UNIVERSITYOF
 BIRMINGHAM

University of Birmingham Research at Birmingham

Search for associated production of a boson with an invisibly decaying Higgs boson or dark matter candidates at $\sqrt{ }=13 \mathrm{TeV}$ with the ATLAS detector ATLAS Collaboration; Newman, Paul

DOI:
10.1016/j.physletb.2022.137066

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

ATLAS Collaboration \& Newman, P 2022, 'Search for associated production of a boson with an invisibly decaying Higgs boson or dark matter candidates at $\sqrt{ }=13 \mathrm{TeV}$ with the ATLAS detector', Physics Letters B, vol. 829, 137066. https://doi.org/10.1016/j.physletb.2022.137066

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

> -Users may freely distribute the URL that is used to identify this publication.
> -Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
> -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
> -Users may not further distribute the material nor use it for the purposes of commercial gain.
> Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
> When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Search for associated production of a Z boson with an invisibly decaying Higgs boson or dark matter candidates at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector

The ATLAS Collaboration*

A R T I C L E I N F O

Article history:

Received 17 November 2021
Received in revised form 21 January 2022
Accepted 18 March 2022
Available online 4 April 2022
Editor: M. Doser

Abstract

A search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying Z boson, are presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of 13 TeV , delivered by the LHC, corresponding to an integrated luminosity of $139 \mathrm{fb}^{-1}$ and recorded by the ATLAS experiment. Assuming Standard Model cross-sections for $Z H$ production, the observed (expected) upper limit on the branching ratio of the Higgs boson to invisible particles is found to be $19 \%(19 \%)$ at the 95% confidence level. Exclusion limits are also set for simplified dark matter models and two-Higgs-doublet models with an additional pseudoscalar mediator.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP ${ }^{3}$.

Contents

1. Introduction1
2. ATLAS detector 2
3. Data and simulated event samples 3
4. Object selection 3
5. Event selection 4
6. Background estimates and signal extraction 4
7. Systematic uncertainties 5
8. Results 7
9. Conclusion 9
Declaration of competing interest 11
Acknowledgements 11
References 11
The ATLAS Collaboration 13

1. Introduction

Understanding the nature of dark matter (DM) is one of the most important goals in particle physics today. Experiments at particle colliders such as the Large Hadron Collider (LHC) might provide sensitivity that complements searches for naturally occurring DM particles or their decay products [1-8] by attempting to produce and detect them in the laboratory. The nature of DM particles remains largely unknown, and there is no obvious candidate

[^0]in the Standard Model (SM) of particle physics. One of the most credited hypotheses is that DM candidates are weakly interacting massive particles (WIMPs, denoted by the symbol χ). At hadron colliders, searches for WIMP-like DM production rely on one or more visible particles being produced in association with the invisible DM candidates, whose experimental signature would be the missing transverse momentum ($E_{\mathrm{T}}^{\mathrm{miss}}$) in the collision event.

Several models have been proposed in the past decades, with different assumptions about the DM couplings to SM particles and related production processes. As DM particles must be massive, searches for physics beyond the SM in which DM couples to the Higgs boson are strongly motivated. The Higgs boson was discov-

(a)

(b)

(c)

(d)

Fig. 1. Example Feynman diagrams of the probed processes: (a) associated production of a Higgs boson and a Z boson, where the Higgs boson decays into DM particles, (b) production of a Z boson and a mediator from a quark initial state in the simplified DM models, and (c) $g g$ - and (d) bb-initiated 2HDM $+a$ diagrams.
ered in 2012 by the ATLAS and CMS Collaborations at the LHC, with a mass of approximately 125 GeV [9,10]. If the DM particles are in the right mass range, they could even be produced in decays of the Higgs boson. The SM branching ratio prediction for Higgs boson decays into $Z Z \rightarrow 4 v$ is only 0.1% [11]. Assuming SM production of the Higgs boson, its branching ratio to invisible particles, $\mathcal{B}(H \rightarrow$ inv $)$, can be constrained in the absence of a significant excess of such events above the expected background.

Searches for an excess in events with two electrons or muons ${ }^{1}$ and missing transverse momentum ($E_{\mathrm{T}}^{\text {miss }}$) are sensitive to Higgs boson decays into DM if the Higgs boson is produced in association with a Z boson that decays into leptons. The analysis is also sensitive to so-far undiscovered heavier scalars produced together with the Z boson and decaying into invisible particles.

Searches in the $Z+E_{T}^{\text {miss }}$ final state can also be used to probe simplified DM models [12,13], in which DM is produced through a mediator particle that also couples to quarks and as such searches for dijet resonances are the most sensitive [14,15]. In the analysis presented here, benchmark models are used, and these consider schannel production of DM particles through vector or axial-vector mediators. The models are defined by five parameters: the mediator and DM particle masses, and the mediator couplings g_{χ}, g_{q}, and g_{ℓ} to the DM particles, quarks, and leptons, respectively. Exclusion limits are set in a plane spanning the DM and mediator masses, for chosen values of the mediator couplings.

Furthermore, the analysis tests two-Higgs-doublet models (2HDM) that include an additional pseudoscalar mediator a and are called 2HDM $+a$ [16-18]. The two Higgs doublets in the model are CP-conserving and of type II [19-22], and the lighter scalar is identified as the observed 125 GeV Higgs boson. Four benchmark scenarios are probed in various planes as a function of the mass of the pseudoscalar Higgs boson, m_{A}; the mass of the additional pseudoscalar, m_{a}; the ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$; and $\sin \theta$, where θ is the mixing angle between the two CP-odd weak spin-0 eigenstates [17]. Example Feynman diagrams for all probed models are shown in Fig. 1.

The $Z+E_{\mathrm{T}}^{\text {miss }}$ channel is one of the most sensitive for the $H \rightarrow$ inv search and the most sensitive channel over much of the parameter space for $2 \mathrm{HDM}+a$ searches.

Previous results in the $Z+E_{\mathrm{T}}^{\text {miss }}$ final state were obtained with partial Run-2 datasets by the ATLAS Collaboration. Using $36 \mathrm{fb}^{-1}$ of data, ATLAS set a 95% confidence level (CL) upper limit of 67% on the Higgs boson branching ratio to invisible particles, with an expected limit of 39% in the absence of signal [23]. The same paper also reported exclusion limits for the simplified DM models mentioned above. Combining different Higgs boson production channels and different LHC runs, including $36 \mathrm{fb}^{-1}$ from Run 2 , ATLAS set an upper limit of 26% (17% expected) on the Higgs boson branching ratio to invisible particles [24]. The CMS Collaboration

[^1]published results in the $Z+E_{\mathrm{T}}^{\text {miss }}$ final state based on $137 \mathrm{fb}^{-1}$ of Run-2 data, including limits on the branching ratio for invisible decays of the Higgs boson (29% observed vs 25% expected), simplified DM models and $2 \mathrm{HDM}+a$ models [25]. CMS also combined results from different production modes and LHC runs to set an upper limit of 19% (15% expected) on the Higgs boson branching ratio to invisible particles [26]. Constraints on 2HDM $+a$ models were also set by the ATLAS and CMS Collaborations using various final states [18,25,27,28].

The analysis strategy is outlined briefly in the following. Using the full LHC Run-2 dataset of $139 \mathrm{fb}^{-1}$ recorded with the ATLAS detector, events in this search are required to have two oppositely charged electrons or muons, consistent with originating from a Z boson decay, as well as significant $E_{\mathrm{T}}^{\text {miss }}$. The same event selection is applied in both the $Z H \rightarrow \ell \ell+$ inv search and the other DM searches. A boosted decision tree (BDT) is trained so that its output is used as the discriminating observable in the search for invisible Higgs boson decays, while the searches in the context of simplified DM models and 2HDM $+a$ models are based on an observable representing the transverse mass distribution of the dominant $Z Z$ background. Background distributions are estimated using simulated samples, and a simultaneous fit is performed in the signal region and three background control regions to constrain the systematic uncertainties and determine the normalisation of some of the backgrounds. The sensitivity of the analysis is considerably improved in comparison with a projection of the previous analysis scaled to the present integrated luminosity, mainly due to the use of the BDT and the simultaneous fit of the signal and background control regions.

2. ATLAS detector

The ATLAS experiment [29] at the LHC is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4π coverage in solid angle. ${ }^{2}$ It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking detector covers the pseudorapidity range $|\eta|<2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile hadronic calorimeter covers the central pseudorapidity range ($|\eta|<1.7$). The endcap and forward regions are

[^2]instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to $|\eta|=4.9$. The muon spectrometer surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 Tm across most of the detector. The muon spectrometer includes a system of precision chambers for tracking and fast detectors for triggering. A two-level trigger system is used to select events [30]. The firstlevel trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate below 100 kHz . This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average depending on the data-taking conditions. An extensive software suite [31] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3. Data and simulated event samples

The presented analysis is performed using data from $p p$ collisions, produced at $\sqrt{s}=13 \mathrm{TeV}$ by the LHC and recorded with the ATLAS detector between 2015 and 2018. Data quality requirements [32] are applied to ensure that all detector subsystems were operational. The data correspond to an integrated luminosity of $139 \mathrm{fb}^{-1}$. The data sample was collected using a set of singleelectron [33] and single-muon [34] triggers which require the presence of an electron (muon) with transverse energy E_{T} (transverse momentum p_{T}) above thresholds in the range of $20-26 \mathrm{GeV}$ depending on the lepton flavour and data-taking period [35]. The trigger selections also impose object quality and isolation requirements. There must be a geometrical match between a trigger lepton and a lepton selected in the offline analysis as described in Section 4.

Simulated Monte Carlo (MC) samples are used to optimise the analysis selection, to estimate the signal, and as input to the background estimation. Unless otherwise mentioned, the NNPDF3.0 parton distribution function (PDF) set [36] was used for the hard interaction and the events were passed through the ATLAS detector response simulation [37] within the Geant4 framework [38]. The profiles of the additional inelastic $p p$ interactions (pile-up) in the simulation match those of each dataset between 2015 and 2018, and were obtained by overlaying minimum-bias events, simulated using the soft QCD processes of Pythia8.186 [39] with the NNPDF2.3Lo PDF set [40] and a set of parameters called the A3 tune [41]. For all samples, except those generated with Sherpa [42], the EvtGen 1.2.0 [43] program was used to simulate the properties of the b - and c-hadron decays.

Associated production of a Higgs boson and a Z boson was simulated with Powheg Box v2 [44], including both the $q q / q g$ and $g g$ initial states. A Higgs boson mass of 125 GeV was assumed. The $q q / q g \rightarrow Z H$ process was calculated at next-to-leading order (NLO) in QCD, and the MINLO technique [45] was used to merge 0 -jet and 1 -jet events. The $g g \rightarrow Z H$ contribution was modelled at leading order (LO) in QCD. The parton-level events were passed to Pythia 8.212 [46] with the AZNLO tune [47] to model the Higgs boson decay into four neutrinos as invisible decays, and also the parton showering, hadronisation, and multiple parton interactions (MPI). The samples were normalised to next-to-next-to-leading order (NNLO) in QCD with electroweak (EW) corrections (for $q q / q g \rightarrow Z H$) or to NLO+next-to-leading logarithms (NLO+NLL) in QCD (for $g g \rightarrow Z H$) [11,48-55]. In addition, parameterised EW corrections were applied as a function of the transverse momentum of the Z boson for the $q q / q g \rightarrow Z H$ process [11]. Allowing the Z boson to decay into electron, muon or τ-lepton pairs, and assuming a Higgs boson branching ratio to invisible particles of 100%, the production cross-section times branching ratio is $77.0 \pm 1.5 \mathrm{fb}$ for $q q / q g \rightarrow Z H$ and $12.4 \pm 2.8 \mathrm{fb}$ for $g g \rightarrow Z H[11]$.

For the simplified DM models, the s-channel process $p p \rightarrow$ $Z(\ell \ell) \chi \bar{\chi}$ events were simulated with MADGraph5_AMC@NLO 2.2.2 at NLO in QCD [56], and fed into Pythia 8.212 with the A14 tune [57]. Vector and axial-vector mediator samples were produced for various mediator and DM masses, with the mediator couplings to DM and quarks set to $g_{\chi}=1.0$ and $g_{q}=0.25$, respectively [12,13]. Only the leptophobic case is probed, i.e. the mediator coupling to leptons was set to $g_{\ell}=0$. These samples were passed through a faster detector simulation using a parameterisation of the calorimeter response [37].

MadGraph 5 was used to generate the $2 \mathrm{HDM}+a$ signals, from both the $g g$ and $b b$ initial states, at LO in QCD, in combination with Pythia 8.244 and the A14 tune. The model contains 14 parameters, including the DM mass, the masses of the five Higgs bosons, the ratio of the vacuum expectation values of the two Higgs doublets $(\tan \beta)$, various couplings, and the mixing angles α and θ between the CP-even and CP-odd weak eigenstates, respectively. The $b b$-initiated production process is particularly important for high values of $\tan \beta$. Parameters and scanning planes were chosen following the recommendations in Ref. [17].

Diboson and triboson backgrounds were simulated with Sherpa 2.2.2, including the parton showering, hadronisation and MPI, based on the default Sherpa tunes. The $Z Z \rightarrow \ell \ell \nu v$ and $Z Z \rightarrow 4 \ell$ events were simulated for both the $q q / q g$ and $g g$ initial states and include electrons and muons from τ-lepton decays. The $q q / q g \rightarrow$ ZZ matrix elements were calculated at NLO in QCD for up to one jet, and at LO for two or three jets, with the Comix [58] and OpenLoops [59-61] matrix-element generators. The merging with the Sherpa parton shower [62] was performed using the MEPS@NLO prescription [63]. NLO EW corrections [59,64-67] were applied as a function of $E_{\mathrm{T}}^{\text {miss }}$ or the p_{T} of one of the Z bosons in the 4ℓ final state, using the average of additive and multiplicative approaches [67]. The $g g \rightarrow Z Z$ process was modelled at LO for up to one jet. NLO corrections for the $g g \rightarrow \ell \ell \nu \nu$ continuum process are calculated using the Matrix package $[60,68,69]$ with improvements in the calculation of the loop amplitudes [70]. The $W Z$, $W W$ (including $g g \rightarrow W W$), and $V V V$ contributions were modelled as well, with the same matrix-element accuracies as the $Z Z$ contributions. The generation includes off-shell effects, $g g \rightarrow H$ contributions and interference between processes [60].

The $Z+$ jets background was modelled with Sherpa 2.2.1, with matrix elements calculated at NLO in QCD for up to two jets and at LO for three or four jets. Top-quark pair ($t \bar{t}$) and single top-quark ($W t$, s-channel and t-channel) production was simulated using Powheg Box v2 (v1 for t-channel production) at NLO in QCD [44, 71-75], interfaced to Pythia 8.230 with the A14 tune. The predictions were normalised to NNLO+next-to-next-to-leading-logarithm (NNLO+NNLL) cross-section calculations [76-79]. Associated production of a top-quark pair and a W or Z boson, $t \bar{t}+V$, was simulated with MadGraph5_AMC@NLO 2.2.3, and interfaced to Pythia 8.210 with the A14 tune. In this case, predictions were normalised to NLO cross-section calculations [11,56].

4. Object selection

Selected events are required to contain at least one vertex with a minimum of two associated tracks with $p_{\mathrm{T}}>500 \mathrm{MeV}$ [80]. The primary vertex is chosen to be the vertex reconstructed with the largest $\Sigma p_{\mathrm{T}}^{2}$ of its associated tracks. The event quality is checked to remove events with noise bursts or coherent noise in the calorimeters [32].

Electron candidates are reconstructed by matching inner-detector tracks to clusters of energy deposited in the EM calorimeter. Electrons must have $p_{\mathrm{T}}>7 \mathrm{GeV}$ and $|\eta|<2.47$. The associated track must have $\left|d_{0}\right| / \sigma_{d_{0}}<5$ and $\left|z_{0}\right| \sin \theta<0.5 \mathrm{~mm}$, where d_{0} $\left(z_{0}\right)$ is the transverse (longitudinal) impact parameter relative to
the primary vertex, $\sigma_{d_{0}}$ is the uncertainty in d_{0}, and θ is the polar angle of the track. Candidates are identified with a likelihood method and must satisfy 'medium' identification criteria [81], while 'loose' criteria are used to veto additional electrons in each analysis region. The likelihood relies on the shape of the EM shower measured in the calorimeter, the quality of the track reconstruction, and the quality of the match between the track and the cluster. The energy of the EM clusters associated with the electrons is calibrated in successive steps using a combination of simulationbased and data-driven correction factors. The electron reconstruction, identification, and energy calibration algorithms, as well as their performance, including the associated systematic uncertainties, are studied in Ref. [81]. Muon candidates are reconstructed in the range $|\eta|<2.5$ by combining tracks in the inner detector with tracks in the muon spectrometer. All muon candidates must have $p_{\mathrm{T}}>7 \mathrm{GeV},\left|d_{0}\right| / \sigma_{d_{0}}<3$, and $\left|z_{0}\right| \sin \theta<0.5 \mathrm{~mm}$. In order to improve the momentum resolution, further quality requirements are placed on the muons. 'Medium' quality requirements [82] are used for candidate muons and 'loose' criteria are used to veto additional muons. The algorithms and efficiency of the muon reconstruction and identification, as well as the momentum calibration, including the associated systematic uncertainties, are estimated as described in Refs. [82,83]. To suppress hadronic and non-prompt lepton background, electron and muon candidates are required to satisfy the particle-flow isolation criteria, which are based on tracking and calorimeter measurements [83].

Jets in the range $|\eta|<4.5$ and $p_{\mathrm{T}}>20 \mathrm{GeV}$ are reconstructed with a particle-flow algorithm, which combines energy deposits in the calorimeter with inner-detector tracks [84], using the anti- k_{t} algorithm $[85,86]$ with a radius parameter R of 0.4 . A jet-vertextagging technique based on a multivariate likelihood [87] is applied to jets with $|\eta|<2.4$ and $p_{\mathrm{T}}<60 \mathrm{GeV}$ to suppress jets that are not associated with the primary vertex of the event. Jets are further calibrated according to in situ measurements of the jet energy scale [88]. Jets in the range $|\eta|<2.5$ are identified as b-jets with the MV2c10 algorithm, described in Ref. [89]. The b-jet identification efficiency is about 85% with a rejection factor of about 25 for light-flavour jets, as measured in a sample of simulated $t \bar{t}$ events.

Overlaps between reconstructed objects are accounted for with a removal procedure that is mainly based on the angular separation between the different final-state objects. The procedure is the same as the one described in Ref. [90].

The $\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$ of the event is computed as the negative vectorial sum of the transverse momenta of electrons, muons, jets and a track-based soft term [91] that accounts for the contribution from prompt particles that are not contained in the other objects. The $E_{\mathrm{T}}^{\text {miss }}$ significance [92] is defined as $S_{E_{\mathrm{T}}^{\text {miss }}}=E_{\mathrm{T}}^{\text {miss }} /\left(\sigma_{\mathrm{L}} \sqrt{1-\rho_{\mathrm{LT}}^{2}}\right)$, where the parameters σ_{L} and ρ_{LT} are calculated from MC simulation and shown to describe the data well; the quantity σ_{L} denotes the resolution of the p_{T} of the system and ρ_{LT} is a correlation factor between resolutions of the p_{T} components parallel and perpendicular to the $E_{\mathrm{T}}^{\text {miss }}$ vector.

Further related quantities used in the analysis are H_{T}, the scalar sum of p_{T} for all leptons and those jets with $p_{\mathrm{T}}>30 \mathrm{GeV}$, and $f_{\text {soft }}=\left|1-\left|\vec{E}_{\mathrm{T}}^{\text {miss }}+\sum \vec{p}_{\mathrm{T}}^{\mathrm{jets}}\right| / p_{\mathrm{T}}^{\ell \ell}\right|$, a measure of the fraction of the event's p_{T} carried by the soft term, where $\sum \vec{p}_{\mathrm{T}}^{\mathrm{jets}}$ is the vectorial sum of the transverse momenta of all jets in the event with $p_{\mathrm{T}}>$ 30 GeV and $p_{\mathrm{T}}^{\ell \ell}$ is the p_{T} of the $\ell \ell$ system.

5. Event selection

Events are selected in a signal region (SR) designed to capture as many signal events as possible, and three control regions (CR) which are used to constrain the most important background pro-
cesses, and which are expected to have negligible contamination from signal events.

Events in the $S R$ are required to have exactly two oppositely charged electrons or muons with an invariant mass consistent with the mass of the Z boson. The leptons must have $p_{\mathrm{T}}^{\ell}>20,30 \mathrm{GeV}$ when ordered in increasing p_{T}. The lepton pair is required to have an invariant mass $m_{\ell \ell}$ in the range $76<m_{\ell \ell}<106 \mathrm{GeV}$. In order to select events in the SR consistent with invisible particles recoiling against the Z boson, events are required to have $E_{\mathrm{T}}^{\text {miss }}>90 \mathrm{GeV}, S_{E_{\mathrm{T}}^{\text {miss }}}>9$ and a separation of $\Delta R_{\ell \ell}<1.8$ between the leptons.

An $e \mu \mathrm{CR}$ is defined in exactly the same way as the SR apart from requiring the two leptons to have different flavours. This CR helps constrain the sum of the non-resonant backgrounds from $t \bar{t}$, single top-quark, $W W$ and $Z \rightarrow \tau \tau$ events. The $e \mu C R$ is about 98% pure in non-resonant background.

A CR containing exactly four leptons, the $4 \ell C R$, is used to constrain the $Z Z$ background. Its events must contain two pairs of same-flavour oppositely charged leptons, with the four leptons required to have $p_{\mathrm{T}}^{\ell}>7,15,15,27 \mathrm{GeV}$ when ordered in increasing p_{T}. If all four leptons are of the same flavour, the chosen pairing combination is the one minimising the quantity $\left|m_{\ell \ell 1}-m_{Z}\right|+\left|m_{\ell \ell 2}-m_{Z}\right|$, where the indices 1 and 2 denote the lepton pairs and m_{Z} is taken to be 91.19 GeV . Both lepton pairs must satisfy $76<m_{\ell \ell}<106 \mathrm{GeV}$. In order to mimic the SR , the quantities $E_{\mathrm{T}}^{\mathrm{miss}^{\prime}}$ and $S_{E_{\mathrm{T}}^{\text {miss' }}}$ are calculated in the same way as $E_{\mathrm{T}}^{\text {miss }}$ and $S_{E_{\mathrm{T}}^{\text {miss }}}$, but one pair of leptons, which is chosen at random, is treated as invisible and excluded from the calculation. The selection criteria are the same as for the $S R$, i.e. $E_{\mathrm{T}}^{\mathrm{miss}}>90 \mathrm{GeV}$, $S_{E_{\mathrm{T}}^{\text {miss }}}>9$ and $\Delta R_{\ell \ell}<1.8$, where the final requirement is imposed on the remaining lepton pair. The $4 \ell C R$ is almost 100% pure in $Z Z$ events.

A CR containing exactly three leptons, the $3 \ell C R$, is used to constrain the $W Z$ background. In order to select the Z boson in the event, two of the leptons must have opposite charge, the same flavour, $p_{\mathrm{T}}^{\ell}>20,30 \mathrm{GeV}$ and $76<m_{\ell \ell}<106 \mathrm{GeV}$. If there are two combinations that pass these requirements, the one closer in mass to m_{Z} is taken. To select events consistent with a W boson decay, it is required that the third lepton has $p_{\mathrm{T}}^{\ell}>20 \mathrm{GeV}$, the event has $E_{\mathrm{T}}^{\text {miss }}>30 \mathrm{GeV}$ and $S_{E_{\mathrm{T}}^{\text {miss }}}>3$, and the transverse mass of the W boson candidate satisfies $m_{\mathrm{T}}^{W}=\sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}}\left(1-\cos \Delta \phi\left(\ell, E_{\mathrm{T}}^{\mathrm{miss}}\right)\right)}>$ 60 GeV , where $\Delta \phi\left(\ell, E_{\mathrm{T}}^{\mathrm{miss}}\right)$ is the azimuthal angle between the third lepton and $\vec{E}_{\mathrm{T}}^{\text {miss }}$. The $3 \ell \mathrm{CR}$ is about 93% pure in $W Z$ events.

Events with one or more identified b-jets are removed in all regions to suppress events containing top quarks.

Considering all signal events in which the Z boson decays into an electron, muon or τ-lepton pair, the $S R$ selection has an acceptance times efficiency of $\sim 8 \%(\sim 19 \%)$ for quark-induced (gluon-induced) $Z H \rightarrow \ell \ell+$ inv, resulting in an expectation of 120 events for $\mathcal{B}(H \rightarrow$ inv $)=10 \%$. For an example signal point in the simplified DM model $\left(m_{\chi}=1 \mathrm{GeV}, m_{\text {med }}=900 \mathrm{GeV}\right)$, the acceptance times efficiency is $\sim 20 \%$ with 145 events expected. For a $g g$-induced $2 \mathrm{HDM}+a$ signal point $(\tan \beta=1.0, \sin \theta=0.7$, $m_{A}=600 \mathrm{GeV}, m_{a}=400 \mathrm{GeV}, m_{\chi}=10 \mathrm{GeV}$), it is $\sim 32 \%$ with 182 events expected. For all signal models the acceptance times efficiency is very similar for the dielectron and dimuon selections.

6. Background estimates and signal extraction

The signal and all backgrounds are estimated through simultaneous likelihood fits in the signal and control regions, using MC simulation as input. The dominant background in the $S R$ is the $Z Z$ background, followed by $W Z, Z+$ jets, and the non-resonant backgrounds ($W W, t \bar{t}$, single top-quark and $Z \rightarrow \tau \tau$), which are
treated together. Small contributions arising from triboson production, $t \bar{t}+V$ and $Z Z \rightarrow 4 \ell$, where two of the leptons are not reconstructed, are referred to as 'Other' in the following. The $Z Z$ and non-resonant backgrounds have the same topology as the signal (two leptons and $E_{\mathrm{T}}^{\mathrm{miss}}$). The SM Higgs boson decay $Z Z \rightarrow 4 v$ is included as part of the signal, while other decays are estimated to be small and neglected. The $W Z$ background enters the SR if one of the leptons is not reconstructed. In most of the $Z+$ jets background, significant $E_{\mathrm{T}}^{\text {miss }}$ arises through mismeasurement of the energy of the jets or is due to neutrinos or muons that are missed by the reconstruction, coming from semileptonic heavyflavour decays. The normalisation of the MC simulation prediction for $Z+$ jets was cross-checked using events with $S_{E_{\mathrm{T}}^{\text {miss }}}<9$, which has a high purity for this process. A sample of $\gamma+$ jets events, which has similar production diagrams to $Z+$ jets, was used to check how well the MC simulation described the shape of the data. In both cases the MC simulation prediction and data were observed to agree within the statistical and systematic errors.

The data are compared with expectation by performing simultaneous maximum-likelihood fits, using the HistFitter framework [93], to distributions in the signal and control regions. A separate fit is performed for each signal hypothesis. Confidence intervals are based on a profile-likelihood-ratio test statistic [94], assuming asymptotic distributions for the test statistic. The CL_{s} method [94] is used to set exclusion limits. The systematic uncertainties affecting the signal and background distribution normalisations and shapes across categories are parameterised by making the likelihood function depend on dedicated nuisance parameters, constrained by additional Gaussian probability terms, which are correlated between the regions. The normalisations of the signal, of the $W Z$ background and of the sum of non-resonant backgrounds are allowed to float in the fits, as their respective CRs have large numbers of events. The individual components of the non-resonant background are allowed to vary independently within their systematic uncertainties. As the $4 \ell C R$ has low statistics the normalisation of the $Z Z$ background, like those of the other backgrounds $(Z+$ jets, triboson production, $t \bar{t}+V, Z Z \rightarrow 4 \ell)$, can vary only within the systematic uncertainties.

The sensitivity of the $H \rightarrow$ inv search is increased by using a BDT that is coded in the TMVA package [95] to improve the separation between signal and background events. The BDT uses a set of kinematic distributions that are selected because they have a different shape for signal and background. These are combined into a single output variable that provides better signal/background separation than any of the individual inputs alone. Eight variables are used: $E_{\mathrm{T}}^{\text {miss }} / H_{\mathrm{T}}, S_{E_{\mathrm{T}}^{\text {miss }}}, H_{\mathrm{T}}, f_{\text {soft }}, m_{\ell \ell}, \Delta R_{\ell \ell}, y_{\ell \ell}$ (the rapidity of the $\ell \ell$ system), and $\Delta \phi\left(\ell \ell, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right.$) (the azimuthal angle between the p_{T} of the $\ell \ell$ system and $\vec{E}_{\mathrm{T}}^{\text {miss }}$). Other variables were considered but they did not improve the sensitivity significantly. The BDT was trained in the SR using simulated events for the $Z H \rightarrow \ell \ell+$ inv signal and for the sum of all backgrounds. The BDT output distribution is used in the profile likelihood fit for the SR and $e \mu C R$. The $E_{\mathrm{T}}^{\text {miss }}$ distribution is used for the 3ℓ and 4ℓ CRs as the shapes of many of the BDT input variables for the background processes differ significantly between the CRs and SR. Example post-fit distributions in the CRs are shown in Figs. 2(a)-2(c), after the $Z H \rightarrow \ell \ell+$ inv simultaneous fit to the SR and CRs. It can be seen that the data are well described by the expectation. The fit uses the same binning as shown in these plots.

For the searches considering the simplified DM models or $2 \mathrm{HDM}+a$ models, the transverse mass distribution is used in the maximum-likelihood fits for the SR and the $e \mu C R$. The quantity
$m_{\mathrm{T}}=\sqrt{\left[\sqrt{m_{Z}^{2}+\left(p_{\mathrm{T}}^{\ell \ell}\right)^{2}}+\sqrt{m_{Z}^{2}+\left(E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2}}\right]^{2}-\left[\vec{p}_{\mathrm{T}}^{\ell \ell}+\vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right]^{2}}$
is the transverse mass of the dominant $Z Z$ background, and gives good separation between signal and background for the majority of the DM and $2 \mathrm{HDM}+a$ signals considered in this analysis. BDTs were not used for the DM and $2 \mathrm{HDM}+a$ searches, due to the complexity of training over many mass points. It was found that the m_{T} distribution provides better sensitivity over much of the probed parameter space than a BDT trained for one signal point. The m_{T} distribution is only used in the fit for $m_{T}>200 \mathrm{GeV}$. Fig. 2(d) shows that the background estimate is in good agreement with the data for the m_{T} distribution in the $e \mu \mathrm{CR}$ after a simultaneous fit to the signal and control regions in the context of the simplified DM models (axial-vector signal with $\left.\left(m_{\chi}, m_{\text {med }}\right)=(150,900) \mathrm{GeV}\right)$. As in the $H \rightarrow$ inv search, the $E_{\mathrm{T}}^{\text {miss }}$ distribution is used for the 3ℓ and 4ℓ CRs.

7. Systematic uncertainties

Signal and background expectations are subject to statistical, detector-related and theoretical uncertainties. The shapes of the observable distributions, the acceptances in signal and control regions, and the overall background sample normalisations that are not free to float in the fit can be affected when varying the simulation to estimate the impact of systematic uncertainties. As discussed in Section 6, the uncertainties are treated as nuisance parameters in the fits and correlated between signal and control regions, which helps to constrain many of them, and reduces their impact. The post-fit impact of the systematic uncertainties can be found in Section 8.

Among the systematic uncertainties, the uncertainties in modelling the backgrounds, especially the dominant $Z Z \rightarrow \ell \ell \nu \nu$ background, have the largest impact. Uncertainties in the factorisation of NLO EW corrections and higher-order QCD corrections to the $Z Z \rightarrow \ell \ell \nu v$ background [59,64-66] are taken from the deviation of the additive and multiplicative approaches from their average [67]. For all diboson backgrounds, uncertainties due to missing higher orders in the QCD calculation are estimated by varying the renormalisation and factorisation scales by a factor of two, either independently or correlated and taking the largest variation as the uncertainty, while the effects of PDF and α_{s} uncertainties are calculated using the PDF4LHC prescription [96]. The impact of the choice of parton shower and hadronisation model is evaluated by comparing the samples from the nominal generator set-up with samples produced with varied resummation and CKKW matching procedure [97,98], and a different recoil scheme tuned in Sherpa.

The effects of QCD uncertainties on the $Z+$ jets background are also non-negligible. They are estimated by varying the renormalisation and factorisation scales by a factor of two. PDF uncertainties are also included. Modelling uncertainties in the $t \bar{t}$ and single-topquark backgrounds are subdominant; their estimation is performed by varying the generator used for the hard scatter, as well as the renormalisation and factorisation scales, the parton shower model, α_{s}, and the PDF sets. The modelling uncertainties of the remaining background processes are also evaluated but have no impact on the final result.

For the $Z H \rightarrow \ell \ell+$ inv signal, the uncertainty due to missing higher orders in QCD is estimated in bins of the kinematic observables using a scheme similar to the one discussed in Ref. [99]. The PDF uncertainties are evaluated using the PDF4LHC prescription [96]. To estimate the impact of using a different parton shower model, the default PYTHIA 8 parton shower algorithm is replaced with Herwig 7 [100]. Uncertainties due to the EW corrections are estimated by taking the difference between the additive and multiplicative corrections. The effects of QCD scale uncertainties for the simplified DM model and the $2 \mathrm{HDM}+a$ prediction are evaluated by varying the scales as described for the diboson backgrounds. The parton shower uncertainty is estimated with the eigenvariations

Fig. 2. Distributions in data compared with simulated events in the different CRs after (a, b, c) the simultaneous $Z H \rightarrow \ell \ell+$ inv fit and (d) a fit in the context of the simplified DM models (axial-vector signal with $\left(m_{\chi}, m_{\text {med }}\right)=(150,900) \mathrm{GeV}$): (a) $E_{\mathrm{T}}^{\text {miss }}$ distribution in the $3 \ell \mathrm{CR}$, (b) $E_{\mathrm{T}}^{\text {miss }}$ distribution in the $4 \ell \mathrm{CR}$, (c) BDT distribution in the $e \mu$ CR , (d) m_{T} distribution in the $e \mu \mathrm{CR}$. As defined in the text, 'Non-res.' includes $W W$, $t \bar{t}$, single-top and $Z \rightarrow \tau \tau$ processes, while 'Other' stands for triboson, $t \bar{t}+V$, and $Z Z \rightarrow 4 \ell$ production. Events recorded below (above) the x-range of the BDT plot are included in the first (last) bin shown. The bottom panel in each figure shows the ratio of the observed data to the predicted yields. The shaded bands in top and bottom panels represent the total statistical and systematic error of the background.
of the A14 tune. The PDF uncertainty includes variations of the NNPDF 3.0 set, as well as a comparison with two alternative PDF sets.

The detector-related uncertainties affecting signal and background predictions are dominated by jet reconstruction uncertainties. Uncertainties in the jet energy scale (JES) [88] arise from the calibration and are derived as function of the jet p_{T} and η. Further contributions emerge from the jet flavour composition and the pile-up conditions. Uncertainties in the jet energy resolution (JER) depend on the jet p_{T} and η and arise both from the method
used to derive the resolution and from the difference between simulation and data [88]. Uncertainties in the lepton identification and lepton energy/momentum scale and resolution are included in the fits. These are derived using simulated and measured events with $Z \rightarrow \ell \ell, J / \psi \rightarrow \ell \ell$ and $W \rightarrow \ell v$ decays [81,83]. The uncertainties in the lepton and jet energy scales are propagated to the uncertainty in the $E_{\mathrm{T}}^{\text {miss }}$ [91]. Additionally, the uncertainties from the momentum scale and resolution of the track-based soft term are included. The uncertainty in the combined 2015-2018

 statistical and systematic error of the background.

Table 1
Summary of signal and control region yields after the simultaneous fit for the $Z H \rightarrow \ell \ell+$ inv signal. Also given is the total post-fit uncertainty of each number. As defined in the text, 'Non-resonant' includes $W W, t \bar{t}$, single top-quark and $Z \rightarrow \tau \tau$ processes. Note the uncertainty on the total expectation does not equal the sum of the uncertainties of individual contributions added in quadrature, due to correlations between the uncertainties.

	SR	$e \mu \mathrm{CR}$	$3 \ell \mathrm{CR}$	$4 \ell \mathrm{CR}$
Observed events	6382	891	11622	314
Expected yields after fit	6385 ± 81	895 ± 29	11620 ± 110	296 ± 11
$Z H \rightarrow \ell \ell+$ inv	4 ± 110	-	-	-
$Z Z \rightarrow \ell \ell \nu \nu$	2681 ± 110	0.763 ± 0.064	2.61 ± 0.18	-
W Z	1595 ± 34	11.6 ± 1.1	10623 ± 150	-
$Z+$ jets	1111 ± 100	0.79 ± 0.30	235 ± 89	-
Non-resonant	881 ± 39	876 ± 29	220 ± 31	-
$Z Z \rightarrow 4 \ell$	85.8 ± 5.5	0.621 ± 0.056	443 ± 40	295 ± 11
$t \bar{t}+V$	12.7 ± 2.8	1.76 ± 0.41	53 ± 12	-
Triboson	13.0 ± 6.2	3.1 ± 1.4	44 ± 20	0.48 ± 0.23

integrated luminosity is 1.7% [101], obtained using the LUCID-2 detector [102].

8. Results

Fig. 3 shows the BDT and m_{T} distributions of the selected data events, compared with the estimated backgrounds after the simultaneous fits described in Section 6 are performed. For the $Z H \rightarrow \ell \ell+$ inv case, Table 1 gives the number of observed events as well as the signal and background expectations after the simultaneous fit. The numbers for the DM fits are very similar, with some differences in the $e \mu \mathrm{CR}$ as the m_{T} distribution is only used in the fit for $m_{\mathrm{T}}>200 \mathrm{GeV}$.

The data are in good agreement with the background expectation. Assuming SM Higgs production cross-sections and their uncertainties, the best-fit branching ratio of Higgs boson decays into invisible particles is $\mathcal{B}(H \rightarrow \mathrm{inv})=(0.3 \pm 9.0) \%$, which corresponds to an observed 95% CL upper limit of 19%. The corresponding expected upper limit is 19%. The analysis improvements and reduced systematic uncertainties lead to this limit being 45% lower than a
projection of the previous expected limit [23] scaled to the present integrated luminosity. The observed normalisation factors for the $W Z$ and $e \mu$ backgrounds are 0.971 ± 0.060 and 0.92 ± 0.10 respectively. Table 2 shows the contributions of the statistical and systematic uncertainties to the total uncertainty of the best-fit $\mathcal{B}(H \rightarrow$ inv $)$. As discussed in Section 7, the dominant uncertainty is due to the $Z Z$ modelling. Uncertainties in the jet reconstruction are important as well.

Fig. 4 shows the exclusion limits for the simplified DM models assuming either an axial-vector or vector mediator, with the chosen mediator couplings $g_{\chi}=1.0, g_{q}=0.25$, and $g_{\ell}=0$. The bottom-left region inside the solid black contour is excluded at the 95% CL. The dashed red line labelled 'Relic density' corresponds to combinations of DM and mediator mass values that are consistent with a DM density of $\Omega h^{2}=0.118$ and a standard thermal history, as computed in Ref. [13]. The dashed magenta line indicates the previous ATLAS result from a $36.1 \mathrm{fb}^{-1}$ dataset [23]. The present analysis enlarges the excluded area significantly. Axial-vector and vector mediators with masses of up to 950 GeV are excluded now,

 a $36.1 \mathrm{fb}^{-1}$ dataset [23].

Table 2

Summary of the uncertainties $\Delta \mathcal{B}$ on the best-fit $\mathcal{B}(H \rightarrow$ inv $)$, obtained by fixing the corresponding nuisance parameters to their best-fit values, and subtracting the square of the resulting uncertainty from the square of the total uncertainty to evaluate $(\Delta \mathcal{B})^{2}$. The statistical uncertainty component is obtained by fixing all nuisance parameters to their best-fit values. Note the total uncertainty does not equal the sum of the individual contributions added in quadrature due to correlations between the systematic uncertainties.

Uncertainty source	$\Delta \mathcal{B}[\%]$
Statistical uncertainty	5.1
Systematic uncertainties	7.4
Theory uncertainties	4.9
Signal modelling	0.4
ZZ modelling	4.4
Non-ZZ background modelling	2.1
Experimental uncertainties (excl. MC stat.)	4.6
Luminosity, pile-up	1.5
Jets, $E_{\mathrm{T}}^{\text {miss }}$	4.0
Flavour tagging	0.4
Electrons, muons	1.2
MC statistical uncertainty	1.6
Total uncertainty	9.0

while DM masses of up to 250 GeV are excluded in the axial-vector case and up to 350 GeV in the case of a vector mediator.

Eight scans are produced for the $2 \mathrm{HDM}+a$ models, following the recommendations in Ref. [17], including the requirement $m_{A}=$ $m_{H}=m_{H^{ \pm}}$. They are shown in Figs. 5 and 6. The hashed red area indicates that the width of one of the Higgs bosons is larger than 20% of its mass [16]. The experimental exclusion in those areas is subject to additional theoretical uncertainties, as the dependence of the width on the virtuality of the additional Higgs bosons could significantly alter the inclusive production cross-sections (one of the limitations of the models). For all presented scans, the exclusion limit is stronger for a mixing parameter value of $\sin \theta=0.7$ because the cross-sections are larger than for $\sin \theta=0.35$.

Figs. 5(a) and 5(b) show $\tan \beta$ vs m_{a} limit contours with $m_{A}=$ 600 GeV , while Figs. 5(c) and 5(d) show $\tan \beta$ vs m_{A} contours for $m_{a}=250 \mathrm{GeV}$. Compared to previous limits shown by the dashed magenta line [18] in Fig. 5(a), the contours now extend upwards beyond $\tan \beta=3$ due to the inclusion of $b b$-induced signal contributions (see Fig. 1(d) for an example diagram). The interplay
between those and the $g g$-fusion processes (Fig. 1(c)) affects the shapes, as the $\tan \beta$ dependence of the coupling of $H / A / a$ to top quarks (present in $g g$-fusion) differs from that to bottom quarks. The relative difference between m_{A} and m_{a} also affects the shape through the $H \rightarrow Z+a$ process.

The (m_{A}, m_{a}) exclusion limits are shown in Figs. 5(e) and 5(f). Compared to the $36.1 \mathrm{fb}^{-1}$ exclusion limit shown by the dashed magenta line [18] in Fig. 5(e), the highest excluded m_{A} has improved from 1 TeV to $\sim 1.4 \mathrm{TeV}$ for $m_{a}=100 \mathrm{GeV}$, and the highest excluded m_{a} has increased from 340 GeV to 480 GeV for $m_{A} \sim 1.05 \mathrm{TeV}$. Sensitivity is lost when $m_{a}+m_{Z}>m_{H}$, as particles are not produced on-shell anymore. For the scan in Fig. 5(f), points in parameter space evaluated with signal samples that underwent the simulation of the ATLAS detector response were augmented by points obtained through a reweighting of these samples based on generator-level distributions of key observables, namely p_{T}^{Z} (the transverse momentum of the Z boson), $p_{\mathrm{T}}^{\chi \chi}$ (the transverse momentum of the $\chi \chi$ system), and $\Delta \phi(Z, \chi \chi)$ (the azimuthal angle between the Z boson and $\chi \chi$ system), similar to the procedure used in Ref. [103]. Fig. 6 shows upper limits on the signal strength, $\mu_{\text {upper }}^{95 \%}$, as a function of $\sin \theta$ for models with $\left(m_{A}, m_{a}\right)=(600,200) \mathrm{GeV}$ and $(1000,350) \mathrm{GeV}$. Any $\sin \theta$ value for which $\mu_{\text {upper }}^{95 \%}<1$ is excluded. ${ }^{3}$ The dashed red line indicates the limit from the previous analysis [18].

Within the context of appropriate models, both the $\mathcal{B}(H \rightarrow$ inv $)$ limit and the limits on the simplified DM model (Fig. 4) can be compared with limits from direct-detection DM experiments. For consistent comparisons, the $90 \% \mathrm{CL}$ is used, which corresponds to $\mathcal{B}(H \rightarrow$ inv $)=16 \%$. The translation of the $H \rightarrow$ inv result into a WIMP-nucleon scattering cross-section $\sigma_{\text {WIMP-N }}$ in the Higgs portal model [104] relies on an effective field theory approach and assumes that Higgs boson decays into a pair of DM particles are kinematically possible and that the DM particle is a scalar or a Majorana fermion [105-107]. In this translation, the nuclear form factor $f_{N}=0.308 \pm 0.018$ [108] is used. The simplified models with an axial-vector mediator can be translated to spin-dependent

[^3]

Fig. 5. Exclusion limits within the context of $2 \mathrm{HDM}+a$ models with different parameter choices and in various planes [17]. Subfigures (a, b) show the tan β vs m_{a} exclusion limits with $m_{A}=600 \mathrm{GeV}$, (c, d) the $\tan \beta$ vs m_{A} exclusion limits with $m_{a}=250 \mathrm{GeV}$, and (e, f) the m_{A} vs m_{a} exclusion limit with $\tan \beta=1.0$. The region contained by the solid black line and the hashed black contour is excluded at the $95 \% \mathrm{CL}$. The solid blue line indicates the expected limit in the absence of signal, and the dashed blue lines the corresponding $\pm 1 \sigma$ uncertainty band. Subfigures ($\mathrm{a}, \mathrm{c}, \mathrm{e}$) assume $\sin \theta=0.35$, while ($\mathrm{b}, \mathrm{d}, \mathrm{f}$) assume $\sin \theta=0.7$. Where included, the dashed magenta lines represent the $36.1 \mathrm{fb}^{-1}$ results from Ref. [18]. The hashed red area indicates that the width of one of the Higgs bosons is larger than 20% of its mass.

WIMP-proton scattering, while the vector mediator induces spinindependent WIMP-nucleon interactions [12]. Figs. 7 and 8 show the complementarity of the collider and direct-detection experiments: the limits obtained in this analysis are particularly competitive for low DM masses, where experiments relying on recoil measurements have limited sensitivity.

9. Conclusion

This article presents a search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying Z boson. The analysis was performed using proton-proton collisions at a centre-of-mass energy

Fig. 6. $\sin \theta$ exclusion limits for $2 \mathrm{HDM}+a$ signals with $\tan \beta=1.0$ and $m_{\chi}=10 \mathrm{GeV}$. The solid black line shows the observed limit, while the dashed black line indicates the expected limit in the absence of signal, with the corresponding 1σ and 2σ uncertainty bands in green and yellow. The dashed red line shows the result from the $36 \mathrm{fb}^{-1}$ analysis [18]. The region below $\mu_{\text {upper }}^{95 \%}=1$ is excluded at the $95 \% \mathrm{CL}$. In (a), $m_{A}=600 \mathrm{GeV}$ and $m_{a}=200 \mathrm{GeV}$, while in (b) $m_{A}=1000 \mathrm{GeV}$ and $m_{a}=350 \mathrm{GeV}$.

Fig. 7. Comparison between the 90% CL upper limits on the spin-independent WIMP-nucleon scattering cross-section from direct-detection experiments [1-5] and a reinterpretation of the $\mathcal{B}(H \rightarrow$ inv $)$ limit obtained in this analysis, as a function of the WIMP mass. Higgs portal scenarios are assumed, where the 125 GeV Higgs boson decays into a pair of DM particles [104] that are either scalars or Majorana fermions. The uncertainties from the nuclear form factor are indicated by the hatched band. The regions above the limit contours are excluded in the $\sigma_{\text {WIMP-N }}$ range shown in the plot.

Fig. 8. Comparison of the upper limits at 90% CL from direct-detection experiments [1-8] with the exclusion obtained in the simplified DM models in the plane of the dark matter mass and (a) the spin-dependent WIMP-proton scattering cross-section or (b) the spin-independent WIMP-nucleon scattering cross-section [12]. The area within the shaded lines is excluded by this analysis in the context of the simplified models.
of 13 TeV , delivered by the LHC, corresponding to an integrated luminosity of $139 \mathrm{fb}^{-1}$ and recorded by the ATLAS experiment. Assuming Standard Model cross-sections for ZH production, the upper limit in the branching ratio of the Higgs boson to invisible particles was constrained to 19%, at the 95% confidence level. The corresponding expected limit of 19% represents an improvement of about 45% in comparison with a projection of the previous analysis scaled to the present integrated luminosity. Exclusion limits were also set for simplified dark matter models and $2 \mathrm{HDM}+a$ models for a number of benchmark parameters, improving on previously set combined constraints obtained with a $36 \mathrm{fb}^{-1}$ dataset.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Canton of Bern and Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, Canarie, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie SkłodowskaCurie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NLT1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [109].

References

[1] D.S. Akerib, et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303, https://doi.org/10.1103/ PhysRevLett.118.021303, arXiv:1608.07648 [astro-ph.CO].
[2] E. Aprile, et al., Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302, https://doi.org/10.1103/ PhysRevLett.121.111302, arXiv:1805.12562 [astro-ph.CO].
[3] P. Agnes, et al., Low-mass dark matter search with the darkside-50 experiment, Phys. Rev. Lett. 121 (2018) 081307, https://doi.org/10.1103/PhysRevLett. 121.081307, arXiv:1802.06994 [astro-ph.HE].
[4] E. Aprile, et al., Search for light dark matter interactions enhanced by the Migdal effect or bremsstrahlung in XENON1T, Phys. Rev. Lett. 123 (2019) 241803, https://doi.org/10.1103/PhysRevLett.123.241803, arXiv:1907. 12771 [hep-ex].
[5] Q. Wang, et al., Results of dark matter search using the full PandaX-II exposure, Chin. Phys. C 44 (2020) 125001, https://doi.org/10.1088/1674-1137| abb658, arXiv:2007.15469 [astro-ph.CO].
[6] D.S. Akerib, et al., Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302, https://doi.org/10.1103/PhysRevLett.118.251302, arXiv:1705.03380 [astro-ph. CO .
[7] C. Amole, et al., Dark matter search results from the complete exposure of the PICO-60 $\mathrm{C}_{3} \mathrm{~F}_{8}$ bubble chamber, Phys. Rev. D 100 (2019) 022001, https:// doi.org/10.1103/PhysRevD.100.022001, arXiv:1902.04031 [astro-ph.CO].
[8] E. Aprile, et al., Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, Phys. Rev. Lett. 122 (2019) 141301, https://doi.org/10.1103/ PhysRevLett.122.141301, arXiv:1902.03234 [astro-ph.CO].
[9] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214 [hep-ex].
[10] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, https://doi.org/ 10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex].
[11] D. de Florian, et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 2016, arXiv:1610.07922 [hep-ph].
[12] A. Boveia, et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [hep-ex], 2016.
[13] A. Albert, et al., Recommendations of the LHC Dark Matter Working Group: comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density, Phys. Dark Universe 26 (2019) 100377, https://doi.org/10.1016/j.dark.2019.100377, arXiv: 1703.05703 [hep-ex].
[14] CMS Collaboration, Search for narrow and broad dijet resonances in protonproton collisions at $\sqrt{s}=13 \mathrm{TeV}$ and constraints on dark matter mediators and other new particles, J. High Energy Phys. 08 (2018) 130, https://doi.org/ 10.1007/JHEP08(2018)130, arXiv:1806.00843 [hep-ex].
[15] ATLAS Collaboration, Search for new resonances in mass distributions of jet pairs using $139 \mathrm{fb}^{-1}$ of $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 03 (2020) 145, https://doi.org/10.1007/JHEP03(2020)145, arXiv:1910.08447 [hep-ex].
[16] M. Bauer, U. Haisch, F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, J. High Energy Phys. 05 (2017) 138, https://doi.org/10.1007/JHEP05(2017)138, arXiv:1701.07427 [hep-ph].
[17] T. Abe, et al., LHC Dark Matter Working Group: next-generation spin-0 dark matter models, Phys. Dark Universe 27 (2020) 100351, https://doi.org/10. 1016/j.dark.2019.100351, arXiv: 1810.09420 [hep-ex].
[18] ATLAS Collaboration, Constraints on mediator-based dark matter and scalar dark energy models using $\sqrt{s}=13 \mathrm{TeV} p p$ collision data collected by the ATLAS detector, J. High Energy Phys. 05 (2019) 142, https://doi.org/10.1007/ JHEP05(2019)142, arXiv:1903.01400 [hep-ex].
[19] J.R. Andersen, et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, 2013, arXiv:1307.1347 [hep-ph].
[20] T.D. Lee, A theory of spontaneous T violation, in: G. Feinberg (Ed.), Phys. Rev. D 8 (1973) 1226, https://doi.org/10.1103/PhysRevD.8.1226.
[21] J.F. Gunion, H.E. Haber, CP-conserving two-Higgs-doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019, https://doi.org/10. 1103/PhysRevD.67.075019, arXiv:hep-ph/0207010.
[22] G.C. Branco, et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rep. 516 (2012) 1, https://doi.org/10.1016/j.physrep.2012.02.002, arXiv: 1106.0034 [hep-ph].
[23] ATLAS Collaboration, Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Lett. B 776 (2018) 318, https:// doi.org/10.1016/j.physletb.2017.11.049, arXiv:1708.09624 [hep-ex].
[24] ATLAS Collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801, https://doi. org/10.1103/PhysRevLett.122.231801, arXiv:1904.05105 [hep-ex].
[25] CMS Collaboration, Search for dark matter produced in association with a leptonically decaying Z boson in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 81 (2021) 13, https://doi.org/10.1140/epjc/s10052-020-08739-5, arXiv:2008.04735 [hep-ex].
[26] CMS Collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, Phys. Lett. B 793 (2019) 520, https://doi.org/10.1016/j.physletb.2019.04.025, arXiv: 1809.05937 [hep-ex].
[27] CMS Collaboration, Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 79 (2019) 280, https://doi.org/10.1140/epjc/ s10052-019-6730-7, arXiv:1811.06562 [hep-ex].
[28] ATLAS Collaboration, Search for dark matter produced in association with a single top quark in $\sqrt{s}=13 \mathrm{TeV} p p$ collisions with the ATLAS detector, Eur. Phys. J. C 81 (2021) 860, https://doi.org/10.1140/epjc/s10052-021-09566-y, arXiv:2011.09308 [hep-ex].
[29] ATLAS Collaboration, The ATLAS experiment at the CERN Large Hadron Collider, J. Instrum. 3 (2008) S08003, https://doi.org/10.1088/1748-0221/3/08/ S08003.
[30] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317, https://doi.org/10.1140/epjc/s10052-017-4852-3, arXiv:1611.09661 [hep-ex].
[31] ATLAS Collaboration, The ATLAS Collaboration software and firmware, ATL-SOFT-PUB-2021-001, https://cds.cern.ch/record/2767187, 2021.
[32] ATLAS Collaboration, ATLAS data quality operations and performance for 2015-2018 data-taking, J. Instrum. 15 (2020) P04003, https://doi.org/10.1088/ 1748-0221/15/04/P04003, arXiv:1911.04632 [physics.ins-det].
[33] ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80 (2020) 47, https://doi.org/10.1140/epjc/ s10052-019-7500-2, arXiv:1909.00761 [hep-ex].
[34] ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2, J. Instrum. 15 (2020) P09015, https://doi.org/10.1088/1748-0221/15/09/P09015, arXiv:2004.13447 [hep-ex].
[35] ATLAS Collaboration, The ATLAS Inner Detector Trigger performance in $p p$ collisions at 13 TeV during LHC Run 2, arXiv:2107.02485 [hep-ex], 2021.
[36] R.D. Ball, et al., Parton distributions for the LHC run II, J. High Energy Phys. 04 (2015) 040, https://doi.org/10.1007/JHEP04(2015)040, arXiv:1410.8849 [hepph].
[37] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823, https://doi.org/10.1140/epjc/s10052-010-1429-9, arXiv:1005.4568 [physics.ins-det].
[38] GEANT4 Collaboration, S. Agostinelli, et al., Geant4 - a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250, https://doi.org/10.1016/S0168-9002(03)01368-8.
[39] T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, https://doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820 [hep-ph].
[40] R.D. Ball, et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, https://doi.org/10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303 [hep-ph].
[41] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the DonnachieLandshoff diffractive model, ATL-PHYS-PUB-2016-017, https://cds.cern.ch/ record/2206965, 2016.
[42] E. Bothmann, et al., Event generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034, https://doi.org/10.21468/SciPostPhys.7.3.034, arXiv:1905.09127 [hep-ph].
[43] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods A 462 (2001) 152, https://doi.org/10.1016/S0168-9002(01)00089-4.
[44] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, J. High Energy Phys. 06 (2010) 043, https://doi.org/10.1007/JHEP06(2010)043, arXiv: 1002.2581 [hep-ph].
[45] K. Hamilton, P. Nason, G. Zanderighi, MINLO: multi-scale improved NLO, J. High Energy Phys. 10 (2012) 155, https://doi.org/10.1007/JHEP10(2012)155, arXiv:1206.3572 [hep-ph].
[46] T. Sjöstrand, et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159, https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410. 3012 [hep-ph].
[47] ATLAS Collaboration, Measurement of the Z / γ^{*} boson transverse momentum distribution in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 09 (2014) 145, https://doi.org/10.1007/JHEP09(2014)145, arXiv: 1406.3660 [hep-ex].
[48] M.L. Ciccolini, S. Dittmaier, M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003, arXiv:hep-ph/0306234.
[49] O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgsstrahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149, https:// doi.org/10.1016/j.physletb.2003.10.112, arXiv:hep-ph/0307206.
[50] O. Brein, R. Harlander, M. Wiesemann, T. Zirke, Top-quark mediated effects in hadronic Higgs-strahlung, Eur. Phys. J. C 72 (2012) 1868, https://doi.org/10. 1140/epjc/s10052-012-1868-6, arXiv:1111.0761 [hep-ph].
[51] L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak, T.J.E. Zirke, Gluoninduced Higgs-strahlung at next-to-leading order QCD, J. High Energy Phys. 02 (2013) 078, https://doi.org/10.1007/JHEP02(2013)078, arXiv:1211.5015 [hepph].
[52] A. Denner, S. Dittmaier, S. Kallweit, A. Mück, HAWK 2.0: a Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders, Comput. Phys. Commun. 195 (2015) 161, https://doi.org/10. 1016/j.cpc.2015.04.021, arXiv:1412.5390 [hep-ph].
[53] O. Brein, R.V. Harlander, T.J.E. Zirke, vh@nnlo - Higgs Strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998, https://doi.org/10.1016/j.cpc. 2012.11.002, arXiv:1210.5347 [hep-ph].
[54] R.V. Harlander, A. Kulesza, V. Theeuwes, T. Zirke, Soft gluon resummation for gluon-induced Higgs Strahlung, J. High Energy Phys. 11 (2014) 082, https:// doi.org/10.1007/JHEP11(2014)082, arXiv:1410.0217 [hep-ph].
[55] R.V. Harlander, J. Klappert, S. Liebler, L. Simon, vh@nnlo-v2: new physics in Higgs Strahlung, J. High Energy Phys. 05 (2018) 089, https://doi.org/10.1007/ JHEP05(2018)089, arXiv:1802.04817 [hep-ph].
[56] J. Alwall, et al., The automated computation of tree-level and next-toleading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079, https://doi.org/10.1007/ JHEP07(2014)079, arXiv:1405.0301 [hep-ph].
[57] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, ATL-PHYS-PUB-2014-021, https://cds.cern.ch/record/1966419, 2014.
[58] T. Gleisberg, S. Höche, Comix, a new matrix element generator, J. High Energy Phys. 12 (2008) 039, https://doi.org/10.1088/1126-6708/2008/12/039, arXiv: 0808.3674 [hep-ph].
[59] F. Buccioni, et al., OpenLoops 2, Eur. Phys. J. C 79 (2019) 866, https://doi.org/ 10.1140/epjc/s10052-019-7306-2, arXiv:1907.13071 [hep-ph].
[60] F. Cascioli, P. Maierhöfer, S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601, https://doi.org/10.1103/PhysRevLett.108. 111601, arXiv:1111.5206 [hep-ph].
[61] A. Denner, S. Dittmaier, L. Hofer, Collier: a Fortran-based complex one-loop library in extended regularizations, Comput. Phys. Commun. 212 (2017) 220, https://doi.org/10.1016/j.cpc.2016.10.013, arXiv:1604.06792 [hep-ph].
[62] S. Schumann, F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, J. High Energy Phys. 03 (2008) 038, https://doi.org/10. 1088/1126-6708/2008/03/038, arXiv:0709.1027 [hep-ph].
[63] S. Höche, F. Krauss, M. Schönherr, F. Siegert, QCD matrix elements + parton showers. The NLO case, J. High Energy Phys. 04 (2013) 027, https://doi.org/10. 1007/JHEP04(2013)027, arXiv:1207.5030 [hep-ph].
[64] S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schönherr, NLO electroweak automation and precise predictions for $\mathrm{W}+$ multijet production at the LHC, J. High Energy Phys. 04 (2015) 012, https://doi.org/10.1007/JHEP04(2015) 012, arXiv:1412.5157 [hep-ph].
[65] S. Kallweit, J.M. Lindert, S. Pozzorini, M. Schönherr, NLO QCD+EW predictions for $2 \ell 2 v$ diboson signatures at the LHC, J. High Energy Phys. 11 (2017) 120, https://doi.org/10.1007/JHEP11(2017)120, arXiv:1705.00598 [hep-ph].
[66] M. Schönherr, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J. C 78 (2018) 119, https://doi.org/10.1140/epjc/s10052-018-5600-z, arXiv:1712.07975 [hep-ph].
[67] M. Grazzini, S. Kallweit, J.M. Lindert, S. Pozzorini, M. Wiesemann, NNLO QCD + NLO EW with Matrix+OpenLoops: precise predictions for vector-boson pair production, J. High Energy Phys. 02 (2020) 087, https://doi.org/10.1007/ JHEP02(2020)087, arXiv:1912.00068 [hep-ph].
[68] M. Grazzini, S. Kallweit, M. Wiesemann, Fully differential NNLO computations with MATRIX, Eur. Phys. J. C 78 (2018) 537, https://doi.org/10.1140/epjc/ s10052-018-5771-7, arXiv:1711.06631 [hep-ph].
[69] T. Gehrmann, A. Manteuffel, L. Tancredi, The two-loop helicity amplitudes for $q \overline{q^{\prime}} \rightarrow V_{1} V_{2} \rightarrow 4$ leptons, J. High Energy Phys. 09 (2015) 128, https://doi.org/ 10.1007/JHEP09(2015)128, arXiv:1503.04812.
[70] M. Grazzini, S. Kallweit, M. Wiesemann, J.Y. Yook, ZZ production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel, J. High Energy Phys. 03 (2019) 070, https://doi.org/10.1007/JHEP03(2019)070, arXiv: 1811.09593 [hep-ph].
[71] S. Frixione, G. Ridolfi, P. Nason, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, J. High Energy Phys. 09 (2007) 126, https://doi.org/10.1088/1126-6708/2007/09/126, arXiv:0707.3088 [hep-ph].
[72] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys. 11 (2004) 040, https://doi.org/10.1088/11266708/2004/11/040, arXiv:hep-ph/0409146.
[73] S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, J. High Energy Phys. 11 (2007) 070, https://doi.org/10.1088/1126-6708/2007/11/070, arXiv:0709.2092 [hep-ph].
[74] R. Frederix, E. Re, P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, J. High Energy Phys. 09 (2012) 130, https://doi.org/10.1007/JHEP09(2012)130, arXiv:1207.5391 [hepph].
[75] E. Re, Single-top $W t$-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547, https://doi.org/10.1140/ epjc/s10052-011-1547-z, arXiv:1009.2450 [hep-ph].
[76] M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930, https://doi.org/10.1016/j.cpc.2014.06.021, arXiv:1112.5675 [hep-ph].
[77] N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503, https://doi.org/10.1103/PhysRevD.83.091503, arXiv:1103.2792 [hepph].
[78] N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W^{-}or H^{-}, Phys. Rev. D 82 (2010) 054018, https:// doi.org/10.1103/PhysRevD.82.054018, arXiv:1005.4451 [hep-ph].
[79] N. Kidonakis, Next-to-next-to-leading logarithm resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028, https://doi.org/ 10.1103/PhysRevD.81.054028, arXiv:1001.5034 [hep-ph].
[80] ATLAS Collaboration, Vertex reconstruction performance of the ATLAS detector at $\sqrt{s}=13 \mathrm{TeV}$, ATL-PHYS-PUB-2015-026, 2015, https://cds.cern.ch/record/ 2037717.
[81] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector using the 2015-2017 LHC proton-proton collision data, J. Instrum. 14 (2019) P12006, https://doi.org/10.1088/1748-0221/14/12/P12006, arXiv: 1908.00005 [hep-ex].
[82] ATLAS Collaboration, Muon reconstruction performance of the ATLAS Detector in proton-proton collision data at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 76 (2016) 292, https://doi.org/10.1140/epjc/s10052-016-4120-y, arXiv:1603.05598 [hep-ex].
[83] ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run $2 p p$ collision data set at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 81 (2021) 578, https://doi.org/10.1140/epjc/s10052-021-09233-2, arXiv: 2012.00578 [hep-ex].
[84] ATLAS Collaboration, Jet reconstruction and performance using particle flow with the ATLAS Detector, Eur. Phys. J. C 77 (2017) 466, https://doi.org/10. 1140/epjc/s10052-017-5031-2, arXiv:1703.10485 [hep-ex].
[85] M. Cacciari, G.P. Salam, G. Soyez, The anti- k_{t} jet clustering algorithm, J. High Energy Phys. 04 (2008) 063, https://doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189 [hep-ph].
[86] M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896, https://doi.org/10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097 [hepph].
[87] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ using the ATLAS detector, Eur. Phys. J. C 76 (2016) 581, https://doi.org/10.1140/epjc/s10052-016-4395-z, arXiv:1510.03823 [hepex].
[88] ATLAS Collaboration, Jet energy scale and resolution measured in protonproton collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Eur. Phys. J. C 81 (2021) 689, https://doi.org/10.1140/epjc/s10052-021-09402-3, arXiv:2007. 02645 [hep-ex].
[89] ATLAS Collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using $t \bar{t}$ events at $\sqrt{s}=13 \mathrm{TeV}$, J. High Energy Phys. 08 (2018) 089, https://doi.org/10.1007/JHEP08(2018)089, arXiv:1805.01845 [hep-ex].
[90] ATLAS Collaboration, Search for heavy resonances decaying into a pair of Z bosons in the $\ell^{+} \ell^{-} \ell^{\prime+} \ell^{\prime-}$ and $\ell^{+} \ell^{-} \nu \bar{\nu}$ final states using $139 \mathrm{fb}^{-1}$ of proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Eur. Phys. J. C 81 (2021) 332, https://doi.org/10.1140/epjc/s10052-021-09013-y, arXiv: 2009.14791 [hep-ex].
[91] ATLAS Collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at $\sqrt{s}=$ 13 TeV , Eur. Phys. J. C 78 (2018) 903, https://doi.org/10.1140/epjc/s10052-018-6288-9, arXiv:1802.08168 [hep-ex].
[92] ATLAS Collaboration, Object-based missing transverse momentum significance in the ATLAS Detector, ATLAS-CONF-2018-038, 2018, https://cds.cern. ch/record/2630948.
[93] M. Baak, et al., HistFitter software framework for statistical data analysis, Eur. Phys. J. C 75 (2015) 153, https://doi.org/10.1140/epjc/s10052-015-3327-7, arXiv:1410.1280 [hep-ex].
[94] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihoodbased tests of new physics, Eur. Phys. J. C 71 (2011) 1554, https://doi.org/ 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501, https://doi.org/10.1140/epjc/s10052-013-2501z.
[95] A. Hoecker, et al., TMVA - toolkit for multivariate data analysis, arXiv:physics/ 0703039 [physics.data-an], 2007.
[96] J. Butterworth, et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001, https://doi.org/10.1103/PhysRevLett.118.021303, arXiv: 1510.03865 [hep-ph].
[97] S. Catani, F. Krauss, B.R. Webber, R. Kuhn, QCD matrix elements + parton showers, J. High Energy Phys. 11 (2001) 063, https://doi.org/10.1088/11266708/2001/11/063, arXiv:hep-ph/0109231.
[98] S. Höche, F. Krauss, S. Schumann, F. Siegert, QCD matrix elements and truncated showers, J. High Energy Phys. 05 (2009) 053, https://doi.org/10.1088/ 1126-6708/2009/05/053, arXiv:0903.1219 [hep-ph].
[99] ATLAS Collaboration, Measurements of Higgs boson properties in the diphoton decay channel with $36 \mathrm{fb}^{-1}$ of $p p$ collision data at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D 98 (2018) 052005, https://doi.org/10.1103/ PhysRevD.98.052005, arXiv:1802.04146 [hep-ex].
[100] J. Bellm, et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196, https://doi.org/10.1140/epjc/s10052-016-4018-8, arXiv:1512.01178 [hepph].
[101] ATLAS Collaboration, Luminosity determination in $p p$ collisions at $\sqrt{s}=$ 13 TeV using the ATLAS detector at the LHC, ATLAS-CONF-2019-021, 2019, https://cds.cern.ch/record/2677054.
[102] G. Avoni, et al., The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, J. Instrum. 13 (2018) P07017, https://doi.org/10.1088/ 1748-0221/13/07/P07017.
[103] ATLAS Collaboration, Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 10 (2021) 013, https://doi.org/10.1007/JHEP10(2021)013, arXiv:2104.13240 [hep-ex].
[104] ATLAS Collaboration, Search for invisible decays of a Higgs boson using vector-boson fusion in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 01 (2016) 172, https://doi.org/10.1007/JHEP01(2016)172, arXiv:1508.07869 [hep-ex].
[105] O.J.P. Eboli, D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147, https://doi.org/10.1016/S0370-2693(00)01213-2, arXiv:hepph/0009158.
[106] P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011, https://doi.org/10.1103/PhysRevD. 85.056011 , arXiv:1109.4398 [hep-ph].
[107] A. De Simone, G.F. Giudice, A. Strumia, Benchmarks for dark matter searches at the LHC, J. High Energy Phys. 06 (2014) 081, https://doi.org/10.1007/ JHEP06(2014)081, arXiv:1402.6287 [hep-ph].
[108] M. Hoferichter, P. Klos, J. Menéndez, A. Schwenk, Improved limits for Higgsportal dark matter from LHC searches, Phys. Rev. Lett. 119 (2017) 181803, https://doi.org/10.1103/PhysRevLett.119.181803, arXiv:1708.02245 [hep-ph].
[109] ATLAS Computing Acknowledgements, tech. rep., CERN, https://cds.cern.ch/ record/2776662, 2021.

The ATLAS Collaboration

C. Anastopoulos ${ }^{145}$, N. Andari ${ }^{140}$, T. Andeen ${ }^{10}$, J.K. Anders ${ }^{18}$, S.Y. Andrean ${ }^{43 a, 43 b}$, A. Andreazza ${ }^{66 a}{ }^{66 b}$, C.R. Anelli ${ }^{171}$, S. Angelidakis ${ }^{8}$, A. Angerami ${ }^{37}$, A.V. Anisenkov ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, A. Annovi ${ }^{69 \mathrm{a}}$, C. Antel ${ }^{52}$, M.T. Anthony ${ }^{145}$, E. Antipov ${ }^{125}$, M. Antonelli ${ }^{49}$, D.J.A. Antrim ${ }^{16}$, F. Anulli ${ }^{70 a}$, M. Aoki ${ }^{79}$, J.A. Aparisi Pozo ${ }^{169}$, M.A. Aparo ${ }^{152}$, L. Aperio Bella ${ }^{44}$, N. Aranzabal ${ }^{34}$, V. Araujo Ferraz ${ }^{78 a}$, C. Arcangeletti ${ }^{49}$, A.T.H. Arce ${ }^{47}$, E. Arena ${ }^{88}$, J-F. Arguin ${ }^{106}$, S. Argyropoulos ${ }^{50}$, J.-H. Arling ${ }^{44}$, A.J. Armbruster ${ }^{34}$, A. Armstrong ${ }^{166}$, O. Arnaez ${ }^{162}$, H. Arnold ${ }^{34}$, Z.P. Arrubarrena Tame ${ }^{110}$, G. Artoni ${ }^{130}$, H. Asada ${ }^{112}$, K. Asai ${ }^{122}$, S. Asai ${ }^{159}$, N.A. Asbah ${ }^{57}$, E.M. Asimakopoulou ${ }^{167}$, L. Asquith ${ }^{152}$, J. Assahsah ${ }^{33 d}$, K. Assamagan ${ }^{27}$, R. Astalos ${ }^{26 a}$, R.J. Atkin ${ }^{31 a}$, M. Atkinson ${ }^{168}$, N.B. Atlay ${ }^{17}$, H. Atmani ${ }^{58 b}$, P.A. Atmasiddha ${ }^{102}$, K. Augsten ${ }^{137}$, S. Auricchio ${ }^{67 a, 67 b}$, V.A. Austrup ${ }^{177}$, G. Avner ${ }^{156}$, G. Avolio ${ }^{34}$, M.K. Ayoub ${ }^{13 c}$, G. Azuelos ${ }^{106, a j}$, D. Babal ${ }^{26 a}$, H. Bachacou ${ }^{140}$, K. Bachas ${ }^{158}$, A. Bachiu ${ }^{32}$, F. Backman ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, A. Badea ${ }^{57}$, P. Bagnaia ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, H. Bahrasemani ${ }^{148}$, A.J. Bailey ${ }^{169}$, V.R. Bailey ${ }^{168}$, J.T. Baines ${ }^{139}$, C. Bakalis ${ }^{9}$, O.K. Baker ${ }^{178}$, P.J. Bakker ${ }^{115}$, E. Bakos ${ }^{14}$, D. Bakshi Gupta ${ }^{7}$, S. Balaji ${ }^{153}$, R. Balasubramanian ${ }^{115}$, E.M. Baldin ${ }^{117 b, 117 a}$, P. Balek ${ }^{138}$, E. Ballabene ${ }^{66 a, 66 b}$, F. Balli ${ }^{140}$, L.M. Baltes ${ }^{59 a}$, W.K. Balunas ${ }^{130}$, J. Balz ${ }^{96}$, E. Banas ${ }^{82}$, M. Bandieramonte ${ }^{134}$, A. Bandyopadhyay ${ }^{22}$, S. Bansal ${ }^{22}$, L. Barak ${ }^{157}$, E.L. Barberio ${ }^{101}$, D. Barberis ${ }^{53 b, 53 a}$, M. Barbero ${ }^{98}$, G. Barbour ${ }^{92}$, K.N. Barends ${ }^{31 a}$, T. Barillari ${ }^{1111}$, M-S. Barisits ${ }^{34}$, J. Barkeloo ${ }^{127}$, T. Barklow ${ }^{149}$, B.M. Barnett ${ }^{139}$, R.M. Barnett ${ }^{16}$, A. Baroncelli ${ }^{58 \mathrm{a}}$, G. Barone ${ }^{27}$, A.J. Barr ${ }^{130}$, L. Barranco Navarro ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, F. Barreiro ${ }^{95}$, J. Barreiro Guimarães da Costa ${ }^{13 a}$, U. Barron ${ }^{157}$, S. Barsov ${ }^{133}$, F. Bartels ${ }^{59 a}$, R. Bartoldus ${ }^{149}$, G. Bartolini ${ }^{98}$, A.E. Barton ${ }^{87}$, P. Bartos ${ }^{26 a}$, A. Basalaev ${ }^{44}$, A. Basan ${ }^{96}$, M. Baselga ${ }^{44}$, I. Bashta ${ }^{72 a, 72 b}$, A. Bassalat ${ }^{62, a g}$, M.J. Basso ${ }^{162}$, C.R. Basson ${ }^{97}$, R.L. Bates ${ }^{55}$, S. Batlamous ${ }^{33 e}$, J.R. Batley ${ }^{30}$, B. Batool ${ }^{147}$, M. Battaglia ${ }^{141}$, M. Bauce ${ }^{70 a, 70 b}$, F. Bauer ${ }^{140, *}$, P. Bauer ${ }^{22}$, H.S. Bawa ${ }^{29}$, A. Bayirli ${ }^{11 \mathrm{c}}$, J.B. Beacham ${ }^{47}$, T. Beau ${ }^{131}$, P.H. Beauchemin ${ }^{165}$, F. Becherer ${ }^{50}$, P. Bechtle ${ }^{22}$, H.P. Beck ${ }^{18, q}$, K. Becker ${ }^{173}$, C. Becot ${ }^{44}$, A.J. Beddall ${ }^{11 \mathrm{a}}$, V.A. Bednyakov ${ }^{77}$, C.P. Bee ${ }^{151}$, T.A. Beermann ${ }^{34}$, M. Begalli ${ }^{78 \mathrm{~b}}$, M. Begel ${ }^{27}$, A. Behera ${ }^{151}$, J.K. Behr ${ }^{44}$, C. Beirao Da Cruz E Silva ${ }^{34}$, J.F. Beirer ${ }^{51,34}$, F. Beisiegel ${ }^{22}$, M. Belfkir ${ }^{4}$, G. Bella ${ }^{157}$, L. Bellagamba ${ }^{21 b}$, A. Bellerive ${ }^{32}$, P. Bellos ${ }^{19}$, K. Beloborodov ${ }^{117 b, 117 a}$, K. Belotskiy ${ }^{108}$, N.L. Belyaev ${ }^{108}$ D. Benchekroun ${ }^{33 a}$, Y. Benhammou ${ }^{157}$, D.P. Benjamin ${ }^{27}$, M. Benoit ${ }^{27}$, J.R. Bensinger ${ }^{24}$, S. Bentvelsen ${ }^{115}$, L. Beresford ${ }^{34}$, M. Beretta ${ }^{49}$, D. Berge ${ }^{17}$, E. Bergeaas Kuutmann ${ }^{167}$, N. Berger ${ }^{4}$, B. Bergmann ${ }^{137}$, L.J. Bergsten ${ }^{24}$, J. Beringer ${ }^{16}$, S. Berlendis ${ }^{6}$, G. Bernardi ${ }^{131}$, C. Bernius ${ }^{149}$, F.U. Bernlochner ${ }^{22}$, T. Berry ${ }^{91}$, P. Berta ${ }^{138}$, A. Berthold ${ }^{46}$, I.A. Bertram ${ }^{87}$, O. Bessidskaia Bylund ${ }^{177}$, S. Bethke ${ }^{111}$, A. Betti ${ }^{40}$, A.J. Bevan ${ }^{90}$, S. Bhatta ${ }^{151}$, D.S. Bhattacharya ${ }^{172}$, P. Bhattarai ${ }^{24}$, V.S. Bhopatkar ${ }^{5}$, R. Bi 134, R.M. Bianchi ${ }^{134}$, O. Biebel ${ }^{110}$, R. Bielski ${ }^{127}$, N.V. Biesuz ${ }^{69 a}$, 69 b , M. Biglietti ${ }^{72 a}$, T.R.V. Billoud ${ }^{137}$, M. Bindi ${ }^{51}$, A. Bingul ${ }^{11 \mathrm{~d}}$, C. Bini ${ }^{70 a, 70 b}$, S. Biondi ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$, A. Biondini ${ }^{88}$, C.J. Birch-sykes ${ }^{97}$, G.A. Bird ${ }^{19,139}$, M. Birman ${ }^{175}$, T. Bisanz ${ }^{34}$, J.P. Biswal ${ }^{2}$, D. Biswas ${ }^{176, j}$, A. Bitadze ${ }^{97}$, C. Bittrich ${ }^{46}$, K. Bjørke ${ }^{129}$, I. Bloch ${ }^{44}$, C. Blocker ${ }^{24}$, A. Blue ${ }^{55}$, U. Blumenschein ${ }^{90}$, J. Blumenthal ${ }^{96}$, G.J. Bobbink ${ }^{115}$, V.S. Bobrovnikov ${ }^{117 b, 117 a}$, M. Boehler ${ }^{50}$, D. Bogavac ${ }^{12}$, A.G. Bogdanchikov ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, C. Bohm ${ }^{43 \mathrm{a}}$, V. Boisvert ${ }^{91}$, P. Bokan ${ }^{44}$, T. Bold ${ }^{81 a}$, M. Bomben ${ }^{131}$, M. Bona ${ }^{90}$, M. Boonekamp ${ }^{140}$, C.D. Booth ${ }^{91}$, A.G. Borbély ${ }^{55}$, H.M. Borecka-Bielska ${ }^{106}$, L.S. Borgna ${ }^{92}$, G. Borissov ${ }^{87}$, D. Bortoletto ${ }^{130}$, D. Boscherini ${ }^{21 b}$, M. Bosman ${ }^{12}$, J.D. Bossio Sola ${ }^{34}$, K. Bouaouda ${ }^{33 a}$, J. Boudreau ${ }^{134}$, E.V. Bouhova-Thacker ${ }^{87}$, D. Boumediene ${ }^{36}$, R. Bouquet ${ }^{131}$, A. Boveia ${ }^{123}$, J. Boyd ${ }^{34}$, D. Boye ${ }^{27}$, I.R. Boyko ${ }^{77}$, A.J. Bozson ${ }^{91}$, J. Bracinik ${ }^{19}$, N. Brahimi ${ }^{58 d, 58 c}$, G. Brandt ${ }^{177}$, O. Brandt ${ }^{30}$, F. Braren ${ }^{44}$, B. Brau ${ }^{99}$, J.E. Brau ${ }^{127}$, W.D. Breaden Madden ${ }^{55}$, K. Brendlinger ${ }^{44}$, R. Brener ${ }^{175}$, L. Brenner ${ }^{34}$, R. Brenner ${ }^{167}$, S. Bressler ${ }^{175}$, B. Brickwedde ${ }^{96}$, D.L. Briglin ${ }^{19}$, D. Britton ${ }^{55}$, D. Britzger ${ }^{111}$, I. Brock ${ }^{22}$, R. Brock ${ }^{103}$, G. Brooijmans ${ }^{37}$, W.K. Brooks ${ }^{142 \mathrm{e}}$, E. Brost ${ }^{27}$, P.A. Bruckman de Renstrom ${ }^{82}$, B. Brüers ${ }^{44}$, D. Bruncko ${ }^{26 \mathrm{~b}}$, A. Bruni ${ }^{21 \mathrm{~b}}$, G. Bruni ${ }^{21 b}$, M. Bruschi ${ }^{21 b}$, N. Bruscino ${ }^{70 a, 70 b}$, L. Bryngemark ${ }^{149}$, T. Buanes ${ }^{15}$, Q. Buat ${ }^{151}$, P. Buchholz ${ }^{147}$, A.G. Buckley ${ }^{55}$, I.A. Budagov ${ }^{77}$, M.K. Bugge ${ }^{129}$, O. Bulekov ${ }^{108}$, B.A. Bullard ${ }^{57}$, S. Burdin ${ }^{88}$, C.D. Burgard ${ }^{44}$, A.M. Burger ${ }^{125}$, B. Burghgrave ${ }^{7}$, J.T.P. Burr ${ }^{44}$, C.D. Burton ${ }^{10}$, J.C. Burzynski ${ }^{148}$, E.L. Busch ${ }^{37}$, V. Büscher ${ }^{96}$, P.J. Bussey ${ }^{55}$, J.M. Butler ${ }^{23}$, C.M. Buttar ${ }^{55}$, J.M. Butterworth ${ }^{92}$, W. Buttinger ${ }^{139}$, C.J. Buxo Vazquez ${ }^{103}$, A.R. Buzykaev ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, G. Cabras ${ }^{21 \mathrm{~b}}$, S. Cabrera Urbán ${ }^{169}$, D. Caforio ${ }^{54}$, H. Cai ${ }^{134}$, V.M.M. Cairo ${ }^{149}$, O. Cakir ${ }^{3 a}$, N. Calace ${ }^{34}$, P. Calafiura ${ }^{16}$, G. Calderini ${ }^{131}$, P. Calfayan ${ }^{63}$, G. Callea ${ }^{55}$, L.P. Caloba ${ }^{78 \mathrm{~b}}$, D. Calvet ${ }^{36}$, S. Calvet ${ }^{36}$, T.P. Calvet ${ }^{98}$, M. Calvetti ${ }^{69 a}$, ${ }^{99 b}$, R. Camacho Toro ${ }^{131}$, S. Camarda ${ }^{34}$, D. Camarero Munoz ${ }^{95}$, P. Camarri ${ }^{71 a, 71 b}$, M.T. Camerlingo ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, D. Cameron ${ }^{129}$, C. Camincher ${ }^{171}$, M. Campanelli ${ }^{92}$, A. Camplani ${ }^{38}$, V. Canale ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A. Canesse ${ }^{100}$, M. Cano Bret ${ }^{75}$, J. Cantero ${ }^{125}$, Y. Cao ${ }^{168}$, F. Capocasa ${ }^{24}$, M. Capua ${ }^{39 b, 39 a}$,
A. Carbone ${ }^{66 a, 66 b}$, R. Cardarelli ${ }^{71 a}$, J.C.J. Cardenas ${ }^{7}$, F. Cardillo ${ }^{169}$, G. Carducci ${ }^{39 b}$,39a, T. Carli ${ }^{34}$,
G. Carlino ${ }^{67 a}$, B.T. Carlson ${ }^{134}$, E.M. Carlson ${ }^{171,163 \mathrm{a}}$, L. Carminati ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$, M. Carnesale ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$,
R.M.D. Carney ${ }^{149}$, S. Caron ${ }^{114}$, E. Carquin ${ }^{142 e}$, S. Carrá ${ }^{44}$, G. Carratta ${ }^{21 b}$, 21 a J.W.S. Carter ${ }^{162}$,
T.M. Carter ${ }^{48}$, D. Casadei ${ }^{31 c}$, M.P. Casado ${ }^{12, g}$, A.F. Casha ${ }^{162}$, E.G. Castiglia ${ }^{178}$, F.L. Castillo ${ }^{59}{ }^{10}$,
L. Castillo Garcia ${ }^{12}$, V. Castillo Gimenez ${ }^{169}$, N.F. Castro ${ }^{135 a, 135 e}$, A. Catinaccio ${ }^{34}$, J.R. Catmore ${ }^{129}$,
A. Cattai ${ }^{34}$, V. Cavaliere ${ }^{27}$, N. Cavalli ${ }^{21 b}, 21$ a, V. Cavasinni ${ }^{69 a}$,69b , E. Celebi ${ }^{11 b}$, F. Celli ${ }^{130}$,
M.S. Centonze ${ }^{65 a, 65 b}$, K. Cerny ${ }^{126}$, A.S. Cerqueira ${ }^{78 a}$, A. Cerri ${ }^{152}$, L. Cerrito ${ }^{71 \mathrm{a} a, 71 \mathrm{~b}}$, F. Cerutti ${ }^{16}$,
A. Cervelli ${ }^{21 \mathrm{~b}}$, S.A. Cetin ${ }^{11 \mathrm{~b}}$, Z. Chadi ${ }^{33 \mathrm{a}}$, D. Chakraborty ${ }^{116}$, M. Chala ${ }^{135 f}$, J. Chan ${ }^{176}$, W.S. Chan ${ }^{115}$,
W.Y. Chan ${ }^{88}$, J.D. Chapman ${ }^{30}$, B. Chargeishvili ${ }^{155 b}$, D.G. Charlton ${ }^{19}$, T.P. Charman ${ }^{90}$, M. Chatterjee ${ }^{18}$,
S. Chekanov ${ }^{5}$, S.V. Chekulaev ${ }^{163 a}$, G.A. Chelkov ${ }^{77, a e}$, A. Chen ${ }^{102}$, B. Chen ${ }^{157}$, B. Chen ${ }^{171}$, C. Chen ${ }^{58 a}$,
C.H. Chen ${ }^{76}$, H. Chen ${ }^{13 \mathrm{c}}$, H. Chen ${ }^{27}$, J. Chen ${ }^{58 \mathrm{C}}$, J. Chen ${ }^{24}$, S. Chen ${ }^{132}$, S.J. Chen ${ }^{13 \mathrm{C}}$, X. Chen ${ }^{58 \mathrm{c}}$, X. Chen ${ }^{13 b}$, Y. Chen ${ }^{58 a}$, Y-H. Chen ${ }^{44}$, C.L. Cheng ${ }^{176}$, H.C. Cheng ${ }^{60 a}$, A. Cheplakov ${ }^{77}$, E. Cheremushkina ${ }^{44}$, E. Cherepanova ${ }^{77}$, R. Cherkaoui El Moursli ${ }^{33 e}$, E. Cheu ${ }^{6}$, K. Cheung ${ }^{61}$, L. Chevalier ${ }^{140}$, V. Chiarella ${ }^{49}$, G. Chiarelli ${ }^{69 a}$, G. Chiodini ${ }^{65 a}$, A.S. Chisholm ${ }^{19}$, A. Chitan ${ }^{25 b}$, Y.H. Chiu ${ }^{171}$, M.V. Chizhov ${ }^{77, s}$, K. Choi ${ }^{10}$, A.R. Chomont ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, Y. Chou ${ }^{99}$, Y.S. Chow ${ }^{115}$, T. Chowdhury ${ }^{31 \mathrm{f}}$, L.D. Christopher ${ }^{31 \mathrm{f}}$, M.C. Chu ${ }^{60 \mathrm{a}}$, X. Chu ${ }^{13 \mathrm{a}, 13 \mathrm{~d}}$, J. Chudoba ${ }^{136}$, J.J. Chwastowski ${ }^{82}$, D. Cieri ${ }^{1111}$, K.M. Ciesla ${ }^{82}$, V. Cindro ${ }^{89}$, I.A. Cioară ${ }^{25 b}$, A. Ciocio ${ }^{16}$, F. Cirotto ${ }^{67 a, 67 \mathrm{~b}}$, Z.H. Citron ${ }^{175, k}$, M. Citterio ${ }^{66 a}$, D.A. Ciubotaru ${ }^{255}$, B.M. Ciungu ${ }^{162}$, A. Clark ${ }^{52}$, P.J. Clark ${ }^{48}$, J.M. Clavijo Columbie ${ }^{44}$, S.E. Clawson ${ }^{97}$, C. Clement ${ }^{43 a, 43 \mathrm{~b}}$, L. Clissa ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$, Y. Coadou ${ }^{98}$, M. Cobal ${ }^{64 a, 64 c}$, A. Coccaro ${ }^{53 \mathrm{~b}}$, J. Cochran ${ }^{76}$, R.F. Coelho Barrue ${ }^{135 a}$,
R. Coelho Lopes De Sa ${ }^{99}$, S. Coelli ${ }^{66 a}$, H. Cohen ${ }^{157}$, A.E.C. Coimbra ${ }^{34}$, B. Cole ${ }^{37}$, J. Collot ${ }^{56}$,
P. Conde Muiño ${ }^{135 a}, 135 \mathrm{~g}$, S.H. Connell ${ }^{31 \mathrm{c}}$, I.A. Connelly ${ }^{55}$, E.I. Conroy ${ }^{130}$, F. Conventi ${ }^{67 a}$, $a k$, H.G. Cooke ${ }^{19}$, A.M. Cooper-Sarkar ${ }^{130}$, F. Cormier ${ }^{170}$, L.D. Corpe ${ }^{34}$, M. Corradi ${ }^{70 a}$, 70 b , E.E. Corrigan ${ }^{94}$, F. Corriveau ${ }^{100}{ }^{3}$, M.J. Costa ${ }^{169}$, F. Costanza ${ }^{4}$, D. Costanzo ${ }^{145}$, B.M. Cote ${ }^{123}$, G. Cowan ${ }^{91}$, J.W. Cowley ${ }^{30}$, K. Cranmer ${ }^{121}$, S. Crépé-Renaudin ${ }^{56}$, F. Crescioli ${ }^{131}$, M. Cristinziani ${ }^{147}$, M. Cristoforetti ${ }^{73 a}$, 73 b , b , V. Croft ${ }^{165}$, G. Crosetti ${ }^{39 b, 39 a}$, A. Cueto ${ }^{34}$, T. Cuhadar Donszelmann ${ }^{166}$, H. Cui ${ }^{13 \mathrm{a}, 13 \mathrm{~d}}$, A.R. Cukierman ${ }^{149}$, W.R. Cunningham ${ }^{55}$, F. Curcio ${ }^{\text {39b, } 39 \mathrm{a}}$, P. Czodrowski ${ }^{34}$, M.M. Czurylo ${ }^{59 b}$,
M.J. Da Cunha Sargedas De Sousa ${ }^{58 a}$, J.V. Da Fonseca Pinto ${ }^{78 \mathrm{~b}}$, C. Da Via ${ }^{97}$, W. Dabrowski ${ }^{81 a}$, T. Dado ${ }^{45}$, S. Dahbi ${ }^{31 \mathrm{f}}$, T. Dai ${ }^{102}$, C. Dallapiccola ${ }^{99}$, M. Dam ${ }^{38}$, G. D'amen ${ }^{27}$, V. D'Amico ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, J. Damp ${ }^{96}$, J.R. Dandoy ${ }^{132}$, M.F. Daneri ${ }^{28}$, M. Danninger ${ }^{148}$, V. Dao ${ }^{34}$, G. Darbo ${ }^{53 \mathrm{~b}}$, S. Darmora ${ }^{5}$, A. Dattagupta ${ }^{127}$, S. D'Auria ${ }^{66 a, 666 \text { b }}$, C. David ${ }^{163 b}$, T. Davidek ${ }^{138}$, D.R. Davis ${ }^{47}$, B. Davis-Purcell ${ }^{32}$, I. Dawson ${ }^{90}$, K. De ${ }^{7}$, R. De Asmundis ${ }^{67 a}$, M. De Beurs ${ }^{115}$, S. De Castro ${ }^{21 b, 21 a}$, N. De Groot ${ }^{114}$, P. de Jong ${ }^{115}$, H. De la Torre ${ }^{103}$, A. De Maria ${ }^{13 \mathrm{c}}$, D. De Pedis ${ }^{70 a}$, A. De Salvo ${ }^{70 a}$, U. De Sanctis ${ }^{71 a, 71 b}$, M. De Santis ${ }^{71 a, 71 b}$, A. De Santo ${ }^{152}$, J.B. De Vivie De Regie ${ }^{56}$, D.V. Dedovich ${ }^{77}$, J. Degens ${ }^{115}$, A.M. Deiana ${ }^{40}$, J. Del Peso ${ }^{95}$, Y. Delabat Diaz ${ }^{44}$, F. Deliot ${ }^{140}$, C.M. Delitzsch ${ }^{6}$, M. Della Pietra ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, D. Della Volpe ${ }^{52}$, A. Dell'Acqua ${ }^{34}$, L. Dell'Asta ${ }^{66 a, 66 b}$, M. Delmastro ${ }^{4}$, P.A. Delsart ${ }^{56}$, S. Demers ${ }^{178}$, M. Demichev ${ }^{77}$, S.P. Denisov ${ }^{118}$, L. D’Eramo ${ }^{116}$, D. Derendarz ${ }^{82}$, J.E. Derkaoui ${ }^{33 \mathrm{~d}}$, F. Derue ${ }^{131}$, P. Dervan ${ }^{88}$, K. Desch ${ }^{22}$, K. Dette ${ }^{162}$, C. Deutsch ${ }^{22}$, P.O. Deviveiros ${ }^{34}$, F.A. Di Bello ${ }^{70 a}, 70 \mathrm{~b}$, A. Di Ciaccio ${ }^{71 a, 71 \mathrm{~b}}$, L. Di Ciaccio ${ }^{4}$, A. Di Domenico ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, C. Di Donato ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, A. Di Girolamo ${ }^{34}$, G. Di Gregorio ${ }^{69 a, 69 \mathrm{~b}}$, A. Di Luca ${ }^{73 \mathrm{a}, 73 \mathrm{~b}}$, B. Di Micco ${ }^{72 \mathrm{a}, 72{ }^{3} \mathrm{~b}}$, R. Di Nardo ${ }^{72 a, 72 b}$, C. Diaconu ${ }^{98}$, F.A. Dias ${ }^{115}$, T. Dias Do Vale ${ }^{135 a}$, M.A. Diaz ${ }^{\text {142a }}$, F.G. Diaz Capriles ${ }^{22}$, J. Dickinson ${ }^{16}$, M. Didenko ${ }^{169}$, E.B. Diehl ${ }^{102}$, J. Dietrich ${ }^{17}$, S. Díez Cornell ${ }^{44}$, C. Diez Pardos ${ }^{147}$, A. Dimitrievska ${ }^{16}$, W. Ding ${ }^{13 b}$, J. Dingfelder ${ }^{22}$, I-M. Dinu ${ }^{25 b}$, S.J. Dittmeier ${ }^{\text {59b }}$, F. Dittus ${ }^{34}$, F. Djama ${ }^{98}$, T. Djobava ${ }^{155 b}$, J.I. Djuvsland ${ }^{15}$, M.A.B. Do Vale ${ }^{143}$, D. Dodsworth ${ }^{24}$, C. Doglioni ${ }^{94}$, J. Dolejsi ${ }^{138}$, Z. Dolezal ${ }^{138}$, M. Donadelli ${ }^{78 \mathrm{C}}$, B. Dong ${ }^{58 \mathrm{C}}$, J. Donini ${ }^{36}$, A. D'onofrio ${ }^{13 \mathrm{C}}$, M. D'Onofrio ${ }^{88}$, J. Dopke ${ }^{139}$, A. Doria ${ }^{67 a}$, M.T. Dova ${ }^{86}$, A.T. Doyle ${ }^{55}$, E. Drechsler ${ }^{148}$, E. Dreyer ${ }^{148}$, T. Dreyer ${ }^{51}$, A.S. Drobac ${ }^{165}$, D. Du ${ }^{58 a}$, T.A. du Pree ${ }^{115}$, F. Dubinin ${ }^{107}$, M. Dubovsky ${ }^{26 a}$, A. Dubreuil ${ }^{52}$, E. Duchovni ${ }^{175}$, G. Duckeck ${ }^{110}$, O.A. Ducu ${ }^{34,25 b}$, D. Duda ${ }^{111}$, A. Dudarev ${ }^{34}$, M. D’uffizi ${ }^{97}$, L. Duflot ${ }^{62}$, M. Dührssen ${ }^{34}$, C. Dülsen ${ }^{177}$, A.E. Dumitriu ${ }^{25 b}$, M. Dunford ${ }^{59 \mathrm{a}}$, S. Dungs ${ }^{45}$, K. Dunne ${ }^{43 \mathrm{a} a, 43 \mathrm{~b}}$, A. Duperrin ${ }^{98}$, H. Duran Yildiz ${ }^{3 \mathrm{a}}$, M. Düren ${ }^{54}$, A. Durglishvili ${ }^{155 b}$, B. Dutta ${ }^{44}$, B.L. Dwyer ${ }^{116}$, G.I. Dyckes ${ }^{16}$, M. Dyndal ${ }^{81 a}$, S. Dysch ${ }^{97}$, B.S. Dziedzic ${ }^{82}$, B. Eckerova ${ }^{26 a}$, M.G. Eggleston ${ }^{47}$, E. Egidio Purcino De Souza ${ }^{78 b}$, L.F. Ehrke ${ }^{52}$, T. Eifert ${ }^{7}$, G. Eigen ${ }^{15}$, K. Einsweiler ${ }^{16}$, T. Ekelof ${ }^{167}$, Y. El Ghazali ${ }^{33 b}$, H. El Jarrari ${ }^{33 e}$, A. El Moussaouy ${ }^{33 a}$, V. Ellajosyula ${ }^{167}$, M. Ellert ${ }^{167}$, F. Ellinghaus ${ }^{177}$, A.A. Elliot ${ }^{90}$, N. Ellis ${ }^{34}$, J. Elmsheuser ${ }^{27}$, M. Elsing ${ }^{34}$, D. Emeliyanov ${ }^{139}$, A. Emerman ${ }^{37}$, Y. Enari ${ }^{159}$, J. Erdmann ${ }^{45}$, A. Ereditato ${ }^{18}$, P.A. Erland ${ }^{82}$, M. Errenst ${ }^{177}$, M. Escalier ${ }^{62}$, C. Escobar ${ }^{169}$, O. Estrada Pastor ${ }^{169}$, E. Etzion ${ }^{157}$, G. Evans ${ }^{135 a}$, H. Evans ${ }^{63}$, M.O. Evans ${ }^{152}$,
A. Ezhilov ${ }^{133}$, F. Fabbri ${ }^{55}$, L. Fabbri ${ }^{21 b}$,21a , G. Facini ${ }^{173}$, V. Fadeyev ${ }^{141}$, R.M. Fakhrutdinov ${ }^{118}$, S. Falciano ${ }^{70 a}$, P.J. Falke ${ }^{22}$, S. Falke ${ }^{34}$, J. Faltova ${ }^{138}$, Y. Fan ${ }^{13 a}$, Y. Fang ${ }^{13 a}$, G. Fanourakis ${ }^{42}$, M. Fanti ${ }^{66 a, 66 b}$, M. Faraj ${ }^{58 c}$, A. Farbin ${ }^{7}$, A. Farilla ${ }^{72 a}$, E.M. Farina ${ }^{68 a, 68 b}$, T. Farooque ${ }^{103}$, S.M. Farrington ${ }^{48}$, P. Farthouat ${ }^{34}$, F. Fassi ${ }^{33 e}$, D. Fassouliotis ${ }^{8}$, M. Faucci Giannelli ${ }^{71 a,}{ }^{71 b}$, W.J. Fawcett ${ }^{30}$, L. Fayard ${ }^{62}$, O.L. Fedin ${ }^{133, p}$, M. Feickert ${ }^{168}$, L. Feligioni ${ }^{98}$, A. Fell ${ }^{145}$, C. Feng ${ }^{58 \mathrm{~b}}$, M. Feng ${ }^{13 \mathrm{~b}}$, M.J. Fenton ${ }^{166}$, A.B. Fenyuk ${ }^{118}$, S.W. Ferguson ${ }^{41}$, J. Ferrando ${ }^{44}$, A. Ferrari ${ }^{167}$, P. Ferrari ${ }^{115}$, R. Ferrari ${ }^{68 a}$,
D. Ferrere ${ }^{52}$, C. Ferretti ${ }^{102}$, F. Fiedler ${ }^{96}$, A. Filipčič ${ }^{89}$, F. Filthaut ${ }^{114}$, M.C.N. Fiolhais ${ }^{135 a}, 135$ c,a,
L. Fiorini ${ }^{169}$, F. Fischer ${ }^{147}$, W.C. Fisher ${ }^{103}$, T. Fitschen ${ }^{19}$, I. Fleck ${ }^{147}$, P. Fleischmann ${ }^{102}$, T. Flick ${ }^{177}$,
B.M. Flierl ${ }^{110}$, L. Flores ${ }^{132}$, M. Flores ${ }^{31 d}$, L.R. Flores Castillo ${ }^{60 a}$, F.M. Follega ${ }^{73 a, 73 b}$, N. Fomin ${ }^{15}$,
J.H. Foo ${ }^{162}$, B.C. Forland ${ }^{63}$, A. Formica ${ }^{140}$, F.A. Förster ${ }^{12}$, A.C. Forti ${ }^{97}$, E. Fortin ${ }^{98}$, M.G. Foti ${ }^{130}$,
L. Fountas ${ }^{8}$, D. Fournier ${ }^{62}$, H. Fox ${ }^{87}$, P. Francavilla ${ }^{69 a, 69 b}$, S. Francescato ${ }^{57}$, M. Franchini ${ }^{21 b, 21 a}$,
S. Franchino ${ }^{59 a}$, D. Francis ${ }^{34}$, L. Franco ${ }^{4}$, L. Franconi ${ }^{18}$, M. Franklin ${ }^{57}$, G. Frattari ${ }^{70 a,}$, ${ }^{\text {Pob }}$, A.C. Freegard ${ }^{90}$,
P.M. Freeman ${ }^{19}$, W.S. Freund ${ }^{78 \mathrm{~b}}$, E.M. Freundlich ${ }^{45}$, D. Froidevaux ${ }^{34}$, J.A. Frost ${ }^{130}$, Y. Fu ${ }^{58 \mathrm{a}}$, M. Fujimoto ${ }^{122}$, E. Fullana Torregrosa ${ }^{169}$, J. Fuster ${ }^{169}$, A. Gabrielli ${ }^{21 b, 21 a}$, A. Gabrielli ${ }^{34}$, P. Gadow ${ }^{44}$, G. Gagliardi ${ }^{53 b, 53 a}$, L.G. Gagnon ${ }^{16}$, G.E. Gallardo ${ }^{130}$, E.J. Gallas ${ }^{130}$, B.J. Gallop ${ }^{139}$, R. Gamboa Goni ${ }^{90}$,
 J.E. García Navarro ${ }^{169}$, J.A. García Pascual ${ }^{13 a}$, M. Garcia-Sciveres ${ }^{16}$, R.W. Gardner ${ }^{35}$, D. Garg ${ }^{75}$, R.B. Garg ${ }^{149}$, S. Gargiulo ${ }^{50}$, C.A. Garner ${ }^{162}$, V. Garonne ${ }^{129}$, S.J. Gasiorowski ${ }^{144}$, P. Gaspar ${ }^{78 \mathrm{~b}}$, G. Gaudio ${ }^{68 \mathrm{a}}$, P. Gauzzi ${ }^{700,70 b}$, I.L. Gavrilenko ${ }^{107}$, A. Gavrilyuk ${ }^{119}$, C. Gay ${ }^{170}$, G. Gaycken ${ }^{44}$, E.N. Gazis ${ }^{9}$, A.A. Geanta ${ }^{25 b}$, C.M. Gee ${ }^{141}$, C.N.P. Gee ${ }^{139}$, J. Geisen ${ }^{94}$, M. Geisen ${ }^{96}$, C. Gemme ${ }^{53 b}$, M.H. Genest ${ }^{56}$, S. Gentile ${ }^{70 a, 70 b}$, S. George ${ }^{91}$, W.F. George ${ }^{19}$, T. Geralis ${ }^{42}$, L.O. Gerlach ${ }^{51}$, P. Gessinger-Befurt ${ }^{34}$, M. Ghasemi Bostanabad ${ }^{171}$, A. Ghosh ${ }^{166}$, A. Ghosh ${ }^{75}$, B. Giacobbe ${ }^{21 \mathrm{~b}}$, S. Giagu ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, N. Giangiacomi ${ }^{162}$, P. Giannetti ${ }^{69 \mathrm{a}}$, A. Giannini ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$, S.M. Gibson ${ }^{91}$, M. Gignac ${ }^{141}$, D.T. Gil ${ }^{81 \mathrm{~b}}$, B.J. Gilbert ${ }^{37}$, D. Gillberg ${ }^{32}$, G. Gilles ${ }^{115}$, N.E.K. Gillwald ${ }^{44}$, D.M. Gingrich ${ }^{2, a j}$, M.P. Giordani ${ }^{64 a, 64 c}$, P.F. Giraud ${ }^{140}$, G. Giugliarelli ${ }^{644,64 \mathrm{C}}$, D. Giugni ${ }^{66 a}$, F. Giuli ${ }^{711,711 \mathrm{~b}}$, I. Gkialas ${ }^{8, h}$, P. Gkountoumis ${ }^{9}$, L.K. Gladilin ${ }^{109}$, C. Glasman ${ }^{95}$, G.R. Gledhill ${ }^{127}$, M. Glisic ${ }^{127}$, I. Gnesi ${ }^{39 b}, d$, M. Goblirsch-Kolb ${ }^{24}$, D. Godin ${ }^{106}$, S. Goldfarb ${ }^{101}$, T. Golling ${ }^{52}$, D. Golubkov ${ }^{118}$, J.P. Gombas ${ }^{103}$, A. Gomes ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, R. Goncalves Gama ${ }^{51}$, R. Gonçalo ${ }^{135 a, 135 C^{\prime}}$, G. Gonella ${ }^{127}$, L. Gonella ${ }^{19}$, A. Gongadze ${ }^{77}$, F. Gonnella ${ }^{19}$, J.L. Gonski ${ }^{37}$, S. González de la Hoz^{169}, S. Gonzalez Fernandez ${ }^{12}$, R. Gonzalez Lopez ${ }^{88}$,
C. Gonzalez Renteria ${ }^{16}$, R. Gonzalez Suarez ${ }^{167}$, S. Gonzalez-Sevilla ${ }^{52}$, G.R. Gonzalvo Rodriguez ${ }^{169}$, R.Y. González Andana ${ }^{142 a}$, L. Goossens ${ }^{34}$, N.A. Gorasia ${ }^{19}$, P.A. Gorbounov ${ }^{119}$, H.A. Gordon ${ }^{27}$, B. Gorini ${ }^{34}$,
E. Gorini ${ }^{65 a, 65 b}$, A. Gorišek ${ }^{89}$, A.T. Goshaw ${ }^{47}$, M.I. Gostkin ${ }^{77}$, C.A. Gottardo ${ }^{114}$, M. Gouighri ${ }^{33 b}$, V. Goumarre ${ }^{44}$, A.G. Goussiou ${ }^{144}$, N. Govender ${ }^{31 c}$, C. Goy ${ }^{4}$, I. Grabowska-Bold ${ }^{81 a}$, K. Graham ${ }^{32}$, E. Gramstad ${ }^{129}$, S. Grancagnolo ${ }^{17}$, M. Grandi ${ }^{152}$, V. Gratchev ${ }^{133}$, P.M. Gravila ${ }^{25 f}$, F.G. Gravili ${ }^{65 a}$, 65 b , H.M. Gray ${ }^{16}$, C. Grefe ${ }^{22}$, I.M. Gregor ${ }^{44}$, P. Grenier ${ }^{149}$, K. Grevtsov ${ }^{44}$, C. Grieco ${ }^{12}$, N.A. Grieser ${ }^{124}$, A.A. Grillo ${ }^{141}$, K. Grimm ${ }^{29, l}$, S. Grinstein ${ }^{12, v}$, J.-F. Grivaz ${ }^{62}$, S. Groh ${ }^{96}$, E. Gross ${ }^{175}$, J. Grosse-Knetter ${ }^{51}$, C. Grud ${ }^{102}$, A. Grummer ${ }^{113}$, J.C. Grundy ${ }^{130}$, L. Guan ${ }^{102}$, W. Guan ${ }^{176}$, C. Gubbels ${ }^{170}$, J. Guenther ${ }^{34}$, J.G.R. Guerrero Rojas ${ }^{169}$, F. Guescini ${ }^{111}$, D. Guest ${ }^{17}$, R. Gugel ${ }^{96}$, A. Guida ${ }^{44}$, T. Guillemin ${ }^{4}$, S. Guindon ${ }^{34}$, J. Guo ${ }^{58 \text { c }}$, L. Guo ${ }^{62}$, Y. Guo ${ }^{102}$, R. Gupta ${ }^{44}$, S. Gurbuz ${ }^{22}$, G. Gustavino ${ }^{124}$, M. Guth ${ }^{52}$, P. Gutierrez ${ }^{124}$, L.F. Gutierrez Zagazeta ${ }^{132}$, C. Gutschow ${ }^{92}$, C. Guyot ${ }^{140}$, C. Gwenlan ${ }^{130}$, C.B. Gwilliam ${ }^{88}$, E.S. Haaland ${ }^{129}$, A. Haas ${ }^{121}$, M. Habedank ${ }^{44}$, C. Haber ${ }^{16}$, H.K. Hadavand ${ }^{7}$, A. Hadef ${ }^{96}$, S. Hadzic ${ }^{111}$, M. Haleem ${ }^{172}$, J. Haley ${ }^{125}$, J.J. Hall ${ }^{145}$, G. Halladjian ${ }^{103}$, G.D. Hallewell ${ }^{98}$, L. Halser ${ }^{18}$, K. Hamano ${ }^{171}$, H. Hamdaoui ${ }^{33 e}$, M. Hamer ${ }^{22}$, G.N. Hamity ${ }^{48}$, K. $\operatorname{Han}^{58 a}$, L. $\operatorname{Han}^{13 \mathrm{c}}$, L. $\operatorname{Han}^{58 \mathrm{a}}$, S. Han^{16}, Y.F. Han^{162}, K. Hanagaki ${ }^{79, t}$, M. Hance ${ }^{141}$, M.D. Hank ${ }^{35}$, R. Hankache ${ }^{97}$, E. Hansen ${ }^{94}$, J.B. Hansen ${ }^{38}$, J.D. Hansen ${ }^{38}$, M.C. Hansen ${ }^{22}$, P.H. Hansen ${ }^{38}$, K. Hara ${ }^{164}$, T. Harenberg ${ }^{177}$, S. Harkusha ${ }^{104}$, Y.T. Harris ${ }^{130}$, P.F. Harrison ${ }^{173}$, N.M. Hartman ${ }^{149}$, N.M. Hartmann ${ }^{110}$, Y. Hasegawa ${ }^{146}$, A. Hasib ${ }^{48}$, S. Hassani ${ }^{140}$, S. Haug ${ }^{18}$, R. Hauser ${ }^{103}$, M. Havranek ${ }^{137}$, C.M. Hawkes ${ }^{19}$, R.J. Hawkings ${ }^{34}$, S. Hayashida ${ }^{112}$, D. Hayden ${ }^{103}$, C. Hayes ${ }^{102}$, R.L. Hayes ${ }^{170}$, C.P. Hays ${ }^{130}$, J.M. Hays ${ }^{90}$, H.S. Hayward ${ }^{88}$, S.J. Haywood ${ }^{139}$, F. He ${ }^{58 \text { á }}$, Y. He^{160}, Y. He^{131}, M.P. Heath ${ }^{48}$, V. Hedberg ${ }^{94}$, A.L. Heggelund ${ }^{129}$, N.D. Hehir ${ }^{90}$, C. Heidegger ${ }^{50}$, K.K. Heidegger ${ }^{50}$, W.D. Heidorn ${ }^{76}$, J. Heilman ${ }^{32}$, S. Heim ${ }^{44}$, T. Heim ${ }^{16}$, B. Heinemann ${ }^{44, a h}$, J.G. Heinlein ${ }^{132}$, J.J. Heinrich ${ }^{127}$, L. Heinrich ${ }^{34}$, J. Hejbal ${ }^{136}$, L. Helary ${ }^{44}$, A. Held ${ }^{121}$, C.M. Helling ${ }^{141}$, S. Hellman ${ }^{43 a, 43 \mathrm{~b}}$, C. Helsens ${ }^{34}$, R.C.W. Henderson ${ }^{87}$, L. Henkelmann ${ }^{30}$, A.M. Henriques Correia ${ }^{34}$, H. Herde ${ }^{149}$, Y. Hernández Jiménez ${ }^{151}$, H. Herr ${ }^{96}$, M.G. Herrmann ${ }^{110}$, T. Herrmann ${ }^{46}$, G. Herten ${ }^{50}$,
R. Hertenberger ${ }^{110}$, L. Hervas ${ }^{34}$, N.P. Hessey ${ }^{163 a}$, H. Hibi ${ }^{80}$, S. Higashino ${ }^{79}$, E. Higón-Rodriguez ${ }^{169}$, K.H. Hiller ${ }^{44}$, S.J. Hillier ${ }^{19}$, M. Hils ${ }^{46}$, I. Hinchliffe ${ }^{16}$, F. Hinterkeuser ${ }^{22}$, M. Hirose ${ }^{128}$, S. Hirose ${ }^{164}$, D. Hirschbuehl ${ }^{177}$, B. Hiti 89, O. Hladik ${ }^{136}$, J. Hobbs ${ }^{151}$, R. Hobincu ${ }^{25 e}$, N. Hod ${ }^{175}$, M.C. Hodgkinson ${ }^{145}$, B.H. Hodkinson ${ }^{30}$, A. Hoecker ${ }^{34}$, J. Hofer 44, D. Hohn ${ }^{50}$, T. Holm ${ }^{22}$, T.R. Holmes ${ }^{35}$, M. Holzbock ${ }^{111}$, L.B.A.H. Hommels ${ }^{30}$, B.P. Honan ${ }^{97}$, J. Hong ${ }^{58 \mathrm{c}}$, T.M. Hong ${ }^{134}$, Y. Hong ${ }^{51}$, J.C. Honig ${ }^{50}$, A. Hönle ${ }^{1111}$, B.H. Hooberman ${ }^{168}$, W.H. Hopkins ${ }^{5}$, Y. Horii ${ }^{112}$, L.A. Horyn ${ }^{35}$, S. Hou ${ }^{154}$, J. Howarth ${ }^{55}$, J. Hoya ${ }^{86}$, M. Hrabovsky ${ }^{126}$, A. Hrynevich ${ }^{105}$, T. Hryn'ova ${ }^{4}$, P.J. Hsu ${ }^{61}$, S.-C. Hsu ${ }^{144}$, Q. Hu ${ }^{37}$, S. Hu ${ }^{58 \mathrm{c}}$,
Y.F. Hu ${ }^{13 a, 13 d, a l}$, D.P. Huang ${ }^{92}$, X. Huang ${ }^{13 \mathrm{c}}$, Y. Huang ${ }^{58 \mathrm{a}}$, Y. Huang ${ }^{13 \mathrm{a}}$, Z. Hubacek ${ }^{137}$, F. Hubaut ${ }^{98}$, M. Huebner ${ }^{22}$, F. Huegging ${ }^{22}$, T.B. Huffman ${ }^{130}$, M. Huhtinen ${ }^{34}$, S.K. Huiberts ${ }^{15}$, R. Hulsken ${ }^{56}$, N. Huseynov ${ }^{77, z}$, J. Huston ${ }^{103}$, J. Huth ${ }^{57}$, R. Hyneman ${ }^{149}$, S. Hyrych ${ }^{26 a}$, G. Iacobucci ${ }^{52}$, G. Iakovidis ${ }^{27}$, I. Ibragimov ${ }^{147}$, L. Iconomidou-Fayard ${ }^{62}$, P. Iengo ${ }^{34}$, R. Iguchi ${ }^{159}$, T. Iizawa ${ }^{52}$, Y. Ikegami ${ }^{79}$, A. Ilg ${ }^{18}$, N. Ilic ${ }^{162}$, H. Imam ${ }^{33 \mathrm{a}}$, T. Ingebretsen Carlson ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, G. Introzzi ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, M. Iodice ${ }^{72 \mathrm{a}}$, V. Ippolito ${ }^{70 a, 70 b}$, M. Ishino ${ }^{159}$, W. Islam ${ }^{176}$, C. Issever ${ }^{17,44}$, S. Istin ${ }^{11 c, a m}$, J.M. Iturbe Ponce ${ }^{60 a}$, R. Iuppa ${ }^{73 a}$, 73 b , A. Ivina ${ }^{175}$, J.M. Izen ${ }^{41}$, V. Izzo ${ }^{67 a}$, P. Jacka ${ }^{136}$, P. Jackson ${ }^{1}$, R.M. Jacobs ${ }^{44}$, B.P. Jaeger ${ }^{148}$, C.S. Jagfeld ${ }^{110}$, G. Jäkel ${ }^{177}$, K. Jakobs ${ }^{50}$, T. Jakoubek ${ }^{175}$, J. Jamieson ${ }^{55}$, K.W. Janas ${ }^{81 a}$, G. Jarlskog ${ }^{94}$, A.E. Jaspan ${ }^{88}$, N. Javadov ${ }^{77, z}$, T. Javı̊rek ${ }^{34}$, M. Javurkova ${ }^{99}$, F. Jeanneau ${ }^{140}$, L. Jeanty ${ }^{127}$, J. Jejelava ${ }^{155 a}$, Jaa, P. Jenni ${ }^{50, e}$, S. Jézéquel ${ }^{4}$, J. Jia ${ }^{151}$, Z. Jia ${ }^{13 \mathrm{C}}$, Y. Jiang ${ }^{58 \mathrm{a}}$, S. Jiggins ${ }^{48}$, J. Jimenez Pena ${ }^{111}$, S. Jin ${ }^{13 \mathrm{C}}$, A. Jinaru ${ }^{25 b}$, O. Jinnouchi ${ }^{160}$, H. Jivan ${ }^{31 f}$, P. Johansson ${ }^{145}$, K.A. Johns ${ }^{6}$, C.A. Johnson ${ }^{63}$, D.M. Jones ${ }^{30}$, E. Jones ${ }^{173}$, R.W.L. Jones ${ }^{87}$, T.J. Jones ${ }^{88}$, J. Jovicevic ${ }^{14}$, X. Ju ${ }^{16}$, J.J. Junggeburth ${ }^{34}$, A. Juste Rozas ${ }^{12, v}$, S. Kabana ${ }^{142 \mathrm{da}}$, A. Kaczmarska ${ }^{82}$, M. Kado ${ }^{70 a, 70 b}$, H. Kagan ${ }^{123}$, M. Kagan ${ }^{149}$, A. Kahn ${ }^{37}$, A. Kahn ${ }^{132}$, C. Kahra ${ }^{96}$, T. Kaji ${ }^{174}$, E. Kajomovitz ${ }^{156}$, C.W. Kalderon ${ }^{27}$, A. Kamenshchikov ${ }^{118}$, M. Kaneda ${ }^{159}$, N.J. Kang ${ }^{141}$, S. Kang ${ }^{76}$, Y. Kano ${ }^{112}$, D. Kar ${ }^{31 f}$, K. Karava ${ }^{130}$, M.J. Kareem ${ }^{163 b}$, I. Karkanias ${ }^{158}$, S.N. Karpov ${ }^{77}$, Z.M. Karpova ${ }^{77}$, V. Kartvelishvili ${ }^{87}$, A.N. Karyukhin ${ }^{118}$, E. Kasimi ${ }^{158}$, C. Kato ${ }^{58 d}$, J. Katzy ${ }^{44}$, K. Kawade ${ }^{146}$, K. Kawagoe ${ }^{85}$, T. Kawaguchi ${ }^{112}$, T. Kawamoto ${ }^{140}$, G. Kawamura ${ }^{51}$, E.F. Kay ${ }^{171}$, F.I. Kaya ${ }^{165}$, S. Kazakos ${ }^{12}$, V.F. Kazanin ${ }^{117 b, 117 a}$, Y. Ke ${ }^{151}$, J.M. Keaveney ${ }^{31 a}$, R. Keeler ${ }^{171}$, J.S. Keller ${ }^{32}$, A.S. Kelly ${ }^{92}$, D. Kelsey ${ }^{152}$, J.J. Kempster ${ }^{19}$, J. Kendrick ${ }^{19}$, K.E. Kennedy ${ }^{37}$, O. Kepka ${ }^{136}$, S. Kersten ${ }^{177}$, B.P. Kerševan ${ }^{89}$, S. Ketabchi Haghighat ${ }^{162}$, M. Khandoga ${ }^{131}$, A. Khanov ${ }^{125}$, A.G. Kharlamov ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, T. Kharlamova ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, E.E. Khoda ${ }^{144}$, T.J. Khoo ${ }^{17}$, G. Khoriauli ${ }^{172}$, E. Khramov ${ }^{77}$, J. Khubua ${ }^{155 b}$, S. Kido ${ }^{80}$, M. Kiehn ${ }^{34}$, A. Kilgallon ${ }^{127}$, E. Kim ${ }^{160}$, Y.K. Kim ${ }^{35}$, N. Kimura ${ }^{92}$, A. Kirchhoff ${ }^{51}$, D. Kirchmeier ${ }^{46}$, C. Kirfel ${ }^{22}$, J. Kirk ${ }^{139}$, A.E. Kiryunin ${ }^{111}$, T. Kishimoto ${ }^{159}$, D.P. Kisliuk ${ }^{162}$, C. Kitsaki ${ }^{9}$, O. Kivernyk ${ }^{22}$, T. Klapdor-Kleingrothaus ${ }^{50}$, M. Klassen ${ }^{59 \mathrm{a}}$, C. Klein ${ }^{32}$, L. Klein ${ }^{172}$, M.H. Klein ${ }^{102}$, M. Klein ${ }^{88}$, U. Klein ${ }^{88}$, P. Klimek ${ }^{34}$, A. Klimentov ${ }^{27}$, F. Klimpel ${ }^{111}$, T. Klingl ${ }^{22}$, T. Klioutchnikova ${ }^{34}$, F.F. Klitzner ${ }^{110}$, P. Kluit ${ }^{115}$, S. Kluth ${ }^{111}$, E. Kneringer ${ }^{74}$, T.M. Knight ${ }^{162}$, A. Knue ${ }^{50}$, D. Kobayashi ${ }^{85}$, R. Kobayashi ${ }^{83}$, M. Kobel ${ }^{46}$, M. Kocian ${ }^{149}$, T. Kodama ${ }^{159}$, P. Kodys ${ }^{138}$, D.M. Koeck ${ }^{\text {¹52 }}$, P.T. Koenig ${ }^{22}$, T. Koffas ${ }^{32}$, N.M. Köhler ${ }^{34}$, M. Kolb ${ }^{140}$, I. Koletsou ${ }^{4}$, T. Komarek ${ }^{126}$, K. Köneke ${ }^{50}$, A.X.Y. Kong ${ }^{1}$, T. Kono ${ }^{122}$, V. Konstantinides ${ }^{92}$, N. Konstantinidis ${ }^{92}$, B. Konya ${ }^{94}$, R. Kopeliansky ${ }^{63}$, S. Koperny ${ }^{81 a}$, K. Korcyl ${ }^{82}$, K. Kordas ${ }^{158}$, G. Koren ${ }^{157}$, A. Korn ${ }^{92}$, S. Korn ${ }^{51}$, I. Korolkov ${ }^{12}$, E.V. Korolkova ${ }^{145}$, N. Korotkova ${ }^{109}$, B. Kortman ${ }^{115}$, O. Kortner ${ }^{111}$, S. Kortner ${ }^{111}$, W.H. Kostecka ${ }^{116}$, V.V. Kostyukhin ${ }^{147,161}$ A. Kotsokechagia ${ }^{62}$, A. Kotwal ${ }^{47}$, A. Koulouris ${ }^{34}$, A. Kourkoumeli-Charalampidi ${ }^{68 \mathrm{a} a, 68 \mathrm{~b}}$, C. Kourkoumelis ${ }^{8}$, E. Kourlitis ${ }^{5}$, O. Kovanda ${ }^{152}$, R. Kowalewski ${ }^{171}$, W. Kozanecki ${ }^{140}$, A.S. Kozhin ${ }^{118}$, V.A. Kramarenko ${ }^{109}$, G. Kramberger ${ }^{89}$, P. Kramer ${ }^{96}$, D. Krasnopevtsev ${ }^{58 a}$, M.W. Krasny ${ }^{131}$, A. Krasznahorkay ${ }^{34}$, J.A. Kremer ${ }^{96}$, J. Kretzschmar ${ }^{88}$, K. Kreul ${ }^{17}$, P. Krieger ${ }^{162}$, F. Krieter ${ }^{110}$, S. Krishnamurthy ${ }^{99}$, A. Krishnan ${ }^{59 \mathrm{~b}}$, M. Krivos ${ }^{138}$, K. Krizka ${ }^{16}$, K. Kroeninger ${ }^{45}$, H. Kroha ${ }^{111}$, J. Kroll ${ }^{136}$, J. Kroll ${ }^{132}$, K.S. Krowpman ${ }^{103}$, U. Kruchonak ${ }^{77}$, H. Krüger ${ }^{22}$, N. Krumnack ${ }^{76}$, M.C. Kruse ${ }^{47}$, J.A. Krzysiak ${ }^{82}$, A. Kubota ${ }^{160}$, O. Kuchinskaia ${ }^{161}$, S. Kuday ${ }^{3 a}$, D. Kuechler ${ }^{44}$, J.T. Kuechler ${ }^{44}$, S. Kuehn ${ }^{34}$, T. Kuhl ${ }^{44}$, V. Kukhtin ${ }^{77}$, Y. Kulchitsky ${ }^{104, a d}$, S. Kuleshov ${ }^{142 c}$, M. Kumar ${ }^{31 \mathrm{f}}$, N. Kumari ${ }^{98}$, M. Kuna ${ }^{56}$, A. Kupco ${ }^{136}$, T. Kupfer ${ }^{45}$, O. Kuprash ${ }^{50}$, H. Kurashige ${ }^{80}$, L.L. Kurchaninov ${ }^{163 a}$, Y.A. Kurochkin ${ }^{104}$, A. Kurova ${ }^{108}$, M.G. Kurth ${ }^{13 a}, 13 \mathrm{~d}$, E.S. Kuwertz ${ }^{34}$, M. Kuze ${ }^{160}$, A.K. Kvam ${ }^{144}$, J. Kvita ${ }^{126}$, T. Kwan ${ }^{100}$, K.W. Kwok ${ }^{60 a}$, C. Lacasta ${ }^{169}$, F. Lacava ${ }^{70 a}, 70{ }^{\prime}$, H. Lacker ${ }^{17}$, D. Lacour ${ }^{131}$, N.N. Lad ${ }^{92}$, E. Ladygin ${ }^{77}$, R. Lafaye ${ }^{4}$, B. Laforge ${ }^{131}$, T. Lagouri ${ }^{142 \mathrm{~d}}$, S. Lai ${ }^{51}$, I.K. Lakomiec ${ }^{81 \mathrm{a}}$, N. Lalloue ${ }^{56}$, J.E. Lambert ${ }^{\text {124 }}$, S. Lammers ${ }^{63}$, W. Lampl ${ }^{6}$, C. Lampoudis ${ }^{158}$, E. Lançon ${ }^{27}$, U. Landgraf ${ }^{50}$, M.P.J. Landon ${ }^{90}$, V.S. Lang ${ }^{50}$, J.C. Lange ${ }^{51}$,
R.J. Langenberg ${ }^{99}$, A.J. Lankford ${ }^{166}$, F. Lanni ${ }^{27}$, K. Lantzsch ${ }^{22}$, A. Lanza ${ }^{68 a}$, A. Lapertosa ${ }^{53 b, 53 a}$, J.F. Laporte ${ }^{140}$, T. Lari ${ }^{66 a}$, F. Lasagni Manghi ${ }^{21 b}$, M. Lassnig ${ }^{34}$, V. Latonova ${ }^{136}$, T.S. Lau ${ }^{60 a}$, A. Laudrain ${ }^{96}$,
A. Laurier ${ }^{32}$, M. Lavorgna ${ }^{67 a, 67 b}$, S.D. Lawlor ${ }^{91}$, Z. Lawrence ${ }^{97}$, M. Lazzaroni ${ }^{66 a, 66 b}$, B. Le ${ }^{97}$, B. Leban ${ }^{89}$, A. Lebedev ${ }^{76}$, M. LeBlanc ${ }^{34}$, T. LeCompte ${ }^{5}$, F. Ledroit-Guillon ${ }^{56}$, A.C.A. Lee ${ }^{92}$, G.R. Lee ${ }^{15}$, L. Lee ${ }^{57}$, S.C. Lee ${ }^{154}$, S. Lee ${ }^{76}$, L.L. Leeuw ${ }^{31 c}$, B. Lefebvre ${ }^{163 a}$, H.P. Lefebvre ${ }^{91}$, M. Lefebvre ${ }^{171}$, C. Leggett ${ }^{16}$, K. Lehmann ${ }^{148}$, N. Lehmann ${ }^{18}$, G. Lehmann Miotto ${ }^{34}$, W.A. Leight ${ }^{44}$, A. Leisos ${ }^{158, u}$, M.A.L. Leite ${ }^{78 \mathrm{c}}$, C.E. Leitgeb ${ }^{44}$, R. Leitner ${ }^{138}$, K.J.C. Leney ${ }^{40}$, T. Lenz ${ }^{22}$, S. Leone ${ }^{69 a}$, C. Leonidopoulos ${ }^{48}$, A. Leopold ${ }^{150}$,
C. Leroy ${ }^{106}$, R. Les ${ }^{103}$, C.G. Lester ${ }^{30}$, M. Levchenko ${ }^{133}$, J. Levêque ${ }^{4}$, D. Levin ${ }^{102}$, L.J. Levinson ${ }^{175}$,

 Z. Liang ${ }^{13 a}$, M. Liberatore ${ }^{44}$, B. Liberti ${ }^{71 a}$, K. Lie ${ }^{60 c}$, J. Lieber Marin ${ }^{78 b}$, K. Lin ${ }^{103}$, R.A. Linck ${ }^{63}$, R.E. Lindley ${ }^{6}$, J.H. Lindon ${ }^{2}$, A. Linss ${ }^{44}$, E. Lipeles ${ }^{132}$, A. Lipniacka ${ }^{15}$, T.M. Liss ${ }^{168, a i}$, A. Lister ${ }^{170}$, J.D. Little ${ }^{7}$, B. Liu ${ }^{13 a}$, B.X. Liu ${ }^{148}$, J.B. Liu ${ }^{58 a}$, J.K.K. Liu ${ }^{35}$, K. Liu ${ }^{58 d, 58 c}$, M. Liu ${ }^{58 a}$, M.Y. Liu ${ }^{58 a}$, P. Liu ${ }^{13 a}$, X. Liu ${ }^{58 a}$, Y. Liu ${ }^{44}$, Y. Liu ${ }^{13 c, 13 d}$, Y.L. Liu ${ }^{102}$, Y.W. Liu ${ }^{58 a}$, M. Livan ${ }^{68 a, 68 b}$, J. Llorente Merino ${ }^{148}$, S.L. Lloyd ${ }^{90}$, E.M. Lobodzinska ${ }^{44}$, P. Loch ${ }^{6}$, S. Loffredo ${ }^{71 a, 71 b}$, T. Lohse ${ }^{17}$, K. Lohwasser ${ }^{145}$, M. Lokajicek ${ }^{136}$, J.D. Long ${ }^{168}$, I. Longarini ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$, L. Longo ${ }^{34}$, R. Longo ${ }^{168}$, I. Lopez Paz ${ }^{12}$,
A. Lopez Solis ${ }^{44}$, J. Lorenz ${ }^{110}$, N. Lorenzo Martinez ${ }^{4}$, A.M. Lory ${ }^{110}$, A. Lösle ${ }^{50}$, X. Lou ${ }^{43 a, 43 b}$, X. Lou ${ }^{13 a}$, A. Lounis ${ }^{62}$, J. Love ${ }^{5}$, P.A. Love ${ }^{87}$, J.J. Lozano Bahilo ${ }^{169}$, G. Lu ${ }^{13 a}$, M. Lu ${ }^{58 a}$, S. Lu ${ }^{132}$, Y.J. Lu ${ }^{61}$, H.J. Lubatti ${ }^{144}$, C. Luci ${ }^{\text {70a, } 70 \mathrm{~b}}$, F.L. Lucio Alves ${ }^{13 \mathrm{c}}$, A. Lucotte ${ }^{56}$, F. Luehring ${ }^{63}$, I. Luise ${ }^{\text {151 }}$, L. Luminari ${ }^{\text {70a }}$, O. Lundberg ${ }^{150}$, B. Lund-Jensen ${ }^{150}$, N.A. Luongo ${ }^{127}$, M.S. Lutz ${ }^{157}$, D. Lynn ${ }^{27}$, H. Lyons ${ }^{88}$, R. Lysak ${ }^{136}$, E. Lytken ${ }^{94}$, F. Lyu ${ }^{13 \mathrm{a}}$, V. Lyubushkin ${ }^{77}$, T. Lyubushkina ${ }^{77}$, H. Ma ${ }^{27}$, L.L. Ma ${ }^{58 \mathrm{~b}}$, Y. Ma ${ }^{92}$, D.M. Mac Donell ${ }^{171}$, G. Maccarrone ${ }^{49}$, C.M. Macdonald ${ }^{145}$, J.C. MacDonald ${ }^{145}$, R. Madar ${ }^{36}$, W.F. Mader ${ }^{46}$, M. Madugoda Ralalage Don ${ }^{125}$, N. Madysa ${ }^{46}$, J. Maeda ${ }^{80}$, T. Maeno ${ }^{27}$, M. Maerker ${ }^{46}$, V. Magerl ${ }^{50}$, J. Magro ${ }^{64 \mathrm{a}, 64 \mathrm{c}}$, D.J. Mahon ${ }^{37}$, C. Maidantchik ${ }^{78 \mathrm{~b}}$, A. Maio ${ }^{135 \mathrm{a}, 135 \mathrm{~b}, 135 \mathrm{~d}}$, K. Maj ${ }^{81 \mathrm{a}}$, O. Majersky ${ }^{26 a}$, S. Majewski ${ }^{127}$, N. Makovec ${ }^{62}$, V. Maksimovic ${ }^{14}$, B. Malaescu ${ }^{131}$, Pa. Malecki ${ }^{82}$, V.P. Maleev ${ }^{133}$, F. Malek ${ }^{56}$, D. Malito ${ }^{\text {39b, } 39 a}$, U. Mallik ${ }^{75}$, C. Malone ${ }^{30}$, S. Maltezos ${ }^{9}$, S. Malyukov ${ }^{77}$, J. Mamuzic ${ }^{169}$, G. Mancini ${ }^{49}$, J.P. Mandalia ${ }^{90}$, I. Mandić ${ }^{89}$, L. Manhaes de Andrade Filho ${ }^{78 a}$, I.M. Maniatis ${ }^{158}$, M. Manisha ${ }^{140}$, J. Manjarres Ramos ${ }^{46}$, K.H. Mankinen ${ }^{94}$, A. Mann ${ }^{110}$, A. Manousos ${ }^{74}$, B. Mansoulie ${ }^{140}$, I. Manthos ${ }^{158}$, S. Manzoni ${ }^{115}$, A. Marantis ${ }^{158, u}$, G. Marchiori ${ }^{131}$, M. Marcisovsky ${ }^{136}$, L. Marcoccia ${ }^{711,71 b}$, C. Marcon ${ }^{94}$, M. Marjanovic ${ }^{124}$, Z. Marshall ${ }^{16}$, S. Marti-Garcia ${ }^{169}$, T.A. Martin ${ }^{173}$, V.J. Martin ${ }^{48}$, B. Martin dit Latour ${ }^{15}$, L. Martinelli ${ }^{70 \mathrm{a}}$, 70 b , M. Martinez ${ }^{12, v}$, P. Martinez Agullo ${ }^{169}$, V.I. Martinez Outschoorn ${ }^{99}$, S. Martin-Haugh ${ }^{139}$, V.S. Martoiu ${ }^{25 \mathrm{~b}}$, A.C. Martyniuk ${ }^{92}$, A. Marzin ${ }^{34}$, S.R. Maschek ${ }^{111}$, L. Masetti ${ }^{96}$, T. Mashimo ${ }^{159}$, J. Masik ${ }^{97}$, A.L. Maslennikov ${ }^{117 b, 117 a}$, L. Massa ${ }^{21 \mathrm{~b}}$, P. Massarotti ${ }^{67 a, 67 b}$, P. Mastrandrea ${ }^{69 a, 69 b}$, A. Mastroberardino ${ }^{39 b}, 39$ a, T. Masubuchi ${ }^{159}$, D. Matakias ${ }^{27}$, T. Mathisen ${ }^{167}$, A. Matic ${ }^{110}$, N. Matsuzawa ${ }^{159}$, J. Maurer ${ }^{25 b}$, B. Maček ${ }^{89}$, D.A. Maximov ${ }^{117 b}, 117$ a , R. Mazini ${ }^{154}$, I. Maznas ${ }^{158}$, S.M. Mazza ${ }^{141}$, C. Mc Ginn ${ }^{27}$, J.P. Mc Gowan ${ }^{100}$, S.P. Mc Kee ${ }^{102}$, T.G. McCarthy ${ }^{111}$, W.P. McCormack ${ }^{16}$, E.F. McDonald ${ }^{101}$, A.E. McDougall ${ }^{115}$, J.A. Mcfayden ${ }^{152}$, G. Mchedlidze ${ }^{155 b}$, M.A. McKay ${ }^{40}$, K.D. McLean ${ }^{171}$, S.J. McMahon ${ }^{139}$, P.C. McNamara ${ }^{101}$, R.A. McPherson ${ }^{171, y}$, J.E. Mdhluli ${ }^{31 f}$, Z.A. Meadows ${ }^{99}$, S. Meehan ${ }^{34}$, T. Megy ${ }^{36}$, S. Mehlhase ${ }^{110}$, A. Mehta ${ }^{88}$, B. Meirose ${ }^{41}$, D. Melini ${ }^{156}$, B.R. Mellado Garcia ${ }^{31 f}$, A.H. Melo ${ }^{51}$, F. Meloni ${ }^{44}$, A. Melzer ${ }^{22}$, E.D. Mendes Gouveia ${ }^{135 a}$, A.M. Mendes Jacques Da Costa ${ }^{19}$, H.Y. Meng ${ }^{162}$, L. Meng ${ }^{34}$, S. Menke ${ }^{111}$, M. Mentink ${ }^{34}$, E. Meoni ${ }^{39 b,} 39 \mathrm{a}$, C. Merlassino ${ }^{130}$, P. Mermod ${ }^{52, *}$, L. Merola ${ }^{57 \mathrm{a}, 67 \mathrm{~b}}$, C. Meroni ${ }^{66 a}$, G. Merz ${ }^{102}$, O. Meshkov ${ }^{107,109}$, J.K.R. Meshreki ${ }^{147}$, J. Metcalfe ${ }^{5}$, A.S. Mete ${ }^{5}$, C. Meyer ${ }^{63}$, J-P. Meyer ${ }^{140}$, M. Michetti ${ }^{17}$, R.P. Middleton ${ }^{139}$, L. Mijović ${ }^{48}$, G. Mikenberg ${ }^{175}$, M. Mikestikova ${ }^{136}$, M. Mikuž ${ }^{89}$, H. Mildner ${ }^{145}$, A. Milic ${ }^{162}$, C.D. Milke ${ }^{40}$, D.W. Miller ${ }^{35}$, L.S. Miller ${ }^{32}$, A. Milov ${ }^{175}$, D.A. Milstead ${ }^{43}{ }^{4}, 43$ b T. Min ${ }^{13 \mathrm{c}}$, A.A. Minaenko ${ }^{118}$, I.A. Minashvili ${ }^{155 \mathrm{~b}}$, L. Mince ${ }^{55}$, A.I. Mincer ${ }^{121}$, B. Mindur ${ }^{81 \mathrm{a}}$, M. Mineev ${ }^{17}$, Y. Minegishi ${ }^{159}$, Y. Mino ${ }^{83}$, L.M. Mir ${ }^{12}$, M. Miralles Lopez ${ }^{169}$, M. Mironova ${ }^{130}$, T. Mitani ${ }^{174}$, V.A. Mitsou ${ }^{169}$, M. Mittal ${ }^{58 \mathrm{c}}$, O. Miu ${ }^{162}$, P.S. Miyagawa ${ }^{90}$, Y. Miyazaki ${ }^{85}$, A. Mizukami ${ }^{79}$, J.U. Mjörnmark ${ }^{94}$, T. Mkrtchyan ${ }^{59 a}$, M. Mlynarikova ${ }^{116}$, T. Moa ${ }^{43 a, 43 b}$, S. Mobius ${ }^{51}$, K. Mochizuki ${ }^{106}$, P. Moder ${ }^{44}$, P. Mogg ${ }^{110}$, A.F. Mohammed ${ }^{\text {13a }}$, S. Mohapatra ${ }^{37}$, G. Mokgatitswane ${ }^{31 f}$, B. Mondal ${ }^{147}$, S. Mondal ${ }^{137}$, K. Mönig ${ }^{44}$, E. Monnier ${ }^{98}$, L. Monsonis Romero ${ }^{169}$, A. Montalbano ${ }^{148}$, J. Montejo Berlingen ${ }^{34}$, M. Montella ${ }^{123}$, F. Monticelli ${ }^{86}$, N. Morange ${ }^{62}$, A.L. Moreira De Carvalho ${ }^{135 a}$, M. Moreno Llácer ${ }^{169}$, C. Moreno Martinez ${ }^{12}$, P. Morettini ${ }^{533}$, S. Morgenstern ${ }^{173}$, D. Mori ${ }^{148}$, M. Morii ${ }^{57}$, M. Morinaga ${ }^{159}$, V. Morisbak ${ }^{129}$, A.K. Morley ${ }^{34}$, A.P. Morris ${ }^{92}$, L. Morvaj ${ }^{34}$, P. Moschovakos ${ }^{34}$, B. Moser ${ }^{115}$, M. Mosidze ${ }^{155 b}$, T. Moskalets ${ }^{50}$, P. Moskvitina ${ }^{114}$, J. Moss ${ }^{29, n}$, E.J.W. Moyse ${ }^{99}$,
S. Muanza ${ }^{98}$, J. Mueller ${ }^{134}$, R. Mueller ${ }^{18}$, D. Muenstermann ${ }^{87}$, G.A. Mullier ${ }^{94}$, J.J. Mullin ${ }^{132}$, D.P. Mungo ${ }^{66 a, 66 b}$, J.L. Munoz Martinez ${ }^{12}$, F.J. Munoz Sanchez ${ }^{97}$, M. Murin ${ }^{97}$, P. Murin ${ }^{26 b}$, W.J. Murray ${ }^{173,139}$, A. Murrone ${ }^{66 a, 66 b}$, J.M. Muse ${ }^{124}$, M. Muškinja ${ }^{16}$, C. Mwewa ${ }^{27}$, A.G. Myagkov ${ }^{118, a e}$, A.J. Myers ${ }^{7}$, A.A. Myers ${ }^{134}$, G. Myers ${ }^{63}$, M. Myska ${ }^{137}$, B.P. Nachman ${ }^{16}$, O. Nackenhorst ${ }^{45}$, A. Nag Nag ${ }^{46}$, K. Nagai ${ }^{130}$, K. Nagano ${ }^{79}$, J.L. Nagle ${ }^{27}$, E. Nagy ${ }^{98}$, A.M. Nairz ${ }^{34}$, Y. Nakahama ${ }^{112}$, K. Nakamura ${ }^{79}$, H. Nanjo ${ }^{128}$, F. Napolitano ${ }^{59 a}$, R. Narayan ${ }^{40}$, E.A. Narayanan ${ }^{113}$, I. Naryshkin ${ }^{133}$, M. Naseri ${ }^{32}$, C. Nass ${ }^{22}$, T. Naumann ${ }^{44}$, G. Navarro ${ }^{20 a}$, J. Navarro-Gonzalez ${ }^{169}$, R. Nayak ${ }^{157}$, P.Y. Nechaeva ${ }^{102}$, F. Nechansky ${ }^{44}$, T.J. Neep ${ }^{19}$, A. Negri ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$, M. Negrini ${ }^{21 \mathrm{~b}}$, C. Nellist ${ }^{114}$, C. Nelson ${ }^{100}$, K. Nelson ${ }^{102}$, S. Nemecek ${ }^{136}$, M. Nessi ${ }^{34, f}$, M.S. Neubauer ${ }^{168}$, F. Neuhaus ${ }^{96}$, J. Neundorf ${ }^{44}$, R. Newhouse ${ }^{170}$, P.R. Newman ${ }^{19}$, C.W. Ng^{134}, Y.S. Ng^{17}, Y.W.Y. Ng^{166}, B. Ngair ${ }^{33 \mathrm{e}}$, H.D.N. Nguyen ${ }^{106}$, R.B. Nickerson ${ }^{130}$, R. Nicolaidou ${ }^{140}$, D.S. Nielsen ${ }^{38}$, J. Nielsen ${ }^{141}$, M. Niemeyer ${ }^{51}$, N. Nikiforou ${ }^{10}$, V. Nikolaenko ${ }^{118, a e}$, I. Nikolic-Audit ${ }^{131}$, K. Nikolopoulos ${ }^{19}$, P. Nilsson ${ }^{27}$, H.R. Nindhito ${ }^{52}$, A. Nisati ${ }^{70 \mathrm{a}}$, N. Nishu ${ }^{2}$, R. Nisius ${ }^{111}$, T. Nitta ${ }^{174}$, T. Nobe ${ }^{159}$, D.L. Noel ${ }^{30}$, Y. Noguchi ${ }^{83}$, I. Nomidis ${ }^{131}$, M.A. Nomura ${ }^{27}$, M.B. Norfolk ${ }^{145}$, R.R.B. Norisam ${ }^{92}$, J. Novak ${ }^{89}$, T. Novak ${ }^{44}$, O. Novgorodova ${ }^{46}$, L. Novotny ${ }^{137}$, R. Novotny ${ }^{113}$, L. Nozka ${ }^{126}$, K. Ntekas ${ }^{166}$, E. Nurse ${ }^{92}$, F.G. Oakham ${ }^{32, a j}$, J. Ocariz ${ }^{131}$, A. Ochi ${ }^{80}$, I. Ochoa ${ }^{135 a}$, J.P. Ochoa-Ricoux ${ }^{142 \mathrm{a}}$, S. Oda ${ }^{85}$, S. Odaka ${ }^{79}$, S. Oerdek ${ }^{167}$, A. Ogrodnik ${ }^{81 a^{\prime}}$, A. Oh ${ }^{97}$, C.C. Ohm ${ }^{150}$, H. Oide ${ }^{160}$, R. Oishi ${ }^{159}$, M.L. Ojeda ${ }^{44}$, Y. Okazaki ${ }^{83}$, M.W. O’Keefe ${ }^{88}$, Y. Okumura ${ }^{159}$, A. Olariu ${ }^{25 b}$, L.F. Oleiro Seabra ${ }^{135 a}$, S.A. Olivares Pino ${ }^{142 \text { d }}$, D. Oliveira Damazio ${ }^{27}$, D. Oliveira Goncalves ${ }^{78 a}$, J.L. Oliver ${ }^{166}$, M.J.R. Olsson ${ }^{166}$, A. Olszewski ${ }^{82}$, J. Olszowska ${ }^{82}$, Ö.O. Öncel ${ }^{22}$, D.C. O’Neil ${ }^{148}$, A.P. O'neill ${ }^{130}$, A. Onofre ${ }^{135 a, 135 e}$, P.U.E. Onyisi ${ }^{10}$, R.G. Oreamuno Madriz ${ }^{116}$, M.J. Oreglia ${ }^{35}$, G.E. Orellana ${ }^{86}$, D. Orestano ${ }^{72 a}, 72 \mathrm{~b}$, N. Orlando ${ }^{12}$, R.S. Orr ${ }^{162}$, V. O'Shea ${ }^{55}$, R. Ospanov ${ }^{58 \mathrm{a}}$, G. Otero y Garzon ${ }^{28}$, H. Otono ${ }^{85}$, P.S. Ott ${ }^{59 a}$, G.J. Ottino ${ }^{16}$, M. Ouchrif ${ }^{33 d}$, J. Ouellette ${ }^{27}$, F. Ould-Saada ${ }^{129}$, A. Ouraou ${ }^{140, *}$, Q. Ouyang ${ }^{13 a}$, M. Owen ${ }^{55}$, R.E. Owen ${ }^{139}$, K.Y. Oyulmaz ${ }^{11 \mathrm{c}}$, V.E. Ozcan ${ }^{11 \mathrm{c}}$, N. Ozturk ${ }^{7}$, S. Ozturk ${ }^{11 \mathrm{c}}$, J. Pacalt ${ }^{126}$, H.A. Pacey ${ }^{30}$, K. Pachal ${ }^{47}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, S. Pagan Griso ${ }^{16}$, G. Palacino ${ }^{63}$, S. Palazzo ${ }^{48}$, S. Palestini ${ }^{34}$, M. Palka ${ }^{81 \mathrm{~b}}$, P. Palni ${ }^{81 a}$, D.K. Panchal ${ }^{10}$, C.E. Pandini ${ }^{52}$, J.G. Panduro Vazquez ${ }^{91}$, P. Pani ${ }^{44}$, G. Panizzo ${ }^{64 a, 64 c}$, L. Paolozzi ${ }^{52}$, C. Papadatos ${ }^{106}$, S. Parajuli ${ }^{40}$, A. Paramonov ${ }^{5}$, C. Paraskevopoulos ${ }^{9}$, D. Paredes Hernandez ${ }^{60 b}$, S.R. Paredes Saenz ${ }^{130}$, B. Parida ${ }^{175}$, T.H. Park ${ }^{162}$, A.J. Parker ${ }^{29}$, M.A. Parker ${ }^{30}$, F. Parodi ${ }^{53 b, 53 a}$, E.W. Parrish ${ }^{116}$, J.A. Parsons ${ }^{37}$, U. Parzefall ${ }^{50}$, L. Pascual Dominguez ${ }^{157}$, V.R. Pascuzzi ${ }^{16}$, F. Pasquali ${ }^{115}$, E. Pasqualucci ${ }^{70}$ a, S. Passaggio ${ }^{53 \mathrm{~b}}$, F. Pastore ${ }^{91}$, P. Pasuwan ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, J.R. Pater ${ }^{97}$, A. Pathak ${ }^{176}$, J. Patton ${ }^{88}$, T. Pauly ${ }^{34}$, J. Pearkes ${ }^{149}$, M. Pedersen ${ }^{129}$, L. Pedraza Diaz ${ }^{114}$, R. Pedro ${ }^{135 a}$,
 A.P. Pereira Peixoto ${ }^{135 a}$, L. Pereira Sanchez ${ }^{43 a, 43 b}$, D.V. Perepelitsa ${ }^{27}$, E. Perez Codina ${ }^{163 a}$, M. Perganti ${ }^{9}$, L. Perini ${ }^{66 a, 66 b}$, H. Pernegger ${ }^{34}$, S. Perrella ${ }^{34}$, A. Perrevoort ${ }^{115}$, K. Peters ${ }^{44}$, R.F.Y. Peters ${ }^{97}$, B.A. Petersen ${ }^{34}$, T.C. Petersen ${ }^{38^{\prime}}$, E. Petit ${ }^{98}$, V. Petousis ${ }^{137}$, C. Petridou ${ }^{158}$, P. Petroff ${ }^{62}$, F. Petrucci ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, A. Petrukhin ${ }^{147}$, M. Pettee ${ }^{178}$, N.E. Pettersson ${ }^{34}$, K. Petukhova ${ }^{138}$, A. Peyaud ${ }^{140}$, R. Pezoa ${ }^{142 e}$, L. Pezzotti ${ }^{34}$, G. Pezzullo ${ }^{178}$, T. Pham ${ }^{101}$, P.W. Phillips ${ }^{139}$, M.W. Phipps ${ }^{168}$, G. Piacquadio ${ }^{151}$, E. Pianori ${ }^{16}$, F. Piazza ${ }^{66 a, 66 b}$, A. Picazio ${ }^{99}$, R. Piegaia ${ }^{28}$, D. Pietreanu ${ }^{25 b}$, J.E. Pilcher ${ }^{35}$, A.D. Pilkington ${ }^{97}$, M. Pinamonti ${ }^{64 a, 64 c}$, J.L. Pinfold ${ }^{2}$, C. Pitman Donaldson ${ }^{92}$, D.A. Pizzi ${ }^{32}$, L. Pizzimento ${ }^{71 a, 71 b}$, A. Pizzini ${ }^{115}$, M.-A. Pleier ${ }^{27}$, V. Plesanovs ${ }^{50}$, V. Pleskot ${ }^{138}$, E. Plotnikova ${ }^{77}$, P. Podberezko ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, R. Poettgen ${ }^{94}$, R. Poggi ${ }^{52}$, L. Poggioli ${ }^{131}$, I. Pogrebnyak ${ }^{103}$, D. Pohl ${ }^{22}$, I. Pokharel ${ }^{51}$, G. Polesello ${ }^{68 a}$, A. Poley ${ }^{148,163 a}$, A. Policicchio ${ }^{70 a}, 70 \mathrm{~b}$, R. Polifka ${ }^{138}$, A. Polini ${ }^{21 b}$, C.S. Pollard ${ }^{130}$, Z.B. Pollock ${ }^{123}$, V. Polychronakos ${ }^{27}$, D. Ponomarenko ${ }^{108}$, L. Pontecorvo ${ }^{34}$, S. Popa ${ }^{25 a}$, G.A. Popeneciu ${ }^{25 d}$, L. Portales ${ }^{4}$, D.M. Portillo Quintero ${ }^{163 a}$, S. Pospisil ${ }^{137}$, P. Postolache ${ }^{25 \mathrm{c}}$, K. Potamianos ${ }^{130}$, I.N. Potrap ${ }^{77}$, C.J. Potter ${ }^{30}$, H. Potti ${ }^{1}$, T. Poulsen ${ }^{44}$, J. Poveda ${ }^{169}$, T.D. Powell ${ }^{145}$, G. Pownall ${ }^{44}$, M.E. Pozo Astigarraga ${ }^{34}$, A. Prades Ibanez ${ }^{169}$, P. Pralavorio ${ }^{98}$, M.M. Prapa ${ }^{42}$, S. Prell ${ }^{76}$, D. Price ${ }^{97}$, M. Primavera ${ }^{65 a}$, M.A. Principe Martin ${ }^{95}$, M.L. Proffitt ${ }^{144}$, N. Proklova ${ }^{108}$, K. Prokofiev ${ }^{60 c}$, F. Prokoshin ${ }^{77}$, S. Protopopescu ${ }^{27}$, J. Proudfoot ${ }^{5}$, M. Przybycien ${ }^{81 a}$, D. Pudzha ${ }^{133}$, P. Puzo ${ }^{62}$, D. Pyatiizbyantseva ${ }^{108}$, J. Qian ${ }^{102}$, Y. Qin ${ }^{97}$, T. Qiu ${ }^{90}$, A. Quadt ${ }^{51}$, M. Queitsch-Maitland ${ }^{34}$, G. Rabanal Bolanos ${ }^{57}$, F. Ragusa ${ }^{\text {6 }}{ }^{5 a,}{ }^{66 b}$, J.A. Raine ${ }^{52}$, S. Rajagopalan ${ }^{27}$, K. Ran ${ }^{13 a, 13 \mathrm{~d}}$, D.F. Rassloff ${ }^{59 \mathrm{a}}$, D.M. Rauch ${ }^{44}$, S. Rave ${ }^{96}$, B. Ravina ${ }^{55}$, I. Ravinovich ${ }^{175}$, M. Raymond ${ }^{34}$, A.L. Read ${ }^{129}$, N.P. Readioff ${ }^{145}$, D.M. Rebuzzi ${ }^{68 \mathrm{a}}$, 68 b , G. Redlinger ${ }^{27}$, K. Reeves ${ }^{41}$, D. Reikher ${ }^{157}$, A. Reiss ${ }^{96}$, A. Rej ${ }^{147}$, C. Rembser ${ }^{34}$, A. Renardi ${ }^{44}$, M. Renda ${ }^{25 \mathrm{~b}}$, M.B. Rendel ${ }^{1111}$, A.G. Rennie ${ }^{55}$, S. Resconi ${ }^{66 \mathrm{a}}$, M. Ressegotti ${ }^{53 \mathrm{~b}, 53 \mathrm{a}}$, E.D. Resseguie ${ }^{16}$, S. Rettie ${ }^{92}$, B. Reynolds ${ }^{123}$, E. Reynolds ${ }^{19}$, M. Rezaei Estabragh ${ }^{177}$, O.L. Rezanova ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$,
P. Reznicek ${ }^{138}$, E. Ricci ${ }^{73 a, 73 b}$, R. Richter ${ }^{111}$, S. Richter ${ }^{44}$, E. Richter-Was ${ }^{81 b}$, M. Ridel ${ }^{131}$, P. Rieck ${ }^{111}$, P. Riedler ${ }^{34}$, O. Rifki ${ }^{44}$, M. Rijssenbeek ${ }^{151}$, A. Rimoldi ${ }^{68 a, 68 b}$, M. Rimoldi ${ }^{44}$, L. Rinaldi ${ }^{21 b, 21 a}$, T.T. Rinn ${ }^{168}$, M.P. Rinnagel ${ }^{110}$, G. Ripellino ${ }^{150}$, I. Riu ${ }^{12}$, P. Rivadeneira ${ }^{44}$, J.C. Rivera Vergara ${ }^{171}$, F. Rizatdinova ${ }^{125}$, E. Rizvi ${ }^{90}$, C. Rizzi ${ }^{52}$, B.A. Roberts ${ }^{173}$, B.R. Roberts ${ }^{16}$, S.H. Robertson ${ }^{100, y}$, M. Robin ${ }^{44}$, D. Robinson ${ }^{30}$, C.M. Robles Gajardo ${ }^{142 e}$, M. Robles Manzano ${ }^{96}$, A. Robson ${ }^{55}$, A. Rocchi ${ }^{71 a, 71 b}$, C. Roda ${ }^{69 a, 69 b}$, S. Rodriguez Bosca ${ }^{59 a}$, A. Rodriguez Rodriguez ${ }^{50}$, A.M. Rodríguez Vera ${ }^{163 b}$, S. Roe ${ }^{34}$, A.R. Roepe ${ }^{124}$, J. Roggel ${ }^{177}$, O. Røhne ${ }^{129}$, R.A. Rojas ${ }^{171}$, B. Roland ${ }^{50}$, C.P.A. Roland ${ }^{63}$, J. Roloff ${ }^{27}$, A. Romaniouk ${ }^{108}$, M. Romano ${ }^{21 b}$, A.C. Romero Hernandez ${ }^{168}$, N. Rompotis ${ }^{88}$, M. Ronzani ${ }^{121}$, L. Roos ${ }^{131}$, S. Rosati ${ }^{70 \mathrm{a}}$, B.J. Rosser ${ }^{132}$, E. Rossi ${ }^{162}$, E. Rossi ${ }^{4}$, E. Rossi ${ }^{67 a, 6 \text { 7b }}$, L.P. Rossi ${ }^{53 b}$, L. Rossini ${ }^{44}$, R. Rosten ${ }^{123}$, M. Rotaru ${ }^{25 b}$, B. Rottler ${ }^{50}$, D. Rousseau ${ }^{62}$, D. Rousso ${ }^{30}$, G. Rovelli ${ }^{68 a, 68 b}$, A. Roy ${ }^{10}$, A. Rozanov ${ }^{98}$, Y. Rozen ${ }^{156}$, X. Ruan ${ }^{31 f}$, A.J. Ruby ${ }^{88}$, T.A. Ruggeri ${ }^{1}$, F. Rühr ${ }^{50}$, A. Ruiz-Martinez ${ }^{169}$, A. Rummler ${ }^{34}$, Z. Rurikova ${ }^{50}$, N.A. Rusakovich ${ }^{77}$, H.L. Russell ${ }^{34}$, L. Rustige ${ }^{36}$, J.P. Rutherfoord ${ }^{6}$, E.M. Rüttinger ${ }^{145}$, M. Rybar ${ }^{138}$, E.B. Rye ${ }^{129}$, A. Ryzhov ${ }^{118}$, J.A. Sabater Iglesias ${ }^{44}$, P. Sabatini ${ }^{169}$, L. Sabetta ${ }^{70 a, 70 b}$, H.F-W. Sadrozinski ${ }^{141}$, R. Sadykov ${ }^{77}$, F. Safai Tehrani ${ }^{70 a}$, B. Safarzadeh Samani ${ }^{152}$, M. Safdari ${ }^{149}$, S. Saha ${ }^{100}$, M. Sahinsoy ${ }^{111}$, A. Sahu ${ }^{177}$, M. Saimpert ${ }^{140}$, M. Saito ${ }^{159}$, T. Saito ${ }^{159}$, D. Salamani ${ }^{34}$, G. Salamanna ${ }^{72 a, 72 b}$, A. Salnikov ${ }^{149}$, J. Salt ${ }^{169}$, A. Salvador Salas ${ }^{12}$, D. Salvatore ${ }^{39 b}$, 39a, F. Salvatore ${ }^{152}$, A. Salzburger ${ }^{34}$, D. Sammel ${ }^{50}$, D. Sampsonidis ${ }^{158}$, D. Sampsonidou ${ }^{58 d, 58 c}$, J. Sánchez ${ }^{169}$,
A. Sanchez Pineda ${ }^{4}$, V. Sanchez Sebastian ${ }^{169}$, H. Sandaker ${ }^{129}$, C.O. Sander ${ }^{44}$, I.G. Sanderswood ${ }^{87}$, J.A. Sandesara ${ }^{99}$, M. Sandhoff ${ }^{1777}$, C. Sandoval ${ }^{20 \mathrm{~b}}$, D.P.C. Sankey ${ }^{139}$, M. Sannino ${ }^{53 \mathrm{~b}, 53 \mathrm{a}}$, A. Sansoni ${ }^{49}$, C. Santoni ${ }^{36}$, H. Santos ${ }^{135 a, 135 b}$, S.N. Santpur ${ }^{16}$, A. Santra ${ }^{175}$, K.A. Saoucha ${ }^{145}$, A. Sapronov ${ }^{77}$, J.G. Saraiva ${ }^{135 a, 135 d}$, J. Sardain ${ }^{98}$, O. Sasaki ${ }^{79}$, K. Sato ${ }^{164}$, C. Sauer ${ }^{59 b}$, F. Sauerburger ${ }^{50}$, E. Sauvan ${ }^{4}$, P. Savard ${ }^{162, a j}$, R. Sawada ${ }^{159}$, C. Sawyer ${ }^{139}$, L. Sawyer ${ }^{93}$, I. Sayago Galvan ${ }^{169}$, C. Sbarra ${ }^{21 b}$, A. Sbrizzi ${ }^{21 b, 21 a}$, T. Scanlon ${ }^{92}$, J. Schaarschmidt ${ }^{144}$, P. Schacht ${ }^{111}$, D. Schaefer ${ }^{35}$, U. Schäfer ${ }^{96}$, A.C. Schaffer ${ }^{62}$, D. Schaile ${ }^{110}$, R.D. Schamberger ${ }^{151}$, E. Schanet ${ }^{110}$, C. Scharf ${ }^{17}$, N. Scharmberg ${ }^{97}$, V.A. Schegelsky ${ }^{133}$, D. Scheirich ${ }^{138}$, F. Schenck ${ }^{17}$, M. Schernau ${ }^{166}$, C. Schiavi ${ }^{53 b}{ }^{3}$,53a, L.K. Schildgen ${ }^{22}$, Z.M. Schillaci ${ }^{24}$, E.J. Schioppa ${ }^{65 a, 65 b}$, M. Schioppa ${ }^{39 b}$,39a, B. Schlag ${ }^{96}$, K.E. Schleicher ${ }^{50}$, S. Schlenker ${ }^{34}$, K. Schmieden ${ }^{96}$, C. Schmitt ${ }^{96}$, S. Schmitt ${ }^{44}$, L. Schoeffel ${ }^{140}$, A. Schoening ${ }^{59 \mathrm{~b}}$, P.G. Scholer ${ }^{50}$, E. Schopf ${ }^{130}$, M. Schott ${ }^{96}$, J. Schovancova ${ }^{34}$, S. Schramm ${ }^{52}$, F. Schroeder ${ }^{177}$, H-C. Schultz-Coulon ${ }^{59 a}$, M. Schumacher ${ }^{50}$, B.A. Schumm ${ }^{141}$, Ph. Schune ${ }^{140}$, A. Schwartzman ${ }^{149}$, T.A. Schwarz ${ }^{102}$, Ph. Schwemling ${ }^{140}$, R. Schwienhorst ${ }^{103}$, A. Sciandra ${ }^{141}$, G. Sciolla ${ }^{24}$, F. Scuri ${ }^{69 a}$, F. Scutti ${ }^{101}$, C.D. Sebastiani ${ }^{88}$, K. Sedlaczek ${ }^{45}$, P. Seema ${ }^{17}$, S.C. Seidel ${ }^{113}$, A. Seiden ${ }^{141}$, B.D. Seidlitz ${ }^{27}$, T. Seiss ${ }^{35}$, C. Seitz ${ }^{44}$, J.M. Seixas ${ }^{78 \mathrm{~b}}$, G. Sekhniaidze ${ }^{67 a}$, S.J. Sekula ${ }^{40}$, L. Selem ${ }^{4}$, N. Semprini-Cesari ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$, S. Sen ${ }^{47}$, C. Serfon ${ }^{27}$, L. Serin ${ }^{62}$, L. Serkin ${ }^{64 a, 64 b}$, M. Sessa ${ }^{72 a, 72 b}$, H. Severini ${ }^{124}$, S. Sevova ${ }^{149}$, F. Sforza ${ }^{53 b, 53 a}$, A. Sfyrla ${ }^{52}$, E. Shabalina ${ }^{51}$, R. Shaheen ${ }^{150}$, J.D. Shahinian ${ }^{132}$, N.W. Shaikh ${ }^{43 a, 43 b}$, D. Shaked Renous ${ }^{175}$, L.Y. Shan ${ }^{13 a}$, M. Shapiro ${ }^{16}$, A. Sharma ${ }^{34}$, A.S. Sharma ${ }^{1}$, S. Sharma ${ }^{44}$, P.B. Shatalov ${ }^{119}$, K. Shaw ${ }^{152}$, S.M. Shaw ${ }^{97}$, P. Sherwood ${ }^{92}$, L. Shi ${ }^{92}$, C.O. Shimmin ${ }^{178}$, Y. Shimogama ${ }^{174}$, J.D. Shinner ${ }^{91}$, I.P.J. Shipsey ${ }^{130}$, S. Shirabe ${ }^{52}$, M. Shiyakova ${ }^{77}$, J. Shlomi ${ }^{175}$, M.J. Shochet ${ }^{35}$, J. Shojaii ${ }^{101}$, D.R. Shope ${ }^{150}$, S. Shrestha ${ }^{123}$, E.M. Shrif ${ }^{31 f}$, M.J. Shroff ${ }^{171}$, E. Shulga ${ }^{175}$, P. Sicho ${ }^{136}$, A.M. Sickles ${ }^{168}$, E. Sideras Haddad ${ }^{31 \mathrm{f}}$, O. Sidiropoulou ${ }^{34}$, A. Sidoti ${ }^{21 b}$, F. Siegert ${ }^{46}$, Dj. Sijacki ${ }^{14}$, J.M. Silva ${ }^{19}$, M.V. Silva Oliveira ${ }^{34}$, S.B. Silverstein ${ }^{43 a}$, S. Simion ${ }^{62}$, R. Simoniello ${ }^{34}$, N.D. Simpson ${ }^{94}$, S. Simsek ${ }^{11 b}$, P. Sinervo ${ }^{162}$, V. Sinetckii ${ }^{109}$, S. Singh ${ }^{148}$, S. Singh ${ }^{162}$, S. Sinha ${ }^{44}$, S. Sinha ${ }^{31 f}$, M. Sioli ${ }^{\text {2 }}{ }^{121 b}$, 21 a , I. Siral ${ }^{127}$, S.Yu. Sivoklokov ${ }^{109}$, J. Sjölin ${ }^{43 a}$, 43b , A. Skaf ${ }^{51}$, E. Skorda ${ }^{94}$, P. Skubic ${ }^{124}$, M. Slawinska ${ }^{82}$, K. Sliwa ${ }^{165}$, V. Smakhtin ${ }^{175}$, B.H. Smart ${ }^{139}$, J. Smiesko ${ }^{138}$, S.Yu. Smirnov ${ }^{108}$, Y. Smirnov ${ }^{108}$, L.N. Smirnova ${ }^{109, r}$, O. Smirnova ${ }^{94}$, E.A. Smith ${ }^{35}$, H.A. Smith ${ }^{130}$, M. Smizanska ${ }^{87}$, K. Smolek ${ }^{137}$, A. Smykiewicz ${ }^{82}$, A.A. Snesarev ${ }^{107}$, H.L. Snoek ${ }^{115}$, S. Snyder ${ }^{27}$, R. Sobie ${ }^{171, y}$, A. Soffer ${ }^{157}$, F. Sohns ${ }^{51}$, C.A. Solans Sanchez ${ }^{34}$, E.Yu. Soldatov ${ }^{108}$, U. Soldevila ${ }^{169}$, A.A. Solodkov ${ }^{118}$, S. Solomon ${ }^{50}$, A. Soloshenko ${ }^{77}$, O.V. Solovyanov ${ }^{118}$, V. Solovyev ${ }^{133}$, P. Sommer ${ }^{145}$, H. Son ${ }^{165}$, A. Sonay ${ }^{12}$, W.Y. Song ${ }^{163 b}$, A. Sopczak ${ }^{137}$, A.L. Sopio ${ }^{92}$, F. Sopkova ${ }^{26 b}$, S. Sottocornola ${ }^{68 a, 68 b}$, R. Soualah ${ }^{64 a, 64 c}$, A.M. Soukharev ${ }^{117 \mathrm{~b}, 117 \mathrm{a}}$, Z. Soumaimi ${ }^{33 \mathrm{e}}$, D. South ${ }^{44}$, S. Spagnolo ${ }^{65 a, 65 b}$, M. Spalla ${ }^{111}$, M. Spangenberg ${ }^{173}$, F. Spanò ${ }^{91}$, D. Sperlich ${ }^{50}$, T.M. Spieker ${ }^{59 a}$, G. Spigo ${ }^{34}$, M. Spina ${ }^{152}$, D.P. Spiteri ${ }^{55}$, M. Spousta ${ }^{138}$, A. Stabile ${ }^{66 a, 66 b}$, R. Stamen ${ }^{59 a}$, M. Stamenkovic ${ }^{115}$, A. Stampekis ${ }^{19}$, M. Standke ${ }^{22}$, E. Stanecka ${ }^{82}$, B. Stanislaus ${ }^{34}$, M.M. Stanitzki ${ }^{44}$, M. Stankaityte ${ }^{130}$, B. Stapf ${ }^{44}$, E.A. Starchenko ${ }^{118}$, G.H. Stark ${ }^{141}$, J. Stark ${ }^{98}$, D.M. Starko ${ }^{163 b}$, P. Staroba ${ }^{136}$, P. Starovoitov ${ }^{59 a}$, S. Stärz ${ }^{100}$, R. Staszewski ${ }^{82}$,
G. Stavropoulos ${ }^{42}$, P. Steinberg ${ }^{27}$, A.L. Steinhebel ${ }^{127}$, B. Stelzer ${ }^{148,163 a}$, H.J. Stelzer ${ }^{134}$,
O. Stelzer-Chilton ${ }^{163 a}$, H. Stenzel ${ }^{54}$, T.J. Stevenson ${ }^{152}$, G.A. Stewart ${ }^{34}$, M.C. Stockton ${ }^{34}$, G. Stoicea ${ }^{25 b}$, M. Stolarski ${ }^{135 a}$, S. Stonjek ${ }^{111}$, A. Straessner ${ }^{46}$, J. Strandberg ${ }^{150}$, S. Strandberg ${ }^{43 a, 43 b}$, M. Strauss ${ }^{124}$, T. Strebler ${ }^{98}$, P. Strizenec ${ }^{26 b}$, R. Ströhmer ${ }^{172}$, D.M. Strom ${ }^{127}$, L.R. Strom ${ }^{44}$, R. Stroynowski ${ }^{40}$, A. Strubig ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, S.A. Stucci ${ }^{27}$, B. Stugu ${ }^{15}$, J. Stupak ${ }^{124}$, N.A. Styles ${ }^{44}$, D. Su ${ }^{149}$, S. Su ${ }^{58 a}$, W. Su ${ }^{58 d, 144,58 c}$, X. Su ${ }^{58 a}$, K. Sugizaki ${ }^{159}$, V.V. Sulin ${ }^{107}$, M.J. Sullivan ${ }^{88}$, D.M.S. Sultan ${ }^{52}$, L. Sultanaliyeva ${ }^{107}$, S. Sultansoy ${ }^{3 C}$, T. Sumida ${ }^{83}$, S. Sun ${ }^{102}$, S. Sun ${ }^{176}$, X. Sun ${ }^{97}$,
O. Sunneborn Gudnadottir ${ }^{167}$, C.J.E. Suster ${ }^{153}$, M.R. Sutton ${ }^{152}$, M. Svatos ${ }^{136}$, M. Swiatlowski ${ }^{163 a}$,
T. Swirski ${ }^{172}$, I. Sykora ${ }^{26 a}$, M. Sykora ${ }^{138}$, T. Sykora ${ }^{138}$, D. Ta ${ }^{96}$, K. Tackmann ${ }^{44, w}$, A. Taffard ${ }^{166}$,
R. Tafirout ${ }^{163 a}$, R.H.M. Taibah ${ }^{131}$, R. Takashima ${ }^{84}$, K. Takeda ${ }^{80}$, T. Takeshita ${ }^{146}$, E.P. Takeva ${ }^{48}$,
Y. Takubo ${ }^{79}$, M. Talby ${ }^{98}$, A.A. Talyshev ${ }^{117 b, 117 a}$, K.C. Tam ${ }^{60 b}$, N.M. Tamir ${ }^{157}$, A. Tanaka ${ }^{159}$, J. Tanaka ${ }^{159}$,
R. Tanaka ${ }^{62}$, J. Tang ${ }^{58 c}$, Z. Tao ${ }^{170}$, S. Tapia Araya ${ }^{76}$, S. Tapprogge ${ }^{96}$, A. Tarek Abouelfadl Mohamed ${ }^{103}$,
S. Tarem ${ }^{156}$, K. Tariq ${ }^{58 b}$, G. Tarna ${ }^{25 b}$, G.F. Tartarelli ${ }^{66 a}$, P. Tas ${ }^{138}$, M. Tasevsky ${ }^{136}$, E. Tassi ${ }^{39 b}$,39a,
G. Tateno ${ }^{159}$, Y. Tayalati ${ }^{33 \mathrm{e}}$, G.N. Taylor ${ }^{101}$, W. Taylor ${ }^{163 \mathrm{~b}}$, H. Teagle ${ }^{88}$, A.S. Tee ${ }^{176}$,
R. Teixeira De Lima ${ }^{149}$, P. Teixeira-Dias ${ }^{91}$, H. Ten Kate ${ }^{34}$, J.J. Teoh ${ }^{115}$, K. Terashi ${ }^{159}$, J. Terron ${ }^{95}$,
S. Terzo ${ }^{12}$, M. Testa ${ }^{49}$, R.J. Teuscher ${ }^{162, y}$, N. Themistokleous ${ }^{48}$, T. Theveneaux-Pelzer ${ }^{17}$,
O. Thielmann ${ }^{177}$, D.W. Thomas ${ }^{91}$, J.P. Thomas ${ }^{19}$, E.A. Thompson ${ }^{44}$, P.D. Thompson ${ }^{19}$, E. Thomson ${ }^{132}$,
E.J. Thorpe ${ }^{90}$, Y. Tian ${ }^{51}$, V.O. Tikhomirov ${ }^{107, a f}$, Yu.A. Tikhonov ${ }^{117 b, 117 a}$, S. Timoshenko ${ }^{108}$, P. Tipton ${ }^{178}$,
S. Tisserant ${ }^{98}$, S.H. Tlou ${ }^{31 f}$, A. Tnourji ${ }^{36}$, K. Todome ${ }^{21 b, 21 \mathrm{a}}$, S. Todorova-Nova ${ }^{138}$, S. Todt ${ }^{46}$,
M. Togawa ${ }^{79}$, J. Tojo ${ }^{85}$, S. Tokár ${ }^{26 a}$, K. Tokushuku ${ }^{79}$, E. Tolley ${ }^{123}$, R. Tombs ${ }^{30}$, M. Tomoto ${ }^{79}{ }^{9} 112$, L. Tompkins ${ }^{149}$, P. Tornambe ${ }^{99}$, E. Torrence ${ }^{127}$, H. Torres ${ }^{46}$, E. Torró Pastor ${ }^{169}$, M. Toscani ${ }^{28}$, C. Tosciri ${ }^{35}$, J. Toth ${ }^{98, \chi}$, D.R. Tovey ${ }^{145}$, A. Traeet ${ }^{15}$, C.J. Treado ${ }^{121}$, T. Trefzger ${ }^{172}$, A. Tricoli ${ }^{27}$, I.M. Trigger ${ }^{163 a}$, S. Trincaz-Duvoid ${ }^{131}$, D.A. Trischuk ${ }^{170}$, W. Trischuk ${ }^{162}$, B. Trocmé ${ }^{56}$, A. Trofymov ${ }^{62}$, C. Troncon ${ }^{66 a}$, F. Trovato ${ }^{152}$, L. Truong ${ }^{31 \mathrm{c}}$, M. Trzebinski ${ }^{82}$, A. Trzupek ${ }^{82}$, F. Tsai ${ }^{151}$, A. Tsiamis ${ }^{158}$, P.V. Tsiareshka ${ }^{104, a d}$, A. Tsirigotis ${ }^{158, u}$, V. Tsiskaridze ${ }^{151}$, E.G. Tskhadadze ${ }^{155 a}$, M. Tsopoulou ${ }^{158}$, Y. Tsujikawa ${ }^{83}$, I.I. Tsukerman ${ }^{119}$, V. Tsulaia ${ }^{16}$, S. Tsuno ${ }^{79}$, O. Tsur ${ }^{156}$, D. Tsybychev ${ }^{151}$, Y. $\mathrm{Tu}^{60 \mathrm{~b}}$, A. Tudorache ${ }^{25 b}$, V. Tudorache ${ }^{25 b}$, A.N. Tuna ${ }^{34}$, S. Turchikhin ${ }^{77}$, I. Turk Cakir ${ }^{3 \mathrm{a}}$, R.J. Turner ${ }^{19}$, R. Turra ${ }^{66 a}$, P.M. Tuts ${ }^{37}$, S. Tzamarias ${ }^{158}$, P. Tzanis ${ }^{9}$, E. Tzovara ${ }^{96}$, K. Uchida ${ }^{159}$, F. Ukegawa ${ }^{164}$, P.A. Ulloa Poblete ${ }^{142 c}$, G. Unal ${ }^{34}$, M. Unal ${ }^{10}$, A. Undrus ${ }^{27}$, G. Unel ${ }^{166}$, F.C. Ungaro ${ }^{101}$, K. Uno ${ }^{159}$, J. Urban ${ }^{26 b}$, P. Urquijo ${ }^{101}$, G. Usai ${ }^{7}$, R. Ushioda ${ }^{160}$, M. Usman ${ }^{106}$, Z. Uysal ${ }^{11 d}$, V. Vacek ${ }^{137}$,
B. Vachon ${ }^{100}$, K.O.H. Vadla ${ }^{129}$, T. Vafeiadis ${ }^{34}$, C. Valderanis ${ }^{110}$, E. Valdes Santurio ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$, M. Valente ${ }^{163 \mathrm{a}}$,
S. Valentinetti ${ }^{21 b}$,21a, A. Valero ${ }^{169}$, R.A. Vallance ${ }^{19}$, A. Vallier ${ }^{98}$, J.A. Valls Ferrer ${ }^{169}$, T.R. Van Daalen ${ }^{144}$,
P. Van Gemmeren ${ }^{5}$, S. Van Stroud ${ }^{92}$, I. Van Vulpen ${ }^{115}$, M. Vanadia ${ }^{71 a, 71 b}$, W. Vandelli ${ }^{34}$,
M. Vandenbroucke ${ }^{140}$, E.R. Vandewall ${ }^{125}$, D. Vannicola ${ }^{157}$, L. Vannoli ${ }^{53 b, 53 a}$, R. Vari ${ }^{70 a}$, E.W. Varnes ${ }^{6}$, C. Varni ${ }^{16}$, T. Varol ${ }^{154}$, D. Varouchas ${ }^{62}$, K.E. Varvell ${ }^{153}$, M.E. Vasile ${ }^{25 b}$, L. Vaslin ${ }^{36}$, G.A. Vasquez ${ }^{171}$, F. Vazeille ${ }^{36}$, D. Vazquez Furelos ${ }^{12}$, T. Vazquez Schroeder ${ }^{34}$, J. Veatch ${ }^{51}$, V. Vecchio ${ }^{97}$, M.J. Veen ${ }^{115}$, I. Veliscek ${ }^{130}$, L.M. Veloce ${ }^{162}$, F. Veloso ${ }^{135 a}$, 135 c , S. Veneziano ${ }^{70 a}$, A. Ventura ${ }^{65 a}$, 65 b , A. Verbytskyi ${ }^{111}$, M. Verducci ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$, C. Vergis ${ }^{22}$, M. Verissimo De Araujo ${ }^{78 \mathrm{~b}}$, W. Verkerke ${ }^{115}$, A.T. Vermeulen ${ }^{115}$,
J.C. Vermeulen ${ }^{115}$, C. Vernieri ${ }^{149}$, P.J. Verschuuren ${ }^{91}$, M. Vessella ${ }^{99}$, M.L. Vesterbacka ${ }^{121}$,
M.C. Vetterli ${ }^{148, a j}$, A. Vgenopoulos ${ }^{158}$, N. Viaux Maira ${ }^{142 e}$, T. Vickey ${ }^{145}$, O.E. Vickey Boeriu ${ }^{145}$,
G.H.A. Viehhauser ${ }^{130}$, L. Vigani ${ }^{59 b}$, M. Villa ${ }^{21 b, 21 a}$, M. Villaplana Perez ${ }^{\text {169 }}$, E.M. Villhauer ${ }^{48}$,
E. Vilucchi ${ }^{49}$, M.G. Vincter ${ }^{32}$, G.S. Virdee ${ }^{19}$, A. Vishwakarma ${ }^{48}$, C. Vittori ${ }^{21 b}{ }^{21}$,21a , I. Vivarelli ${ }^{152}$, V. Vladimirov ${ }^{173}$, E. Voevodina ${ }^{111}$, M. Vogel ${ }^{177}$, P. Vokac ${ }^{137}$, J. Von Ahnen ${ }^{44}$, E. Von Toerne ${ }^{22}$, V. Vorobel ${ }^{138}$, K. Vorobev ${ }^{108}$, M. Vos ${ }^{169}$, J.H. Vossebeld ${ }^{88}$, M. Vozak ${ }^{97}$, L. Vozdecky ${ }^{90}$, N. Vranjes ${ }^{14}$, M. Vranjes Milosavljevic ${ }^{14}$, V. Vrba ${ }^{137, *}$, M. Vreeswijk ${ }^{115}$, N.K. Vu ${ }^{98}$, R. Vuillermet ${ }^{34}$, O.V. Vujinovic ${ }^{96}$, I. Vukotic ${ }^{35}$, S. Wada ${ }^{164}$, C. Wagner ${ }^{99}$, W. Wagner ${ }^{177}$, S. Wahdan ${ }^{177}$, H. Wahlberg ${ }^{86}$, R. Wakasa ${ }^{164}$, M. Wakida ${ }^{112}$, V.M. Walbrecht ${ }^{111}$, J. Walder ${ }^{139}$, R. Walker ${ }^{110}$, S.D. Walker ${ }^{91}$, W. Walkowiak ${ }^{147}$, A.M. Wang ${ }^{57}$, A.Z. Wang ${ }^{176}$, C. Wang ${ }^{58 \mathrm{a}}$, C. Wang ${ }^{58 \mathrm{c}}$, H. Wang ${ }^{16}$, J. Wang ${ }^{60 \mathrm{a}}$, P. Wang ${ }^{40}$, R.-J. Wang ${ }^{96}$, R. Wang ${ }^{57}$, R. Wang ${ }^{116}$, S.M. Wang ${ }^{154}$, S. Wang ${ }^{58 b}$, T. Wang ${ }^{58 \mathrm{a}}$, W.T. Wang ${ }^{75}$, W.X. Wang ${ }^{58 \mathrm{a}}$, X. Wang ${ }^{13 c^{\prime}}$, X. Wang ${ }^{168}$, X. Wang ${ }^{58 \mathrm{c}}$, Y. Wang $^{58 \mathrm{a}}, \mathrm{Z}$. Wang ${ }^{102}$, C. Wanotayaroj ${ }^{34}$, A. Warburton ${ }^{100}$, C.P. Ward ${ }^{30}$, R.J. Ward ${ }^{19}$, N. Warrack ${ }^{55}$, A.T. Watson ${ }^{19}$, M.F. Watson ${ }^{19}$, G. Watts ${ }^{1444}$, B.M. Waugh ${ }^{92}$, A.F. Webb ${ }^{10}$, C. Weber ${ }^{27}$, M.S. Weber ${ }^{18}$, S.A. Weber ${ }^{32}$, S.M. Weber ${ }^{59 \mathrm{a}}$, C. Wei ${ }^{58 \mathrm{a}}$, Y. Wei ${ }^{130}$, A.R. Weidberg ${ }^{130}$, J. Weingarten ${ }^{45}$, M. Weirich ${ }^{96}$, C. Weiser ${ }^{50}$, T. Wenaus ${ }^{27}$, B. Wendland ${ }^{45}$,
T. Wengler ${ }^{34}$, S. Wenig ${ }^{34}$, N. Wermes ${ }^{22}$, M. Wessels ${ }^{59 \mathrm{a}}$, K. Whalen ${ }^{127}$, A.M. Wharton ${ }^{87}$, A.S. White ${ }^{57}$, A. White ${ }^{7}$, M.J. White ${ }^{1}$, D. Whiteson ${ }^{166}$, L. Wickremasinghe ${ }^{128}$, W. Wiedenmann ${ }^{176}$, C. Wiel ${ }^{46}$, M. Wielers ${ }^{139}$, N. Wieseotte ${ }^{96}$, C. Wiglesworth ${ }^{38}$, L.A.M. Wiik-Fuchs ${ }^{50}$, D.J. Wilbern ${ }^{124}$, H.G. Wilkens ${ }^{34}$, L.J. Wilkins ${ }^{91}$, D.M. Williams ${ }^{37}$, H.H. Williams ${ }^{132}$, S. Williams ${ }^{30}$, S. Willocq ${ }^{99}$, P.J. Windischhofer ${ }^{130}$, I. Wingerter-Seez ${ }^{4}$, F. Winklmeier ${ }^{127}$, B.T. Winter ${ }^{50}$, M. Wittgen ${ }^{149}$, M. Wobisch ${ }^{93}$, A. Wolf ${ }^{96}$, R. Wölker ${ }^{130}$, J. Wollrath ${ }^{166}$, M.W. Wolter ${ }^{82}$, H. Wolters ${ }^{135 a, 135 c}$, V.W.S. Wong ${ }^{170}$, A.F. Wongel ${ }^{44}$, S.D. Worm ${ }^{44}$, B.K. Wosiek ${ }^{82}$, K.W. Woźniak ${ }^{82}$, K. Wraight ${ }^{55}$, J. Wu ${ }^{13 a, 13 d}$, S.L. Wu ${ }^{176}$, X. Wu ${ }^{52}$, Y. $\mathrm{Wu}^{58 \mathrm{a}}$, Z. Wu ${ }^{140,58 \mathrm{a}}$, J. Wuerzinger ${ }^{130}$, T.R. Wyatt ${ }^{97}$, B.M. Wynne ${ }^{48}$, S. Xella ${ }^{38}$, L. Xia ${ }^{13 \mathrm{C}}, \mathrm{M}$. Xia $^{13 \mathrm{~b}}$,
 R. Xu^{132}, T. $\mathrm{Xu}^{58 \mathrm{a}}, \mathrm{W} . \mathrm{Xu}^{102}$, Y. Xu ${ }^{13 \mathrm{~b}}, \mathrm{Z} . \mathrm{Xu}^{58 \mathrm{~b}}, \mathrm{Z} . \mathrm{Xu}^{149}$, B. Yabsley ${ }^{153}$, S. Yacoob ${ }^{31 \mathrm{a}}, \mathrm{N}$. Yamaguchi 85, Y. Yamaguchi ${ }^{160}$, M. Yamatani ${ }^{159}$, H. Yamauchi ${ }^{164}$, T. Yamazaki ${ }^{16}$, Y. Yamazaki ${ }^{80}$, J. Yan ${ }^{58 \mathrm{c}}$, S. Yan ${ }^{130}$, Z. Yan ${ }^{23}$, H.J. Yang ${ }^{58 c, 58 d}$, H.T. Yang ${ }^{16}$, S. Yang ${ }^{58 a}$, T. Yang ${ }^{60 c}$, X. Yang ${ }^{58 a}$, X. Yang ${ }^{13 a}$, Y. Yang ${ }^{159}$, Z. Yang ${ }^{102,58 \mathrm{a}}$, W-M. Yao ${ }^{16}$, Y.C. Yap ${ }^{44}$, H. Ye ${ }^{13 c}$, J. Ye ${ }^{40}$, S. Ye ${ }^{27}$, I. Yeletskikh ${ }^{77}$, M.R. Yexley ${ }^{87}$, P. Yin ${ }^{37}$, K. Yorita ${ }^{174}$, K. Yoshihara ${ }^{76}$, C.J.S. Young ${ }^{50}$, C. Young ${ }^{149}$, M. Yuan ${ }^{102}$, R. Yuan ${ }^{58 b}, i$, X. Yue ${ }^{59 a}$, M. Zaazoua ${ }^{33 e}$, B. Zabinski ${ }^{82}$, G. Zacharis ${ }^{9}$, E. Zaid ${ }^{48}$, A.M. Zaitsev ${ }^{118, a e}$, T. Zakareishvili ${ }^{155 b}$, N. Zakharchuk ${ }^{32}$, S. Zambito ${ }^{34}$, D. Zanzi ${ }^{50}$, S.V. Zeißner ${ }^{45}$, C. Zeitnitz ${ }^{177}$, J.C. Zeng ${ }^{168}$, D.T. Zenger Jr ${ }^{24}$, O. Zenin ${ }^{118}$, T. Ženiš ${ }^{26 a}$, S. Zenz ${ }^{90}$, S. Zerradi ${ }^{33 a}$, D. Zerwas ${ }^{62}$, B. Zhang ${ }^{13 \mathrm{c}}$, D.F. Zhang ${ }^{\text {145 }}$, G. Zhang ${ }^{13 b^{\prime}}$, J. Zhang ${ }^{5}$, K. Zhang ${ }^{13 a}$, L. Zhang ${ }^{13 c^{\prime}}$, M. Zhang ${ }^{168}$, R. Zhang ${ }^{176}$, S. Zhang ${ }^{102}$, X. Zhang ${ }^{58 c}$, X. Zhang ${ }^{58 b}$, ' Z. Zhang ${ }^{62}$, P. Zhao ${ }^{47}$, T. Zhao ${ }^{58 \mathrm{~b}}$, Y. Zhao ${ }^{141}$, Z. Zhao ${ }^{58 \mathrm{a}}$, A. Zhemchugov ${ }^{77}$, Z. Zheng ${ }^{149}$, D. Zhong ${ }^{168}$,
 H. Zhu ${ }^{13 a}$, J. Zhu ${ }^{102}$, Y. Zhu ${ }^{58 \mathrm{a}}$, X. Zhuang ${ }^{13 a}$, K. Zhukov ${ }^{107}$, V. Zhulanov ${ }^{117 \mathrm{~b}, 117 a}$, D. Zieminska ${ }^{63}$, N.I. Zimine ${ }^{77}$, S. Zimmermann ${ }^{50, *}$, J. Zinsser ${ }^{59 b}$, M. Ziolkowski ${ }^{147}$, L. Živković ${ }^{14}$, A. Zoccoli ${ }^{21 b, 21 a}$, K. Zoch ${ }^{52}$, T.G. Zorbas ${ }^{145}$, O. Zormpa ${ }^{42}$, W. Zou ${ }^{37}$, L. Zwalinski ${ }^{34}$

[^4]${ }^{36}$ LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France
${ }^{37}$ Nevis Laboratory, Columbia University, Irvington NY; United States of America
${ }^{38}$ Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark
39 (a) Dipartimento di Fisica, Università della Calabria, Rende; ${ }^{(b)}$ INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy
${ }^{40}$ Physics Department, Southern Methodist University, Dallas TX; United States of America
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson TX; United States of America
42 National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece
43 (a) Department of Physics, Stockholm University; ${ }^{(b)}$ Oskar Klein Centre, Stockholm; Sweden
${ }^{44}$ Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany
${ }^{45}$ Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany
${ }^{46}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany
${ }^{47}$ Department of Physics, Duke University, Durham NC; United States of America
48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom
49 INFN e Laboratori Nazionali di Frascati, Frascati; Italy
${ }^{50}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany
${ }^{51}$ II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland
53 (a) Dipartimento di Fisica, Università di Genova, Genova; ${ }^{(b)}$ INFN Sezione di Genova; Italy
${ }^{54}$ II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany
55 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom
${ }^{56}$ LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America
58 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; ${ }^{(b)}$ Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai; ${ }^{(d)}$ Tsung-Dao Lee Institute, Shanghai; China
59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany
60 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ${ }^{(b)}$ Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China
${ }^{61}$ Department of Physics, National Tsing Hua University, Hsinchu; Taiwan
62 IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France
${ }^{63}$ Department of Physics, Indiana University, Bloomington IN; United States of America
64 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{(c)}$ Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy
65 (a) INFN Sezione di Lecce; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy
66 (a) INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano; Italy
67 (a) INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli; Italy
68 (a) INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia; Italy
69 (a) INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy
70 (a) INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy
71 (a) INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy
72 (a) INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy
73 (a) INFN-TIFPA; ${ }^{(b)}$ Università degli Studi di Trento, Trento; Italy
${ }^{74}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria
${ }^{75}$ University of Iowa, Iowa City IA; United States of America
${ }^{76}$ Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America
77 Joint Institute for Nuclear Research, Dubna; Russia
 Física, Universidade de São Paulo, São Paulo; Brazil
${ }^{79}$ KEK, High Energy Accelerator Research Organization, Tsukuba; Japan
${ }^{80}$ Graduate School of Science, Kobe University, Kobe; Japan
81 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{\text {(b) }}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland
${ }^{82}$ Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland
${ }^{83}$ Faculty of Science, Kyoto University, Kyoto; Japan
${ }^{84}$ Kyoto University of Education, Kyoto; Japan
${ }^{85}$ Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan
86 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina
${ }^{87}$ Physics Department, Lancaster University, Lancaster; United Kingdom
88 Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom
${ }^{89}$ Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia
${ }^{90}$ School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom
${ }^{91}$ Department of Physics, Royal Holloway University of London, Egham; United Kingdom
92 Department of Physics and Astronomy, University College London, London; United Kingdom
${ }^{93}$ Louisiana Tech University, Ruston LA; United States of America
${ }^{94}$ Fysiska institutionen, Lunds universitet, Lund; Sweden
${ }^{95}$ Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain
${ }^{96}$ Institut für Physik, Universität Mainz, Mainz; Germany
97 School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom
${ }^{98}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France
${ }^{99}$ Department of Physics, University of Massachusetts, Amherst MA; United States of America
100 Department of Physics, McGill University, Montreal QC; Canada
101 School of Physics, University of Melbourne, Victoria; Australia
102 Department of Physics, University of Michigan, Ann Arbor MI; United States of America
103 Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America
104 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus
${ }^{105}$ Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus
106 Group of Particle Physics, University of Montreal, Montreal QC; Canada
107 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia
108 National Research Nuclear University MEPhI, Moscow; Russia
109 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia
${ }^{110}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany
${ }^{111}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany
112 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan
113 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America
114 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen; Netherlands
115 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands
116 Department of Physics, Northern Illinois University, DeKalb IL; United States of America
117 (a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; ${ }^{(b)}$ Novosibirsk State University Novosibirsk; Russia
118 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia
119 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow; Russia
120 (a) New York University Abu Dhabi, Abu Dhabi; ${ }^{(b)}$ United Arab Emirates University, Al Ain; ${ }^{(c)}$ University of Sharjah, Sharjah; United Arab Emirates
${ }^{121}$ Department of Physics, New York University, New York NY; United States of America
122 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan
123 Ohio State University, Columbus OH; United States of America
${ }^{124}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America
${ }^{125}$ Department of Physics, Oklahoma State University, Stillwater OK; United States of America
${ }^{126}$ Palacký University, Joint Laboratory of Optics, Olomouc; Czech Republic
127 Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America
128 Graduate School of Science, Osaka University, Osaka; Japan
129 Department of Physics, University of Oslo, Oslo; Norway
${ }^{130}$ Department of Physics, Oxford University, Oxford; United Kingdom
131 LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France
132 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America
${ }^{133}$ Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia
134 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America
 de Física, Universidade de Coimbra, Coimbra; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ${ }^{(e)}$ Departamento de Física, Universidade do Minho, Braga; ${ }^{(f)}$ Departamento
de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal
${ }^{136}$ Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic
137 Czech Technical University in Prague, Prague; Czech Republic
138 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic
139 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom
140 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France
141 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America
142 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{\text {(b) }}$ Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena; ${ }^{(c)}$ Universidad Andres Bello, Department of Physics, Santiago; ${ }^{(d)}$ Instituto de Alta Investigación, Universidad de Tarapacá, Arica; ${ }^{(e)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile
143 Universidade Federal de São João del Rei (UFSJ), São João del Rei; Brazil
144 Department of Physics, University of Washington, Seattle WA; United States of America
145 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom
146 Department of Physics, Shinshu University, Nagano; Japan
147 Department Physik, Universität Siegen, Siegen; Germany
148 Department of Physics, Simon Fraser University, Burnaby BC; Canada
149 SLAC National Accelerator Laboratory, Stanford CA; United States of America
${ }^{150}$ Department of Physics, Royal Institute of Technology, Stockholm; Sweden
151 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America
152 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom
153 School of Physics, University of Sydney, Sydney; Australia
154 Institute of Physics, Academia Sinica, Taipei; Taiwan
$155{ }^{(a)}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia
156 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel
157 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel
158 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece
159 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan
160 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan
${ }^{161}$ Tomsk State University, Tomsk; Russia
162 Department of Physics, University of Toronto, Toronto ON; Canada
163 (a) TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON; Canada
164 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan
${ }^{165}$ Department of Physics and Astronomy, Tufts University, Medford MA; United States of America
166 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden
168 Department of Physics, University of Illinois, Urbana IL; United States of America
169 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain
170 Department of Physics, University of British Columbia, Vancouver BC; Canada
171 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada
172 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany
173 Department of Physics, University of Warwick, Coventry; United Kingdom
174 Waseda University, Tokyo; Japan
175 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel
176 Department of Physics, University of Wisconsin, Madison WI; United States of America
177 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany
${ }^{178}$ Department of Physics, Yale University, New Haven CT; United States of America
${ }^{a}$ Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
${ }^{b}$ Also at Bruno Kessler Foundation, Trento; Italy.
c Also at Center for High Energy Physics, Peking University; China.
${ }^{d}$ Also at Centro Studi e Ricerche Enrico Fermi; Italy.
${ }^{e}$ Also at CERN, Geneva; Switzerland.
f Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
g Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.
${ }^{h}$ Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
${ }^{i}$ Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
j Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.
${ }^{k}$ Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.
${ }^{l}$ Also at Department of Physics, California State University, East Bay; United States of America.
m Also at Department of Physics, California State University, Fresno; United States of America.
${ }^{n}$ Also at Department of Physics, California State University, Sacramento; United States of America.
${ }^{\circ}$ Also at Department of Physics, King's College London, London; United Kingdom.
p Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.
q Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.
r Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
${ }^{s}$ Also at Faculty of Physics, Sofia University, 'St. Kliment Ohridski', Sofia; Bulgaria.
${ }^{t}$ Also at Graduate School of Science, Osaka University, Osaka; Japan.
${ }^{u}$ Also at Hellenic Open University, Patras; Greece.
${ }^{v}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.
w Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.
${ }^{x}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
y Also at Institute of Particle Physics (IPP); Canada.
z Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.
$a b$ Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
ac Also at Istanbul University, Dept. of Physics, Istanbul; Turkey.
ad Also at Joint Institute for Nuclear Research, Dubna; Russia.
ae Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
af Also at National Research Nuclear University MEPhI, Moscow; Russia.
ag Also at Physics Department, An-Najah National University, Nablus; Palestine.
ah Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
${ }^{\text {ai }}$ Also at The City College of New York, New York NY; United States of America.
${ }^{a j}$ Also at TRIUMF, Vancouver BC; Canada.
ak Also at Università di Napoli Parthenope, Napoli; Italy.
al Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.
am Also at Yeditepe University, Physics Department, Istanbul; Turkey.

* Deceased.

[^0]: * E-mail address: atlas.publications@cern.ch.

[^1]: ${ }^{1}$ In this Letter, 'lepton' or ℓ refers to an electron or muon.

[^2]: 2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. Angular distance is measured in units of $\Delta R \equiv \sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}$.

[^3]: ${ }^{3} \mu_{\text {upper }}^{95 \%}$ can be interpreted as $\sigma_{\text {upper }}^{95 \%} / \sigma_{\text {theory }}$, where $\sigma_{\text {upper }}^{95 \%}$ is the upper limit on the cross-section of the signal model, and $\sigma_{\text {theory }}$ is the nominal cross-section of the signal model.

[^4]: ${ }^{1}$ Department of Physics, University of Adelaide, Adelaide; Australia
 ${ }^{2}$ Department of Physics, University of Alberta, Edmonton AB; Canada
 3 (a) Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul; ${ }^{(c)}$ Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey
 ${ }^{4}$ LAPP, Univ. Savoie Mont Blanc, CNRS/IN2P3, Annecy; France
 ${ }^{5}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America
 ${ }^{6}$ Department of Physics, University of Arizona, Tucson AZ; United States of America
 ${ }^{7}$ Department of Physics, University of Texas at Arlington, Arlington TX; United States of America
 ${ }^{8}$ Physics Department, National and Kapodistrian University of Athens, Athens; Greece
 ${ }^{9}$ Physics Department, National Technical University of Athens, Zografou; Greece
 ${ }^{10}$ Department of Physics, University of Texas at Austin, Austin TX; United States of America
 11 (a) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; ${ }^{(b)}$ Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; ${ }^{(c)}$ Department of Physics, Bogazici University, Istanbul; ${ }^{(d)}$ Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey
 ${ }^{12}$ Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain
 13 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Physics Department, Tsinghua University, Beijing; ${ }^{(c)}$ Department of Physics, Nanjing University, Nanjing;
 ${ }^{(d)}$ University of Chinese Academy of Science (UCAS), Beijing; China
 ${ }^{14}$ Institute of Physics, University of Belgrade, Belgrade; Serbia
 ${ }^{15}$ Department for Physics and Technology, University of Bergen, Bergen; Norway
 ${ }^{16}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America
 ${ }^{17}$ Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany
 ${ }^{18}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland
 ${ }^{19}$ School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom
 20 (a) Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá; ${ }^{(b)}$ Departamento de Física, Universidad Nacional de Colombia, Bogotá; Colombia
 21 (a) Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; ${ }^{(b)}$ INFN Sezione di Bologna; Italy
 ${ }^{22}$ Physikalisches Institut, Universität Bonn, Bonn; Germany
 ${ }^{23}$ Department of Physics, Boston University, Boston MA; United States of America
 24 Department of Physics, Brandeis University, Waltham MA; United States of America
 $25{ }^{(a)}$ Transilvania University of Brasov, Brasov; ${ }^{(b)}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(c)}$ Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; ${ }^{(d)}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; ${ }^{(e)}$ University Politehnica Bucharest, Bucharest; ${ }^{(f)}$ West University in Timisoara, Timisoara; Romania
 26 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic
 ${ }^{27}$ Physics Department, Brookhaven National Laboratory, Upton NY; United States of America
 ${ }^{28}$ Departamento de Física (FCEN) and IFIBA, Universidad de Buenos Aires and CONICET, Buenos Aires; Argentina
 ${ }^{29}$ California State University, CA; United States of America
 ${ }^{30}$ Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom
 31 (a) Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ iThemba Labs, Western Cape; ${ }^{(c)}$ Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; ${ }^{(d)}$ National Institute of Physics, University of the Philippines Diliman (Philippines); ${ }^{(e)}$ University of South Africa, Department of Physics, Pretoria; ${ }^{(f)}$ School of Physics, University of the Witwatersrand, Johannesburg; South Africa
 ${ }^{32}$ Department of Physics, Carleton University, Ottawa ON; Canada
 33 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; ${ }^{(b)}$ Faculté des Sciences, Université Ibn-Tofail, Kénitra;
 ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; ${ }^{(d)}$ LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V, Rabat; ${ }^{(f)}$ Mohammed VI Polytechnic University, Ben Guerir; Morocco
 34 CERN, Geneva; Switzerland
 ${ }^{35}$ Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America

