, each sub-function is de�ned as a lookup
table with 2k+1 values between (0, 1). We generate 100 random NK�
L�������� instances with n = 100 for each k 2 {5, 10, 15, 20, 25}
by uniformly sampling values in the lookup table. We run each
algorithm once on each instance, and record the highest �tness
value achieved in the evaluation budget.

The k-S�� problem is an optimisation problem that aims to �nd
an assignment {0, 1}n which maximises the number of satis�ed
clauses of a given Boolean formula in the conjunctive normal form
[1, 6, 18]. For each random k-S�� instance, allm clauses have the
same size k 2 [n] and are sampled k elements from [n] without
replacement. For k � 3, Coja-Oghlan [4] gives a threshold for satis�-
ability rk-S�� = 2k ln 2� 1

2 (1+ ln 2)+ok (1), where the probability to
sample a satis�able instance is nearly 0 if mn is close to this thresh-
old. The notation ok (1) signi�es a term that tends to 0 in the limit
of large k . We �rstly generate 100 random k-S�� instances with
k = 5 andm = d(2k ln(2) � (1 + ln(2)) /2)ne ⇡ nrk-S�� and for each
n 2 {100, 200, 300}. Similarly to experiments onNK�L��������, we
then run each algorithm among these random instances, and record
the minimal numbers of unsatis�ed clauses during the algorithm
running in the �tness evaluation budget.

6.2 Algorithms
We compare the MOSA-EA with other EAs on the NK�L��������
and k-S�� problems. For the MOSA-EA used in experiments, we use
the (µ, �) selection described in Algorithm 8 and the self-adapting
mutation rate strategy shown in Algorithm 4. For the parameter
setting, we use µ = �/8, the minimal mutation rate � = 1.0/n, the
self-adapting mutation rate parameters A = 1.01 and pinc = 0.4.
The initial mutation rates of each individual is set as �A` where
` ⇠ Unif

� ⇥
0..

⌅
logA(1/2�)

⇧ ⇤ �
.

The baseline algorithm (1+1) EA can be implemented by the
(µ + �) EA with � = µ = 1. We use the standard mutation rate
�/n = 1/n. For the (µ, �) EA, we set the population parameter µ =
�/8 and the mutation rate a little bit below the error threshold, i.e.,
�/n = 2.07/n < ln(�/µ). The UMDA [24] has only two parameters,
population parameters � and µ. Consistently, we set µ = �/8 in
experiments. We con�gure the mutation rate of the 3-tournament

EA as �/n = 1.09812/n following [8, 9]. For fair comparisons, we
use the same population size � = 20000 for all population-based
algorithms and the same budget of �tness evaluations 108.

6.3 Results
Figures 4 and 5 illustrate the experimental results on random NK�
L�������� and k-S�� instances, respectively. Each box shows the
distribution of one algorithm among 100 random instances on one
problem setting. Tables 2 and 3 (shown in Appendix E) show statis-
tics for results on NK�L�������� and k-S��, respectively. Figure 4
and Table 2 indicate that the highest �tness values achieved by the
MOSA-EA are statistically signi�cantly higher than all other algo-
rithms with signi�cance level � = 0.05 for all NK�L�������� with
k 2 {10, 15, 20, 25}. Figure 5 and Table 3 indicate that the number
of unsatis�ed clauses achieved by the MOSA-EA are statistically
signi�cantly less than all other algorithms with signi�cance level
� = 0.05 for all tested k-S�� problems.

Figure 4: The highest �tness value in 108 �tness evaluations
on random NK�L�������� instances (n = 100)

Figure 5: The number of unsatis�ed clauses in 108 �tness
evaluations on random k-S�� instances (k = 5)

7 CONCLUSION
In this paper, we �rst introduce the MOSA-EA for single-objective
optimisation, which treats parameter control from the perspec-
tive of multi-objective optimisation: The algorithm simultaneously
maximises the �tness and the mutation rates. To achieve this, we
propose the multi-objective sorting mechanism, which sorts the
population based on the strict non-dominated fronts. Theoretically,
we demonstrate that the MOSA-EA can escape from sparse local
optima of P�����LOm,k for any k 2 �(n), where �xed mutation
rate EAs may be trapped. Empirically, we show that the MOSA-EA
can outperform some popular random search heuristics on complex
combinatorial optimisation problems, i.e., random NK�L��������
and k-S�� problems.
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