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A subgraph H of an edge-coloured graph is called rainbow if 
all of the edges of H have different colours. In 1989, Andersen 
conjectured that every proper edge-colouring of Kn admits a 
rainbow path of length n −2. We show that almost all optimal 
edge-colourings of Kn admit both (i) a rainbow Hamilton path 
and (ii) a rainbow cycle using all of the colours. This result 
demonstrates that Andersen’s Conjecture holds for almost all 
optimal edge-colourings of Kn and answers a recent question 
of Ferber, Jain, and Sudakov. Our result also has applications 
to the existence of transversals in random symmetric Latin 
squares.
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1. Introduction

1.1. Extremal results on rainbow colourings

We say that a subgraph H of an edge-coloured graph is rainbow if all of the edges 
of H have different colours. An optimal edge-colouring of a graph is a proper edge-
colouring using the minimum possible number of colours. In this paper we study the 
problem of finding a rainbow Hamilton path in large optimally edge-coloured complete 
graphs.

The study of finding rainbow structures within edge-coloured graphs has a rich history. 
For example, the problem posed by Euler on finding orthogonal n ×n Latin squares can 
easily be seen to be equivalent to that of finding an optimal edge-colouring of the complete 
bipartite graph Kn,n which decomposes into edge-disjoint rainbow perfect matchings. It 
transpires that there are optimal colourings of Kn,n without even a single rainbow perfect 
matching, if n is even. However, an important conjecture, often referred to as the Ryser-
Brualdi-Stein Conjecture, posits that one can always find an almost-perfect rainbow 
matching, as follows.

Conjecture 1.1 (Ryser [38], Brualdi-Stein [9,39]). Every optimal edge-colouring of Kn,n

admits a rainbow matching of size n − 1 and, if n is odd, a rainbow perfect matching.

Currently, the strongest result towards this conjecture for arbitrary optimal edge-
colourings is due to Keevash, Pokrovskiy, Sudakov, and Yepremyan [25], who showed that 
there is always a rainbow matching of size n −O(logn/ log logn). This result improved 
earlier bounds of Woolbright [40], Brouwer, de Vries, and Wieringa [7], and Hatami and 
Shor [22].

It is natural to search for spanning rainbow structures in the non-partite setting 
as well; that is, what spanning rainbow substructures can be found in properly edge-
coloured complete graphs Kn? It is clear that one can always find a rainbow span-
ning tree – indeed, simply take the star rooted at any vertex. Kaneko, Kano, and 
Suzuki [23] conjectured that for n > 4, in any proper edge-colouring of Kn, one can 
find �n/2� edge-disjoint rainbow spanning trees, thus decomposing Kn if n is even, 
and almost decomposing Kn if n is odd. This conjecture was recently proved ap-
proximately by Montgomery, Pokrovskiy, and Sudakov [34], who showed that in any 
properly edge-coloured Kn, one can find (1 − o(1))n/2 edge-disjoint rainbow spanning 
trees.

For optimal edge-colourings, even more is known. Note firstly that if n is even and Kn

is optimally edge-coloured, then the colour classes form a 1-factorization of Kn; that is, 
a decomposition of Kn into perfect matchings. Throughout the paper, we will use the 
term 1-factorization synonymously with an edge-colouring whose colour classes form a 
1-factorization. It is clear that if a 1-factorization of Kn exists, then n is even. Very 
recently, Glock, Kühn, Montgomery, and Osthus [16] showed that for sufficiently large 
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even n, there exists a tree T on n vertices such that any 1-factorization of Kn decomposes 
into edge-disjoint rainbow spanning trees isomorphic to T , thus resolving conjectures of 
Brualdi and Hollingsworth [8], and Constantine [11,12]. See e.g. [26,34,36] for previous 
work on these conjectures.

The tree T used in [16] is a path of length n − o(n), together with o(n) short paths 
attached to it. Thus it might seem natural to ask if one can find a rainbow Hamilton 
path in any 1-factorization of Kn. Note that such a path would contain all of the colours 
used in the 1-factorization, so it is not possible to find a rainbow Hamilton cycle in a 
1-factorization of Kn. However, in 1984 Maamoun and Meyniel [31] proved the existence 
of a 1-factorization of Kn (for n ≥ 4 being any power of 2) without a rainbow Hamilton 
path. Sharing parallels with Conjecture 1.1 for the non-partite setting, Andersen [5]
conjectured in 1989 that all proper edge-colourings of Kn admit a rainbow path which 
omits only one vertex.

Conjecture 1.2 (Andersen [5]). All proper edge-colourings of Kn admit a rainbow path 
of length n − 2.

Several variations of Andersen’s Conjecture have been proposed. In 2007, Akbari, 
Etesami, Mahini, and Mahmoody [1] conjectured that all 1-factorizations of Kn admit a 
Hamilton cycle whose edges collectively have at least n −2 colours. They also conjectured 
that all 1-factorizations of Kn admit a rainbow cycle omitting only two vertices.

Although now known to be false, the following stronger form of Conjecture 1.2 in-
volving the ‘sub-Ramsey number’ of the Hamilton path was proposed by Hahn [20]. 
Every (not necessarily proper) edge-colouring of Kn with at most n/2 edges of each 
colour admits a rainbow Hamilton path. In light of the aforementioned construction of 
Maamoun and Meyniel [31], in 1986 Hahn and Thomassen [21] suggested the following 
slightly weaker form of Hahn’s Conjecture, that all edge-colourings of Kn with strictly 
fewer than n/2 edges of each colour admit a rainbow Hamilton path. However, even 
this weakening of Hahn’s Conjecture is false – Pokrovskiy and Sudakov [37] proved the 
existence of such edge-colourings of Kn in which the longest rainbow Hamilton path has 
length at most n − lnn/42.

Andersen’s Conjecture has led to a number of results, generally focussing on in-
creasing the length of the rainbow path or cycle that one can find in an arbitrary 
1-factorization or proper edge-colouring of Kn (see e.g. [10,15,18,19]). Alon, Pokrovskiy, 
and Sudakov [3] proved that all proper edge-colourings of Kn admit a rainbow path with 
length n − O(n3/4), and the error bound has since been improved to O(

√
n · log n) by 

Balogh and Molla [6]. Further support for Conjecture 1.2 and its variants was provided 
by Montgomery, Pokrovskiy, and Sudakov [34] as well as Kim, Kühn, Kupavskii, and 
Osthus [26], who showed that if we consider proper edge-colourings where no colour 
class is larger than n/2 − o(n), then we can even find n/2 − o(n) edge-disjoint rainbow 
Hamilton cycles.
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1.2. Random colourings

It is natural to consider these problems in a probabilistic setting, that is to consider 
random edge-colourings as well as random Latin squares. However, the ‘rigidity’ of the 
underlying structure makes these probability spaces very challenging to analyse. Recently 
significant progress was made by Kwan [27], who showed that almost all Latin squares 
contain a transversal, or equivalently, that almost all optimal edge-colourings of Kn,n

admit a rainbow perfect matching. His analysis was carried out in a hypergraph setting, 
which also yields the result that almost all Steiner triple systems contain a perfect 
matching. Recently, this latter result was strengthened by Ferber and Kwan [14], who 
showed that almost all Steiner triple systems have an approximate decomposition into 
edge-disjoint perfect matchings. Here we show that Hahn’s original conjecture (and thus 
Andersen’s Conjecture as well) holds for almost all 1-factorizations, answering a recent 
question of Ferber, Jain, and Sudakov [13]. In what follows, we say a property holds 
‘with high probability’ if it holds with a probability that tends to 1 as the number of 
vertices n tends to infinity.

Theorem 1.3. Let φ be a uniformly random optimal edge-colouring of Kn. Then with high 
probability,

(i) φ admits a rainbow Hamilton path, and
(ii) φ admits a rainbow cycle F containing all of the colours.

In particular, if n is odd, then F is a rainbow Hamilton cycle.

As discussed in Section 8, there is a well-known correspondence between rainbow 
2-factors in n-edge-colourings of Kn and transversals in symmetric Latin squares, as a 
transversal in a Latin square corresponds to a permutation σ of [n] such that the entries in 
positions (i, σ(i)) are distinct for all i ∈ [n]. Based on this, we use Theorem 1.3(ii) to show 
that random symmetric Latin squares of odd order contain a Hamilton transversal with 
high probability. Here we say a transversal is Hamilton if the underlying permutation σ
is an n-cycle.

Corollary 1.4. Let n be an odd integer and L a uniformly random symmetric n ×n Latin 
square. Then with high probability L contains a Hamilton transversal.

Further results on random Latin squares were recently obtained by Kwan and Su-
dakov [29], who gave estimates on the number of intercalates in a random Latin square 
as well as their likely discrepancy. After the completion of the initial version of this pa-
per, additional results on intercalates in random Latin squares were obtained by Kwan, 
Sah, and Sawhney [28], which, together with the results of [29], resolve an old conjecture 
of McKay and Wanless [32]. In addition, Gould and Kelly [17] showed that an analogue 
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of Corollary 1.4 also holds when L is a uniformly random (not necessarily symmetric) 
n × n Latin square, strengthening the aforementioned result of Kwan [27].

2. Notation

In this section, we collect some definitions and notation that we will use throughout 
the paper.

For a graph G and (not necessarily distinct) vertex sets A, B ⊆ V (G), we de-
fine EG(A, B) := {e = ab ∈ E(G) : a ∈ A, b ∈ B}. We often simply write E(A, B)
when G is clear from the context. We define e(A, B) := |E(A, B)|. For a vertex v ∈ V (G), 
we define ∂G(v) to be the set of edges of G which are incident to v. For a proper colour-
ing φ : E(G) → N and a colour c ∈ N, we define Ec(G) := {e ∈ E(G) : φ(e) = c}
and say that an edge e ∈ Ec(G) is a c-edge of G. For a vertex v ∈ V (G), if e

is a c-edge in G incident to v, then we say that the non-v endpoint of e is the c-
neighbour of v. For a vertex v ∈ V (G) and three colours c1, c2, c3 ∈ N, we say 
that the c3-neighbour of the c2-neighbour of the c1-neighbour of v is the end of the 
c1c2c3-walk starting at v, if all such edges exist. For a set of colours D ⊆ N, we 
define ND(v) := {w ∈ NG(v) : φ(vw) ∈ D}. For sets A, B ⊆ V (G) and a colour 
c ∈ N, we define Ec(A, B) := {e ∈ E(A, B) : φ(e) = c}. If G is not clear from 
the context, we sometimes also write Ec

G(A, B). For any subgraph H ⊆ G, we define 
φ(H) := {φ(e) : e ∈ E(H)}. For a set of colours D ⊆ [n − 1], let Gcol

D be the set of 
pairs (G, φG), where G is a |D|-regular graph on a vertex set V of size n, and φG is a 1-
factorization of G with colour set D. Often, we abuse notation and write G ∈ Gcol

D , and in 
this case we let φG denote the implicit 1-factorization of G, sometimes simply writing φ

when G is clear from the context. For G ∈ Gcol
[n−1] and a set of colours D ⊆ [n −1], we de-

fine the restriction of G to D, denoted G|D, to be the spanning subgraph of G containing 
precisely those edges of G which have colour in D. Observe that G|D ∈ Gcol

D . A subgraph 
H ⊆ G ∈ Gcol

D inherits the colours of its edges from G. Observe that uniformly randomly 
choosing a 1-factorization φ of Kn on vertex set V and colour set [n − 1] is equivalent 
to uniformly randomly choosing G ∈ Gcol

[n−1]. For any D ⊆ [n − 1], G ∈ Gcol
D , and sets 

V ′ ⊆ V , D′ ⊆ D, we define EV ′,D′(G) := {e = xy ∈ E(G) : φG(e) ∈ D′, x, y ∈ V ′}, 
and we define eV ′,D′(G) := |EV ′,D′(G)|. For a hypergraph H, we write Δc(H) to denote 
the maximum codegree of H; that is, the maximum number of edges containing any two 
fixed vertices of H.

For a set D of size n and a partition P of D into m parts, we say that P is equitable
to mean that all parts P of P satisfy |P | ∈ {�n/m�, 	n/m
}, and when it does not affect 
the argument, we will assume all parts of an equitable partition have size precisely n/m. 
For a set S and a real number p ∈ [0, 1], a p-random subset T ⊆ S is a random subset 
in which each element of S is included in T independently with probability p. A β-
random subgraph of a graph G is a spanning subgraph of G where the edge-set is a 
β-random subset of E(G). For an event E in any probability space, we write E to denote 
the complement of E . For real numbers a, b, c such that b > 0, we write a = (1 ± b)c
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to mean that the inequality (1 − b)c ≤ a ≤ (1 + b)c holds. For a natural number n ∈
N, we define [n] := {1, 2, . . . , n}, and [n]0 := [n] ∪ {0}. We write x 
 y to mean 
that for any y ∈ (0, 1] there exists an x0 ∈ (0, 1) such that for all 0 < x ≤ x0 the 
subsequent statement holds. Hierarchies with more constants are defined similarly and 
should be read from the right to the left. Constants in hierarchies will always be real 
numbers in (0, 1]. We assume large numbers to be integers if this does not affect the 
argument.

3. Overview of the proof

In this section, we provide an overview of the proof of Theorem 1.3. In Section 4 we 
prove Theorem 1.3 in the case when n is even assuming two key lemmas which we prove 
in later sections. In particular, we assume that n is even in Sections 3–7, so that the 
optimal edge-colouring φ we work with is a 1-factorization of Kn. In Section 8 we derive 
Theorem 1.3 in the case when n is odd from the case when n is even. We will also deduce 
Corollary 1.4 from Theorem 1.3(ii) in Section 8. Throughout the proof we work with 
constants ε, γ, η, and μ satisfying the following hierarchy:

1/n 
 ε 
 γ 
 η 
 μ 
 1. (3.1)

Our proof uses the absorption method as well as switching techniques. Note that the 
latter is a significant difference to [14,27], which rely on the analysis of the random 
greedy triangle removal process, as well as modifications of arguments in [24,30] which 
bound the number of Steiner triple systems. Our main objective is to show that with 
high probability, in a random 1-factorization, we can find an absorbing structure inside 
a random subset of Θ(μn) reserved vertices, using a random subset of Θ(μn) reserved 
colours. A recent result [16, Lemma 16], based on hypergraph matchings, enables us to 
find a long rainbow path avoiding these reserved vertices and colours, and using our 
absorbing structure, we extend this path to a rainbow Hamilton path. More precisely, 
we randomly ‘reserve’ Θ(μn) vertices and colours and show that with high probability 
we can find an absorbing structure. This absorbing structure consists of a subgraph Gabs

containing only reserved vertices and colours and all but at most γn of them. More-
over Gabs contains ‘flexible’ sets of vertices and colours Vflex and Cflex each of size ηn, 
with the following crucial property:

(†) for any pair of equal-sized subsets X ⊆ Vflex and Y ⊆ Cflex of size at most ηn/2, the 
graph Gabs −X contains a spanning rainbow path whose colours avoid Y .

In fact, this spanning rainbow path has the same end vertices, regardless of the choice 
of X and Y . Given this absorbing structure, we find a rainbow Hamilton path in the 
following three steps:
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Fig. 1. A (v, c)-absorber, where φ(ei) = i. The paths P1 and P2 are drawn as zigzags.

(1) Long path step: Apply [16, Lemma 16] to obtain a long rainbow path P1 containing 
only non-reserved vertices and colours. Moreover, P1 contains all but at most γn of 
them.

(2) Covering step: ‘Cover’ the vertices and colours not in Gabs or P1 using the flexible 
sets, by greedily constructing a path P2 containing them as well as sets X ⊆ Vflex
and Y ⊆ Cflex of size at most ηn/2.

(3) Absorbing step: ‘Absorb’ the remaining vertices and colours, by letting P3 be the 
rainbow path guaranteed by (†).

In the covering step, we can ensure that P2 shares one end with P1 and one end with 
P3 so that P1 ∪ P2 ∪ P3 is a rainbow Hamilton path, as desired. These steps are fairly 
straightforward, so the majority of the paper is devoted to building the absorbing struc-
ture, that is, the subgraph Gabs which satisfies (†) with respect to ‘flexible’ sets Vflex and 
Cflex. This argument is split into two parts. Lemma 4.9, proved in Section 6, asserts that, 
subject to some quasirandomness conditions, we can build our absorbing structure using 
our randomly reserved vertices and colours; Lemma 4.8, proved in Section 7, asserts that 
a typical 1-factorization of Kn has these quasirandom properties.

3.1. Absorption

To design our absorbing structure, we employ a strategy sometimes called ‘distributed 
absorption’, first introduced by Montgomery [33]. The details of this are presented in 
Section 4, but we provide an overview now. Our absorbing structure consists of many 
‘gadgets’ pieced together in a particular way. In particular, for a vertex v and colour c, 
a (v, c)-absorber (see Definition 4.1 and Fig. 1) is a small subgraph containing both v
and an edge coloured c, with the following property: It contains a rainbow path which 
is spanning and which uses one of each colour assigned to its edges, and it also contains 
a rainbow path which includes all of its vertices except v and an edge of every one if 
its colours except c; moreover, these paths have the same end vertices. We refer to the 
former path as the (v, c)-absorbing path and the latter as the (v, c)-avoiding path (again, 
see Definition 4.1).

We build our absorbing structure out of (v, c)-absorbers, along with short rainbow 
paths linking them together, using an auxiliary bipartite graph H as a template (see 
Definition 4.2 and Fig. 2), where one part of H is a set of vertices (including Vflex) and 
the other part is a set of colours (including Cflex). For every edge vc ∈ E(H), we will 
have a (v, c)-absorber in the absorbing structure. When proving (†), if v or c is in X
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Fig. 2. An H-absorber where H ∼= K2,2 with bipartition ({v1, v2}, {c1, c2}).

or Y , then the spanning rainbow path in Gabs − X contains the (v, c)-avoiding path, 
and otherwise it may contain the (v, c)-absorbing path. More precisely, we find a perfect 
matching of H − (X ∪ Y ), and we use the (v, c)-absorbing path for every matched pair 
of vertex v and colour c.

A naive approach would be to use the complete bipartite graph with parts Vflex and 
Cflex as our template H; however, this would require too many absorbing gadgets. In-
stead, we choose a much sparser template graph H that is robustly matchable with respect 
to Vflex and Cflex (see Definition 4.3); we use a result of Montgomery [33, Lemma 10.7]
to construct a robustly matchable bipartite graph with maximum degree O(1). Thus, we 
only need Θ(ηn) absorbing gadets to build an absorbing structure satisfying (†). Using 
that η 
 μ, we can build such an absorbing structure inside the random subset of Θ(μn)
vertices and Θ(μn) colours (see Lemma 6.4). However, our absorbing structure needs to 
contain all but at most γn of the reserved vertices and colours. To that end, we attach a 
long rainbow path using almost all of the remaining reserved vertices and colours that we 
call a tail (see Definition 4.2); this is accomplished using the semi-random method, im-
plemented via hypergraph matchings results (see Lemma 6.5). We use a similar approach 
in the long path step.

3.2. Analysing a random 1-factorization of Kn

To build the absorbing structure described in Section 3.1, we need to show that 
a typical 1-factorization of Kn satisfies some quasirandom properties. We call these 
properties local edge-resilience and robust gadget-resilience (see Definitions 4.6 and 4.7), 
and we prove they hold for typical 1-factorizations in Lemma 4.8. Standard arguments 
can be used to show that these properties hold with high probability for a (not necessarily 
proper) edge-colouring of Kn where each edge is assigned one of n colours independently 
and uniformly at random; however, it is much more challenging to prove this for a random 
1-factorization. We prove Lemma 4.8 using a ‘coloured version’ of switching arguments 
that are commonly used to study random regular graphs. Unfortunately, 1-factorizations 
of the complete graph Kn are ‘rigid’ structures, in the sense that it is difficult to make 
local changes without global ramifications on such a 1-factorization. Thus, instead of 
analysing switchings between graphs in Gcol

[n−1], we will analyse switchings between graphs 
in Gcol

D for appropriately chosen D � [n − 1]. In the setting of random Latin squares, 
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this approach was used by McKay and Wanless [32] and further developed by Kwan and 
Sudakov [29], and we build on their ideas.

We use results on the number of 1-factorizations of dense regular graphs due to Kahn 
and Lovász (see Theorem 7.10) and Ferber, Jain, and Sudakov (see Theorem 7.11) to 
study the number of completions of a graph H ∈ Gcol

D to a graph G ∈ Gcol
[n−1], and we use 

this information to compare the probability space corresponding to a uniform random 
choice of H ∈ Gcol

D , with the probability space corresponding to a uniform random choice 
of G ∈ Gcol

[n−1]. In particular, if a uniformly random H ∈ Gcol
D is extended uniformly at 

random to obtain a colouring H′ ∈ Gcol
[n−1], then H′ is not chosen uniformly at random 

from Gcol
[n−1], since different choices of H ∈ Gcol

D have different numbers of extensions; 
however, H′ can be compared to a uniformly random G ∈ Gcol

[n−1] as follows (see also 
Corollary 7.12). For an absolute constant C, and for each K ∈ Gcol

[n−1],

P [G = K] = P [H′ = K] · exp(±n2−1/C).

Therefore, any property that holds for H with probability at least 1 − exp(−Ω(n2)) also 
holds with high probability for G|D. Our switching arguments yield local edge-resilience 
and robust gadget-resilience for H with high enough probability (see Lemmas 7.1 and 
7.8) to apply Corollary 7.12.

4. Proving Theorem 1.3

In this section, let φ be a 1-factorization of Kn with vertex set V and colour set 
C = [n − 1]. We first present the details of our absorbing structure, and in Section 4.1, 
we prove Theorem 1.3 (in the case when n is even) subject to its existence. We begin by 
introducing our absorbing gadgets in the following definition (see also Fig. 1).

Definition 4.1. For every v ∈ V and c ∈ C, a (v, c)-absorbing gadget is a subgraph of Kn

of the form A = T ∪Q such that the following holds:

• T ∼= K3 and Q ∼= C4,
• T and Q are vertex-disjoint,
• v ∈ V (T ) and there is a unique edge e ∈ E(Q) such that φ(e) = c,
• if e1, e2 ∈ E(T ) are the edges incident to v, then there is matching {e′1, e′2} in Q not 

containing e such that φ(ei) = φ(e′i) for i ∈ {1, 2},
• if e3 ∈ E(T ) is the edge not incident to v, then there is an edge e′3 ∈ E(Q) such that 

{e′3, e} is a matching in Q and φ(e3) = φ(e′3) �= c.

In this case, a pair P1, P2 of paths completes the (v, c)-absorbing gadget A = T ∪Q if

• the ends of P1 are non-adjacent vertices in Q,
• one end of P2 is in Q but not incident to e and the other end of P2 is in V (T ) \ {v},
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• P1 and P2 are vertex-disjoint and both P1 and P2 are internally vertex-disjoint from 
A,

• P1 ∪ P2 is rainbow, and
• φ(P1 ∪ P2) ∩ φ(A) = ∅,

and we say A′ := A ∪ P1 ∪ P2 is a (v, c)-absorber. We also define the following.

• The path P with edge-set E(P1) ∪E(P2) ∪ {e′1, e′2, e3} is the (v, c)-avoiding path in 
A′, and the path P ′ with edge-set E(P1) ∪E(P2) ∪{e1, e2, e′3, e} is the (v, c)-absorbing
path in A′.

• A vertex in V (A) \ {v}, a colour in φ(A) \ {c}, or an edge in E(A) is used by the 
(v, c)-absorbing gadget A.

It is convenient for us to distinguish between a (v, c)-absorbing gadget and a (v, c)-
absorber, because when we build our absorbing structure, we first find a (v, c)-absorbing 
gadget for every vc ∈ E(H) and then find the paths completing each absorbing gadget. 
We also find an additional set of paths that ‘links’ the gadgets together, as in the following 
definition.

Definition 4.2. Let H be a bipartite graph with bipartition (V ′, C ′) where V ′ ⊆ V and 
C ′ ⊆ C, and suppose A = {Av,c : vc ∈ E(H)} where Av,c is a (v, c)-absorbing gadget.

• We say A satisfies H if whenever Av,c, Av′,c′ ∈ A for some (v, c) �= (v′, c′), no vertex 
in V (Av,c) or colour in φ(Av,c) is used by Av′,c′ .

• If P is a collection of vertex-disjoint paths of length 4, then we say P completes A if 
the following holds:
–

⋃
P∈P P is rainbow,

– no colour that is either in C ′ or is used by a (v, c)-absorbing gadget Av,c ∈ A
appears in a path P ∈ P,

– no vertex that is either in V ′ or is used by a (v, c)-absorbing gadget Av,c ∈ A is 
an internal vertex of a path P ∈ P,

– for every (v, c)-absorbing gadget Av,c ∈ A there is a pair of paths P1, P2 ∈ P such 
that P1 and P2 complete Av,c to a (v, c)-absorber A′

v,c, and
– the graph 

(⋃
A∈A A ∪

⋃
P∈P P

)
\ V ′ is connected and has maximum degree three, 

and P is minimal subject to this property.
• We say (A, P) is an H-absorber if A satisfies H and is completed by P. See Fig. 2.
• We say a rainbow path T is a tail of an H-absorber (A, P) if

– one of the ends of T , say x, is in a (v, c)-absorbing gadget Av,c ∈ A such that 
x �= v,

– V (T ) ∩ V (A) ⊆ {x} for all A ∈ A and V (T ) ∩ V (P ) = ∅ for all P ∈ P, and
– φ(T ) ∩ φ(A) = ∅ for all A ∈ A and φ(T ) ∩ φ(P ) = ∅ for all P ∈ P.
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• For every matching M in H, we define the path absorbing M in (A, P, T ) to be the 
rainbow path P such that
– P contains 

⋃
P ′∈P P ′ ∪ T and

– for every vc ∈ E(H), if vc ∈ E(M), then P contains the (v, c)-absorbing path in 
the (v, c)-absorber A′

v,c and P contains the (v, c)-avoiding path otherwise (that is, 
V (P ) ∩ V ′ = V (M) ∩ V ′ and φ(P ) ∩ C ′ = V (M) ∩ C ′).

Note that if P completes A, then some of the paths in P will complete absorbing 
gadgets in A to absorbers, while the remaining set of paths P ′ ⊆ P will be used to connect 
all the absorbing gadgets in A. More precisely, there is an enumeration A1, . . . , A|A| of A
and an enumeration P1, . . . , P|A|−1 of P ′ such that each Pi joins Ai to Ai+1. In particular, 
for each i ∈ [|A|] \{1, |A|}, each vertex in Ai\V ′ is the endpoint of precisely one path in P
(and thus has degree three in 

⋃
A∈A A ∪

⋃
P∈P P ), while both A1\V ′ and A|A|\V ′ contain 

precisely one vertex which is not the endpoint of some path in P (and thus these two 
vertices have degree two in 

⋃
A∈A A ∪

⋃
P∈P P ). Any tail T of an H-absorber (A, P) has 

to start at one of these two vertices. Altogether this means that, given any matching M

of H, the path absorbing M in (A, P, T ) in the definition above actually exists.
Our absorbing structure is essentially an H-absorber (A, P) with a tail T and flexible 

sets Vflex, Cflex ⊆ V (H) for an appropriately chosen template H. If H − (X ∪ Y ) has 
a perfect matching M , then the path absorbing M in (A, P, T ) satisfies (†). This fact 
motivates the property of H that we need in the next definition.

Definition 4.3. Let H be a bipartite graph with bipartition (A, B) such that |A| = |B|, 
and let A′ ⊆ A and B′ ⊆ B such that |A′| = |B′|.

• We say H is robustly matchable with respect to A′ and B′ if for every pair of sets X
and Y where X ⊆ A′, Y ⊆ B′, and |X| = |Y | ≤ |A′|/2, there is a perfect matching 
in H − (X ∪ Y ).

• In this case, we say A′ and B′ are flexible and A \A′ and B \B′ are buffer sets.

This concept was first introduced by Montgomery [33]. If H is robustly matchable 
with respect to Vflex and Cflex, then an H-absorber (A, P) with tail T satisfies (†). The 
last property of our absorbing structure that we need is that the flexible sets allow us to 
execute the covering step, which we capture in the following definition.

Definition 4.4. Let Vflex ⊆ V , let Cflex ⊆ C, and let Gflex be a spanning subgraph of Kn.

• If u, v ∈ V and c ∈ C, and P ⊆ Gflex is a rainbow path of length four such that
– u and v are the ends of P ,
– u′, w, v′ ∈ Vflex, where uu′, u′w, wv′, vv′ ∈ E(P ),
– φ(uu′), φ(wv′), φ(vv′) ∈ Cflex, and
– φ(u′w) = c,
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then P is a (Vflex, Cflex, Gflex)-cover of u, v, and c.
• If P is a rainbow path such that P =

⋃k
i=1 Pi where Pi is a (Vflex, Cflex, Gflex)-

cover of vi, vi+1, and ci, then P is a (Vflex, Cflex, Gflex)-cover of {v1, . . . , vk+1} and 
{c1, . . . , ck}.

• If H is a regular bipartite graph with bipartition (V ′, C ′) where V ′ ⊆ V and C ′ ⊆ C

such that
– H is robustly matchable with respect to Vflex and Cflex where |Vflex|, |Cflex| ≥ δn, 

and
– for every u, v ∈ V and c ∈ C, there are at least δn2 (Vflex, Cflex, Gflex)-covers of 

u, v, and c,
then H is a δ-absorbing template with flexible sets (Vflex, Cflex, Gflex).

• If (A, P) is an H-absorber where H is a δ-absorbing template and T is a tail for 
(A, P), then (A, P, T, H) is a δ-absorber.

A 36γ-absorber has the properties we need to execute both the covering step and the 
absorbing step, which we make formal with the next proposition.

First, we introduce the following convenient convention. Given V ′′ ⊆ V ′ ⊆ V and 
C ′′ ⊆ C ′ ⊆ C, we say that (V ′′, C ′′) is contained in (V ′, C ′) with δ-bounded remainder
if V ′′ ⊆ V ′, C ′′ ⊆ C ′, and |V ′ \ V ′′|, |C ′ \ C ′′| ≤ δn. If G is a spanning subgraph of 
Kn, V ′ ⊆ V , and C ′ ⊆ C, then we say a graph G′ is contained in (V ′, C ′, G) with δ-
bounded remainder if (V (G′), φ(G′)) is contained in (V ′, C ′) with δ-bounded remainder 
and G′ ⊆ G.

Proposition 4.5. If (A, P, T, H) is a δ-absorber and P ′ is a rainbow path contained in 
(V \ V ′, C \ C ′, G′) with δ/18-bounded remainder where

• V ′ =
⋃

A∈A V (A) ∪
⋃

P∈P V (P ) ∪ V (T )
• C ′ =

⋃
A∈A φ(A) ∪

⋃
P∈P φ(P ) ∪ φ(T ), and

• G′ is the complement of 
⋃

A∈A A ∪
⋃

P∈P P ∪ T ,

then there is both a rainbow Hamilton path containing P ′ and a rainbow cycle containing 
P ′ and all of the colours in C.

Proof. Order the colours in C\(φ(P ′) ∪C ′) as c1, . . . , ck, and note that k ≤ δn/18. Order 
the vertices in V \ (V (P ′) ∪ V ′) as v1, . . . , v�. Using that H is regular, it is easy to see 
that |V ′| = |C ′| +1, and thus 
 = k−1. Let v0 and v′0 be the ends of P ′, let u be the end 
of T not in V (A) for any A ∈ A, and let u′ be the unique vertex in 

⋃
A∈A V (A) \ V (T )

of degree two in 
⋃

A∈A A ∪
⋃

P∈P P . Let (Vflex, Cflex, Gflex) be the flexible sets of H.
First we show that there is a rainbow Hamilton path containing P ′. We claim there 

is a (Vflex, Cflex, Gflex)-cover P ′′ of {v0, . . . , vk} and {c1, . . . , ck}, where vk := u. Suppose 
for j ∈ [k − 1] and i < j that Pi is a (Vflex, Cflex, Gflex)-cover of vi, vi+1, and ci+1 such 
that 

⋃
i<j Pi is a rainbow path. We show that there exists a (Vflex, Cflex, Gflex)-cover Pj
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of vj , vj+1, and cj+1 that is internally-vertex- and colour-disjoint from 
⋃

i<j Pi, which 
implies that 

⋃
i≤j Pi is a rainbow path, and thus we can choose the path P ′′ greedily, 

proving the claim. Since each vertex in Vflex and each colour in Cflex is contained in 
at most 3n (Vflex, Cflex, Gflex)-covers of vj , vj+1, and cj+1, and since H is a δ-absorbing 
template, there are at least δn2 − 18n · j (Vflex, Cflex, Gflex)-covers of vj , vj+1, and cj+1
not containing a vertex or colour from 

⋃
i<j Pi. Thus, since j < k ≤ δn/18, there exists 

a (Vflex, Cflex, Gflex)-cover Pj of vj , vj+1, and cj+1 such that 
⋃

i≤j Pi is a rainbow path, 
as desired, and consequently we can choose the path P ′′ greedily, as claimed.

Now let X := V (P ′′) ∩ Vflex, and let Y := φ(P ′′) ∩ Cflex. Since |X| = |Y | = 3k ≤
|Vflex|/2 and H is robustly matchable with respect to Vflex and Cflex, there is a perfect 
matching M in H − (X ∪ Y ). Let P ′′′ be the path absorbing M in (A, P, T ). Then 
P ′ ∪ P ′′ ∪ P ′′′ is a rainbow Hamilton path, as desired.

Now we show that there is a rainbow cycle containing P ′ and all of the colours in C. By 
the same argument as before, there is a (Vflex, Cflex, Gflex)-cover P ′′

1 of {v0, . . . , v�−1, u}
and {c1, . . . , ck−1} as well as a (Vflex, Cflex, Gflex)-cover P ′′

2 of v′0, u′, and ck such that 
P ′′

1 and P ′′
2 are vertex- and colour-disjoint. Letting X := V (P ′′

1 ∪ P ′′
2 ) ∩ Vflex and Y :=

φ(P ′′
1 ∪P ′′

2 ) ∩Cflex, letting M be a perfect matching in H− (X ∪Y ) and P ′′′ be the path 
absorbing M in (A, P, T ) as before, P ′ ∪ P ′′

1 ∪ P ′′
2 ∪ P ′′′ is a rainbow cycle using all the 

colours in C, as desired. �
4.1. The proof of Theorem 1.3 when n is even

In this subsection, we prove the n even case of Theorem 1.3 subject to two lemmas, 
Lemmas 4.8 and 4.9, which we prove in Sections 7 and 6, respectively. The first of these 
lemmas, Lemma 4.8, states that almost all 1-factorizations have two key properties, 
introduced in the next two definitions. Lemma 4.9 states that if a 1-factorization has 
both of these properties, then we can build an absorber using the reserved vertices and 
colours with high probability.

Recall the hierarchy of constants ε, γ, η, μ from (3.1). Firstly, we will need to show 
that if G ∈ Gcol

[n−1] is chosen uniformly at random, then with high probability, for any 
V ′ ⊆ V , C ′ ⊆ C that are not too small, G admits many edges with colour in C ′ and 
both endpoints in V ′. This property will be used in the construction of the tail of our 
absorber.

Definition 4.6. For D ⊆ C = [n − 1], we say that G ∈ Gcol
D is ε-locally edge-resilient if 

for all sets of colours D′ ⊆ D and all sets of vertices V ′ ⊆ V of sizes |V ′|, |D′| ≥ εn, we 
have that eV ′,D′(G) ≥ ε3n2/100.

Secondly, we will need that almost all G ∈ Gcol
[n−1] contain many (v, c)-absorbing gad-

gets for all v ∈ V , c ∈ C.

Definition 4.7. Let D ⊆ C = [n − 1].
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• For G ∈ Gcol
D , x ∈ V , c ∈ D, and t ∈ N0, we say that a collection A(x,c) of (x, c)-

absorbing gadgets in G is t-well-spread if
– for all v ∈ V , there are at most t (x, c)-absorbing gadgets in A(x,c) using v;
– for all e ∈ E(G), there are at most t (x, c)-absorbing gadgets in A(x,c) using e;
– for all d ∈ D, there are at most t (x, c)-absorbing gadgets in A(x,c) using d.
(Note that by definition of ‘using’ (see Definition 4.1), there are no (x, c)-absorbing 
gadgets using x or c.)

• We say that G ∈ Gcol
[n−1] is μ-robustly gadget-resilient if for all x ∈ V and all c ∈ C, 

there is a 5μn/4-well-spread collection of at least μ4n2/223 (x, c)-absorbing gadgets 
in G.

Lemma 4.8. Suppose 1/n 
 ε, μ 
 1. If φ is a 1-factorization of Kn chosen uniformly 
at random, then φ is ε-locally edge-resilient and μ-robustly gadget-resilient with high 
probability.

As discussed, we prove Lemma 4.8 in Section 7 using switching arguments. The next 
lemma is used to construct an absorber using the reserved vertices and colours.

Lemma 4.9. Suppose 1/n 
 ε 
 γ 
 η 
 μ 
 1, and let p = q = β = 5μ +
26887η/2 +γ/3 −26880ε. If φ is an ε-locally edge-resilient and μ-robustly gadget-resilient 
1-factorization of Kn with vertex set V and colour set C and

(R1) V ′ is a p-random subset of V ,
(R2) C ′ is a q-random subset of C, and
(R3) G′ is a β-random subgraph of Kn,

then with high probability there is a 36γ-absorber (A, P, T, H) such that 
⋃

A∈A A ∪⋃
P∈P P ∪ T is contained in (V ′, C ′, G′) with γ-bounded remainder.

The final ingredient in the proof of Theorem 1.3 is the following lemma which follows 
from [16, Lemma 16], that enables us to find the long rainbow path whose leftover we 
absorb using the absorber from Lemma 4.9.

Lemma 4.10. Suppose 1/n 
 γ 
 p, and let q = β = p. For every 1-factorization φ of 
Kn with vertex set V and colour set C, if

• V ′ is a p-random subset of V ,
• C ′ is a q-random subset of C, and
• G is a β-random subgraph of Kn,

then with high probability there is a rainbow path contained in (V ′, C ′, G) with γ-bounded 
remainder.
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We conclude this section with a proof of Theorem 1.3 in the case that n is even, 
assuming Lemmas 4.8 and 4.9.

Proof of Theorem 1.3, n even case. By Lemma 4.8, it suffices to prove that if φ is an 
ε-locally edge-resilient and μ-robustly gadget-resilient 1-factorization, then there is a 
rainbow Hamilton path and a rainbow cycle containing all of the colours.

Let p = q = β as in Lemma 4.9, let V1, V2 be a random partition of V where V1 is 
p-random and V2 is (1 − p)-random, let C1, C2 be a random partition of C where C1 is 
q-random and C2 is (1 −q)-random, and let G1 and G2 be β-random and (1 −β)-random 
subgraphs of Kn such that E(G1) and E(G2) partition the edges of Kn. By Lemma 4.9
applied with V ′ = V1, C ′ = C1, and G′ = G1, and by Lemma 4.10 applied with V ′ = V2, 
C ′ = C2, and G = G2, the following holds with high probability. There exists

(i) a 36γ-absorber (A, P, T, H) such that 
⋃

A∈A A ∪
⋃

P∈P P ∪ T is contained in 
(V1, C1, G1) with γ-bounded remainder, and

(ii) a rainbow path P ′ contained in (V2, C2, G2) with γ-bounded remainder.

Now we fix an outcome of the random partitions (V1, V2), (C1, C2), and (G1, G2) so that 
(i) and (ii) hold. By Proposition 4.5, there is both a rainbow Hamilton path containing 
P ′ and a rainbow cycle containing P ′ and all of the colours in C, as desired. �
5. Tools

In this section, we collect some results that we will use throughout the paper.

5.1. Probabilistic tools

We will use the following standard probabilistic estimates.

Lemma 5.1 (Chernoff Bound). Let X have binomial distribution with parameters n, p. 
Then for any 0 < t ≤ np,

P [|X − np| > t] ≤ 2 exp
(
−t2

3np

)
.

Let X1, . . . , Xm be independent random variables taking values in X , and let f :
Xm → R. If for all i ∈ [m] and x′

i, x1, . . . , xm ∈ X , we have

|f(x1, . . . , xi−1, xi, xi+1, . . . , xm) − f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ci,

then we say Xi affects f by at most ci.
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Theorem 5.2 (McDiarmid’s Inequality). If X1, . . . , Xm are independent random variables 
taking values in X and f : Xm → R is such that Xi affects f by at most ci for all i ∈ [m], 
then for all t > 0,

P [|f(X1, . . . , Xm) − E [f(X1, . . . , Xm)] | ≥ t] ≤ exp
(
− t2∑m

i=1 c
2
i

)
.

5.2. Hypergraph matchings

When we build our absorber in the proof of Lemma 4.9, we seek to efficiently use the 
vertices, colours, and edges of our random subsets V ′ ⊆ V , C ′ ⊆ C, E′ ⊆ E, and to 
do this we make use of the existence of large matchings in almost-regular hypergraphs 
with small codegree. In fact, we will need the stronger property that there exists a 
large matching in such a hypergraph which is well-distributed with respect to a specified 
collection of vertex subsets. We make this precise in the following definition. Given a 
hypergraph H and a collection of subsets F of V (H), we say a matching M in H is 
(γ, F)-perfect if for each F ∈ F , at most γ · max{|F |, |V (H)|2/5} vertices of F are left 
uncovered by M. The following theorem is a consequence of Theorem 1.2 in [4], and is 
based on a result of Pippenger and Spencer [35].

Theorem 5.3. Suppose 1/n 
 ε 
 γ 
 1/r. Let H be an r-uniform hypergraph on n
vertices such that for some D ∈ N, we have dH(x) = (1 ± ε)D for all x ∈ V (H) and 
Δc(H) ≤ D/ log9r n. If F is a collection of subsets of V (H) such that |F| ≤ nlogn, then 
there exists a (γ, F)-perfect matching.

We will use Theorem 5.3 in the final step of constructing an absorber (see Lemma 6.5). 
We construct an auxiliary hypergraph H whose edges represent structures we wish to 
find, and a large well-distributed matching in H corresponds to an efficient allocation of 
vertices, colours, and edges of the 1-factorization to construct almost all of these desired 
structures. We remark that this is also a key strategy in the proof of Lemma 4.10, and 
was first used in [26].

5.3. Robustly matchable bipartite graphs of constant degree

In this subsection, we prove that there exist large bipartite graphs which are robustly 
matchable as in Definition 4.3, and have constant maximum degree.

Definition 5.4. Let m ∈ N.

• An RMBG(3m, 2m, 2m) is a bipartite graph H with bipartition (A, B1 ∪B2) where 
|A| = 3m and |B1| = |B2| = 2m such that for any B′ ⊆ B1 of size m, there is a 
perfect matching in H−B′. In this case, we say H is robustly matchable with respect 
to B1, and that B1 is the identified flexible set.
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• A 2RMBG(7m, 2m) is a bipartite graph H with bipartition (A, B) where |A| =
|B| = 7m such that H is robustly matchable with respect to sets A′ ⊆ A and 
B′ ⊆ B where |A′| = |B′| = 2m.

By [33, Lemma 10.7], for all sufficiently large m there exists an RMBG(3m, 2m, 2m)
with maximum degree at most 100. We use a one-sided (there is one flexible set) 
RMBG(3m, 2m, 2m) exhibited in [16, Corollary 10] in which each of the vertex classes 
are regular, to construct a 256-regular two-sided (in that we identify a flexible set on 
each side of the vertex bipartition) 2RMBG(7m, 2m).

Lemma 5.5. For all sufficiently large m, there is a 2RMBG(7m, 2m) that is 256-regular.

Proof. Suppose that m ∈ N is sufficiently large. By [16, Corollary 10], there ex-
ists an RMBG(3m, 2m, 2m) that is (256, 192)-regular (i.e. all vertices in the first 
vertex class have degree 256 and all vertices in the second vertex class of have de-
gree 192). Let H and H ′ be two vertex-disjoint isomorphic copies of a (256, 192)-regular 
RMBG(3m, 2m, 2m), and let (A, B1 ∪ B2) and (A′, B′

1 ∪ B′
2) be the bipartitions of H

and H ′ respectively such that H is robustly matchable with respect to B1 and H ′ is 
robustly matchable with respect to B′

1.
Let H ′′ be a 64-regular bipartite graph with bipartition (B1 ∪B2, B′

1 ∪B′
2) such that 

H ′′[B1 ∪ B′
1] contains a perfect matching M . We claim that H ∪ H ′ ∪ H ′′ is robustly 

matchable with respect to B1 and B′
1. To that end, let X ⊆ B1 and Y ⊆ B′

1 such that 
|X| = |Y | ≤ m. It suffices to show that H ∪H ′ ∪H ′′ − (X ∪ Y ) has a perfect matching. 
Since H ′′[B1 ∪ B′

1] contains a perfect matching, H ′′[B1 ∪ B′
1] − (X ∪ Y ) contains a 

matching of size at least 2m − |X| − |Y | = 2(m − |X|). Thus, there exists a matching 
M ′ in H ′′[B1 ∪B′

1] − (X ∪ Y ) of size m − |X|. Let X ′ := X ∪ (B1 ∩ V (M ′)) and Y ′ :=
Y ∪ (B′

1 ∩ V (M ′)), and note that |X ′| = |Y ′| = m. Since H is an RMBG(3m, 2m, 2m), 
H −X ′ has a perfect matching M1, and similarly H ′ − Y ′ has a perfect matching M2. 
Now M ′ ∪M1 ∪M2 is a perfect matching in H ∪H ′ ∪H ′′ − (X ∪ Y ), as required. Since 
H ∪H ′ ∪H ′′ is 256-regular, the result follows. �
6. Constructing the absorber: proof of Lemma 4.9

Throughout this section, let φ be an ε-locally edge-resilient and μ-robustly gadget 
resilient 1-factorization of Kn with vertex set V and colour set C, let E := E(Kn), and 
recall

1/n 
 ε 
 γ 
 η 
 μ 
 1.

Let H̃ be a 256-regular 2RMBG(7m, 2m) where 2m = (η − 2ε)n, which exists by 
Lemma 5.5. We define the following probabilities:
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pflex := η, qflex := η,

pbuff := 5η/2, qbuff := 5η/2,
pabs := 6|E(H̃)|/n + 2μ, qabs := 3|E(H̃)|/n + μ,

plink := 9|E(H̃)|/n + 3μ, qlink := 12|E(H̃)|/n + 4μ,
p′link := γ/3, q′link := γ/3,

(6.1)

and we let pmain := 1 − pflex − pbuff − pabs − plink − p′link and qmain := 1 − qflex − qbuff −
qabs − qlink − q′link. Note that pmain = qmain, and let β := 1 − pmain.

Definition 6.1. An absorber partition of V , C, and Kn is defined as follows:

V = Vmain ∪̇Vflex ∪̇Vbuff ∪̇Vabs ∪̇Vlink ∪̇V ′
link, and

C = Cmain ∪̇Cflex ∪̇Cbuff ∪̇Cabs ∪̇Clink ∪̇C ′
link,

(6.2)

where Vmain is pmain-random, Vflex is pflex-random etc, and the sets of colours are defined 
analogously. Let V ′ := V \ Vmain, C ′ := C \ Cmain, and let G′ be a β-random subgraph 
of Kn.

Note that V ′, C ′, and G′ satisfy (R1)–(R3) in the statement of Lemma 4.9.

6.1. Overview of the proof

We now overview our strategy for proving Lemma 4.9. First we need the following 
definitions. A link is a rainbow path of length 4 with internal vertices in Vlink∪V ′

link, ends 
in Vabs, and colours and edges in Clink ∪ C ′

link and G′, respectively. A link with internal 
vertices in Vlink and colours in Clink is a main link, and a link with internal vertices in 
V ′

link and colours in C ′
link is a reserve link. If M is a matching and P = {Pe}e∈E(M) is a 

collection of vertex-disjoint links such that 
⋃

P∈P P is rainbow and Puv has ends u and 
v for every uv ∈ E(M), then P links M .

We aim to build a 36γ-absorber (A, P, T, H) such that 
⋃

A∈A A ∪
⋃

P∈P P ∪ T is 
contained in (V ′, C ′, G′) with γ-bounded remainder and H ∼= H̃. First, we show (see 
Lemma 6.3) that with high probability there is a 36γ-absorbing template H ∼= H̃, where

• H has flexible sets (V ′
flex, C

′
flex, G

′) and (V ′
flex, C

′
flex) is contained in (Vflex, Cflex) with 

3ε-bounded remainder, and
• H has buffer sets V ′

buff and C ′
buff where (V ′

buff , C
′
buff) is contained in (Vbuff , Cbuff)

with 6ε-bounded remainder.

Then, we show that with high probability, there exists an H-absorber (A, P) where

• for every vc ∈ E(H), the (v, c)-absorbing gadget Av,c ∈ A uses vertices, colours, and 
edges in Vabs, Cabs, and G′, respectively, and

• every P ∈ P is a link.
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Fig. 3. An absorber (A, P, T, H), where P links ⋃3
i=1 Mi and T = M ∪

⋃
P∈T P , where T links M4. Links 

are drawn as zigzags.

In particular, if A = {A1, . . . , Ak}, where Ai is a (vi, ci)-absorbing gadget, then P links 
the matching M1 ∪ M2 ∪ M3, where V (M1), V (M2), and V (M3) are pairwise vertex-
disjoint, and

(M1) M1 = {r1s1, . . . , rksk}, where ri and si are non-adjacent vertices of the 4-cycle 
in Ai, for each i ∈ [k],

(M2) M2 = {w1x1, . . . , wkxk}, where wi is a non-vi vertex of the triangle in Ai and xi

is a vertex of the 4-cycle in Ai, for each i ∈ [k], and
(M3) M3 = {y1z2, . . . , yk−1zk}, where yi is a non-vi vertex of the triangle in Ai for each 

i ∈ [k − 1], and zi is a vertex of the 4-cycle in Ai for each i ∈ [k] \ {1}.

Finally, letting V ′
abs and C ′

abs be the vertices and colours in Vabs and Cabs not used 
by any (v, c)-absorbing gadget in A, we show that with high probability there is a tail 
T for (A, P) where T is the union of

• a rainbow matching M contained in (V ′
abs, C

′
abs, G

′) with 6ε-bounded remainder and
• a collection T of vertex-disjoint links where all but one vertex in V (M) is the end of 

precisely one link.

In particular, if E(M) = {a1b1, . . . , a�b�}, then T links M4, where

(M4) M4 is a matching of size 
 with edges biai+1 for every i ∈ [
 − 1] and an edge va1

where v is one of the two vertices used by a gadget in A that is not in a link in P.

See Fig. 3.

Fact 6.2. Suppose that A satisfies H. If P ∪ T links M1 ∪ · · · ∪ M4, where P links 
M1 ∪M2 ∪M3 and T links M4, then P completes A and thus (A, P) is an H-absorber. 
Moreover, T := M ∪

⋃
P∈T P is a tail of (A, P). Thus (A, P, T, H) is a 36γ-absorber.
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We find these structures in the following steps. For Steps 1 and 2, see Lemma 6.4, 
and for Steps 3 and 4, see Lemma 6.5.

1) First, we find the collection A of absorbing gadgets greedily, using the robust gadget-
resilience property of φ,

2) then we greedily construct the matching M , using the local edge-resilience property 
of φ.

3) Next, we construct an auxiliary hypergraph in which each hyperedge corresponds to 
a main link and apply Theorem 5.3 to choose most of the links in P, and

4) finally we greedily choose the remainder of the links in P from the reserve links.

6.2. The absorbing template

Lemma 6.3. Consider an absorber partition of V , C, and Kn. With high probability, there 
exists a 36γ-absorbing template H ∼= H̃, where

(6.3.1) H has flexible sets (V ′
flex, C

′
flex, G

′) where (V ′
flex, C

′
flex) is contained in (Vflex, Cflex)

with 3ε-bounded remainder, and
(6.3.2) H has buffer sets V ′

buff and C ′
buff where (V ′

buff , C
′
buff) is contained in (Vbuff , Cbuff)

with 6ε-bounded remainder.

Proof. For convenience, let p := pflex and q := qflex. We claim that the following holds 
with high probability:

(a) |Vflex|, |Cflex| = (η ± ε)n,
(b) |Vbuff |, |Cbuff | = (5η/2 ± ε)n, and
(c) for every distinct u, v ∈ V and c ∈ C, there are at least p3q3β4n2/4 (Vflex, Cflex, G′)-

covers of u, v, and c.

Indeed, (a) and (b) follow from the Chernoff Bound (Lemma 5.1). To prove (c), for 
each u, v, and c, we apply McDiarmid’s Inequality (Theorem 5.2). Consider the random 
variable f counting the number of (Vflex, Cflex, G′)-covers of u, v, and c. Note that f is 
determined by the following independent binomial random variables: {Xz}z∈V , where 
Xz indicates if z ∈ Vflex, {Xc′}c′∈C , where Xc′ indicates if c′ ∈ Cflex, and for each edge 
e, the random variable Xe which indicates if e ∈ E(G′). We claim there are at least 
2(n/2 − 2)(n − 7) (V, C, Kn)-covers of u, v, and c. To that end, let u′w be a c-edge 
with u′, w ∈ V \ {u, v}. There are at least n − 7 vertices v′ ∈ V \ {u, v, u′, w} such 
that φ(vv′), φ(wv′) /∈ {φ(uu′), c}, and for each such vertex v′ the path uu′wv′v is a 
(V, C, Kn)-cover of u, v, and c. Similarly, there are at least n −7 (V, C, Kn)-covers of the 
form uwu′v′v. Altogether this gives at least 2(n/2 − 2)(n − 7) ≥ n2/2 (V, C, Kn)-covers 
of u, v, and c, as claimed. Therefore E [f ] ≥ p3q3β4n2/2. For each z ∈ V , Xz affects f
by at most 3n, and Xuz, and Xvz each affect f by at most n, and for each c′ ∈ C, Xc′
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affects f by at most 3n. For each edge e not incident to u or v, if e is a c-edge, then Xe

affects f by at most 2n, and otherwise e affects f by at most two. Thus, by McDiarmid’s 
Inequality applied with t = E [f ] /2, there are at least p3q3β4n2/4 (Vflex, Cflex, G′)-covers 
of u, v, and c with probability at least 1 − exp

(
−p6q6β8n4/O(n3)

)
. Thus by a union 

bound, (c) also holds with high probability.
Now we assume (a)–(c) holds, and we show there exists a 36γ-absorbing template 

H ∼= H̃ satisfying (6.3.1) and (6.3.2).
Since m = (η/2 − ε)n, by (a) and (b), there exists V ′

flex ⊆ Vflex, C ′
flex ⊆ Cflex, 

V ′
buff ⊆ Vbuff , and C ′

buff ⊆ Cbuff , such that |V ′
flex|, |C ′

flex| = 2m and |V ′
buff |, |C ′

buff | = 5m, 
which we choose arbitrarily, and moreover, |Vflex \ V ′

flex|, |Cflex \ C ′
flex| ≤ 3εn and 

|Vbuff \ V ′
buff |, |Cbuff \C ′

buff | ≤ 6εn, as required. Choose bijections from V ′
flex, C

′
flex, V ′

buff , 
and C ′

buff to the flexible sets and the buffer sets of H̃ arbitrarily, and let H ∼= H̃ be the 
corresponding graph. Now H satisfies (6.3.1) and (6.3.2), as required, so it remains to 
show that H is a 36γ-absorbing template. Since each vertex or colour in Vflex or Cflex
is in at most 3n (Vflex, Cflex, G′)-covers of u, v, and c, (a) and (c) imply that there are 
at least p3q3β4n2/4 − 18εn2 ≥ 36γn2 (V ′

flex, C
′
flex, G

′)-covers of u, v, and c, so H is a 
36γ-absorbing template, as desired. �
6.3. Greedily building an H-absorber

Lemma 6.4. Consider an absorber partition of V , C, and Kn. The following holds with 
high probability. Suppose Vres ⊆ Vflex ∪ Vbuff and Cres ⊆ Cflex ∪ Cbuff. For every graph 
H ∼= H̃ with bipartition (Vres, Cres), there exists

(6.4.1) a collection A = {Avc : vc ∈ E(H)} such that A satisfies H and such that for all 
Avc ∈ A we have that Avc uses vertices, colours, and edges in Vabs, Cabs, and 
G′ respectively, and

(6.4.2) a rainbow matching M contained in (V ′
abs, C

′
abs, G

′) with 5ε-bounded remainder, 
where V ′

abs and C ′
abs are the sets of vertices and colours in Vabs and Cabs not 

used by any absorbing gadget in A.

Proof. For convenience, let p := pabs and q := qabs in this proof.
Since φ is μ-robustly gadget-resilient, for every v ∈ V , c ∈ C, there is a collection Av,c

of precisely 2−23μ4n2 (v, c)-absorbing gadgets such that every vertex, every colour, and 
every edge is used by at most 5μn/4 of the A ∈ Av,c. (Recall from Definition 4.1 that a 
(v, c)-absorbing gadget does not use v and c.) Fix v ∈ V , c ∈ C. The expected number 
of the (v, c)-absorbing gadgets in Av,c using only vertices in Vabs, colours in Cabs, and 
edges in G′ is p6q3β7|Av,c|. Let Ev,c be the event that fewer than p6q3β7|Av,c|/2 of the 
(v, c)-absorbing gadgets in Av,c use only vertices in Vabs, colours in Cabs and edges in G′. 
We claim that P [Ev,c] ≤ exp(−2−51p12q6β14μ6n).

To see this, for each u ∈ V , d ∈ C, e ∈ E, let mu, md, and me denote the num-
ber of (v, c)-absorbing gadgets in Av,c using u, d, and e, respectively. We will apply 
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McDiarmid’s Inequality (Theorem 5.2) to the function fv,c which counts the number 
of A ∈ Av,c using only vertices in Vabs, colours in Cabs, and edges in G′. We use in-
dependent indicator random variables {Xu}u∈V ∪ {Xd}d∈C ∪ {Xe}e∈E which indicate 
whether or not a vertex u is in Vabs, a colour d is in Cabs, and an edge e is in G′. 
Each random variable Xu, Xd, Xe affects fv,c by at most mu, md, me, respectively. 
Since mu ≤ 5μn/4 for all u ∈ V and md ≤ 5μn/4 for all d ∈ C, we have 

∑
u∈V m2

u, ∑
d∈C m2

d ≤ 25μ2n3/16. Since 
∑

e∈E me = 7|Av,c| and me ≤ 5μn/4 for all e ∈ E, it 
follows that 

∑
e∈E m2

e ≤ 35μn|Av,c|/4. Therefore, by McDiarmid’s Inequality, we have

P [Ev,c] ≤ exp
(
− p12q6β14|Av,c|2/4

25μ2n3/8 + 35μn|Av,c|/4

)
≤ exp(−2−51p12q6β14μ6n),

as claimed. Thus, by a union bound, the probability that there exist v ∈ V , c ∈ C such 
that Ev,c holds is at most exp(−2−52p12q6β14μ6n).

We claim the following holds with high probability:

(a) |Vabs| = (p ± ε)n and |Cabs| = (q ± ε)n;
(b) for every v ∈ V , c ∈ C, the event Ev,c does not hold;
(c) for every V ◦ ⊆ Vabs and C◦ ⊆ Cabs such that |V ◦|, |C◦| ≥ εn, there are at least 

βε3n2/200 edges in G′ with both ends in V ◦ and a colour in C◦.

Indeed, (a) holds by the Chernoff Bound (Lemma 5.1), we have already shown (b), and 
since φ is ε-locally edge-resilient, (c) holds by applying the Chernoff Bound for each V ◦

and C◦ and using a union bound.
Now we assume that (a)–(c) hold, we suppose H ∼= H̃ has bipartition (Vres, Cres)

contained in (Vflex ∪ Vbuff , Cflex ∪ Cbuff), and we show that (6.4.1) and (6.4.2) hold. 
Arbitrarily order the edges of H as e1, . . . , e|E(H)|. Let i ∈ [|E(H)|] and suppose that for 
each j < i we have found a (vj, cj)-absorbing gadget Aj , where ej = vjcj , and further, 
the collection {A1, . . . , Ai−1} satisfies the spanning subgraph of H containing precisely 
the edges e1, . . . , ei−1. Writing ei = vici, by (b) there is a collection Aabs

vi,ci of at least 
2−24p6q3β7μ4n2 (vi, ci)-absorbing gadgets each using only Vabs-vertices, Cabs-colours, 
and G′-edges, and moreover, each vertex in Vabs, colour in Cabs, and edge in G′ is used 
by at most 5μn/4 of the A ∈ Aabs

vi,ci . Thus, at most 20μn · i ≤ 20μn|E(H)| ≤ 17920ημn2

of the (vi, ci)-absorbing gadgets in Aabs
vi,ci use a vertex, colour, or edge used by any of 

the Aj for j < i. Since |Aabs
vi,ci | ≥ 2−24p6q3β7μ4n2, we conclude that there is at least one 

(vi, ci)-absorbing gadget A ∈ Aabs
vi,ci using vertices, colours, and edges which are disjoint 

from the vertices, colours, and edges used by Aj , for all j < i. We arbitrarily choose 
such an A to be Ai. Continuing in this way, it is clear that A := {Ai}|E(H)|

i=1 satisfies H, 
so (6.4.1) holds.

Now we prove (6.4.2). Let V ′
abs and C ′

abs be the vertices, colours, and edges in Vabs and 
Cabs not used by any (v, c)-absorbing gadget in A. By (a) and (6.1), we have |V ′

abs| =
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(2μ ±ε)n and |C ′
abs| = (μ ±ε)n. Thus, by (c), we can greedily choose a rainbow matching 

M in (V ′
abs, C

′
abs, G

′) of size at least (μ − 2ε)n, and M satisfies (6.4.2). �
6.4. Linking

Lastly, we need the following lemma, inspired by [16, Lemma 20], which we use to 
both complete the set of absorbing gadgets obtained by Lemma 6.4 to an H-absorber 
and also construct its tail. Recall that links were defined at the beginning of Section 6.1.

Lemma 6.5. Consider an absorber partition of V , C, and Kn. The following holds with 
high probability. For every matching M such that V (M) ⊆ Vabs and |Vabs \V (M)| ≤ εn, 
there exists a collection P of links in G′ such that

(6.5.1) P links M and
(6.5.2)

⋃
P∈P P \V (M) is contained in (Vlink ∪V ′

link, Clink ∪C ′
link, G

′) with γ/2-bounded 
remainder.

Proof. We choose a new constant δ such that ε 
 δ 
 γ. For convenience, let p := plink
and q := qlink, let G1 be the spanning subgraph of G′ consisting of edges with a colour 
in Clink, and let G2 be the spanning subgraph of G′ consisting of edges with a colour in 
C ′

link. First we claim that with high probability the following holds:

(a) |Vlink| = (p ± ε)n, |Clink| = (q ± ε)n, |V ′
link| = (γ/3 ± ε)n, and |C ′

link| = (γ/3 ± ε)n,
(b) |Vabs| = (1 ± ε)pabsn = (1 ± ε)2pn/3,
(c) for all v ∈ V , we have

(i) |NG1(v) ∩ Vabs| = (1 ± ε)pabsβqn = (1 ± ε)2pβqn/3 and
(ii) |NG1(v) ∩ Vlink| = (1 ± ε)pβqn,

(d) for all c ∈ C, we have

(i) |Ec
G′(Vabs, Vlink)| = (1 ± ε)pabspβn = (1 ± ε)2p2βn/3 and

(ii) |Ec(G′[Vlink])| = (1 ± ε)p2βn/2,

(e) for all distinct u, v ∈ V , we have |NG1(u) ∩NG1(v) ∩ Vlink| = (1 ± ε)pβ2q2n, and
(f) for all u, v ∈ V we have |NG2(u) ∩NG2(v) ∩ V ′

link| ≥ γ6n.

Indeed (a)–(d) follow from (6.1) and the Chernoff Bound. We prove (e) and (f) using 
McDiarmid’s Inequality. To prove (e), for each u, v ∈ V , we apply McDiarmid’s Inequality 
to the random variable f counting |NG1(u) ∩NG1(v) ∩Vlink| with respect to independent 
binomial random variables {Xw, Xuw, Xvw}w∈V and {Xc}c∈C , where Xw indicates if 
w ∈ Vlink, Xuw and Xvw indicate if the edges uw and vw respectively are in G′, and Xc
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indicates if c ∈ Clink. For each w ∈ V , Xw, Xuw, and Xvw affect f by at most one, 
and for each c ∈ C, Xc affects f by at most two. Thus, by McDiarmid’s Inequality with 
t = εE [f ] /2, we have |NG1(u) ∩NG1(v) ∩Vlink| = (1 ±ε)pβ2q2n with probability at least 
1 − exp

(
−(εpβ2q2n/2)2/7n

)
. By a union bound, (e) also holds with high probability. 

The proof of (f) is similar, so we omit it.
Now we assume (a)–(f) hold, we suppose M is a matching such that V (M) ⊆ Vabs

and |Vabs \ V (M)| ≤ εn, and we show that (6.5.1) and (6.5.2) hold with respect to M . 
Since |Vabs \ V (M)| ≤ εn, (b) implies that

|V (M)| = (1 ±
√
ε)2pn/3. (6.3)

We apply Theorem 5.3 to the following 8-uniform hypergraph H: the vertex-set is 
E(M) ∪Vlink∪Clink, and for every xy ∈ E(M), v1, v2, v3 ∈ Vlink, and c1, c2, c3, c4 ∈ Clink, 
H contains the hyperedge {xy, v1, v2, v3, c1, c2, c3, c4} if there is a main link P such that

• P has ends x and y,
• v1, v2, and v3 are the internal vertices in P , and
• φ(P ) = {c1, c2, c3, c4}.

Claim 1. dH(v) = (1 ± 2
√
ε)p3β4q4n3 for all v ∈ V (H).

Proof of Claim. Let xy ∈ E(M). By (a), there are (1 ± ε)pn vertices v1 ∈ Vlink that can 
be in a link P with ends x and y corresponding to a hyperedge in H, where v1 is not 
adjacent to x or y. For each such v1 ∈ Vlink, by (e), there are (1 ± ε)pβ2q2n choices for 
the vertex in Vlink adjacent to both x and v1 in P , and for each such v2 ∈ Vlink, again 
by (e), there are (1 ± 2ε)pβ2q2n choices for the vertex in Vlink adjacent to both v1 and 
y in P such that P is a main link. Thus, dH(xy) = (1 ± 5ε)p3β4q4n3, as required.

Now let v1 ∈ Vlink. First, we count the number of hyperedges in H containing v1

corresponding to a link P where v1 is adjacent to one of the ends. By (c), and since 
|Vabs \V (M)| ≤ εn, there are (1 ±√

ε)2pβqn/3 choices of the vertex x ∈ V (M) adjacent 
to v1 in P . For each such x, again by (c), there are (1 ± 2ε)pβqn choices of the vertex 
v2 ∈ Vlink adjacent to y in P where xy ∈ E(M). For each such v2 ∈ Vlink, by (e), there 
are (1 ± 2ε)pβ2q2n choices of the vertex v3 ∈ Vlink adjacent to both v1 and v2 in P . 
Thus, the number of hyperedges in H containing v1 corresponding to a link where v1 is 
adjacent to one of the ends is (1 ± 2

√
ε)2p3β4q4n3/3.

Next, we count the number of hyperedges in H containing v1 corresponding to a link 
P where v1 is not adjacent to one of the ends. By (6.3), there are (1 ±√

ε)pn/3 choices 
for the edge xy ∈ E(M) where x and y are the ends of P . For each such xy ∈ E(M), 
by (e), there are (1 ± ε)pβ2q2n choices of the vertex v2 ∈ Vlink such that v2 is adjacent 
to x and v1 in P , and again by (e), for each such v2 ∈ Vlink, there are (1 ± 2ε)pβ2q2n

choices of the vertex v3 ∈ Vlink adjacent to both y and v1 in P . Thus, the number of 
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}. 
hyperedges in H containing v1 corresponding to a link where v1 is not adjacent to one 
of the ends is (1 ± 2

√
ε)p3β4q4n3/3, so

dH(v1) = (1 ± 2
√
ε)(2p3β4q4n3/3) + (1 ± 2

√
ε)p3β4q4n3/3 = (1 ± 2

√
ε)p3β4q4n3,

as required.
Now let c1 ∈ Clink. First we count the number of hyperedges in H containing c1

corresponding to a link P where c1 is the colour of one of the edges incident to an end 
of P . By (d), and since |Vabs \ V (M)| ≤ εn, there are (1 ± √

ε)2p2βn/3 choices of the 
edge xv1 in P where x ∈ V (M) is an end of P and φ(xv1) = c1. For each such edge 
xv1, by (c), there are (1 ± 2ε)pβqn choices of the vertex v2 ∈ Vlink adjacent to y in P
where xy ∈ E(M). For each such vertex v2, by (e), there are (1 ± 2ε)pβ2q2n choices of 
the vertex v3 adjacent to both v1 and v2 in P . Thus, the number of hyperedges in H
containing c1 corresponding to a link where c1 is the colour of one of the edges incident 
to an end of P is (1 ± 2

√
ε)2p4β4q3n3/3.

Next, we count the number of hyperedges in H containing c1 corresponding to a link 
P where c1 is the colour of one of the edges with both ends in Vlink. By (d), there are 
(1 ±ε)p2βn/2 choices for the edge v1v2 in P such that φ(v1v2) = c1, and thus (1 ±ε)p2βn

choices for the edge if we assume v1 is adjacent to an end in P . For each such edge v1v2, 
by (c), and since |Vabs \ V (M)| ≤ εn, there are (1 ±√

ε)2pβqn/3 choices for the vertex 
x ∈ V (M) adjacent to v1 in P . For each such vertex x, by (e), there are (1 ± 2ε)pβ2q2n

choices for the vertex v3 adjacent to both y and v2 in P , where xy ∈ E(M). Thus, the 
number of hyperedges in H containing c1 corresponding to a link where c1 is the colour 
of one of the edges with both ends in Vlink is (1 ± 2

√
ε)2p4β4q3n3/3, so by (6.1)

dH(c1) = (1 ± 2
√
ε)4p4β4q3n3/3 = (1 ± 2

√
ε)p3β4q4n3,

as required to prove Claim 1. �
Claim 2. Δc(H) ≤ 100n2.

This can be proved similarly as above (with room to spare). Let F := {E(M), Vlink, Clink
By Theorem 5.3, H has a (δ, F)-perfect matching M. Let P1 be the collection of links 
corresponding to M, and let M ′ be the matching consisting of all those xy ∈ E(M) that 
are not covered by M. To complete the proof, we greedily find a collection P2 of reserve 
links that links M ′.

Write E(M ′) = {x1y1, . . . , xkyk}, and suppose Pi is a reserve link with ends xi and 
yi for i < j, where j ∈ [k]. We show that there is a reserve link Pj that is vertex- and 
colour-disjoint from 

⋃
i<j Pi, which implies that 

⋃j
i=1 Pi links {x1y1, . . . , xjyj}, and thus 

we can choose P2 greedily. Since k ≤ δn and each link has at most three vertices in V ′
link, 

by (a), there is a vertex v ∈ V ′
link\

⋃
i<j V (Pi). By (f), there are at least γ6n −11j vertices 

v1 ∈ (NG2(xj) ∩NG2(v) ∩V ′
link) \

⋃
i<j V (Pi) such that φ(xjv1), φ(v1v) /∈

⋃
i<j φ(Pi), and 

since j/n ≤ δ 
 γ, we may let v1 be such a vertex. Similarly, by (f), there is a vertex 
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v2 ∈ (NG2(yj) ∩ NG2(v) ∩ V ′
link) \

⋃
i<j V (Pi) such that φ(yjv2), φ(v2v) /∈

⋃
i<j φ(Pi) ∪

{φ(xjv1), φ(v1v)}. Now there is a reserve link Pj with ends xj and yj and internal vertices 
v, v1, and v2 that is vertex- and colour-disjoint from 

⋃
i<j Pi, as claimed, and therefore 

there exists a collection P2 of reserve links that links M ′. Now P1∪P2 links M , so (6.5.1) 
holds. By (a), and since M is (δ, F)-perfect, (6.5.2) holds, as required. �
6.5. Proof

We now have all the tools we need to prove Lemma 4.9.

Proof of Lemma 4.9. Consider an absorber partition of V , C, and Kn. By Lem-
mas 6.3, 6.4, and 6.5, there exists an outcome of the absorber partition satisfying the 
conclusions of these lemmas simultaneously. In particular, by Lemmas 6.3 and 6.4 there 
exists H, A, and M such that, writing (Vres, Cres) for the bipartition of H,

• H ∼= H̃ is a 36γ-absorbing template satisfying (6.3.1) and (6.3.2),
• A and H satisfy (6.4.1), and
• M satisfies (6.4.2).

Write A = {A1, . . . , Ak} and E(M) = {a1b1, . . . , a�b�}. Consider M1 ∪̇M2 ∪̇M3 ∪̇M4, 
where Mi is a matching satisfying (Mi) for i ∈ [4] (see Section 6.1). By (6.4.2) we have 
|Vabs \ V (M1 ∪ · · · ∪M4)| ≤ 5εn + 1 ≤ 6εn. Thus by Lemma 6.5 there exist collections 
of links P and T in G′ such that

• P ∪ T is a collection of links satisfying (6.5.1) with respect to 
⋃4

i=1 Mi and
• P ∪ T satisfies (6.5.2).

In particular P links 
⋃3

i=1 Mi and T links M4. Let T := M ∪
⋃

P∈T P . By Fact 6.2, 
(A, P, T, H) is a 36γ-absorber, as desired. Moreover, since H satisfies (6.3.1) and (6.3.2), 
M satisfies (6.4.2), and P∪T satisfies (6.5.2), we have 

⋃
A∈A A ∪

⋃
P∈P P ∪T is contained 

in (V ′, C ′, G′) with γ-bounded remainder, as required. �
7. Finding many well-spread absorbing gadgets

The aim of this section is to prove Lemma 4.8, which states that, for appropri-
ate μ, ε, almost all 1-factorizations of Kn are ε-locally edge-resilient and μ-robustly 
gadget-resilient. We will use switchings in Gcol

D for appropriate D � [n − 1] to analyse 
the probability that a uniformly random G ∈ Gcol

D satisfies the necessary properties, and 
then use a ‘weighting factor’ (see Corollary 7.12) to make comparisons to the probability 
space corresponding to a uniform random choice of G ∈ Gcol .
[n−1]
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7.1. Switchings

We begin by analysing the property of ε-local edge-resilience.

Lemma 7.1. Suppose 1/n 
 ε 
 1, and let D ⊆ [n − 1] have size |D| = εn. Suppose 
G ∈ Gcol

D is chosen uniformly at random. Then P [G is ε-locally edge-resilient ] ≥ 1 −
exp(−ε3n2/1000).

Proof. Note that if G ∈ Gcol
D has at least ε3n2/100 edges with endpoints in V ′ for all 

choices of V ′ ⊆ V of size precisely εn, then G is ε-locally edge-resilient. Fix V ′ ⊆ V of size 
precisely εn. For any G ∈ Gcol

D , we say that a subgraph H ⊆ G together with a labelling 
of its vertices V (H) = {u, v, w, x, y, z} is a spin system of G if E(H) = {vw, xy, zu}, 
where u, v ∈ V ′, w, x, y, z ∈ V \ V ′, uv, wx, yz /∈ E(G), and φG(vw) = φG(xy) =
φG(zu). (Note that different labellings of a subgraph H ⊆ G that both satisfy these 
conditions will be considered to correspond to different spin systems of G.) We now 
define the spin switching operation. Suppose G ∈ Gcol

D and H ⊆ G is a spin system. 
Then we define spinH(G) to be the coloured graph obtained from G by deleting the 
edges vw, xy, zu, and adding the edges uv, wx, yz, each with colour φG(vw). Writing 
G′ := spinH(G), we have G′ ∈ Gcol

D and eV ′,D(G′) = eV ′,D(G) + 1.

We define a partition {Ms}
(εn2 )
s=0 of Gcol

D by setting Ms := {G ∈ Gcol
D : eV ′,D(G) = s}, for 

each s ∈ [
(
εn
2
)
]0. For each s ∈ [

(
εn
2
)
− 1]0 we define an auxiliary bipartite multigraph Bs

with vertex bipartition (Ms, Ms+1), where for each G ∈ Ms and each spin system H ⊆ G

we put an edge in Bs with endpoints G ∈ Ms and spinH(G) ∈ Ms+1. Define δs :=
minG∈Ms

dBs
(G) and Δs+1 := maxG∈Ms+1 dBs

(G). Observe, by double counting e(Bs), 
that |Ms|/|Ms+1| ≤ Δs+1/δs. To bound Δs+1 from above, we fix G′ ∈ Ms+1 and bound 
the number of pairs (G, H), where G ∈ Ms and H is a spin system of G such that 
spinH(G) = G′. There are s + 1 choices for the edge e ∈ EV ′,D(G′) created by a spin 
operation, and 2 choices for which endpoint of e played the role of u in a spin, and 
which played the role of v. Now there are at most (n/2)2 choices for two edges with 
colour φG′(e) in G′ with both endpoints outside of V ′, and at most 8 choices for which 
endpoints of these edges played the roles of w, x, y, z in a spin operation yielding G′. We 
deduce that Δs+1 ≤ 4(s + 1)n2.

Suppose that s ≤ ε3n2/80. To bound δs from below, we fix G ∈ Ms and find a lower 
bound for the number of spin systems H ⊆ G. For a vertex v ∈ V ′, let D∗

G(v) ⊆ D

denote the set of colours c ∈ D such that the c-neighbour of v is not in V ′, in G. Let 
V ∗
G := {v ∈ V ′ : |D∗

G(v)| ≥ 9εn/10}, and suppose for a contradiction that |V ∗
G| < 9εn/10. 

Then there are at least εn/10 vertices v ∈ V ′ for which there are at least εn/10 colours 
c ∈ D such that the c-neighbour of v is in V ′, in G, whence s = eV ′,D(G) ≥ ε2n2/200 >
ε3n2/80 ≥ s, a contradiction. Note further that, since s ≤ ε3n2/80, there are at least (9εn/10

2
)
−ε3n2/80 ≥ ε2n2/4 pairs {a, b} ∈

(
V ∗
G
2
)

such that ab /∈ E(G). For each such choice 
of {a, b}, there are two choices of which vertex will play the role of u and which will play 
the role of v in a spin system. Since u, v ∈ V ∗

G, there are at least 4εn/5 colours c ∈ D such 
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that the c-neighbour z of u, and the c-neighbour w of v, are such that w, z ∈ V \V ′, in G. 
Finally, there are at least n/2 − 3εn ≥ n/4 edges coloured c in G with neither endpoint 
in V ′ ∪NG(w) ∪NG(z), and two choices of which endpoint of such an edge will play the 
role of x, and which will play the role of y. We deduce that δs ≥ ε3n4/5. Altogether, 
we conclude that if s ≤ ε3n2/80 and Ms is non-empty, then Ms+1 is non-empty and 
|Ms|/|Ms+1| ≤ 20(s + 1)n2/ε3n4 ≤ 1/2.

Now, fix s ≤ ε3n2/100. If Ms is empty, then P [eV ′,D(G) = s] = 0. If Ms is non-empty, 
then

P [eV ′,D(G) = s] = |Ms|
|Gcol

D | ≤
|Ms|

|Mε3n2/80|
=

ε3n2/80−1∏
j=s

|Mj |
|Mj+1|

≤
(

1
2

)ε3n2/80−s

,

and thus

P
[
eV ′,D(G) ≤ ε3n2/100

]
≤

ε3n2/100∑
s=0

exp(−(ε3n2/80 − s) ln 2) ≤ exp
(
−ε3n2

800

)
.

A union bound over all choices of V ′ ⊆ V of size εn now completes the proof. �
We now turn to showing that for suitable D ⊆ [n − 1], almost all G ∈ Gcol

D are 
robustly gadget-resilient, which turns out to be a much harder property to analyse than 
local edge-resilience, and we devote the rest of this section to it. We first need to show 
that almost all G ∈ Gcol

D are ‘quasirandom’, in the sense that small sets of vertices do 
not have too many crossing edges.

Definition 7.2. Let D ⊆ [n − 1]. We say that G ∈ Gcol
D is quasirandom if for all sets 

A, B ⊆ V , not necessarily distinct, such that |A| = |B| = |D|, we have that eG(A, B) <
8(|D| − 1)3/n. We define Qcol

D := {G ∈ Gcol
D : G is quasirandom}.

When we are analysing switchings to study the property of robust gadget-resilience 
(see Lemma 7.8), it will be important to condition on this quasirandomness. One can 
use another switching argument to show that almost all G ∈ Gcol

D are quasirandom.

Lemma 7.3. Suppose that 1/n 
 μ 
 1, let D ⊆ [n − 1] have size |D| = μn + 1. Suppose 
that G ∈ Gcol

D is chosen uniformly at random. Then P
[
G ∈ Qcol

D

]
≥ 1 − exp(−μ3n2).

Proof. Fix A, B ⊆ V satisfying |A| = |B| = μn + 1. For any G ∈ Gcol
D , we say that a 

subgraph H ⊆ G together with a labelling of its vertices V (H) = {a, b, v, w} is a rotation 
system of G if E(H) = {ab, vw}, where a ∈ A, b ∈ B, v, w /∈ A ∪ B, aw, bv /∈ E(G), 
and φG(ab) = φG(vw). We now define the rotate switching operation. Suppose G ∈ Gcol

D

and H ⊆ G is a rotation system. Then we define rotH(G) to be the coloured graph 
obtained from G by deleting the edges ab, vw, and adding the edges aw, bv, each with 
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Fig. 4. An (x, c,P)-gadget. Here, φ(f) ∈ D4, φ(e) = c, and φ(ei) = φ(e′i) ∈ Di for each i ∈ [3].

colour φG(ab). Writing G′ := rotH(G), notice that G′ ∈ Gcol
D and eG′(A, B) = eG(A, B) −

1.
Lemma 7.3 follows by analysing the degrees of auxiliary bipartite multigraphs Bs in 

a similar way as in the proof of Lemma 7.1. We omit the details. �
Next we will use a switching argument to find a large set of well-spread absorbing 

gadgets (cf. Definition 4.7). For this, we consider slightly more restrictive substructures 
than the absorbing gadgets defined in Definition 4.1. These additional restrictions (an 
extra edge f as well as an underlying partition P of the colours) give us better control 
over the switching process: they allow us to argue that we do not create more than one 
additional gadget per switch. Let D ⊆ [n − 1], c ∈ [n − 1] \D, write D∗ := D ∪ {c}, and 
let G ∈ Gcol

D∗ . Suppose that P = {Di}4
i=1 is an (ordered) partition of D into four subsets, 

and let x ∈ V .

Definition 7.4. An (x, c, P)-gadget in G is a subgraph J = A ∪ {f} of G the following 
form (see Fig. 4):

(i) A is an (x, c)-absorbing gadget in G;
(ii) there is an edge e1 ∈ ∂A(x) such that φ(e1) ∈ D1, and the remaining edge e2 ∈

∂A(x) satisfies φ(e2) ∈ D2;
(iii) the edge e3 of A which is not incident to x but shares an endvertex with e1 and an 

endvertex with e2 satisfies φ(e3) ∈ D3;
(iv) f = xv is an edge of G, where v is the unique vertex of A such that φ(∂A(v)) =

{c, φ(e1)};
(v) φ(f) ∈ D4.

We now define some terminology that will be useful for analysing how many (x, c, P)-
gadgets there are in a graph G ∈ Gcol

D∗ , and how well-spread these gadgets are. Each of 
the terms we define here will have a dependence on the choice of the triple (x, c, P), 
but since this triple will always be clear from context, for presentation we omit the 
(x, c, P)-notation.

Definition 7.5. We say that an (x, c, P)-gadget J in G is distinguishable in G if the edges 
e3, e′3 of J such that φ(e3) = φ(e′3) ∈ D3 are such that there is no other (x, c, P)-gadget 
J ′ �= J in G such that e3 ∈ E(J ′) or e′3 ∈ E(J ′).
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We will aim only to count distinguishable (x, c, P)-gadgets, which will ensure the 
collection of gadgets we find is well-spread across the set of edges in G ∈ Gcol

D∗ that can 
play the roles of e3, e′3. We also need to ensure that the collection of gadgets we find is 
well-spread across the c-edges of G.

Definition 7.6.

• For each c-edge e of G ∈ Gcol
D∗ , we define the saturation of e in G, denoted satG(e), 

or simply sat(e) when G is clear from context, to be the number of distinguish-
able (x, c, P)-gadgets of G which contain e. We say that e is unsaturated in G if 
sat(e) ≤ |D| −1, saturated if sat(e) ≥ |D|, and supersaturated if sat(e) ≥ |D| +6. We 
define Sat(G) to be the set of saturated c-edges of G, and Unsat(G) := Ec(G) \Sat(G).

• We define the function r : Gcol
D∗ → [n|D|/2]0 by

r(G) := |D||Sat(G)| +
∑

e∈Unsat(G)

sat(e).

In Lemma 7.8, we will use switchings to show that r(G) is large (for some well-
chosen P) in almost all quasirandom G ∈ Gcol

D∗ . In Lemma 7.9, we use distinguishability, 
saturation, and the fact that any non-x vertex in an (x, c, P)-gadget must be incident to 
an edge playing the role of either e3, e′3, or the c-edge, to show that r(G) being large means 
that there are many well-distributed (x, c, P)-gadgets in G, and thus many well-spread 
(x, c)-absorbing gadgets. We now define a relaxation of Qcol

D∗ , which will be a convenient 
formulation for ensuring that quasirandomness is maintained when we use switchings to 
find (x, c, P)-gadgets. For each s ∈ [n|D|/2]0, we write AD∗

s := {G ∈ Gcol
D∗ : r(G) = s}, 

and

QD∗

s := {G ∈ Gcol
D∗ : eG(A,B) < 8|D|3/n+6s for allA,B ⊆ V such that |A| = |B| = |D|}.

We also define TD∗
s := AD∗

s ∩QD∗
s and Q̃col

D∗ :=
⋃n|D|/2

s=0 TD∗
s . Notice that

Qcol
D∗ ⊆ Q̃col

D∗ . (7.1)

Finally, we discuss the switching operation that we will use in Lemma 7.8.

Definition 7.7. For any G ∈ Gcol
D∗ , we say that a subgraph H ⊆ G together with a labelling 

of its vertices V (H) = {x, u1, u2, . . . , u14} is a twist system of G if (see Fig. 5):

(i) E(H) = {u1u2, u3u5, u4u6, u5u7, u6u8, u7u8, u7x, xu9, xu10, u9u11, u10u12, u13u14};
(ii) φ(u5u7) = φ(xu9) ∈ D1;
(iii) φ(u6u8) = φ(xu10) ∈ D2;
(iv) φ(u1u2) = φ(u3u5) = φ(u4u6) = φ(u9u11) = φ(u10u12) = φ(u13u14) ∈ D3;
(v) φ(u7x) ∈ D4;
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Fig. 5. A twist system of G. Here, dashed edges represent non-edges of G, and the colours of the edges satisfy 
(ii)–(vi) in the definition of twist system.

(vi) φ(u7u8) = c;
(vii) u1u3, u2u4, u5u6, u9u10, u11u13, u12u14 /∈ E(G).

For a twist system H of G, we define twistH(G) to be the coloured graph obtained 
from G by deleting the edges u1u2, u3u5, u4u6, u9u11, u10u12, u13u14, and adding the 
edges u1u3, u2u4, u5u6, u9u10, u11u13, u12u14, each with colour φG(u1u2). The (x, c, P)-
gadget in twistH(G) with edges u5u6, u5u7, u6u8, u7u8, u7x, xu9, xu10, u9u10 is called 
the canonical (x, c, P)-gadget of the twist.

We simultaneously switch two edges into the positions u5u6 and u9u10 because it 
is much easier to find structures as in Fig. 5 than it is to find such a structure with 
one of these edges already in place. Moreover, the two ‘switching cycles’ we use have 
three edges and three non-edges (rather than two of each, as in the rotation switching) 
essentially because of the extra freedom this gives us when choosing the edges u1u2
and u13u14. This extra freedom allows us to ensure that in almost all twist systems, one 
avoids undesirable issues like inadvertently creating more than one new gadget when one 
performs the twist.

The proof of Lemma 7.8 proceeds with a similar strategy to those of Lemmas 7.1
and 7.3, but it is much more challenging this time to show that graphs with low r(G)-
value admit many ways to switch to yield a graph G′ ∈ Gcol

D∗ satisfying r(G′) = r(G) +1.

Lemma 7.8. Suppose that 1/n 
 μ 
 1, and let D ⊆ [n − 1] have size |D| = μn. Let 
x ∈ V , let c ∈ [n − 1] \D, and let P = {Di}4

i=1 be an equitable partition of D. Suppose 
that G ∈ Gcol

D∪{c} is chosen uniformly at random. Then

P

[
r(G) ≤ μ4n2

223

∣∣∣∣ G ∈ Q̃col
D∪{c}

]
≤ exp

(
−μ4n2

224

)
.

Proof. Write D∗ := D ∪ {c}. Consider the partition {TD∗
s }nk/2s=0 of Q̃col

D∗ , where k := |D|. 
For each s ∈ [nk/2 − 1]0, we define an auxiliary bipartite multigraph Bs with vertex 
bipartition (TD∗

s , TD∗
s+1) and an edge between G and twistH(G) whenever:

(a) G ∈ TD∗
s ;
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(b) H is a twist system in G for which G′ := twistH(G) ∈ TD∗
s+1 and G′ satisfies satG′(e) =

satG(e) + 1 ≤ k for the c-edge e = u7u8 of H, with the canonical (x, c, P)-gadget 
of the twist G′ being the only additional distinguishable (x, c, P)-gadget using this 
c-edge.

Define δs := minG∈TD∗
s

dBs
(G) and Δs+1 := maxG∈TD∗

s+1
dBs

(G). Thus |TD∗
s |/|TD∗

s+1| ≤
Δs+1/δs. To bound Δs+1 from above, we fix G′ ∈ TD∗

s+1 and bound the number of 
pairs (G, H), where G ∈ TD∗

s and H is a twist system of G such that twistH(G) = G′

and (b) holds. Firstly, note that
∑

e∈Ec(G′)
satG′ (e)≤k

satG′(e) ≤ r(G′) = s + 1.

Thus, it follows from condition (b) that there are at most s + 1 choices for the canonical 
(x, c, P)-gadget of a twist yielding G′ for which we record an edge in Bs. Fixing this 
(x, c, P)-gadget fixes the vertices of V which played the roles of x, u5, u6, . . . , u10 in a 
twist yielding G′. To determine all possible sets of vertices playing the roles of u1, u2, u3, 
u4, u11, u12, u13, u14 (thus determining H and G such that twistH(G) = G′), it suffices 
to find all choices of four edges of G′ with colour φG′(u5u6) satisfying the necessary 
non-adjacency conditions. There are at most (n/2)4 choices for these four edges, and at 
most 4! · 24 choices for which endpoints of these edges play which role. We deduce that 
Δs+1 ≤ 24n4(s + 1).

Suppose that s ≤ k4/222n2. To bound δs from below, we fix G ∈ TD∗
s and find a lower 

bound for the number of twist systems H ⊆ G for which we record an edge between G

and twistH(G) in Bs. To do this, we will show that there are many choices for a set of 
four colours and two edges, such that each of these sets uniquely identifies a twist system 
in G for which we record an edge in Bs. Note that since s ≤ k4/222n2 and G ∈ QD∗

s , we 
have

eG(A,B) ≤ 10k3/n for all sets A,B ⊆ V of sizes |A| = |B| = k. (7.2)

We begin by finding subsets of D3 and D4 with some useful properties in G.

Claim 1. There is a set Dgood
3 ⊆ D3 of size |Dgood

3 | ≥ k/8 such that for all d ∈ Dgood
3 we 

have

(i) |Ed(ND1(x), ND2(x))| ≤ 200k2/n;
(ii) there are at most 64k3/n2 d-edges e in G with the property that e lies in some 

distinguishable (x, c, P)-gadget in G whose c-edge is not supersaturated.

Proof of Claim. Observe that |ND1(x)| = |ND2(x)| = k/4. Then, by (arbitrarily extend-
ing ND1(x), ND2(x) and) applying (7.2), we see that e(ND1(x), ND2(x)) ≤ 10k3/n. Thus 
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there is a set D̂3 ⊆ D3 of size |D̂3| ≥ 3k/16 such that each d ∈ D̂3 satisfies (i). Next, 
notice that, since r(G) = s, there are at most s/k ≤ k3/222n2 saturated c-edges in G. 
Suppose for a contradiction that at least k/16 colours d ∈ D3 are such that there are 
at least 64k3/n2 d-edges e in G with the property that e lies in some distinguishable 
(x, c, P)-gadget in G whose c-edge is not supersaturated. Then, by considering the con-
tribution of these distinguishable (x, c, P)-gadgets to r(G), and accounting for saturated 
c-edges, we obtain that r(G) ≥ (k/16) · 32k3/n2 − 5k3/222n2 > s, a contradiction. Thus 
there is a set D̃3 ⊆ D3 of size |D̃3| ≥ 3k/16 such that each d ∈ D̃3 satisfies (ii). We 
define Dgood

3 := D̂3 ∩ D̃3, and note that |Dgood
3 | ≥ k/8. �

We also define Dgood
4 ⊆ D4 to be the set of colours d4 ∈ D4 such that the c-edge e

incident to the d4-neighbour of x in G satisfies sat(e) ≤ k−1. Observe that |Dgood
4 | ≥ k/8, 

since otherwise there are at least k/16 saturated c-edges in G, whence r(G) ≥ k2/16 > s, 
a contradiction.

We now show that there are many choices of a vector (d1, d2, d3, d4, 
−→
f1, 

−→
f2) where each 

di ∈ Di and each 
−→
fj is an edge fj ∈ Ed3(G) together with an identification of which 

endpoints will play which role, such that each vector uniquely gives rise to a candidate 
of a twist system H ⊆ G. We can begin to construct such a candidate by choosing 
d4 ∈ Dgood

4 and letting u7 denote the d4-neighbour of x in G, and letting u8 denote the 
c-neighbour of u7. Secondly, we choose d1 ∈ D1, avoiding the colour of the edge xu8
(if it is present), and let u5 denote the d1-neighbour of u7, and let u9 denote the d1-
neighbour of x. Next, we choose d2 ∈ D2, avoiding the colours of the edges u5u8, u5x, 
u8x, u8u9 in G (if they are present), and let u6 denote the d2-neighbour of u8, and 
let u10 denote the d2-neighbour of x. Then, we choose d3 ∈ Dgood

3 , avoiding the colours 
of all edges in EG({x, u5, u6, . . . , u10}). We let u3, u4, u11, u12 denote the d3-neighbours 
of u5, u6, u9, u10, respectively. Finally, we choose two distinct edges f1, f2 ∈ Ed3(G) which 
are not incident to any vertex in {x, u3, u4, . . . , u12}, and we choose which endpoint 
of f1 will play the role of u1 and which will play the role of u2, and choose which 
endpoint of f2 will play the role of u13 and which will play the role of u14. Let Λ denote 
the set of all possible vectors (d1, d2, d3, d4, 

−→
f1, 

−→
f2) that can be chosen in this way, so 

that |Λ| ≥ k
8 · 3k

16 · k
8 · k

16 · n
4 · 2 · n

4 · 2 = 3k4n2/216. Further, let H(λ) ⊆ G denote the 
labelled subgraph of G corresponding to λ ∈ Λ in the above way. If H(λ) is a twist 
system, then we sometimes say that we ‘twist on λ’ to mean that we perform the twist 
operation to obtain twistH(λ)(G) from G.

It is clear that H(λ) is unique for all vectors λ ∈ Λ, and that H(λ) satisfies conditions 
(i)–(vi) of the definition of a twist system. However, some H(λ) may fail to satisfy (vii), 
and some may fail to satisfy condition (b) in the definition of adjacency in Bs. We now 
show that only for a small proportion of λ ∈ Λ do either of these problems occur. We 
begin by ensuring that most λ ∈ Λ give rise to twist systems.

Claim 2. There is a subset Λ1 ⊆ Λ such that |Λ1| ≥ 9|Λ|/10 and H(λ) is a twist system 
for all λ ∈ Λ1.
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Proof of Claim. Fix any choice of d3 ∈ Dgood
3 , d4 ∈ Dgood

4 and 
−→
f1, 

−→
f2 appearing concur-

rently in some λ ∈ Λ, and note that there are at most (k/4)2 ·n2 such choices. Here and 
throughout the remainder of the proof of Lemma 7.8, we write u7 for the d4-neighbour 
of x, we write u8 for the c-neighbour of u7, and so on, where the choice of d1, d2, d3, d4, −→
f1, 

−→
f2 will always be clear from context. Note that fixing d3, d4 only fixes the vertices x, 

u7, u8. There are at most 10k3/n pairs (d1, d2) with each di ∈ Di such that there is an 
edge u5u6 ∈ E(G), since otherwise e(ND1(u7), ND2(u8)) > 10k3/n, contradicting (7.2). 
Similarly, there are at most 10k3/n pairs (d1, d2) with each di ∈ Di such that u9u10

is an edge of G. We deduce that there are at most (20k3/n) · (k/4)2 · n2 = 5k5n/4
vectors λ ∈ Λ for which H(λ) is such that either u5u6 or u9u10 is an edge of G. Now 
fix instead d1, d2, d3, d4, 

−→
f2. Note that |NG(u3) ∪ NG(u4)| ≤ 2k + 2 so that there are 

at most 4k + 4 choices of 
−→
f1 such that either u1u3 or u2u4 is an edge of G. Analysing 

the pairs u11u13 and u12u14 similarly, we deduce that altogether, there are at most 
5k5n/4 + 2((k/4)4 · n · (4k + 4)) ≤ 2k5n ≤ |Λ|/10 vectors λ ∈ Λ for which H(λ) fails to 
be a twist system. �

We now show that only for a small proportion of λ ∈ Λ1 does H(λ) fail to give rise 
to an edge in Bs, by showing that most H(λ) satisfy the following properties:

(P1) twistH(λ)(G) ∈ QD∗
s+1;

(P2) Deletion of the six d3-edges in H(λ) does not decrease r(G);
(P3) The canonical (x, c, P)-gadget of the twist twistH(λ)(G) is distinguishable, and it 

is the only (x, c, P)-gadget which is in twistH(λ)(G) but not in G.

Firstly, since G ∈ QD∗
s and we only create six new edges in any twist, it is clear that H(λ)

satisfies (P1) for all λ ∈ Λ1.

Claim 3. There is a subset Λ2 ⊆ Λ1 such that |Λ2| ≥ 9|Λ1|/10 and H(λ) satisfies prop-
erty (P2) for all λ ∈ Λ2.

Proof of Claim. Fix d1 ∈ D1, d3 ∈ Dgood
3 , d4 ∈ Dgood

4 , 
−→
f1, 

−→
f2 appearing concurrently 

in some λ ∈ Λ1. Let Fd3(G) ⊆ Ed3(G) be the set of d3-edges e in G with the property 
that e is in some distinguishable (x, c, P)-gadget in G whose c-edge is not supersaturated. 
Recall that |Fd3(G)| ≤ 64k3/n2 since d3 ∈ Dgood

3 . Observe then that there are at most 
128k3/n2 colours d2 ∈ D2 such that u10 is the endpoint of an edge in Fd3(G). Thus for 
all but at most (k/4)3 ·n2 ·128k3/n2 = 2k6 choices of λ = (d1, d2, d3, d4, 

−→
f1, 

−→
f2) ∈ Λ1, the 

edge u10u12 is not in Fd3(G). Now fix instead d1, d2, d3, d4, 
−→
f2. Then since d3 ∈ Dgood

3 , 
there are at most 128k3/n2 choices of

−→
f1 such that f1 ∈ Fd3(G), so that for all but at 

most (k/4)4 ·n ·128k3/n2 = k7/2n vectors λ ∈ Λ1, H(λ) is such that f1 /∈ Fd3(G). Similar 
analyses show that there are at most 8k6 + k7/n ≤ 9k6 ≤ |Λ1|/10 choices of λ ∈ Λ1 such 
that {u1u2, u3u5, u4u6, u9u11, u10u12, u13u14} ∩Fd3(G) �= ∅. By definition of Fd3(G) and 



S. Gould et al. / Journal of Combinatorial Theory, Series B 156 (2022) 57–100 91
supersaturation of a c-edge, we deduce that for all remaining λ ∈ Λ1, H(λ) is such that 
deleting the edges u1u2, u3u5, u4u6, u9u11, u10u12, u13u14 does not decrease r(G). �

When we perform a twist operation on a twist system H in G, since the only new 
edges we add have some colour in D3, we have that for any new distinguishable (x, c, P)-
gadget J we create in the twist, one of the new edges u1u3, u2u4, u5u6, u9u10, u11u13, 
u12u14 of the twist is playing the role of either v5v6 or v9v10 in J . (Here and throughout 
the rest of the proof, we imagine completed (x, c, P)-gadgets J as having vertices labelled 
x, v5, . . . , v10, where the role of vi corresponds to the role of ui in Fig. 5.) We now show 
that for most λ ∈ Λ2, H(λ) satisfies property (P3). This is the most delicate part of the 
argument, and we break it into three more claims.

Claim 4. There is a subset Λ3 ⊆ Λ2 such that |Λ3| ≥ 9|Λ2|/10 and all λ ∈ Λ3 are such 
that if J is an (x, c, P)-gadget that is in twistH(λ)(G) but not in G, then the pair u9u10
of H(λ) plays the role of v9v10.

Proof of Claim. Since the only edges added by any twist operation all have colour in D3, 
it suffices to show that at most |Λ2|/10 vectors λ ∈ Λ2 are such that twisting on λ creates 
an (x, c, P)-gadget J for which either

(i) one of the pairs u1u3, u2u4, u5u6, u11u13, u12u14 of H(λ) plays the role of v9v10, 
or

(ii) the edge v9v10 of J is present in G.

To address (i), we show that u1, u2, u5, u11, u12 /∈ NG(x) for all but at most |Λ2|/20 vec-
tors λ ∈ Λ2. Note firstly that at most 10k3/n pairs (d1, d4) where d1 ∈ D1, d4 ∈ Dgood

4 are 
such that u5 ∈ NG(x), since otherwise e(ND4(x), NG(x)) > 10k3/n, contradicting (7.2). 
Thus, at most (k/4)2 ·n2 · 10k3/n = 5k5n/8 choices of λ ∈ Λ2 are such that u5 ∈ NG(x). 
Now fix d1, d2, d3, d4, 

−→
f2 appearing concurrently in some λ ∈ Λ2. Notice that there are at 

most 2k+ 2 choices of
−→
f1 such that f1 has at least one endpoint in NG(x). Analysing

−→
f2

similarly, we deduce that there are at most 5k5n/8 +2(k/4)4(2k+2)n ≤ |Λ2|/20 choices 
of λ ∈ Λ2 such that at least one of u1, u2, u5, u13, u14 lies in NG(x).

Turning now to (ii), we show that at most |Λ2|/20 vectors λ ∈ Λ2 are such that 
twisting on λ creates any (x, c, P)-gadgets J for which the edge v9v10 of J is present 
in G (and thus one of the pairs u1u3, u2u4, u5u6, u9u10, u11u13, u12u14 of H(λ) plays the 
role of v5v6). To do this, we use some of the properties of Dgood

3 . Fix d2 ∈ D2, d3 ∈ Dgood
3 , 

d4 ∈ Dgood
4 , 

−→
f1, 

−→
f2 appearing concurrently in some λ ∈ Λ3. Note that since d3 ∈ Dgood

3 , 
there are at most 200k2/n pairs (d′1, d′2) where d′1 ∈ D1, d′2 ∈ D2, such that there is a K3
in G with vertices x, w1, w2, where wi is the d′i-neighbour of x for i ∈ {1, 2}, and the 
edge w1w2 is coloured d3. Let the set of these pairs (d′1, d′2) be denoted L(d3). For each 
pair 
 = (d′1, d′2) ∈ L(d3), let z1

� be the end of the d′1cd
′
2-walk starting at u10. Similarly, 

let z2
� denote the end of the d′2cd

′
1-walk starting at u10. Define M :=

⋃
�∈L(d ){z1

� , z
2
� }, 
3
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so that |M | ≤ 400k2/n. Since there are at most 400k2/n choices of d1 ∈ D1 for which 
we obtain u9 ∈ M , we deduce that for all but at most (k/4)3 · n2 · 400k2/n = 25k5n/4
vectors λ ∈ Λ2, H(λ) is such that adding the edge u9u10 in colour d3 does not create 
a new (x, c, P)-gadget J where u9u10 plays the role of v5v6 in J and the edge playing 
the role of v9v10 in J is already present in G before the twist. One can observe similarly 
that for all but at most 25k5n/4 vectors λ ∈ Λ, H(λ) is such that adding the edge u5u6
in colour d3 does not create a new (x, c, P)-gadget J where u5u6 plays the role of v5v6
in J and the edge playing the role of v9v10 in J is already present in G before the twist.

Now fix instead d1, d2, d3, d4, 
−→
f2 appearing concurrently in some λ ∈ Λ2. For each 


 = (d′1, d′2) ∈ L(d3), let y1
� be the end of the d′1cd

′
2-walk starting at u4, let y2

� be the end 
of the d′2cd

′
1-walk starting at u4, let z1

� be the end of the d′1cd
′
2-walk starting at u3, and 

let z2
� be the end of the d′2cd

′
1-walk starting at u3. Define M :=

⋃
�∈L(d3){y

1
� , y

2
� , z

1
� , z

2
� }, 

and notice that |M | ≤ 800k2/n. We deduce that there are at most 1600k2/n choices of
−→
f1

such that f1 has an endpoint in M , and that for all remaining choices of
−→
f1, twisting 

on λ = (d1, d2, d3, d4, 
−→
f1, 

−→
f2) cannot create a new (x, c, P)-gadget J where the new d3-

edges u1u3 or u2u4 play the role of v5v6 in J and the edge v9v10 of J is present in G. 
Analysing

−→
f2 similarly, we conclude that for all but at most 13k5n ≤ |Λ2|/20 choices of 

λ ∈ Λ2, twisting on λ cannot create a new (x, c, P)-gadget J for which the edge v9v10
of J is present in G. �
Claim 5. There is a subset Λ4 ⊆ Λ3 such that |Λ4| ≥ 9|Λ3|/10 and all λ ∈ Λ4 are such 
that if J is an (x, c, P)-gadget that is in twistH(λ)(G) but not in G, then the pair u5u6
of H(λ) plays the role of v5v6.

Proof of Claim. By Claim 4, it will suffice to show that at most |Λ3|/10 vectors λ ∈ Λ3
are such that twisting on λ creates an (x, c, P)-gadget J for which either

(i) one of the pairs u1u3, u2u4, u11u13, u12u14 of H(λ) plays the role of v5v6, and u9u10
plays the role of v9v10, or

(ii) the edge v5v6 of J is present in G and the pair u9u10 of H(λ) plays the role of v9v10.

To address (i), fix d1, d2, d3, d4, 
−→
f2 appearing concurrently in some λ ∈ Λ3. Let a1 be the 

end of the d1cd2-walk starting at u4, let a2 be the end of the d2cd1-walk starting at u4, 
let b1 be the end of the d1cd2-walk starting at u3, and let b2 be the end of the d2cd1-walk 
starting at u3. Since there are at most 8 choices of

−→
f1 with an endpoint in {a1, a2, b1, b2}, 

we deduce that for all remaining choices of
−→
f1, twisting on λ = (d1, d2, d3, d4, 

−→
f1, 

−→
f2)

cannot create an (x, c, P)-gadget J for which the new d3-edges u1u3 or u2u4 play the 
role of v5v6 in J and u9u10 plays the role of v9v10. Analysing

−→
f2 similarly, we conclude 

that we must discard at most k4n/16 ≤ |Λ3|/20 vectors λ ∈ Λ3 to account for (i).
Turning now to (ii), write D4 = {d1

4, d
2
4, . . . , d

k/4
4 }. For each di4 ∈ D4, let yi be the di4-

neighbour of x, let zi be the c-neighbour of yi, define Ri := ND1(yi) and Si := ND2(zi). 
Notice that 

∑k/4
i=1 e(Ri, Si) ≤ 5k4/2n, since otherwise we obtain a contradiction to (7.2)
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for some pair (Ri, Si). We deduce that there are at most 5k4/2n triples (d1, d2, d3) with 
each di ∈ Di for which adding the edge u9u10 in colour d3 creates an (x, c, P)-gadget J

for which u9u10 plays the role of v9v10 in J and the edge playing the role of v5v6 is 
already present in G, whence at most (5k4/2n) · (k/4) · n2 = 5k5n/8 ≤ |Λ3|/20 choices 
of λ ∈ Λ3 are such that twisting on λ creates an (x, c, P)-gadget of this type. �
Claim 6. There is a subset Λ5 ⊆ Λ4 such that |Λ5| ≥ 9|Λ4|/10 and all λ ∈ Λ5 are such that 
if J is an (x, c, P)-gadget that is in twistH(λ)(G) but not in G and the pairs u5u6, u9u10

of H(λ) play the roles of the edges v5v6, v9v10 of J respectively, then J is the canonical 
(x, c, P)-gadget of the twist.

Proof of Claim. Fix d3, d4, 
−→
f1, 

−→
f2 appearing concurrently in some λ ∈ Λ4. By (7.2), 

we have that e(ND2(u8), ND4(x)) ≤ 10k3/n. We deduce that there are at most 10k3/n

choices of the pair (d1, d2) such that the d1-neighbour of u6 lies in ND4(x), whence for 
all but at most 5k5n/8 ≤ |Λ4|/10 choices of λ ∈ Λ4, the canonical (x, c, P)-gadget of the 
twist is the only new (x, c, P)-gadget for which u5u6, u9u10 play the roles of v5v6, v9v10

respectively. �
Note that, by Claims 4–6, the canonical (x, c, P)-gadget of a twist on λ ∈ Λ5 is clearly 

distinguishable in twistH(λ)(G) since its edges v5v6 and v9v10 with colours in D3 were 
added by the twist and performing this twist creates no other (x, c, P)-gadgets. Thus 
Claims 4–6 imply that H(λ) satisfies (P3) for all λ ∈ Λ5. Recalling that satG(e) ≤ k− 1
for the c-edge e of H(λ) for all λ ∈ Λ and also using Claim 3, we now deduce that 
r(twistH(λ)(G)) = r(G) + 1, and thus twistH(λ)(G) ∈ AD∗

s+1, for all λ ∈ Λ5. Since H(λ)
satisfies (P1) for all λ ∈ Λ1, we deduce that twistH(λ)(G) ∈ TD∗

s+1 for all λ ∈ Λ5, and 
that δs ≥ |Λ5| ≥ |Λ|/2 ≥ 3k4n2/217. We conclude that if s ≤ k4/222n2 and TD∗

s is 
non-empty, then TD∗

s+1 is non-empty and |TD∗
s |/|TD∗

s+1| ≤ 217 · 24n4(s + 1)/3k4n2 ≤ 1/2. 
Now, fix s ≤ μ4n2/223. If TD∗

s is empty, then P
[
r(G) = s | G ∈ Q̃col

D∗

]
= 0. If TD∗

s is 
non-empty, then

P
[
r(G) = s | G ∈ Q̃col

D∗

]
= |TD∗

s |
|Q̃col

D∗ |
≤ |TD∗

s |
|TD∗

k4/222n2 |
=

k4/222n2−1∏
j=s

|TD∗

j |
|TD∗

j+1|
≤ (1/2)k

4/222n2−s,

and thus,

P
[
r(G) ≤ μ4n2/223 | G ∈ Q̃col

D∗

]
≤

μ4n2/223∑
s=0

exp(−(k4/222n2 − s) ln 2) ≤ exp
(
−μ4n2

224

)
,

which completes the proof of the lemma. �
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Next, we show that in order to find many well-spread (x, c)-absorbing gadgets in G ∈
Gcol
D∪{c}, it suffices to show that r(G) is large for some equitable partition P of D into 

four parts. (Recall that ‘well-spread’ was defined in Definition 4.7.)

Lemma 7.9. Suppose that 1/n 
 μ, and let D ⊆ [n − 1] be such that |D| ≤ μn. Let 
x ∈ V , let c ∈ [n − 1] \D, and let P = {Di}4

i=1 be an equitable partition of D. Then for 
any integer t ≥ 0 and any G ∈ Gcol

D∪{c}, if r(G) ≥ t, then G contains a 5μn/4-well-spread 
collection of t distinct (x, c)-absorbing gadgets.

Proof. Let G ∈ Gcol
D∪{c}, let t ≥ 0 be an integer, and suppose that r(G) ≥ t. Then, since 

|D| ≤ μn and by definition of r, we deduce that there is a collection A(x,c,P) of t distinct 
(x, c, P)-gadgets satisfying the following conditions:

(i) Each edge of G with colour in D3 is contained in at most one (x, c, P)-gadget 
J ∈ A(x,c,P);

(ii) Each c-edge of G is contained in at most μn (x, c, P)-gadgets J ∈ A(x,c,P).

Fix v ∈ V \ {x}. Let e be the c-edge of G incident to v and for each d ∈ D3 let fd be 
the d-edge of G incident to v. Then by conditions (i) and (ii) there are at most 5μn/4
(x, c, P)-gadgets J ∈ A(x,c,P) containing any of the edges in {e} ∪

⋃
d∈D3

{fd}. Note that 
if v is contained in some J ∈ A(x,c,P), then v is incident to either the c-edge in J , or 
to one of the edges in J with colour in D3. We thus conclude that v is contained in at 
most 5μn/4 (x, c, P)-gadgets J ∈ A(x,c,P). It immediately follows that no edge of G is 
contained in more than 5μn/4 (x, c, P)-gadgets J ∈ A(x,c,P).

For each d ∈ D1 ∪ D2 ∪ D4, there are at most 5μn/4 J ∈ A(x,c,P) with d ∈ φ(J)
since each such J must contain the d-neighbour of x in G. For each d ∈ D3, there are 
at most μn/2 d-edges f in G such that both endpoints of f are neighbours of x. Any 
J ∈ A(x,c,P) for which d ∈ φ(J) must contain one of these edges f . Thus by (i), there 
are at most μn/2 J ∈ A(x,c,P) such that d ∈ φ(J).

Finally, define a function g on A(x,c,P) by setting g(J) := J−f , where f is the unique 
edge of J with colour in D4, for each J ∈ A(x,c,P). Then it is clear that g is injective 
and that g(J) is an (x, c)-absorbing gadget, for each J ∈ A(x,c,P). Thus, g(A(x,c,P)) is a 
5μn/4-well-spread collection of t distinct (x, c)-absorbing gadgets in G, as required. �
7.2. Weighting factor

We now state two results on the number of 1-factorizations in dense d-regular 
graphs G, where a 1-factorization of G consists of an ordered set of d perfect matchings 
in G. We will use these results to find a ‘weighting factor’ (see Corollary 7.12), which we 
will use to compare the probabilities of particular events occurring in different probability 
spaces. For any graph G, let M(G) denote the number of distinct 1-factorizations of G, 
and for any n, d ∈ N, let Gn

d denote the set of d-regular graphs on n vertices. Firstly, the 
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Kahn-Lovász Theorem (see e.g. [2]) states that a graph with degree sequence r1, . . . , rn
has at most

∏n
i=1(ri!)1/2ri perfect matchings. In particular, an n-vertex d-regular graph 

has at most (d!)n/2d perfect matchings. To determine an upper bound for the number of 
1-factorizations of a d-regular graph G, one can simply apply the Kahn-Lovász Theorem 
repeatedly to obtain M(G) ≤

∏d
r=1(r!)n/2r. Using Stirling’s approximation, we obtain 

the following result.

Theorem 7.10. Suppose n ∈ N is even with 1/n 
 1, and d ≥ n/2. Then every G ∈ Gn
d

satisfies

M(G) ≤
((

1 + n−1/2
) d

e2

)dn/2

.

On the other hand, Ferber, Jain, and Sudakov [13] proved the following lower bound 
for the number of distinct 1-factorizations in dense regular graphs.

Theorem 7.11 ([13, Theorem 1.2]). Suppose C > 0 and n ∈ N is even with 1/n 

1/C 
 1, and d ≥ (1/2 + n−1/C)n. Then every G ∈ Gn

d satisfies

M(G) ≥
((

1 − n−1/C
) d

e2

)dn/2

.

Theorems 7.10 and 7.11 immediately yield the following corollary:

Corollary 7.12. Suppose C > 0 and n ∈ N is even with 1/n 
 1/C 
 1, and d ≥
(1/2 + n−1/C)n. Then

M(G)
M(H) ≤ exp

(
2n1−1/Cd

)
,

for all G, H ∈ Gn
d .

Recall that for G ∈ Gcol
[n−1] and a set of colours D ⊆ [n − 1], G|D is the spanning 

subgraph of G containing precisely those edges of G which have colour in D. We now 
have all the tools we need to prove Lemma 4.8.

Proof of Lemma 4.8. Let C > 0 be the constant given by Corollary 7.12 and suppose 
that 1/n 
 1/C, μ, ε. Let P denote the probability measure for the space corresponding 
to choosing G ∈ Gcol

[n−1] uniformly at random. Fix D ⊆ [n − 1] such that |D| = εn, and 
let PD denote the probability measure for the space corresponding to choosing H ∈ Gcol

D

uniformly at random. Let Gbad
D denote the set of H ∈ Gcol

D such that H is not ε-locally 
edge-resilient. For H ∈ Gcol

D , write NH for the number of distinct completions of H to 
an element G ∈ Gcol

[n−1]; that is, NH is the number of 1-factorizations of the complement 
of H. Then
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P [G|D is not ε-locally edge-resilient] =
∑

H∈Gbad
D

NH∑
H′∈Gcol

D
NH′

≤ PD

[
H ∈ Gbad

D

]
· exp

(
2n2−1/C

)
≤ exp

(
−ε3n2/2000

)
,

where we have used Lemma 7.1 and Corollary 7.12. Then, union bounding over choices 
of D, we deduce that

P [G is not ε-locally edge-resilient] ≤
(
n− 1
εn

)
exp

(
−ε3n2

2000

)
≤ exp

(
−ε3n2

4000

)
. (7.3)

Now, fix x ∈ V , and fix c ∈ [n − 1]. Choose F ⊆ [n − 1] \ {c} of size |F | = μn

arbitrarily. Write F ∗ := F ∪ {c}, and let PF∗ denote the probability measure for the 
space S corresponding to choosing H ∈ Gcol

F∗ uniformly at random. Let P be an equitable 
(ordered) partition of F into four subsets. Let A

(x,c)
F∗ ⊆ Gcol

F∗ be the set of H ∈ Gcol
F∗ such 

that H has a 5μn/4-well-spread collection of at least μ4n2/223 (x, c)-absorbing gadgets. 
Then, considering A(x,c)

F∗ , Qcol
F∗ , Q̃col

F∗ as events in S, observe that

PF∗

[
A

(x,c)
F∗

]
≤ PF∗

[
Q̃col

F∗

]
PF∗

[
A

(x,c)
F∗

∣∣∣∣ Q̃col
F∗

]
+ PF∗

[
Q̃col

F∗

]
(7.1)
≤ PF∗

[
A

(x,c)
F∗

∣∣∣∣ Q̃col
F∗

]
+ PF∗

[
Qcol

F∗

]
.

Thus, applying Lemma 7.9, Lemma 7.3, and Lemma 7.8, we obtain

PF∗

[
A

(x,c)
F∗

]
≤ PF∗

[
r(H) ≤ μ4n2/223

∣∣∣∣ H ∈ Q̃col
F∗

]
+ PF∗

[
H /∈ Qcol

F∗
]

≤ exp
(
−μ4n2

224

)
+ exp

(
−μ3n2) ≤ exp

(
−μ4n2

225

)
.

Then by Corollary 7.12,

P
[
G|F∗ /∈ A

(x,c)
F∗

]
=

∑
H∈A

(x,c)
F∗

NH∑
H′∈Gcol

F∗
NH′

≤ PF∗

[
H /∈ A

(x,c)
F∗

]
· exp

(
2n2−1/C

)

≤ exp
(
−μ4n2

226

)
.

In particular, with probability at least 1 − exp(−μ4n2/226), G has a 5μn/4-well-spread 
collection of at least μ4n2/223 (x, c)-absorbing gadgets. Now, union bounding over all 
vertices x ∈ V and all colours c ∈ [n − 1], we deduce that

P [G is notμ-robustly gadget-resilient] ≤ n2 · exp
(
−μ4n2

26

)
≤ exp

(
−μ4n2

27

)
. (7.4)
2 2
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The result now follows by combining (7.3) and (7.4). �
8. Modifications and corollaries

In this section we show how to derive the n odd case of Theorem 1.3 from the case 
when n is even. We also show how Theorem 1.3(ii) implies Corollary 1.4.

8.1. A rainbow Hamilton cycle for n odd

We actually derive the n odd case of Theorem 1.3 from the following slightly stronger 
version of Theorem 1.3(ii) in the case when n is even.

Theorem 8.1. If n is even and φ is a uniformly random 1-factorization of Kn, then 
for every vertex v, with high probability, φ admits a rainbow cycle containing all of the 
colours and all of the vertices except v.

We now argue that our proof of Theorem 1.3 for n even is sufficiently robust to 
also obtain this strengthening. In particular, we can strengthen Lemma 4.9 so that 
the absorber does not contain v, since (a)–(c) in Lemma 6.3, (a)–(c) in Lemma 6.4, 
and (a)–(f) in Lemma 6.5 all hold after deleting v from any part in the absorber partition. 
The proof of Lemma 4.10 is also sufficiently robust to guarantee that the rainbow path 
from the lemma does not contain v, but we do not need this strengthening, since we can 
instead strengthen Proposition 4.5 to obtain a rainbow cycle containing P ′−v and all of 
the colours, as follows. If v ∈ V (P ′), then we replace v in P ′ with a (Vflex, Cflex, Gflex)-
cover by deleting v and adding a (Vflex, Cflex, Gflex)-cover of w, w′, and φ(vw), where 
w and w′ are the vertices adjacent to v in P ′. The remainder of the proof proceeds 
normally, letting v� := v to ensure v /∈ V (P ′′

1 ). In this procedure, we need to assume that 
P ′ is contained in (V \ V ′, C \C ′, G′) with δ/19-bounded remainder (rather than δ/18), 
but in Lemma 4.9 we can find a 38γ-absorber, which completes the proof.

Now we show how Theorem 8.1 implies the odd n case of Theorem 1.3.

Proof of Theorem 1.3, n odd case. When n is odd, any optimal edge-colouring of Kn

has n colour classes, each containing precisely (n − 1)/2 edges. For every colour c, there 
is a unique vertex which has no incident edges of colour c, and for every vertex v, there 
is a unique colour such that v has no incident edges of this colour. Thus, we can obtain 
a 1-factorization φ′ of Kn+1 from an optimal edge-colouring φ of Kn in the following 
way. We add a vertex z, and for every other vertex v, we add an edge zv, where φ′(zv)
is the unique colour c such that v is not incident to a c-edge in Kn. Note that this 
operation produces a bijection from the set of n-edge-colourings of Kn to the set of 
1-factorizations of Kn+1. Thus, if n is odd and φ is a uniformly random optimal edge-
colouring of Kn, then φ′ is a uniformly random optimal edge-colouring of Kn+1. By 
Theorem 8.1, with high probability there is a rainbow cycle F in Kn+1 containing all 
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of the colours and all of the vertices except z, so F is a rainbow Hamilton cycle in Kn, 
satisfying Theorem 1.3(ii). Deleting any edge from F gives a rainbow Hamilton path, as 
required in Theorem 1.3(i). �
8.2. Symmetric Latin squares

Now we use Theorem 1.3 to prove Corollary 1.4.

Proof of Corollary 1.4. Suppose that n ∈ N is odd. Firstly, note that there is a one-to-
one correspondence between the set Lsym

n of symmetric n ×n Latin squares with symbols 
in [n] (say) and the set Φn of optimal edge-colourings of Kn on vertices [n] and with 
colours in [n]. Indeed, let φ ∈ Φn. Then we can construct a unique symmetric Latin 
square Lφ ∈ Lsym

n by putting the symbol φ(ij) in position (i, j) for all edges ij ∈ E(Kn), 
and for each position (i, i) on the leading diagonal we now enter the unique symbol still 
missing from row i. Conversely, let L ∈ Lsym

n . We can obtain a unique element φL ∈ Φn

from L in the following way. Colour each edge ij of the complete graph Kn on vertex 
set [n] with the symbol in position (i, j) of L. It is clear that φL is proper, and thus φL

is optimal. Moreover, it is clear that we can uniquely recover L from φL.
Now, let K◦

n be the graph obtained from Kn by adding a loop ii at every vertex 
i ∈ [n], and for every φ ∈ Φn, let φ◦ be the unique proper n-edge-colouring of K◦

n such 
that the restriction of φ◦ to the underlying simple graph is φ. The rainbow 2-factors in 
K◦

n admitted by φ◦ correspond to transversals in Lφ in the following way. If L ∈ Lsym
n

and T is a transversal of L, then the subgraph of K◦
n induced by the edges ij where 

(i, j) ∈ T is a rainbow 2-factor. If σ is the underlying permutation of T , then the cycles 
of this rainbow 2-factor are precisely the cycles in the cycle decomposition of σ, up 
to orientation. Therefore a rainbow Hamilton cycle in K◦

n corresponds to two disjoint 
Hamilton transversals in Lφ.

By these correspondences, for n odd, if L ∈ Lsym
n is a uniformly random symmetric 

n × n Latin square, then φL is a uniformly random optimal edge-colouring of Kn. By 
Theorem 1.3(ii), φL admits a rainbow Hamilton cycle F with high probability. Since F is 
also a rainbow Hamilton cycle in K◦

n, the corresponding transversals in L are Hamilton, 
as desired. �

Note that, if n is odd, the leading diagonal of any L ∈ Lsym
n is also a transversal, 

disjoint from any Hamilton transversal. Indeed, by symmetry all symbols appear an 
even number of times off of the leading diagonal, and therefore an odd number of times 
(and thus exactly once) on the leading diagonal.
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