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Abstract

For a constrained optimal impulse control problem of an abstract dynamical system, we in-
troduce the occupation measures along with the aggregated occupation measures and present two
associated linear programs. We prove that the two linear programs are equivalent under appropri-
ate conditions, and each linear program gives rise to an optimal strategy in the original impulse
control problem. In particular, we show the absence of the relaxation gap. By means of an example,
we also present a detailed comparison of the occupation measures and linear programs introduced
here with the related notions in the literature.

Keywords: Dynamical System, Optimal Control, Impulse Control, Total Cost, Constraints,
Linear Programming.

AMS 2000 subject classification: Primary 49N25; Secondary 90C40.

1 Introduction

Impulse control of dynamical systems attracts attention of many researchers. The underlying system
can be described in terms of ordinary differential equations, see [3, 4, 6, 10, 23, 25, 26, 27], or by a fixed
flow in an Euclidean space or in an abstract Borel space, see [15, 29]. An impulse or an intervention
means an instantaneous change of the state of the system. In most of the aforementioned works, the
target was to optimize a single objective functional, typically having the shape of the integral with
respect to time of the running cost and the impulse costs. The popular methods of attack to such
problems include dynamic programming, see [3, 4, 15, 29], and the Pontryagin maximum principle,
see [6, 25, 27]. When the total number of impulses is fixed over a finite horizon, the impulse control
problem can be treated as a parameter optimization problem, see [23, 26].

In this paper, we consider an impulse control problem of a dynamical system over an infinite
horizon with multiple objectives. For optimal control problems with functional constraints, dynamic
programming is not always convenient, and the so called convex analytic approach, also known as
the linear programming approach, proved to be effective, especially in handling the solvability issues.
For the linear programming approach to Markov decision processes, see [14, 20, 21, 28], and for this
approach to deterministic optimal control problems without impulses, see [17, 19, 24]. In a nutshell,
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the linear programming approach, if justified, reduces the original optimal control problem to a linear
program in the space of suitably defined occupation measures with the same (optimal) value, and
one can retrieve an optimal control strategy for the original problem from the optimal solution to the
induced linear program.

For a deterministic impulse control problem over a finite horizon, a linear program formulation
was presented in [10], from which, as the primitive goal of that paper, the authors established a
numerical method for solving approximately the original problem. For this reason, [10] dealt with an
unconstrained problem for a specific model with polynomial initial data, and did not show that the
formulated linear program was equivalent to the original impulse control problem. Another, slightly
different linear programming approach appeared in [11, 18], where the equivalence between the linear
program and the original problem was only briefly discussed. In the aforementioned works, the flow
in an Euclidean space came from an ordinary differential equation, whereas in the present paper the
flow is arbitrary enough and lives in a Borel space. In [30], we introduced a different definition of
occupation measures as compared to those in [10, 11, 18], and consequently a different linear program
formulation was presented. Making use of the results from Markov decision processes, it was shown
to be equivalent to the original impulse control problem. This type of result is often referred to as the
absence of relaxation gap.

In certain sense, the present paper can be regarded as a follow-up of [30]. Indeed, we will start
with recapitulating briefly the linear programming approach developed in [30], which was in the space
of occupation measures, see (10),(11) and (16). Then we introduce another notion of occupation
measures, referred to as the aggregated occupation measures. Accordingly, a second linear program
is formulated in the space of aggregated occupation measures, see (14), (15). The main advantage
of the aggregated occupation measures over the occupation measures in [30] lies in the reduction of
dimensionality: see Remark 4.2. On the other hand, this paper is an independent piece of work as much
effort here is made to show the equivalence between two linear programs, whose feasible solutions are
measures satisfying certain characteristic equations (both arising from the impulse control problem,
though). In fact, our main contributions lie in this equivalence, see Corollary 4.1, and in that we
reveal how to induce an optimal strategy for the impulse control problem from an optimal solution
to either of the two linear programs. Besides, by means of an example (see Section 5), we present
a detailed account on the relation between the aggregated occupation measures and the associated
linear program and their counterparts in [10, 11, 18].

We now summarize (and partially reiterate) the novelty of the present paper as follows:

� the dynamical system is described by a flow in an arbitrary Borel space, rather than by an
ordinary differential equation in an Euclidean space;

� the optimal solution must satisfy a number of functional constraints which were absent in the
cited literature;

� under suitable conditions, we rigorously prove that the optimal values of the original impulse
control problem and of the introduced linear programs coincide, i.e., there is no relaxation gap;

� we show how to retrieve the optimal control strategy from the solutions to the associated linear
programs.

The rest of this article is organized as follows. The problem statement is described in Section 2.
In Sections 3 and 4, we formulate the preliminary observations and the main results correspondingly.
In Section 5, we present an example and compare our approach with works [10, 11, 18]. The proofs of
the main theorems are given in Sections 6 and 7. Some auxiliary lemmas are presented and proved in
the Appendix.
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Notation. Throughout this paper, we use the following notations: N := {1, 2, . . .}, R̄0
+ := [0,∞],

R0
+ := [0,∞), R+ := (0,∞). The term “measure” will always refer to a countably additive R̄0

+-valued
set function, equal to zero on the empty set. Consider two σ-finite measures η1 and η2 on a common
measurable space (Ω,F) such that η1 ≥ η2 set-wise. Then there exists a measurable decomposition
{Ωn}∞n=1 of Ω such that η1(Ωn) <∞ and η2(Ωn) <∞. The difference between these two measures is
defined by (η1 − η2)(dω) :=

∑∞
n=1(η1(dω ∩ Ωn) − η2(dω ∩ Ωn)). P(E) is the space of all probability

measures on a measurable space (E,B(E)). On the time axis R0
+ the expression “for almost all u”

is understood with respect to the Lebesgue measure. By default, the σ-algebra on R0
+ is just the

Borel one. If (E,B(E)) is a measurable space then, for Y ∈ B(E), B(Y ) := {X ∩ Y, X ∈ B(E)}
is the restriction of the σ-algebra B(E). Integrals on a measure space (E,B(E), µ) are denoted as∫
E h(e)dµ(e) or as

∫
E h(e)µ(de). If b =∞ then the Lebesgue integrals

∫
[a,b]

f(u)du are taken over the

open interval (a,∞). Expressions like “positive, negative, increasing, decreasing” are understood in
the non-strict sense, like “nonnegative” etc. For I ⊂ R, τ ∈ R, τ + I := {τ + x : x ∈ I} is the shifted
set. I{·} is the indicator function; δy(dx) is the Dirac measure at the point y. For b, c ∈ [−∞,+∞],
b+ := max{b, 0}, b− := −min{b, 0}, b ∧ c := min{b, c}, b ∨ c := max{b, c}.

2 Problem Statement

We will deal with a control model defined through the following elements.

� X is the state space, which is a topological Borel space.

� φ(·, ·) : X × R0
+ → X is the measurable flow possessing the semigroup property φ(x, t + s) =

φ(φ(x, s), t) for all x ∈ X and (t, s) ∈ (R0
+)2; φ(x, 0) = x for all x ∈ X. Between the impulses,

the state changes according to the flow.

� A is the action space, again a topological Borel space with a compatible metric ρA.

� l(·, ·) : X × A → X is the mapping describing the new state after the corresponding ac-
tion/impulse is applied.

� For each j = 0, 1, . . . , J, where and below J is a fixed natural number, Cgj (·) : X → R0
+ is a

(gradual) cost rate.

� For each j = 0, 1, . . . , J, CIj (· , ·) : X × A → R0
+ is a cost function associated with the ac-

tions/impulses applied in the corresponding states.

All the mappings φ, l, {Cgj }Jj=0 and {CIj }Jj=0 are assumed to be measurable. The initial state x0 ∈ X
is fixed.

We assume that the states x ∈ X have the form x = (x̃, t), where t ∈ R0
+ equals time elapsed since

the most recent impulse, and x̃ ∈ X̃, an arbitrary Borel space with a compatible metric ρ̃. In this
connection,

φ(x, u) = φ((x̃, t), u) := (φ̃(x̃, u), t+ u),

where φ̃(·, ·) : X̃×R0
+ → X̃ is the measurable flow in X̃ possessing the semigroup property. Similarly,

l(x, a) = (l̃(x, a), 0), where l̃(·, ·) : X × A → X̃ is a measurable mapping: after each impulse, the
t-component goes down to zero. Any initial state is in the form x0 = (x̃0, 0) and thus has the time
component zero. The mappings φ̃ and l̃ are assumed to be measurable.

Remark 2.1 If the original state space is just X̃, then it is always possible to extend it by including
the component t.
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We exclude from the consideration all the points from X̃×R0
+ which cannot appear in the dynamical

system generated by the flow φ̃, so that

X := {(ỹ, t) ∈ X̃× R0
+ : ỹ = φ̃(x̃, t) for some x̃ ∈ X̃}.

In R0
+, the standard Euclidean topology is fixed. The product space X̃ × R0

+ is equipped with the
product topology, which is metrizable (see [1, §2.14]). The topology on X is the restriction of the
product topology on X̃× R0

+ on it. We endow X with its Borel σ-algebra, which is the restriction of

the Borel σ-algebra B(X̃ × R0
+) on X, see [5, Lem.7.4]. Since X is a projection of the graph of the

measurable mapping φ̃, it is not immediately obvious whether X is a Borel subset of X×R0
+. In this

and the next section, we assume that X is a Borel space. Sufficient conditions will be imposed later
to guarantee this is indeed the case (see Lemma 4.1).

Let X∆ := X∪ {∆}, where ∆ is an isolated artificial point describing the case that the controlled
process is over and no future costs will appear. The dynamics (trajectory) of the system can be
represented as one of the following sequences

x0 → (θ1, a1)→ x1 → (θ2, a2)→ . . . ; θi < +∞ for all i ∈ N,
or (1)

x0 → (θ1, a1)→ . . .→ xn → (+∞, an+1)→ ∆→ (θn+2, an+2)→ ∆→ . . . ,

where x0 ∈ X is the initial state of the controlled process and θi < +∞ for all i = 1, 2, . . . , n. For the
state xi−1 ∈ X, i ∈ N, the pair (θi, ai) ∈ R̄0

+ ×A =: B is the control at the step i: after θi time units,
the impulsive action ai will be applied leading to the new state

xi =

{
l(φ(xi−1, θi), ai), if θi < +∞;
∆, if θi = +∞. (2)

The state ∆ will appear forever, after it appeared for the first time, i.e., it is absorbing.

Remark 2.2 We underline that all the realized points xi, i = 1, 2, . . ., provided that they are not equal
to ∆, have the form (x̃i, 0). For technical needs, unless stated otherwise, we allow x0 to be an arbitrary
point in X.

After each impulsive action, if θ1, θ2, . . . , θi−1 < +∞, the decision maker has in hand the complete
information about the history, that is, the sequence

x0, (θ1, a1), x1, . . . , (θi−1, ai−1), xi−1.

The selection of the next control (θi, ai) is based on this information, and we also allow the selection
of the pair (θi, ai) to be randomized. Below, the control (θ, a) ∈ B is denoted as b.

For each j = 0, 1, . . . , J, the cost accumulated on the coming interval of length θi equals∫
[0,θi]

Cgj (φ(xi−1, u))du+ I{θi < +∞}CIj (φ(xi−1, θi), ai), (3)

the last term being absent if θi = +∞. The next state xi is given by formula (2).
In the space of all the trajectories (1)

Ω = ∪∞n=1[X× ((R0
+ ×A)×X)n × ({+∞}×A)× {∆} × ((R̄0

+ ×A)× {∆})∞]

∪[X× ((R0
+ ×A)×X)∞],
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we fix the natural σ-algebra F . Finite sequences

hi = (x0, (θ1, a1), x1, (θ2, a2), . . . , xi) = (x0, b1, x1, b2, . . . , xi)

will be called (finite) histories; i = 0, 1, 2, . . ., and the space of all such histories will be denoted as Hi;
Fi := B(Hi) is the restriction of F to Hi. Capital letters Xi, Ti,Θi, Ai, Bi = (Θi, Ai) and Hi denote
the corresponding functions of ω ∈ Ω, i.e., random elements.

Definition 2.1 A control strategy π = {πi}∞i=1 is a sequence of stochastic kernels πi on B = R̄0
+ ×A

given Hi−1. A Markov strategy is defined by stochastic kernels {πi(db|xi−1)}∞i=1. A control strategy
is called stationary, and denoted as π̃, if there is a stochastic kernel π̃ on R̄0

+ × A given X∆ such
that πi(db|hi−1) = π̃(db|xi) for all i = 1, 2, . . .. Every measurable mapping f : X∆ → B defines a
deterministic stationary strategy, which is given by πi(db|hi−1) := δf(xi−1)(db), and identified with f .

Note that every Markov strategy can be represented as

πi(dθ × da|x) = piT (dθ|x)piA(da|x, θ),

where piT and piA are stochastic kernels on R̄0
+ given X∆ and on A given X∆ × R̄0

+, correspondingly:
see [5, Prop.7.27].

For a given initial state x ∈ X and a strategy π, there is a unique probability measure P πx (·) on Ω
constructed using the Ionescu-Tulcea Theorem, satisfying for all i ∈ N, Γ ∈ B(R̄0

+×A), ΓX ∈ B(X∆),

P πx (X0 ∈ ΓX) = δx(ΓX) for ΓX ∈ B(X∆);

P πx ((Θi, Ai) ∈ Γ|Hi−1) = πi(Γ|Hi−1); (4)

P πx (Xi ∈ ΓX |Hi−1, (Θi, Ai)) =

{
δl(φ(Xi−1,Θi),Ai)(ΓX), if Xi−1 ∈ X, Θi < +∞;

δ∆(ΓX) otherwise.

This is a standard definition of strategic measures in Markov Decision Processes. Let Eπx be the
corresponding mathematical expectation.

Let us introduce the notation

Vj(x, π)

:= Eπx

[ ∞∑
i=1

I{Xi−1 6= ∆}

{∫
[0,Θi]

Cgj (φ(Xi−1, u))du + I{Θi < +∞} CIj (φ(Xi−1,Θi), Ai)

}]
for each strategy π, j = 0, 1, . . . , J and initial state x ∈ X.

The constrained optimal control problem under study is the following one:

Minimize with respect to π V0(x0, π) (5)

subject to Vj(x0, π) ≤ dj , j = 1, 2, . . . , J.

Here and below, {dj}Jj=1 are fixed constraint constants and x0 = (x̃0, 0) is a fixed initial state, where

x̃0 ∈ X̃.

Definition 2.2 A strategy π is called feasible if it satisfies all the constraint inequalities in problem
(5). A feasible strategy π∗ is called optimal if, for all feasible strategies π, V0(x0, π

∗) ≤ V0(x0, π).

We shall assume that problem (5) is consistent.

Condition 2.1 There exists some feasible strategy π such that V0(x0, π) <∞.

In what follows, we develop the linear programming approach to problem (5).
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3 Preliminary Observations

Clearly, the control model presented in Section 2, from the formal viewpoint, is a specific constrained
Markov Decision Process [2, 14, 21, 28] , which is defined by the following elements. The state space
is X∆ := X ∪ {∆}, as before, where the state ∆ /∈ X is an isolated point and X is assumed to be a
Borel space. The action space is B := R̄0

+ ×A, which is endowed with the product topology and the
corresponding Borel σ-algebra. The transition kernel is defined by

Q(dy|x, (θ, a)) :=

{
δl(φ(x,θ),a)(dy), if x 6= ∆, θ 6= +∞;

δ∆(dy) otherwise,
.

The cost functions are given by

C̄j(x, (θ, a)) := I{x 6= ∆}

{∫
[0,θ]

Cgj (φ(x, u))du+ I{θ < +∞}CIj (φ(x, θ), a)

}
, j = 0, 1, . . . , J.

If θ = ∞, then the above integration is understood over [0,∞). Below, we omit such remarks. The
initial state (x̃0, 0) ∈ X and the constraint constants dj ∈ R0

+, j = 1, 2, . . . , J are as before.
Let us impose the next set of compactness-continuity conditions.

Condition 3.1 (a) The space A is compact, and +∞ is the one-point compactification of the pos-
itive real line R0

+.

(b) The mapping (x, a) ∈ X×A→ l(x, a) is continuous.

(c) The mapping (x, θ) ∈ X× R0
+ → φ(x, θ) is continuous.

(d) For each j = 0, 1, . . . , J, the function (x, a) ∈ X×A→ CIj (x, a) is lower semicontinuous.

(e) For each j = 0, 1, . . . , J, the function x ∈ X→ Cgj (x) is lower semicontinuous.

According to Theorem 1 of [29], under Condition 3.1, assuming that X is a Borel space, the

function on X defined by infπ E
π
x

[∑∞
i=0

∑J
j=0 C̄j(Xi, Bi+1)

]
is lower semicontinuous.

Condition 3.2 There exists δ > 0 such that
∑J

j=0C
I
j (x, a) ≥ δ for all (x, a) ∈ X×A.

The above condition asserts that each impulse is costly. Below in this section, we assume that
Conditions 3.1 and 3.2 are satisfied.

Consider a point x ∈ X such that

inf
π
Eπx

 ∞∑
i=0

J∑
j=0

C̄j(Xi, Bi+1)

 = 0 (6)

(provided that such a point exists). Then Ef
∗

x

[∑∞
i=0

∑J
j=0 C̄j(Xi, Bi+1)

]
= 0 for the deterministic

stationary strategy f∗(x) ≡ (∞, â) with the immaterial value of â ∈ A being arbitrarily fixed: for all
other values of B1 ∈ B,

∑J
j=0 C̄j(x,B1) ≥ δ > 0.

Clearly, the control (∞, â) is optimal in problem (5) at all such states x ∈ X, at which (6) holds.

Moreover, for all such states x, Q({∆}|x, f∗(x)) = 1 and X1 = ∆ P f
∗

x -almost surely, so that

0 = Ef
∗

x

 ∞∑
i=0

J∑
j=0

C̄j(Xi, Bi+1)

 =
J∑
j=0

C̄j(x, (∞, â)) =

∫
[0,∞)

J∑
j=0

Cgj (φ(x, u))du,
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and consequently, for all j = 0, 1, . . . , J , Cgj (φ(x, u)) = 0 for almost all u ≥ 0. Conversely, if, at some
x ∈ X, for all j = 0, 1, . . . , J , Cgj (φ(x, u)) = 0 for almost all u ≥ 0, then (6) holds.

Below, let us denote

V :=

x ∈ X : inf
π
Eπx

 ∞∑
i=0

J∑
j=0

C̄j(Xi, Bi+1)

 > 0

 =

x ∈ X :

∫
[0,∞)

J∑
j=0

Cgj (φ(x, u))du > 0


and V c := X∆ \V . The set V , as the preimage of an open set under a lower semicontinuous function,
is open in X. The set V c can be equivalently defined as

V c := {∆} ∪
{
x ∈ X : Cgj (φ(x, u)) = 0 for all j = 0, 1, . . . , J , for almost all u ≥ 0

}
,

and it is absorbing with respect to the flow φ: for each x ∈ X, as soon as φ(x, u) ∈ V c, φ(x, s) ∈ V c

for all s ≥ u. The case V = X and V c = {∆} is not excluded.
In view of the previous observations, under Conditions 3.1 and 3.2, it is sufficient to consider the

class of reasonable strategies π = {πi}∞i=1 defined as follows.

Definition 3.1 Assume X is a Borel space, and suppose Conditions 3.1 and 3.2 are satisfied. A
strategy π = {πi}∞i=1 is called reasonable if πi(db|x0, b1, x1, . . . , xi−1) = δf∗(xi−1)(db) for all xi−1 ∈ V c,
and

πi([θ̃
∗(x̃i−1),∞)×A|x0, b1, x1, . . . , xi−1) = 0, i = 1, 2, . . . .

Here, xi−1 = (x̃i−1, 0) (see Remark 2.2) and

θ̃∗(x̃) := inf{θ ∈ R0
+ : φ((x̃, 0), θ) ∈ V c} (7)

is a function defined for each x̃ ∈ X̃. (As usual, inf ∅ := +∞.)

Since the flow φ is continuous, the function θ̃∗(·) is measurable: see [13, Lemma 27.1] or [16,
Prop.1.5, p.154]. After we introduce notations

Ṽ := {x̃ ∈ X̃ : (x̃, 0) ∈ V } and Ṽ c := {x̃ ∈ X̃ : (x̃, 0) ∈ V c} = X̃ \ Ṽ ,

it is clear that, for x̃ ∈ Ṽ , θ̃∗(x̃) > 0 because the set V is open and the set V c is closed; in case
θ̃∗(x̃) <∞, the infimum in (7) is attained, and

θ̃∗(x̃) = sup{t ∈ R0
+ : φ((x̃, 0), t) ∈ V }.

If x̃ ∈ Ṽ c, then θ̃∗(x̃) = 0.
We thus concentrate on selecting actions at the states x ∈ V and restrict ourselves to the set of

reasonable strategies.
A linear programming method was established in [30] regarding how to select actions at x ∈ V ,

and it serves the beginning of the analysis in the present paper. For this reason, let us briefly describe
it: see (10), (11) below. The formulation of that linear program is related to the occupation measures
µπ defined as follows:

µπ(Γ1 × Γ2) := Eπx0

[ ∞∑
i=0

I{(Xi, Bi+1) ∈ Γ1 × Γ2}

]
, ∀ Γ1 ∈ B(X∆),Γ2 ∈ B(R̄0

+ ×A). (8)

7



Under Conditions 2.1, 3.1 and 3.2, for each reasonable π as in Definition 3.1,

Vj(x0, π) =

∫
V×R̄0

+×A
C̄j(x, (θ, a))µπ(dx× dθ × da).

It follows that the restriction on V × R̄0
+ × A of any occupation measure µπ = µ of our interest is

concentrated on the measurable subset M×A, where

M := {(y, θ) : y = (x̃, 0) with x̃ ∈ Ṽ and θ ∈ [0, θ̃∗(x̃)) ∪ {∞}}. (9)

Moreover, there is no need to consider such occupation measures that µπ(M ×A) = ∞: the latter
means that, with positive probability, actions from R0

+ ×A at states from V appear infinitely many
times, leading to the infinite value of at least one of the objectives Vj(x0, π) =

∫
V×R̄0

+×A
C̄j(x, (θ, a))

×µπ(dx× dθ × da).
The impulse control problem (5) is now equivalent to the following linear program:

Minimize :

∫
V×R̄0

+×A
C̄0(x, (θ, a))µ(dx× dθ × da) (10)

over finite measures µ on V ×B = V × R̄0
+ ×A concentrated on M×A

subject to µ(dx× R̄0
+ ×A) = δx0(dx) +

∫
V×R̄0

+×A
Q(dx|y, (θ, a))µ(dy × dθ × da) on B(V ); (11)∫

V×R̄0
+×A

C̄j(x, (θ, a))µ(dx× dθ × da) ≤ dj , j = 1, 2, . . . , J.

See Proposition 3.1 for a precise statement of this equivalence.
One can recognize that the form of this linear program is standard for the total cost Markov

Decision Processes (see e.g., [2, 14, 21]). For every reasonable strategy π, the occupation measure µπ

satisfies equality (11).
The next statement comes from Theorem 4.1 of [30].

Proposition 3.1 Suppose the space X is Borel and Conditions 2.1, 3.1 and 3.2 are satisfied. Then
the following assertions hold.

(a) There exists a solution µ∗ to the program (10), (11), which gives rise to the optimal (in problem
(5)) stationary strategy π̃ coming from the decomposition

µ∗(dx× db) = µ∗(dx×B)× π̃(db|x), x ∈ V.

On the space V c, the optimal strategy is given by f∗(x) ≡ (∞, â) as before; the value of â ∈ A
is immaterial. The minimal value of the program (10), (11) is finite and coincides with the
minimal value of the original problem (5).

(b) If π∗ is a reasonable strategy, whose occupation measure µπ
∗

on V ×B is concentrated on M×A
and solves the linear program (10), (11), then the strategy π∗ is optimal in problem (5).

In what follows, we use the notation A2 = A ∪ {2}, where 2 /∈ A is an artificial isolated point.
The target of this article is to pass to the equivalent in some sense linear program in the space

of measures η on V ×A2. The reason is connected with the form of the objectives Vj(x0, π). Since
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they are linear with respect to the original functions Cgj and CIj on V and V ×A correspondingly, it

is desirable to represent them in the form of
∫
V×A2

Cj(y, a)η(dy × da), where

Cj(y, a) :=

{
Cgj (y), if a = 2;

CIj (y, a), if a ∈ A,
(12)

and develop the characteristic equation for the measures η.
Consider a finite measure µ in the linear program (10), (11), which can be written in the form

µ(dx× dθ × da) = pT (dθ|x, a)pA(da|x)µ(dx× R̄0
+ ×A), (13)

where pT (·) and pA(·) are stochastic kernels on R̄0
+ and A correspondingly: see [5, Prop.7.27]. The

dependence of pT and pA on µ is not explicitly indicated here. Hence, using the Tonelli Theorem (see
[1, Thm.11.28]), some straightforward calculations imply that∫

V×R̄0
+×A

{∫
[0,θ]

Cgj (φ(x, u))du

}
µ(dx× dθ × da)

=

∫
V×R̄0

+×A

{∫
[0,θ]

Cgj (φ(x, u))I{φ(x, u) ∈ V }du

}
µ(dx× dθ × da)

=

∫
V

∫
A

∫
R̄0
+

∫
[0,θ]

Cgj (φ(x, u))I{φ(x, u) ∈ V }du pT (dθ|x, a)pA(da|x)µ(dx× R̄0
+ ×A)

=

∫
V

∫
A

∫
R0
+

Cgj (φ(x, u))I{φ(x, u) ∈ V }pT ([u,∞]|x, a) du pA(da|x)µ(dx× R̄0
+ ×A),

where the first equality holds because Cgj (φ(x, u)) = 0 for each x ∈ V , for almost all u ∈ R0
+ such that

φ(x, u) ∈ V c, for all j = 0, 1, . . . , J . To put it differently, Cgj (φ(x, u)) = 0 for almost all u ≥ θ̃∗(x̃) for
all x = (x̃, 0).

After we introduce the following measure on V

η(dy ×2) :=

∫
V

∫
R0
+

δφ(x,u)(dy)I{φ(x, u) ∈ V }
(∫

A
pT ([u,∞]|x, a)pA(da|x)

)
du µ(dx× R̄0

+ ×A)

=

∫
R0
+

{∫
V×A

δφ(x,u)(dy)µ(dx× [u,∞]× da)

}
du (14)

=

∫
R0
+

{∫
Ṽ
δφ((x̃,0),u)(dy)µ(dx̃× {0} × [u,∞]×A)

}
du,

we may write
∫
V×R̄0

+×A

{∫
[0,θ]C

g
j (φ(x, u))du

}
µ(dx× dθ × da) =

∫
V C

g
j (y)η(dy ×2).

Similarly to the above, taking into account that the measure µ is concentrated on M×A, we have
that, for each j = 0, 1, . . . , J ,∫

V×R̄0
+×A

{
I{θ < +∞}CIj (φ(x, θ), a)

}
µ(dx× dθ × da)

=

∫
V×R̄0

+×A

{
I{θ < +∞}I{φ(x, θ) ∈ V }CIj (φ(x, θ), a)

}
µ(dx× dθ × da)

=

∫
V×A

CIj (y, a)η(dy × da),

9



where

η(dy × da) :=

∫
V

∫
R0
+

δφ(x,θ)(dy)I{φ(x, θ) ∈ V }µ(dx× dθ × da) (15)

is a finite measure on V ×A, since the measure µ is finite.
If Conditions 2.1, 3.1 and 3.2 are satisfied, and the space X is Borel, then the linear program (10),

(11) can now be rewritten as

Minimize :

∫
V×A2

C0(y, a)η(dy × da) (16)

over finite measures µ on V ×B = V × R̄0
+ ×A concentrated on M×A

subject to : (11), (14), (15) and

∫
V×A2

Cj(y, a)η(dy × da) ≤ dj , j = 1, 2, . . . , J.

The space A2 := A ∪ {2} and the functions Cj are as introduced above: see (12). Proposition 3.1 is
valid for the linear program (16), too.

Definition 3.2 Suppose Conditions 2.1, 3.1 and 3.2 are satisfied, and assume that the space X is a
Borel space. For a finite measure µ on V × R̄0

+×A satisfying equation (11), the measure η on V ×A2

defined by

η(ΓX × ΓA) := η(ΓX × (ΓA ∩A)) + η(ΓX ×2)I{2 ∈ ΓA}, ΓX ∈ B(V ), ΓA ∈ (A2), (17)

where the measures η(dy × 2) on V and η(dy × da) on V ×A were introduced in (14) and (15), is
called the aggregated occupation measure (induced by µ).

In what follows, we will characterize the aggregated measures η without references to the measures
µ: see linear program (20), (21).

4 Main Results

Definition 4.1 We call the orbit of a point x̃0 ∈ X̃ the following subset of X:

x̃0X = {(φ̃(x̃0, t), t) : t ∈ R0
+} = {φ((x̃0, 0), t) : t ∈ R0

+}.

We underline that the flow φ has no cycles and, if the flows φ and φ̃ are continuous, then every
orbit is a closed set in X̃× R0

+.

Condition 4.1 Two different orbits do not intersect, i.e., for any two distinct points x̃0
1 6= x̃0

2 ∈ X̃,

x̃01
X ∩ x̃02

X = ∅.

Definition 4.2 Under Condition 4.1, for each y = (ỹ, t) ∈ X, we introduce h(y) equal to the point
x̃0 ∈ X̃ such that ỹ = φ̃(x̃0, t) and put τy = t. The mappings F : X̃×R0

+ → X and F−1 : X→ X̃×R0
+

are defined as

F (x̃0, t) := (φ̃(x̃0, t), t) = φ((x̃0, 0), t), and F−1(y) = (h(y), τy). (18)

Note that the mapping h : X → X̃ is well defined: if, for y = (ỹ, t) ∈ X, for two points x̃0
1 6= x̃0

2

from X̃, ỹ = φ̃(x̃0
1, t) = φ̃(x̃0

2, t), then the different orbits x̃01
X and x̃02

X are not disjoint having the
common point y.

10



Figure 1: Flows φ̃ and φ. The grey area is Ṽν : outside it ν̂ ≡ 0.
In general, the closed set V c can be arbitrary enough. Here, we assumed that the functions Cgj ((x̃, t))
do not depend on t, so that V c is the vertical cylinder.

All the introduced notations are illustrated on Figure 1.
The mapping F describes the forward movement from the starting point (x̃0, 0) along the orbit

x̃0X ; the inverse mapping F−1 defines the starting point x̃0, along with the duration of movement.
If Condition 4.1 is satisfied, one can define the flows φ̃ and φ in the reverse time. For each

y = (ỹ, t) ∈ X we say that φ̃(ỹ,−t) = h(y) and, for all u ∈ [0, t], we put φ̃(ỹ,−u) := φ̃(h(y), t−u). For
the flow φ, we put φ(y,−u) = φ((ỹ, t),−u) = (φ̃(ỹ,−u), t − u). The semigroup property here takes
the form φ(x, t + s) = φ(φ(x, s), t) for s and t satisfying s ≥ −τx, t + s ≥ −τx. Note that φ̃ in the
reverse time is a function defined on {(y,−u) : y = (ỹ, t) ∈ X, 0 ≤ u ≤ t}.

The next condition requires that the speed of moving along the flow φ̃ from h((ỹ, t)) to ỹ is bounded.

Condition 4.2 Condition 4.1 is satisfied, the flows φ̃ and φ are continuous, and there exists a (0,∞)-
valued function d on R0

+, bounded on every finite interval [0, T ] and such that for all y1 = (ỹ1, t1), y2 =
(ỹ2, t2) ∈ X,

ρ̃(h(y1), h(y2)) = ρ̃(φ̃(ỹ1,−t1), φ̃(ỹ2,−t2)) ≤ (d(t1) ∨ d(t2))ρ(y1, y2),

where ρ and ρ̃ denote the compatible metrics on X̃× R0
+ and X̃, respectively.

Lemma 4.1 Suppose Condition 4.2 is satisfied. Then the mapping h : X → X̃, introduced in
Definition 4.2, is continuous, the flows φ̃ and φ in the reverse time are continuous, the mapping F is
a homeomorphism between X̃× R0

+ and X, and the set X is a Borel space.

The proofs of this and several other auxiliary lemmas are postponed to the Appendix. Below, we
assume that Condition 4.2 is satisfied.

For the points x̃ ∈ Ṽ , the function θ̃∗(x̃) defined by (7) describes the time duration of the orbit

x̃X to be within the set V . Recall that every orbit remains in V c after it reaches that set.
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Remark 4.1 Suppose 2.1, 3.1, 3.2, and 4.2 are satisfied. Then the mapping F defined in (18) (its
restriction on D, to say more precisely) provides a homeomorphism and thus also an isomorphism
between the sets

D := {(x̃0, t) : x̃0 ∈ Ṽ , 0 ≤ t < θ̃∗(x̃0)} = {(x̃0, t) : φ((x̃0, 0), t) ∈ V } (19)

and V . Indeed, F (x̃0, t) ∈ V if and only if the pair (x̃0, t) belongs to the set D. Thus, F (D) = V and
F−1(V ) = D. Recall that φ((x̃0, 0), t) ∈ V c for all t ≥ θ̃∗(x̃0).

We underline that the points (x̃0, t) ∈ D and (ỹ, t) ∈ X have different meanings, although the
components x̃0, ỹ ∈ X̃ and t ∈ R0

+ look the same. That is the reason to equip the first coordinates
of points in D with the upper index 0, to make them look different from the points in X. The pair
(x̃0, t) ∈ D is just the reference point of the orbit x̃0X and the duration of movement from (x̃0, 0). It
can easily happen that (x̃0, t) /∈ X.

Definition 4.3 Suppose Conditions 2.1, 3.1, 3.2, and 4.2 are satisfied. If ζ is a measure on V , then
ζ̌ denotes the image of ζ on D under the mapping F−1:

ζ̌(Γ) = ζ(F (Γ)), Γ ∈ B(D).

In case the measure ζ is finite, we, with slight but convenient abuse of notations, introduce ζ̂(Γ̃) :=
ζ̌(Γ̃× R0

+) for Γ̃ ∈ B(Ṽ ) and ζ̌(dt|x̃0), the stochastic kernel from Ṽ to R0
+ such that

ζ̌(dx̃0 × dt) = ζ̂(dx̃0)ζ̌(dt|x̃0),

see [5, Cor.7.27.2] or [20, Prop.D.8].

Clearly,

ζ1 ≤ ζ2 set-wise ⇐⇒ ζ̌1 ≤ ζ̌2 set-wise.

Note that if ζ is a finite measure, then ζ̌([0, θ̃∗(x̃0))|x̃0) = 1 for ζ̂-almost all x̃0 ∈ Ṽ , and we extend
the kernel ζ̌ to R0

+ by putting ζ̌([θ̃∗(x̃0),∞)|x̃0) := 0. If the measure ζ is zero outside the set Ṽ ×{0},
then ζ̌(Γ) = 0 for all measurable subsets Γ ⊆ D ∩ {(x̃0, t) ∈ X̃ × R0

+ : t > 0}, ζ̂(Γ̃) = ζ(Γ̃ × {0}) for

all Γ̃ ∈ B(Ṽ ), and ζ̌(dt|x̃0) = δ0(dt) for ζ̂-almost all x̃0 ∈ Ṽ .

Definition 4.4 Under Conditions 2.1, 3.1, 3.2 and 4.2, a measure ζ on V is called normal if there
exist a finite measure L on Ṽ and a bounded measurable function g(x̃0, u) : Ṽ × R0

+ → R0
+ such that

ζ̌(dx̃0 × du) = g(x̃0, u)du L(dx̃0).

Equivalently, for all ΓX × Γt ∈ B(V ),

ζ(ΓX × Γt) =

∫
D
I{F (x̃0, u) ∈ ΓX × Γt}ζ̌(dx̃0 × du)

=

∫
Ṽ

∫
[0,θ̃∗(x̃0))

δφ̃(x̃0,u)(ΓX)δu(Γt)g(x̃0, u)du L(dx̃0).

See Remark 4.1.
A measure η on V ×A2 is called normal if η(V ×A) < ∞ and the measure η(dx × 2) on V is

normal.
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Clearly, every normal measure is σ-finite. Similarly, a normal measure ζ defined on some orbit

z̃X ⊆ X is understood:

ζ̌(dx̃0 × du) = g(u)du δz̃(dx̃
0).

Lemma 4.2 Suppose Conditions 2.1, 3.1, 3.2 and 4.2 are satisfied. Then the following assertions
hold true.

(a) For every finite measure µ on V × R̄0
+ × A satisfying equality (11), the induced aggregated

occupation measure η on V ×A2 is normal.

(b) If η1 and η2 are two normal measures on V × A2 such that η1 ≥ η2 set-wise, and thus the
difference η1−η2 is a (positive) measure, then η := η1−η2 is also a normal measure on V ×A2.

In Definition 4.5, we introduce the class of so called test functions used to characterize measures
on X.

Definition 4.5 W is the space of measurable bounded functions w on X, absolutely continuous, either
negative and increasing or positive and decreasing along the flow φ (see Definition A.1) and satisfying
conditions

� w(y) = 0 for all y ∈ V c and

� limt→∞w(φ(x, t)) = 0 for all x ∈ V such that φ(x, t) ∈ V for all t ∈ R0
+.

Throughout this paper, χw denotes a function as in Lemma A.1 (see Appendix). Without loss
of generality, one can assume, for each negative (or positive) function w ∈W, that the function χw
is positive (or negative), i.e., in (47) one can put g(·) ≡ 0. Note that below we consider only such
measures ζ on V that the value of the integral

∫
V χw(x)ζ(dx) does not depend on the function g in

(47).
Suppose Conditions 2.1, 3.1, 3.2, and 4.2 are satisfied and introduce the following linear program

Minimize over

the normal measures η on V ×A2 :

∫
V×A2

C0(x, a)η(dx× da) (20)

subject to : w(x0) +

∫
V
χw(x)η(dx×2)−

∫
V
w(x)η(dx×A) (21)

+

∫
V×A

w(l(x, a))η(dx× da) = 0 ∀ w ∈W;∫
V×A2

Cj(x, a)η(dx× da) ≤ dj , j = 1, 2, . . . , J.

The space A2 and functions Cj were defined in Section 3: see (12).

Remark 4.2 Compared with (10), (11) and (16), the dimensionality of the linear program (20),(21)
is reduced in the sense that the measures µ were on the space V × R̄0

+ ×A, and the measures η are
on the space V × (A∪{2}). Therefore, e.g., from the computational point of view, the linear program
(20),(21) is easier.

We are ready to formulate the main results.
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Theorem 4.1 Suppose Conditions 2.1, 3.1, 3.2 and 4.2 are satisfied. Then, for every finite measure
µ on V ×R̄0

+×A, concentrated on M×A and satisfying equality (11), its induced aggregated occupation
measure η on V ×A2 satisfies equation (21) for all functions w ∈ W. All the integrals in (21) are
finite.

The proof of this statement is postponed to Section 6.

Theorem 4.2 Suppose Conditions 2.1, 3.1, 3.2 and 4.2 are satisfied. Then every normal measure η
on V ×A2, satisfying equation (21), uniquely defines a reasonable Markov strategy πη (called “induced”
by η) such that, for the aggregated occupation measure η̃ defined by (17) (recall (14) and (15)) with µ
being replaced by the occupation measure µπ

η
of the strategy πη as in (8) with π = πη, the following

inequalities hold:

η̃(Γ) ≤ η(Γ) ∀ Γ ∈ B(V ×A2).

The proofs of Theorem 4.2 and of the next corollary are postponed to Section 7.

Corollary 4.1 Let Conditions 2.1, 3.1, 3.2, and 4.2 be satisfied. Then linear program (16) is equiv-
alent to linear program (20),(21).

To be more precise, if the finite measure µ∗ on V × R̄0
+ × A solves linear program (16), then

the measure η∗ on V × A2, given by (14), (15) and (17), i.e., the aggregated occupation measure
induced by µ∗, solves linear program (20),(21). Conversely, if the measure η∗ on V ×A2 solves linear
program (20),(21), then, for the Markov strategy π∗ induced by η∗ as in Theorem 4.2, the corresponding
occupation measure µπ

∗
on V × R̄0

+ ×A, defined in (8), solves linear program (16).

According to Corollary 4.1 and Section 3 (see Proposition 3.1), the minimal values of the linear
programs (10), (11) and (20),(21) coincide and equal the minimal value of the original problem (5). As
soon as the optimal solution η∗ to the linear program (20),(21) is obtained, the induced Markov strategy
π∗, solves the original optimal impulsive control problem (5): see Proposition 3.1 and remember that
the linear programs (10), (11) and (16) are equivalent. Recall that linear program (16) has an optimal
solution by Proposition 3.1; hence the linear program (20),(21) is also solvable. Note also that, having
in hand the Markov strategy π∗, one can compute the corresponding occupation measure µπ

∗
(8),

and after that the stationary strategy as in Proposition 3.1 also solves the optimal impulsive control
problem (5).

For the discussions in the rest of this section, we suppose all the mappings and functions l, Cgj ,

and CIj do not depend on the component t of the state x = (x̃, t). Then the linear program (20),(21)

is actually in terms of (marginal) measures η̃(dx̃× da) on Ṽ ×A2 defined by

η̃(ΓX × ΓA) := η([(ΓX × [0,∞)) ∩ V ]× ΓA) =

∫
(ΓX×[0,∞))∩V

η(dx̃× dt× ΓA).

The marginals η̃ of normal measures η (naturally called normal on Ṽ ×A2) are characterized as follows:
η̃(Ṽ ×A) <∞ and there exist a finite measure L on Ṽ and a bounded non-negative measurable function
g on Ṽ × R0

+ such that

η̃(ΓX ×2) = η([(ΓX × [0,∞)) ∩ V ]×2) =

∫
Ṽ

∫
[0,θ̃∗(x̃))

δφ̃(x̃,u)(ΓX)g(x̃, u)du L(dx̃) (22)

(see Definition 4.4). The test functions w̃ on X̃ are measurable bounded, absolutely continuous, either
negative and increasing or positive and decreasing along the flow, and such that w̃(y) = 0 for all
y ∈ Ṽ c and limt→∞ w̃(φ̃(x̃, t)) = 0 for all x̃ ∈ Ṽ such that φ̃(x̃, t) ∈ Ṽ for all t ∈ R0

+.
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This linear program, in terms of marginal measures η̃, is solvable under Conditions 2.1, 3.1, 3.2,
and 4.2. (The last condition is for the model with the extended state space X ⊂ X̃×R0

+.) The minimal
value of this program coincides with the minimal value of the original problem (5). Therefore, when
reformulating the optimal impulsive control problem in terms of aggregated occupation measures, the
extension of the state space, as in Remark 2.1, is not needed.

On the other hand, the construction of the optimal control strategy π∗, induced by the optimal
solution η∗ to the linear program (20),(21), is essentially based on the analysis in the extended state
space: see the proof of Theorem 4.2. Note that, in the case of the extended state space, the (full)
orbits in X, as in Definition 4.1, form a Borel space because they are characterized by the starting
points x̃0. If one manages to describe the space of orbits in X̃ as a Borel space, then one can avoid
such an extension of the basic state space X̃.

5 Example and Comparison with Other Works

Consider the following simple but not trivial optimal impulse control problem in the space R0
+.

dx̃ := G(x̃)dt+ dW (t), x̃(0−) = x̃0 > 0;∫ ∞
0

Cg(x̃(u))du+

∫ ∞
0

dW (u)→ inf
W
,

 (23)

where

W (u) :=

∞∑
j=1

(
j−1∑
i=1

ai

)
I{Tj−1 ≤ u < Tj};

0 = T0 ≤ T1 ≤ T2 ≤ . . . , Tj ∈ [0,∞]; Tj−1 = Tj only if Tj−1 =∞; lim
j→∞

Tj =∞.

The impulse control strategy W , represented by {Tj , aj}∞j=1, can be arbitrary, satisfying the condition
aj ≥ δ > 0. Here and below, δ > 0 is a fixed number. The measurable functions G(·) > δ ≥ 0 and
Cg(·) ≥ 0 are fixed and smooth enough, such that H :=

∫∞
0 Cg(X̃(u))du < ∞. Here X̃(·) is the

solution to (23) when W (u) ≡ 0, i.e., when T1 =∞.
Clearly, one can restrict himself to the strategies (i.e., functions W ) having only a finite number

of impulses, that is, T1, T2, . . . , TN−1 < ∞ and TN = ∞ for some N ∈ N: for other strategies the
objective in (23) equals +∞.

This problem can be easily reformulated in terms of Section 2. The flow φ̃ on X̃ = [x̃0,∞) comes
from the differential equation (23) at W (·) ≡ 0; A = [δ,H] (no reason to apply the impulses a > H);
B = R̄0

+ × A; x0 = (x̃0, 0); l̃((x̃, t), a) = l̃(x̃, a) = x̃ + a; as usual, t, the second components of the
state, is the time elapsed since the most recent impulse. We consider the unconstrained case with
J = 0, and the j index in the functions like Cgj (·) and CIj (·) is omitted. The gradual cost rate is Cg(·),
and the cost of the impulse a ∈ A equals CI(x, a) = a. Simultaneous impulses of the sizes a, b, . . .
can be considered as one impulse of the size a + b+ . . ., and consequently, for j > 0, if Tj < ∞ then
Tj+1 > Tj . We assume that, for some K ∈ (x̃0,∞), Cg(x̃) = 0 for x̃ ≥ K and Cg(x̃) > 0 for x̃ < K, so
that Ṽ = [x̃0,K), and Ṽ c = [K,∞). Now, all the Conditions 2.1, 3.1, 3.2, and 4.2 are satisfied, and
hence the minimal value of the impulse control problem (23) coincides with the minimal value of the
linear program (20),(21).

Let us illustrate the definitions introduced in Sections 2 and 3. To be specific, below, unless stated
otherwise, we put x̃0 > δ, G(x̃) = x̃, so that φ̃(x̃, t) = x̃et is the solution to (23) starting from x̃ ∈ X̃,
when W (u) ≡ 0, i.e., T1 =∞;

X = {(ỹ, t) : ỹ ∈ X̃ = [x̃0,∞), t ∈ [0, ln
ỹ

x̃0
]} :
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a point ỹ cannot appear later than ln ỹ
x̃0

time units after any one impulse; X∆ = X∪{∆}. See Figure
2. Now

V = {(ỹ, t) : ỹ ∈ Ṽ = [x̃0,K), t ∈ [0, ln
ỹ

x̃0
]};

θ̃∗(x̃) = ln
K

x̃
for x̃ ∈ Ṽ ;

M = {(y, θ) : y = (x̃, 0) with x̃ ∈ Ṽ = [0,K) and θ ∈ [0, θ̃∗(x̃) = ln
K

x̃
) ∪ {∞}} :

there is no reason to apply impulses after the variable x̃ reaches the region Ṽ c = [K,∞).

𝑥0 = ℎ(𝑦)𝑥0
0

t

orbit 𝑥0𝒳

= {( 𝑦 = 𝑥0𝑒𝑡, t):  tє[0,∞)}

෩𝐗

𝑦 = 𝑦, 𝑡

measure ζ

measure
ሙζ

𝐹−1

𝐹−1(y) 

𝐹
mapping

mapping

K

𝑎𝜃
𝑡 = ln𝐾 − ln 𝑥0 ,

the upper boundary of D.

Figure 2: X is the area below the orbit starting from x̃0; the grey area is V . The bold arrow leading
to the point x̃0 represents the impulse of the size a applied at the time moment T1 = θ.

The model (23) is deterministic and unconstrained, so that we fix an arbitrary reasonable deter-
ministic control strategy π with µπ(M×A) <∞. This means that

πi(dθ × da|xi−1) = δθi(dθ)δai(da); θi = Ti − Ti−1 <∞ for i = 1, 2, . . . , N − 1, and θN =∞;

xi = (x̃i = x̃i−1e
θi + ai, 0) and x̃i−1e

θi ∈ Ṽ for i = 1, 2, . . . , N − 1;

xN = ∆.

All the variables Ti, θi etc are here non-random; N − 1 is the total number of impulses. The value of
aN ∈ A is immaterial because it is never in use (is to be applied at TN =∞). For this control strategy
π, the occupation measure µπ, restricted to V × R̄0

+ ×A (equivalently, to M×A), i.e., ignoring the
absorbing state ∆, is the following combination of Dirac measures:

µπ(Γ1 × Γ2) =
N∑
i=1

δ(x̃i−1,0)(Γ1)δ(θi,ai)(Γ2) ∀ Γ1 ∈ B(V ), Γ2 ∈ B(R̄0
+ ×A).

For x = (x̃, 0) ∈ X and (θ, a) ∈ B (no other values of x appear in the expressions below),

C̄(x, (θ, a)) =

∫
[0,θ]

Cg(x̃eu)du+ I{θ < +∞}a,

and the objective corresponding to µ = µπ in the linear program (10),(11) (i.e., the performance of π
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in problem (5)) has the form

V(x0, π) = V((x̃0, 0), π) =

∫
M×A

C̄(x, (θ, a))µπ(dx× dθ × da)

=
N−1∑
i=1

(∫
[0,θi]

Cg(x̃i−1e
u)du+ ai

)
+

∫
[0,∞)

Cg(x̃N−1e
u)du =

∫ ∞
0

Cg(x̃(u))du+

∫ ∞
0

dW (u),

where x̃(u) is as defined in (23). Since

Q(dx|y, (θ, a)) = δ(l̃(φ̃(ỹ,θ),a),0)(dx) = δ(ỹeθ+a,0)(dx)

for y = (ỹ, 0) and θ 6= +∞, the characteristic equation (11) on B(V ) for µ = µπ reads

µπ(dx× R̄0
+ ×A) = δ(x̃0,0)(dx) +

∫
M×A

δ(ỹeθ+a,0)(dx)µπ(d(ỹ, 0)× dθ × da)

= δ(x̃0,0)(dx) +
N−1∑
i=1

δ(x̃i−1eθi+ai,0)(dx)

and is obviously satisfied because x̃i−1e
θi + ai = x̃i, for all i = 1, 2, . . . , N − 1.

The first part of the aggregated occupation measure on V , induced by µπ, looks as follows:

ηπ(dy ×2) =

∫
[0,∞)

{∫
V×A

δφ(x,u)(dy)µπ(dx× [u,∞]× da)

}
du

=
N∑
i=1

∫
[0,∞)

δ(x̃i−1eu,u)(dy)I{θi ≥ u}du.

(See (14).) The t-component of the state y = (ỹ, t) is of no importance, and the marginal η̃π(dỹ ×2)
on Ṽ = [x̃0,K), as at the end of Section 4, has the form

η̃π(dỹ ×2) =
N∑
i=1

∫
[0,θi]

δx̃i−1eu(dỹ)du.

Note that this measure is non-atomic. It is normal in the sense of (22): L(dx̃) :=
∑N

i=1 δx̃i−1(dx̃)

and g(x̃, u) := I{u ≤ θi}. Recall that θi < θ̃∗(x̃i−1) for i < N and, for i = N , when θN = ∞, the
integration with respect to u is in fact up to θ̃∗(x̃N−1), because the measure η̃π(dỹ × 2) is defined
on Ṽ = [x̃0,K) and, for Γ ∈ B(Ṽ ), δ(x̃N−1eu)(Γ) = 0 if u ≥ θ̃∗(x̃N−1) = ln K

x̃N−1
. For each interval

[ỹ1, ỹ2) ⊂ Ṽ = [x̃0,K) on which the function x̃(·) is continuous, the value η̃π([ỹ1, ỹ2) × 2) equals
ln ỹ2

ỹ1
= t2− t1, the time for the function x̃(·) to change from ỹ1 = x̃(t1) to ỹ2 = x̃(t2) according to the

flow φ̃. To put it different, on the intervals [x̃i−1, x̃i−1e
θi)∩ Ṽ , i = 1, 2, . . . , N , the measure η̃π(dỹ×2)

is the image of the Lebesgue measure ds with respect to the mapping u→ φ̃(x̃i−1, u) = x̃i−1e
u. Hence,

for a bounded absolutely continuous function w(·) on [x̃i−1, x̃i−1e
θi)∩ Ṽ , for ỹ1 = x̃i−1e

t1 , ỹ2 = x̃i−1e
t2 ,

w(ỹ2−)− w(ỹ1) =

∫
[0,t2−t1)

χw(φ̃(ỹ1, s))ds =

∫
[ỹ1,ỹ2)

χw(ỹ)η̃π(dỹ ×2). (24)

For the first term of the objective in (23), we have:∫
[x̃0,K)

Cg(ỹ)η̃π(dỹ ×2) =

N∑
i=1

∫
[0,θi)

Cg(x̃i−1e
u)du =

∫ ∞
0

Cg(x̃(u))du,
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where x̃(·) is as defined in (23). Recall that Cg(x̃) = 0 for x̃ ≥ K.
The second part of the aggregated occupation measure on V ×A, induced by µπ, has the form

ηπ(dy × da) =

∫
V

∫
R0
+

δφ(x,θ)(dy)I{φ(x, θ) ∈ V }µπ(dx× dθ × da)

=
N∑
i=1

δ(x̃i−1eθi ,θi)
(dy)I

{
x̃i−1e

θi ∈ [x̃0,K), θi ∈
[
0, ln

x̃i−1e
θi

x̃0

]}
δai(da).

(See (15).) Clearly, this measure is finite. Like previously, the t-component of the state y = (ỹ, t) is
of no importance, and the marginal η̃(dỹ × da) on Ṽ ×A, as at the end of Section 4, has the form

η̃π(dỹ × da) =

N−1∑
i=1

δx̃i−1eθi
(dỹ)δai(da). (25)

Recall that θN =∞, x̃i−1e
θi < K and x̃i−1 ≥ x̃0 for i < N .

For the second term of the objective in (23), we have:∫
[x̃0,K)×A

a η̃π(dỹ × da) =

N−1∑
i=1

ai =

∫ ∞
0

dW (u),

where the function W (u) =
∑N

j=1

(∑j−1
i=1 ai

)
I{Tj−1 ≤ u < Tj} (with T0 = 0, Ti = Ti−1 + θi,

i = 1, 2, . . . , N) represents the control strategy π.
Let us illustrate the definitions introduced in Section 4 (see Figure 2):

h(y) = h(ỹ, t) =
ỹ

et
; F (x̃0, t) = (x̃0et, t); F−1(y) = F−1(ỹ, t) = (

ỹ

et
, t);

D = {(x̃0, t) : x̃0 ∈ [0,K), 0 ≤ t < ln
K

x̃0
}.

With some abuse of notations, we omit the double brackets in the expressions like h(y) = h((ỹ, t)).
The mappings F and F−1 are one-to-one and continuous. According to Definition 4.4, a measure ζ
on V is normal if and only if there is a finite measure L on Ṽ = [x̃0,K) such that the conditional
distribution ζ̌(dt|x̃0) is (L-almost surely) absolutely continuous with respect to the Lebesgue measure.

According to the last paragraphs in Section 4, the linear program (20),(21) is formulated in terms
of the (normal) marginal measures η̃(dx̃ × da) on Ṽ × A2, ignoring the t component, time elapsed
since the most recent impulse. The unnecessary ‘tilde’ is omitted up to the end of this section, apart
from x̃0 (the initial state).

Minimize over the normal

measures η on [x̃0,K)×A2 :

∫
[x̃0,K)

Cg(x)η(dx×2) +

∫
[x̃0,K)×A

a η(dx× da)

subject to : w(x̃0) +
∫

[x̃0,K) χw(x)η(dx×2)

+

∫
[x̃0,K)×A

[w(x+ a)− w(x)]η(dx× da) = 0.


(26)

The test functions w on [x̃0,∞) are bounded, measurable, absolutely continuous, either negative and
increasing or positive and decreasing, and such that w(x) = 0 on [K,∞). The measures η(dx × 2)

18



are finite on [x̃0,K): in the case of a general function G(·) > δ > 0, one can substitute the bounded
function

w(x) :=

∫ x

x̃0

1

G(y)
dy −

∫ K

x̃0

1

G(y)
dy

with χw(x) = 1 for x ∈ [x̃0,K). The measures η(dx×A) are finite due to the definition of a normal
measure.

For the special case presented above and the measure ηπ, the characteristic equation in (26) is just
the version of the Newton-Leibniz formula:∫

[x̃0,K)
χw(x)ηπ(dx×2) = [w(K−)− w(x(TN−1+))] + [w(x(TN−1−))− w(x(TN−2+))]

+ . . .+ [w(x(T1−))− w(x̃0+)]I{T1 > 0}

by (24), and∫
[x̃0,K)×A

[w(x+ a)− w(x)]ηπ(dx× da) = [w(x(TN−1+))− w(x(TN−1−))] + [w(x(TN−2+))

−w(x(TN−2−))] + . . .+ [w(x(T1+))− w(x(T1−))].

Recall that w(K−) = 0 and, if T1 = 0, then w(x(T1−)) = w(x̃0).
The marginal of the occupation measure µπ on [x̃0,K)× R0

+ ×A has the ‘higher dimensionality’
than the induced aggregated measure ηπ on [x̃0,K) × (A ∪ {2}) (cf. Remark 4.2). One can also
compare the representation of the first part of the objective (23) in terms of µπ and ηπ. In the case
of µπ, the integration with respect to time is hidden in the function C̄(·) and, in the case of ηπ, such
an integration appears just in the definition of ηπ(dy ×2). As a result, the objective

∫∞
0 Cg(x(u))du

is represented as
∫

[x̃0,K)C
g(y)ηπ(dy ×2), in terms of the original cost Cg(·).

Deterministic control strategies π (equivalently, deterministic functions W (·)) are sufficient for
solving unconstrained problems like (23). In the constrained case, when J > 0, randomization and
mixture (e.g., application of the control functions W1(·) and W2(·) with probabilities α ∈ (0, 1) and
1− α) usually help to improve the objective.

It is interesting to compare the linear program (26) with the linear programs which appeared in
[10, 11, 18]. In those articles, the impulse control problem was formulated on the finite time horizon
[0, T ], but the constructions can be formally adjusted for [0,∞). In what follows, the measurable and
sufficiently smooth function G(·) > δ ≥ 0 is arbitrarily fixed.

Following the ideas of [10], the problem (23) is replaced with the following linear program on the
space of the so called occupation measures Υ1

1 and Υ1
2:

Minimize over the finite

measures Υ1
1 and Υ1

2 on [x̃0,∞) :

∫
[x̃0,∞)

Cg(x)Υ1
1(dx) +

∫
[x̃0,∞)

Υ1
2(dx)

subject to : w(x̃0) +

∫
[x̃0,∞)

dw(x)

dx
G(x)Υ1

1(dx)

+

∫
[x̃0,∞)

dw(x)

dx
Υ1

2(dx) = 0,


(27)

where the test functions w are continuously differentiable on [x̃0,∞) and limx→∞w(x) = 0.
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Consider the test functions w as in (26), which are continuously differentiable on [x̃0,∞). Now
χw(x) = dw

dxG(x) and, for the measures

Υ1
1(dx) :=

{
η(dx×2), if dx ∈ B([x̃0,K));
arbitrary, otherwise,

and Υ1
2(dz) :=

 ∫
[x̃0,K)×A

I{x < z < x+ a}η(dx× da)

 dz,
all the expressions in (27), take the form of those in (26) because∫

[x̃0,∞)
Υ1

2(dz) =

∫
[x̃0,K)×A

∫
[x̃0,∞)

I{x < z < x+ a} dz η(dx× da)

=

∫
[x̃0,K)×A

a η(dx× da);∫
[x̃0,∞)

dw(z)

dz
Υ1

2(dz) =

∫
[x̃0,K)×A

∫
[x̃0,∞)

dw(z)

dz
I{x < z < x+ a} dz η(dx× da)

=

∫
[x̃0,K)×A

[w(x+ a)− w(x)]η(dx× da).

Recall also that Cg(x) = dw(x)
dx = 0 for x ∈ [K,∞).

Remark 5.1 We see that the measure Υ1
1(dx) coincides with η(dx × 2) on Ṽ , and Υ1

2(dz) can be
called the “further aggregated version” of η(dx× da): the argument “da” disappears. This second step
of aggregating is reasonable only in this specific example, where l(x, a) = x+ a and CI(x, a) = a. For
other functions l(·) and CI(·) it makes no sense. As was shown, having in hand the measures as in
(26), one can construct the corresponding measures Υ1

1 and Υ1
2 as in (27). On the other hand, e.g.,

when dealing with the measures associated with the control strategies π as in the special case presented
above, ηπ(dx × 2) = Υ1

1(dx) and one can reconstruct ηπ(dx × da) having in hand the corresponding
measure Υ1

2(dz). Indeed, the latter measure coincides with the Lebesgue measure on the intervals
(x(Ti−) = xi−1e

θi , x(Ti+) = x(Ti−) + ai) and equals zero outside. Knowing these intervals, one an
recalculate the measure ηπ(dx× da): see (25).

In the works [11, 18], the impulse control problem (23) is formulated in a different way which is
briefly presented below. The generic notations of [11, 18] are changed to avoid the confusion with the
notations in the present paper. Let a reasonable deterministic stationary control strategy, defined by
{Tj , aj}∞j=1 and denoted below as f : X∆ → R̄0

+ ×A, be fixed, such that Tj =∞ if x(Tj−) ≥ K. By
the way, the number of finite moments Tj is finite, and the class of such strategies is sufficient in the
unconstrained problem (23) by Theorem 1 in [29]. Introduce the measure

σ(dt) := dt+

∞∑
j=1

I{Tj <∞}δTj (dt)

on the time scale [0,∞). The model (23) is represented as

dx(t) =

∫
A∪{0}

F (x(t), a)

1 + |a|p
κ(da|t)σ(dt); x(0−) = x̃0;

∫
[0,∞)

∫
A∪{0}

L(x(t), a)

1 + |a|p
κ(da|t)σ(dt)→ inf

σ,κ

 (28)

with the following system primitives:
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� p ≥ 1 is some fixed natural number.

� κ(da|t) = δ0(da) if t is different from all Tj , so that F (x, 0) = G(x), and a = 0 corresponds to
the absence of impulses.

� κ(da|Tj) = δaj (da) for Tj < ∞, and at that time moment the following fictitious process is
introduced:

dy
aj
Tj

(u)

du
=
F (y

aj
Tj

(u), aj)

1 + |aj |p
, y

aj
Tj

(0) = x(Tj−), u ∈ [0, 1].

The form of the function F is seen in the next item.

� x(Tj+) = x(Tj−) + [y
aj
Tj

(1)− yajTj (0)] = y
aj
Tj

(1). To be consistent with the model (23), we should

have x(Tj+) = x(Tj−) + aj , so that for a ∈ A we put F (y, a) := a(1 + |a|p).

� Similarly, for consistency, we put L(x, 0) = Cg(x) and L(y, a) := a(1 + |a|p) for a ∈ A.

The occupation measure on [0,∞)× [x̃0,∞)× [A ∪ {0}] as in [11, 18], corresponding to the strategy
f (equivalently, to the pair (σ, κ)), equals

Υf (dt× dy × da) := Φ(dy|a, t)κ(da|t)σ(dt) = Υf
1(dt× dy)δ0(da) + Υf

2(dt× dy × da),

where

Φ(dy|a, t) :=


δx(t)(dy), if t 6= Tj for all j = 1, 2, . . . ;∫ 1

0 δyat (u)(dy)du =
∫ 1

0 δx(Tj−)+au(dy)du, if t = Tj ;

x(·) is the trajectory of the system (28) (equivalently, of the system (23)) under the strategy f . The

presentation Υf = Υf
1 + Υf

2 corresponds to the decomposition of the measure σ to the absolutely
continuous and discrete parts. Different control strategies f as above, that is, different pairs (σ, κ)
define all different measures Υ under consideration, which are denoted below as Υ2.

Below, the test functions w are as in (26) and continuously differentiable on [x̃0,∞). In the linear
program for the problem (28), suggested in [11, 18], all the integrated functions do not depend on
time t. Thus, we immediately introduce the marginals Υ̂2(dy × da) :=

∫
[0,∞) Υ2(dt× dy × da):

Υ̂2
1(dy) :=

∫
[0,∞)

Υ2
1(dt× dy) =

∫
[0,∞)

δx(t)(dy) dt;

Υ̂2
2(dy × da) :=

∫
[0,∞)

Υ2
2(dt× dy × da) =

∑
Tj

I{Tj <∞}
[∫ 1

0
δx(Tj−)+au(dy) du

]
δaj (da).

Here the measure Υ2 = Υ2
1 + Υ2

2 comes from the pair (σ, κ), which also defines the trajectory x(·)
of the system (28); the measure Υ̂2

2 is finite and Υ̂2
2([K + H,∞) ×A) = 0 because x(Tj−) < K and

aj ≤ H. The linear program as in [11, 18] has the form

Minimize over

the measures Υ̂2 on [x̃0,∞)×A :

∫
[x̃0,∞)×A

L(y, a)

1 + |a|p
Υ̂2(dy × da)

subject to : w(x̃0) +

∫
[x̃0,∞)×A

dw(y)

dy

F (y, a)

1 + |a|p
Υ̂2(dy × da) = 0
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(note that limy→∞w(y) = 0), or, more explicitly,

Minimize over

the finite measures Υ̂2
1 and Υ̂2

2 :

∫
[x̃0,K)

Cg(y)Υ̂2
1(dy) +

∫
[x̃0,∞)×A

a Υ̂2
2(dy × da)

subject to : w(x̃0) +

∫
[x̃0,K)

dw(y)

dy
G(y)Υ̂2

1(dy)

+

∫
[x̃0,∞)×A

dw(y)

dy
a Υ̂2

2(dy × da) = 0.


(29)

We underline that the measure Υ̂2
1 is of no importance on [K,∞) because there Cg(y) = dw(y)

dy = 0; it

is finite on [x̃0,K) because
∫

[0,∞) δx(t)([x̃0,K))dt ≤ θ∗(x̃0) <∞.

The measures Υ̂2
1 and Υ̂2

2 can be calculated based on the measures η in (26), so that all the
expressions in (29) become equal to those in (26). Indeed, we put Υ̂2

1(dx) := Υ1
1(dx) = η(dx× 2) on

Ṽ = [x̃0,K) and

Υ̂2
2(dy × da) :=

1

a

[∫
[x̃0,K)

I{x < y < x+ a}η(dx× da)

]
dy on [x̃0,∞).

Now

∫
A
a Υ̂2

2(dy × da) = Υ1
2(dy) and all the expressions in (29) coincide with those in (27) and, as

shown above, are equal to those in (26). For the measures ηπ as in the special case presented above,
they are in a one-to-one correspondence with the measures Υ̂2

1 and Υ̂2
2: see Remark 5.1.

6 Proof of Theorem 4.1

Proof of Theorem 4.1. Note that, for each function w ∈ W, for each fixed x ∈ V , the function
w(φ(x, ·)) is bounded on R0

+.
According to Lemma A.1, for each fixed x ∈ V ,

w(φ(x, θ)) = w(x) +

∫
[0,θ]

χw(φ(x, s))ds,

where the function χw is given by (47). After we integrate this equation over V ×R0
+ with respect to

the measure ∫
A
I{φ(x, θ) ∈ V }pT (dθ|x, a)pA(da|x)µ(dx× R̄0

+ ×A),

on V × R0
+, where the stochastic kernels pT and pA are as in (13), we obtain the equality∫

V
w(y)η(dy ×A) =

∫
V

∫
R0
+

w(φ(x, θ))I{φ(x, θ) ∈ V }p̂(dθ|x)µ(dx× R̄0
+ ×A)

=

∫
V
w(x)

∫
R0
+

I{φ(x, θ) ∈ V }p̂(dθ|x)µ(dx× R̄0
+ ×A)

+

∫
V

∫
R0
+

I{φ(x, θ) ∈ V }
∫

[0,θ]
χw(φ(x, s))ds p̂(dθ|x)µ(dx× R̄0

+ ×A),
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where p̂(dθ|x) :=
∫
A pT (dθ|x, a)pA(da|x). Note that all the integrals here are finite because the function

w(·) is bounded and the measures µ and η(dy ×A) are finite. For each x ∈ V , let us denote

θ∗(x) := inf{θ ∈ R0
+ : φ(x, θ) ∈ V c}.

As usual, inf ∅ := +∞. Since the flow φ is continuous, the function θ∗(·) is measurable: see [13,
Lemma 27.1] or [16, Prop.1.5, p.154]. Besides, θ∗(x) > 0 because the set V is open and the set V c is
closed.

Since the set V c is closed and the flow φ is continuous, in case θ∗(x) < +∞, φ(x, θ∗(x)) ∈ V c∩X and
the infimum is attained. Moreover, as mentioned above Definition 3.1, φ(x, s) ∈ V c for all s ≥ θ∗(x).
Therefore,∫

V
w(y)η(dy ×A) =

∫
V
w(x)p̂(R̄0

+|x)µ(dx× R̄0
+ ×A)

−
∫
V
w(x)p̂([θ∗(x),∞]|x)µ(dx× R̄0

+ ×A)

+

∫
V

∫
R0
+

I{φ(x, θ) ∈ V }
∫

[0,θ]
χw(φ(x, s))ds p̂(dθ|x)µ(dx× R̄0

+ ×A).

Recall, the measure η(dy×A) is finite and the function χw(φ(x, s)) is integrable on [0, θ] with θ <∞.
After we apply the Tonelli Theorem [1, Thm.11.28] to the last term, we obtain:∫
V
w(y)η(dy ×A) =

∫
V
w(x)µ(dx× R̄0

+ ×A)−
∫
V
w(x)p̂([θ∗(x),∞]|x)µ(dx× R̄0

+ ×A)

+

∫
V

∫
R0
+

∫
[s,∞)

I{φ(x, θ) ∈ V }χw(φ(x, s))p̂(dθ|x) ds µ(dx× R̄0
+ ×A)

=

∫
V
w(x)µ(dx× R̄0

+ ×A)−
∫
V
w(x)p̂([θ∗(x),∞]|x)µ(dx× R̄0

+ ×A)

+

∫
V

∫
R0
+

χw(φ(x, s))I{φ(x, s) ∈ V }p̂([s, θ∗(x))|x) ds µ(dx× R̄0
+ ×A).

Note that ∫
V

∫
R0
+

χw(φ(x, s))I{φ(x, s) ∈ V }p̂([s, θ∗(x))|x) ds µ(dx× R̄0
+ ×A)

=

∫
V

∫
R0
+

χw(φ(x, s))p̂([s, θ∗(x))|x) ds µ(dx× R̄0
+ ×A)

as χw(φ(x, s)) = 0 for φ(x, s) ∈ V c. (See (47), where, in our case, V c ⊆ D and W (y) = 0 for all
y ∈ V c.) Now ∫

V
w(y)η(dy ×A)

=

∫
V
w(x)µ(dx× R̄0

+ ×A)−
∫
V
w(x)p̂([θ∗(x),∞]|x)µ(dx× R̄0

+ ×A)

+

∫
V
χw(y)η(dy ×2)−

∫
V

∫
R0
+

χw(φ(x, s))p̂([θ∗(x),∞]|x) ds µ(dx× R̄0
+ ×A).

All the integrals here are finite because, no matter whether θ∗(x) is finite or not,

lim
t→∞

w(φ(x, t)) = w(x) +

∫
R0
+

χw(φ(x, s))ds = 0, ∀ x ∈ V
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and thus∫
V

w(x)p̂([θ∗(x),∞]|x)µ(dx× R̄0
+ ×A) +

∫
V

∫
R0
+

χw(φ(x, s))p̂([θ∗(x),∞]|x) ds µ(dx× R̄0
+ ×A) = 0.

This also leads to∫
V
w(y)η(dy ×A) =

∫
V
w(x)µ(dx× R̄0

+ ×A) +

∫
V
χw(y)η(dy ×2)

= w(x0) +

∫
V×R0

+×A
w(l(φ(y, θ), a))I{φ(y, θ) ∈ V }µ(dy × dθ × da)

+

∫
V
χw(y)η(dy ×2)

by (11), and the required formula (21) follows from the definition (15). 2

7 Proof of Theorem 4.2 and Corollary 4.1

Below, we assume that Conditions 2.1, 3.1, 3.2 and 4.2 are satisfied. The proofs will be based on a
series of lemmas.

Lemma 7.1 Let π = {πi}∞i=1 be a reasonable Markov strategy as in Definition 3.1, defined on V by
stochastic kernels πi(dθ × da|x) = piT (dθ|x)piA(da|x, θ). Suppose η is the corresponding aggregated
occupation measure (17) coming from the occupation measure µπ as in (8). Introduce the (partial)
aggregated occupation measures

ηi(ΓX × ΓA) := ηi(ΓX × (ΓA ∩A)) + ηi(ΓX ×2)I{2 ∈ ΓA}

on V ×A2, defined recursively:

η0(ΓX × ΓA) ≡ 0;

ηi+1(ΓX ×2) = ηi(ΓX ×2) +

∫
V

∫
R0
+

δφ(x,u)(ΓX)pi+1
T ([u,∞]|x)du νi(dx), ΓX ∈ B(V );

ηi+1(ΓX × ΓA) = ηi(ΓX × ΓA) +

∫
V

∫
R0
+

δφ(x,θ)(ΓX)pi+1
A (ΓA|x, θ)pi+1

T (dθ|x)νi(dx),

ΓX ∈ B(V ), ΓA ∈ B(A),

where νi(dx) = P πx0(Xi ∈ dx) is the measure on V , i ≥ 0.
Then ηi ↑ η on V ×A2 set-wise as i→∞. Every measure ηi is normal.

Proof. We will need the (partial) occupation measure on V × R̄0
+ ×A

µn(dx× dθ × da) := Eπx0

[
n∑
i=1

I{Xi−1 ∈ dx,Θi ∈ dθ,Ai ∈ da}

]
, n = 0, 1, 2, . . . .

Clearly, µn ↑ µπ on V × R̄0
+ × A set-wise as n → ∞. Therefore, according to the definition of the

measure η, for each positive measurable function Cg on V ,

In :=

∫
V×R̄0

+×A

{∫
[0,θ]

Cg(φ(x, u))I{φ(x, u) ∈ V }du

}
µn(dx× dθ × da)

↑
∫
V×R̄0

+×A

{∫
[0,θ]

Cg(φ(x, u))I{φ(x, u) ∈ V }du

}
µπ(dx× dθ × da) =

∫
V
Cg(y)η(dy ×2)
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and, for each positive measurable function CI on V ×A,

Jn :=

∫
V×R̄0

+×A
I{θ < +∞}I{φ(x, θ) ∈ V }CI(φ(x, θ), a)µn(dx× dθ × da)

↑
∫
V×R̄0

+×A
I{θ < +∞}I{φ(x, θ) ∈ V }CI(φ(x, θ), a)µπ(dx× dθ × da)

=

∫
V×A

CI(y, a)η(dy × da).

We will prove by induction the following assertions:

In =

∫
V
Cg(y)ηn(dy ×2) and Jn =

∫
V×A

CI(y, a)ηn(dy × da).

If n = 0, then µ0 = 0, η0 = 0, I0 = 0, and J0 = 0.
Suppose the above assertions are valid for some n ≥ 0. Then

In+1 = In +

∫
V

∫
R̄0
+

∫
A

{∫
[0,θ]

Cg(φ(x, u))I{φ(x, u) ∈ V }du

}
pn+1
A (da|x, θ)pn+1

T (dθ|x)νn(dx)

and

Jn+1 = Jn +

∫
V

∫
R̄0
+

∫
A
I{θ <∞}I{φ(x, θ) ∈ V }CI(φ(x, θ), a)pn+1

A (da|x, θ)pn+1
T (dθ|x)νn(dx)

because on V × R̄0
+ ×A we have equality

µn+1(dx× dθ × da) = µn(dx× dθ × da) + pn+1
A (da|x, θ)pn+1

T (dθ|x)νn(dx).

Recall that Q({∆}|x, f∗(x)) = 1. Using the Tonelli Theorem (see [1, Thm.11.28]), we obtain:∫
V

∫
R̄0
+

{∫
[0,θ]

Cg(φ(x, u))I{φ(x, u) ∈ V }du

}
pn+1
T (dθ|x)νn(dx)

=

∫
V

∫
R0
+

∫
[u,∞]

Cg(φ(x, u))I{φ(x, u) ∈ V }pn+1
T (dθ|x)du νn(dx)

=

∫
V

∫
R0
+

Cg(φ(x, u))I{φ(x, u) ∈ V }pn+1
T ([u,∞]|x)du νn(dx)

=

∫
V
Cg(y)

{∫
V

∫
R0
+

δφ(x,u)(dy)pn+1
T ([u,∞]|x)du νn(dx)

}
,

and, by induction and the definition of the measure ηn+1(ΓX ×2),

In+1 =

∫
V
Cg(y)ηn+1(dy ×2).

Similarly, ∫
V

∫
R0
+

∫
A
I{φ(x, θ) ∈ V }CI(φ(x, θ), a)pn+1

A (da|x, θ)pn+1
T (dθ|x)νn(dx)

=

∫
V

∫
A
CI(y, a)

{∫
V

∫
R0
+

δφ(x,θ)(dy)pn+1
A (da|x, θ)pn+1

T (dθ|x)νn(dx)

}
,
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and, by induction and the definition of the measure ηn+1(dx× da) on V ×A,

Jn+1 =

∫
V×A

CI(y, a)ηn+1(dy × da).

Since, for all positive measurable functions Cg on V and CI on V ×A,∫
V
Cg(y)ηn(dy ×2) ↑

∫
V
Cg(y)η(dy ×2) and∫

V×A
CI(y, a)ηn(dy × da) ↑

∫
V×A

CI(y, a)η(dy × da),

we conclude that ηn ↑ η on V ×A2 set-wise as n→∞. The last assertion is obvious. 2

Lemma 7.2 (a) Suppose ζ is a finite measure on V , and the measure ζ̂(dx̃0) and the stochastic
kernel ζ̌(dt|x̃0) are as in Definition 4.3. Then, for each bounded (or positive, or negative)
measurable function g on V ,∫
V
g(y)ζ(dy) =

∫
Ṽ

∫
[0,θ̃∗(x̃0))

g(φ((x̃0, 0), u))ζ̌(du|x̃0)ζ̂(dx̃0) =

∫
D
g(φ((x̃0, 0), u))ζ̌(dx̃0 × du).

(b) Suppose ζ is a normal measure on V , and the measure ζ̌(dx̃0×dt) is as in Definition 4.3. Then,
for each positive (or negative) measurable function g on V ,∫

V
g(y)ζ(dy) =

∫
D
g(φ((x̃0, 0), u)ζ̌(dx̃0 × du).

(c) Suppose ζ is a normal (or finite) measure on the orbit

z̃X ∩ V = {φ((z̃, 0), t) : t ∈ [0, θ̃∗(z̃))}

and

m(I) := ζ({φ((z̃, 0), t) : t ∈ I})

is the σ-finite (or finite) measure on [0, θ̃∗(z̃)). (The set {φ((z̃, 0), t) : t ∈ I} is measurable
because if z̃ ∈ Ṽ , then φ((z̃, 0), ·) is a homeomorphism between [0, θ̃∗(z̃)) and z̃X ∩ V .) Then,
for each positive or negative measurable function g on z̃X ∩ V ,∫

z̃X∩V
g(y)ζ(dy) =

∫
[0,θ̃∗(z̃))

g(φ((z̃, 0), t))m(dt).

Proof. (a) For the case of bounded functions g, it is sufficient to check the required formula for
g(y) = I{y ∈ Y }, where Y ∈ B(V ) is an arbitrary set. According to the definition of the mappings F
and F−1,

(x̃0, u) ∈ F−1(Y )⇐⇒ F (x̃0, u) ∈ Y ⇐⇒ (φ̃(x̃0, u), u) = φ((x̃0, 0), u) ∈ Y.

Hence ∫
V
g(y)ζ(dy) = ζ(Y ) = ζ̌(F−1(Y )) =

∫
Ṽ×R0

+

I{(x̃0, u) ∈ F−1(Y )}ζ̌(dx̃0 × du)

=

∫
Ṽ

∫
R0
+

I{φ((x̃0, 0), u) ∈ Y }ζ̌(du|x̃0)ζ̂(dx̃0).
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Moreover, for u ≥ θ̃∗(x̃0), φ((x̃0, 0), u) ∈ V c and thus φ((x̃0, 0), u) cannot belong to Y . The desired
formula∫
V
g(y)ζ(dy) =

∫
Ṽ

∫
[0,θ̃∗(x̃0))

I{φ((x̃0, 0), u) ∈ Y }ζ̌(du|x̃0)ζ̂(dx̃0) =

∫
D
I{φ((x̃0, 0), u) ∈ Y }ζ̌(dx̃0 × du)

is proved.
For the case of positive functions g, one should apply the monotone convergence theorem to the

sequence g ∧N ↑ g. Negative functions g can be treated similarly.
(b) The required formula is justified after we represent the function g as g(x) =

∑∞
t=1 gt(x) with

gt((x̃, u)) = I{u ∈ [t − 1, t)}g((x̃, u)) and use the statement (a) separately for all gt, where one can
legitimately use the (finite) restriction of ζ to the set {x = (x̃, u) ∈ V : t− 1 ≤ u < t}.

(c) Without loss of generality, we assume that ζ(z̃X ∩ V ) > 0. This implies z̃ ∈ Ṽ in particular.
If θ̃∗(z̃) < ∞ then the measure ζ is finite and can be extended to V by putting ζ(V \ z̃X ) := 0.

Now

ζ̌(dx̃0 × dt) = m(dt)δz̃(dx̃
0);

ζ̂(dx̃0) = ζ(z̃X ∩ V )δz̃(dx̃
0);

ζ̌(dt|x̃0) =

{
m(dt)/ζ(z̃X ∩ V ), if x̃0 = z̃;
arbitrarily fixed probability measure, if x̃0 6= z̃,

and the required equality follows from Item (a). The same reasoning applies if θ̃∗(z̃) = ∞ and the
measure ζ is finite.

Suppose θ̃∗(z̃) = ∞, so that z̃X ∩ V = z̃X , and the measure ζ is not finite, but normal. It is
sufficient to check the required formula for gt(y) = I{y ∈ Yt}, where

Yt = {φ((z̃, 0), u) : u ∈ It ∈ B([t− 1, t))}, t = 1, 2, . . . .

As mentioned in the statement of this lemma, the mapping [G(u) := φ((z̃, 0), u) is a homeomorphism
between R0

+ and z̃X (see Lemma 4.1), and all different subsets It ∈ B([t − 1, t)) produce all possible
subsets Yt ∈ B({φ((z̃, 0), u) : u ∈ [t − 1, t)}). Thus, for an arbitrary set Y ∈ B(z̃X ), we have
Y = ∪∞t=1Yt with

Yt := Y ∩ {φ((z̃, 0), u) : u ∈ [t− 1, t)} ∈ B({φ((z̃, 0), u) : u ∈ [t− 1, t)}),

and the proof will be completed by applying the monotone convergence theorem.
Now ∫

z̃X
gt(y)ζ(dy) = ζ(Yt);∫

R0
+

gt(φ((z̃, 0), u))m(du) =

∫
R0
+

I{φ((z̃, 0), u) ∈ Yt}m(du) = m(It),

and m(It) = ζ(Yt) by the definition of the measure m. 2

Lemma 7.3 Suppose an orbit

x̃X ∩ V = {φ((x̃, 0), t) : t ∈ [0, θ̃∗(x̃))}

is fixed and p∗ is a probability measure on R̄0
+ such that p∗([θ̃∗(x̃),∞)) = 0.
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Then the measures η̃∗2 and η̃∗A on x̃X ∩ V , defined as

η∗2(Γ) :=

∫
R0
+

I{φ((x̃, 0), u) ∈ Γ}p∗([u,∞])du =

∫
R0
+

I{φ((x̃, 0), u) ∈ Γ}(1− p∗([0, u))du,

η∗A(Γ) :=

∫
R0
+

I{φ((x̃, 0), u) ∈ Γ}p∗(du), Γ ∈ B( x̃X ∩ V ),

satisfy equation

0 = w((x̃, 0)) +

∫
x̃X∩V

χw(x)η∗2(dx)−
∫

x̃X∩V
w(x)η∗A(dx) (30)

for all functions w ∈W. The measure η∗A is finite, and the measure η∗2 is normal on that orbit.

Proof. The properties of the measures η∗A and η∗2 formulated in the last sentence of this lemma are
obvious, c.f. the reasoning in the proof of Lemma 4.2(a).

Now let w ∈W be fixed. We verify the rest of the statement of this lemma by distinguishing the
following two cases.

(i) Suppose that u∗ := inf{u ∈ R̄0
+ : p∗([0, u]) = 1} ≥ θ̃∗(x̃). The expression

I := w((x̃, 0)) +

∫
x̃X∩V

χw(x)η∗2(dx)−
∫
x̃X∩V

w(x)η∗A(dx)

is well defined because the measure η∗2 is normal, the integral
∫
x̃X∩V χw(x)η∗2(dx) is positive or

negative, the function w is bounded and the measure η∗A is finite. According to Lemma 7.2(c),

I = w((x̃, 0)) +

∫
[0,θ̃∗(x̃))

χw(φ((x̃, 0), t))[1− p∗([0, t))] dt−
∫

[0,θ̃∗(x̃))
w(φ((x̃, 0), t))p∗(dt)

= −

[∫
[0,θ̃∗(x̃))

χw(φ((x̃, 0), t))p∗([0, t)) dt+

∫
[0,θ̃∗(x̃))

w(φ((x̃, 0), t))p∗(dt)

]
.

The last equality is by Lemma A.1 and Definition 4.5 of the space W:

w((x̃, 0)) + lim
T→θ̃∗(x̃)

∫
[0,T ]

χw(φ((x̃, 0), t))dt = lim
T→θ̃∗(x̃)

w(φ((x̃, 0), T )) = 0.

We apply the Tonelli Theorem [1, Thm.11.28] to the first integral in the square brackets and again
use Lemma A.1:∫

[0,θ̃∗(x̃))
χw(φ((x̃, 0), t))

∫
[0,t)

p∗(du) dt =

∫
[0,θ̃∗(x̃))

∫
(u,θ̃∗(x̃))

χw(φ((x̃, 0), t))dt p∗(du)

=

∫
[0,θ̃∗(x̃))

[−w(φ((x̃, 0), u))]p∗(du).

Thus I = 0.
(ii) Suppose that u∗ := inf{u ∈ R̄0

+ : p∗([0, u]) = 1} < θ̃∗(x̃). Since measures η̃∗A and η̃∗2 both
equal zero on the set {φ((x̃, 0), t) : t > u∗}, it is sufficient to show that

I := w((x̃, 0)) +

∫
Xu∗0

χw(x)η∗2(dx)−
∫
Xu∗0

w(x)η∗A(dx) = 0,

where

X u∗0 := {φ((x̃, 0), t) : 0 ≤ t ≤ u∗}.
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This expression is well defined because the measure η∗2 is normal, the integral
∫
Xu∗0

χw(x)η∗2(dx) is

positive or negative, the function w is bounded and the measure η∗A is finite. The measure η∗2 is
non-atomic, and the first integral can be calculated over

X u∗−0 := {φ((x̃, 0), t) : 0 ≤ t < u∗},

so that, by Lemma 7.2(c),

I = w((x̃, 0)) +

∫
[0,u∗)

χw(φ((x̃, 0), t))[1− p∗([0, t))]dt

−
∫

[0,u∗)
w(φ((x̃, 0), t))p∗(dt)− w(φ((x̃, 0), u∗))[1− p∗([0, u∗))].

In the last term, [1− p∗([0, u∗))] = p∗({u∗}). Since

w((x̃, 0)) +

∫
[0,u∗)

χw(φ((x̃, 0), t))dt− w(φ((x̃, 0), u∗)) = 0

(see Lemma A.1), after we subtract this equality from I, we obtain

I = −
∫

[0,u∗)
χw(φ((x̃, 0), t))p∗([0, t))dt−

∫
[0,u∗)

w(φ((x̃, 0), t))p∗(dt) + w(φ((x̃, 0), u∗))p∗([0, u∗)).

Finally, apply the Tonelli Theorem (see [1, Thm.11.28]) to the first term and again use Lemma A.1:∫
[0,u∗)

∫
[0,t)

χw(φ((x̃, 0), t)) p∗(du) dt =

∫
[0,u∗)

∫
(u,u∗)

χw(φ((x̃, 0), t)) dt p∗(du)

=

∫
[0,u∗)

[w(φ((x̃, 0), u∗))− w(φ((x̃, 0), u))]p∗(du)

= w(φ((x̃, 0), u∗))p∗([0, u∗))−
∫

[0,u∗)
w(φ((x̃, 0), u)) p∗(du).

Therefore, I = 0.
The proof is completed. 2

Lemma 7.4 Suppose ν is a finite measure on V such that ν(V ∩ (Ṽ × {t : t > 0})) = 0, η̃ is a
finite measure on V ×A, η̃2 is a normal measure on V and η̃A is a finite measure on V which satisfy
equation

0 =

∫
V
w(x)ν(dx) +

∫
V
χw(x)η̃2(dx)−

∫
V
w(x)η̃A(dx) +

∫
V×A

w(l(x, a))η̃(dx× da) (31)

for all functions w ∈ W. Then there is a stochastic kernel p̃(dt|x) on R̄0
+ given V such that, for θ∗

given by
θ∗(x) := inf{θ ∈ R0

+ : φ(x, θ) ∈ V c}, (32)

p̃([θ∗(x),∞)|x) = 0 for all x ∈ V and the measures

η̃′A(Γ) :=

∫
V

∫
R0
+

I{φ(x, u) ∈ Γ}p̃(du|x)ν(dx)

and η̃′2(Γ) :=

∫
V

∫
R0
+

I{φ(x, u) ∈ Γ}p̃([u,∞]|x)du ν(dx), Γ ∈ B(V )
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satisfy equation

0 =

∫
V
w(x)ν(dx) +

∫
V
χw(x)η̃′2(dx)−

∫
V
w(x)η̃′A(dx) (33)

for all functions w ∈W. Moreover, the set functions η̃2(Γ)− η̃′2(Γ) and η̃A(Γ)− η̃′A(Γ) on B(V ) are
again normal and finite measures, correspondingly.

Proof. (i) Firstly, we introduce several functions, measures and sets , describe their properties and
define explicitly the stochastic kernel p̃.

The necessary properties of the function θ∗ were established during the proof of Theorem 4.1. Note
that, for each Γ ∈ B(V ), the function I{φ(x, u) ∈ Γ} is measurable since the flow φ is continuous.
Below, ν̂(Γ̃) := ν(Γ̃× {0}) for Γ̃ ∈ B(Ṽ ).

In accordance with Definition 4.3, we introduce the finite measure η̂A(dx̃0) and stochastic kernel
η̌A(dt|x̃0) coming from η̃A(dx). Next, introduce the finite measure

K := ν̂ + η̂A

on Ṽ and the Radon-Nikodym derivatives

n(x̃0) :=
dν̂

dK
(x̃0), and a(x̃0) :=

dη̂A
dK

(x̃0).

Below, we fix one specific version of the derivative n and of the derivative a. On the set

Ṽν := {x̃0 ∈ Ṽ : n(x̃0) > 0},

we have

η̂A(Γ̃) =

∫
Γ̃
a(x̃0)K(dx̃0) =

∫
Γ̃

a(x̃0)

n(x̃0)
ν̂(dx̃0)

for all Γ̃ ∈ B(Ṽν). See Figure 1. Note that ν̂(Ṽ \ Ṽν) = 0.
Since the function I{u ≤ t} of (u, t) is measurable, the integral

∫
R0
+
I{u ≤ t}η̌A(du|x̃0) is a mea-

surable function of (x̃0, t) (see [5, Prop.7.29]), and hence the function

G(x̃0, t) := η̌A([0, t]|x̃0)
a(x̃0)

n(x̃0)
=

∫
R0
+

I{u ≤ t}η̌A(du|x̃0)
a(x̃0)

n(x̃0)
, x̃0 ∈ Ṽν , t ∈ R0

+

is measurable. For all x̃0 ∈ Ṽν , the function G(x̃0, ·) clearly increases and is right-continuous: it is
constant for t ≥ θ̃∗(x̃0) and, if ti ↓ t ∈ [0, θ̃∗(x̃0)) then η̌A([0, ti]|x̃0) ↓ η̌A([0, t]|x̃0).

Let us introduce the function

u∗(x̃0) := inf{t ∈ R0
+ : G(x̃0, t) ≥ 1} ∈ R̄0

+, x̃0 ∈ Ṽν .

When u∗(x̃0) < ∞, this infimum is attained because the function G(x̃0, ·) is right-continuous; and
G(x̃0, u∗(x̃0)−) ≤ 1. To show that the function u∗(·) is measurable, note that the function

f(x̃0, t) :=∞× I{G(x̃0, t) < 1}+ t× I{G(x̃0, t) ≥ 1}

is measurable and the function t → f(x̃0, t) is lower semicontinuous for each x̃0 ∈ Ṽν . Now, the
function u∗(x̃0) = inft∈R̄0

+
f(x̃0, t) is measurable by [22, Thm.2]; see also Corollary 1 and Remark 1 of

[9]. Note also that if u∗(x̃0) > θ̃∗(x̃0), then u∗(x̃0) =∞. Figure 3 can serve as an illustration.
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For x̃0 ∈ Ṽν , we put

p̃(I|(x̃0, 0)) := η̌A(I ∩ [0, u∗(x̃0) ∧ θ̃∗(x̃0))|x̃0)
a(x̃0)

n(x̃0)

+I{u∗(x̃0) < θ̃∗(x̃0)}I{u∗(x̃0) ∈ I}
[
1− η̌A([0, u∗(x̃0))|x̃0)

a(x̃0)

n(x̃0)

]
for all I ∈ B(R0

+),

and p̃({∞}|(x̃0, 0)) := 1− p̃(R0
+|(x̃0, 0)).

For all other points x ∈ V , we put p̃({∞}|x) = 1 and p̃(I|x) ≡ 0 for I ∈ B(R0
+). Clearly,

p̃([θ∗(x),∞)|x) = 0 for all x ∈ V . The possible shapes of the distribution function p̃([0, t]|(x̃0, 0))
are shown on Figure 3.

Figure 3: Graphs of the function p̃([0, t]|(x̃0, 0)), see also Figure 4. In case a), p̃([0, t]|(x̃0
1, 0)) =

η̌A([0, t]|x̃0
1)
a(x̃01)

n(x̃01)
for all t ∈ R0

+, u∗(x̃0
1) = θ̃∗(x̃0

1) =∞ and p̃(R0
+|(x̃0

1, 0)) < 1. In case b), 0 < u∗(x̃0
2) <

θ̃∗(x̃0
2), η̌A({u∗(x̃0

2)}|x̃0
2) > 0. In case c), 0 < u∗(x̃0

3) < θ̃∗(x̃0
3) <∞, η̌A({u∗(x̃0

3)}|x̃0
3) = 0.

(ii) Let us prove that equation (33) holds. Since ν(Ṽ × {t : t > 0}) = 0,

η̃′A(Γ) =

∫
Ṽ
η∗A(Γ|(x̃0, 0))ν̂(dx̃0); and η̃′2(Γ) =

∫
Ṽ
η∗2(Γ|(x̃0, 0))ν̂(dx̃0)

for all Γ ∈ B(V ), where

η∗A(Γ|(x̃0, 0)) :=

∫
R0
+

I{φ((x̃0, 0), u) ∈ Γ}p̃(du|(x̃0, 0));

η∗2(Γ|(x̃0, 0)) :=

∫
R0
+

I{φ((x̃0, 0), u) ∈ Γ}p̃([u,∞]|(x̃0, 0))du.

The introduced measures η∗A and η∗2 are concentrated on x̃0X ∩ V for each x̃0 ∈ Ṽ . By the way, η∗A
and η∗2 are measurable kernels because the flow φ is continuous and p̃ is a (measurable) stochastic
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kernel. Now∫
V
w(x)ν(dx) +

∫
V
χw(x)η̃′2(dx)−

∫
V
w(x)η̃′A(dx)

=

∫
Ṽ
w((x̃0, 0))ν̂(dx̃0) +

∫
Ṽ

∫
x̃0X∩V

χw(x)η∗2(dx|(x̃0, 0))ν̂(dx̃0)

−
∫
Ṽ

∫
x̃0X∩V

w(x)η∗A(dx|(x̃0, 0))ν̂(dx̃0)

=

∫
Ṽ

[
w((x̃0, 0)) +

∫
x̃0X∩V

χw(x)η∗2(dx|(x̃0, 0))−
∫
x̃0X∩V

w(x)η∗A(dz|(x̃0, 0))

]
ν̂(dx̃0).

The re-arrangement is legal because the function w is bounded, the function χw is positive (or neg-
ative), the measure η̃′2 is normal, and the measures ν̂ and η∗A(dx|(x̃0, 0)) are finite (for all x̃0 ∈ Ṽ ).
Equation (33) follows from Lemma 7.3.

(iii) Let us show that η̃A − η̃′A is a finite measure. In case x̃0 ∈ Ṽν and u∗(x̃0) < θ̃∗(x̃0),

p̃({u∗(x̃0)}|(x̃0, 0)) = 1− η̌A([0, u∗(x̃0))|x̃0)
a(x̃0)

n(x̃0)
≤ η̌A({u∗(x̃0)}|x̃0)

a(x̃0)

n(x̃0)

because

η̌A([0, u∗(x̃0)]|x̃0)
a(x̃0)

n(x̃0)
= G(x̃0, u∗(x̃0)) ≥ 1.

Therefore, whether u∗(x̃0) < θ̃∗(x̃0) or u∗(x̃0) ≥ θ̃∗(x̃0),

p̃(I|(x̃0, 0)) ≤ η̌A(I|x̃0)
a(x̃0)

n(x̃0)

for all I ∈ B(R0
+) and for all x̃0 ∈ Ṽν . Now, for each measurable subset Γ ⊂ V ,

η̃′A(Γ) =

∫
Ṽν

∫
R0
+

I{φ((x̃0, 0), u) ∈ Γ}p̃(du|(x̃0, 0))ν̂(dx̃0)

=

∫
Ṽν

∫
[0,θ̃∗(x̃0))

I{φ((x̃0, 0), u) ∈ Γ}p̃(du|(x̃0, 0))ν̂(dx̃0)

≤
∫
Ṽν

∫
[0,θ̃∗(x̃0))

I{φ((x̃0, 0), u) ∈ Γ}η̌A(du|x̃0)
a(x̃0)

n(x̃0)
ν̂(dx̃0)

=

∫
Ṽν

∫
[0,θ̃∗(x̃0))

I{φ((x̃0, 0), u) ∈ Γ}η̌A(du|x̃0)η̂A(dx̃0)

≤
∫
Ṽ

∫
[0,θ̃∗(x̃0))

I{φ((x̃0, 0), u) ∈ Γ}η̌A(du|x̃0)η̂A(dx̃0)

=

∫
V
I{y ∈ Γ}η̃A(dy) = η̃A(Γ).

The last but one equality is by Lemma 7.2(a). Hence, η̃A − η̃′A is a finite measure.
(iv) Let us show that η̃2 ≥ η̃′2 set-wise. Recall that the measure η̃′2 is normal. It is convenient to

consider, with some abuse of notations, the images η̌2, η̌′2 and η̌ of the measures η̃2, η̃′2 and η̃(· ×A)
as in Definition 4.3. Recall that η̃2 ≥ η̃′2 ⇔ η̌2 ≥ η̌′2. Now, according to Lemma 7.2(a,b), equation
(31) takes the form:

0 =

∫
Ṽ
w((x̃0, 0))ν̂(dx̃0) +

∫
D
χw(φ((x̃0, 0), u))η̌2(dx̃0 × du) (34)

−
∫
Ṽ

∫
[0,θ̃∗(x̃0))

w(φ((x̃0, 0), u))η̌A(du|x̃0)η̂A(dx̃0) +

∫
D
wA(φ((x̃0, 0), u))η̌(dx̃0 × du),
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where

wA(y) :=

∫
A
w(l(y, a))η̃A(da|y) (35)

and the stochastic kernel η̃A(da|y) comes from the decomposition

η̃(dy × da) = η̃A(da|y)η̃(dy ×A).

According to [7, V.1;Thm.1.5.6], it suffices to show that the value of the measure η̌2 is greater or
equal to the value of η̌′2 on each set of the form

YT1,T2,Γ̃ := {(x̃0, u) : x̃0 ∈ Γ̃, T1 ≤ u < T2 ∧ θ̃∗(x̃0)}, Γ̃ ∈ B(Ṽ ), 0 ≤ T1 < T2 <∞.

See Figure 4 and also Figure 3 for illustration.

Figure 4: Space D = {(x̃0, t) : φ̃(x̃0, t) ∈ Ṽ } and “rectangle” YT1,T2,Γ̃. The points x̃0
1, x̃

0
2, x̃

0
3 belong to

Ṽν ⊂ Ṽ . The dashed area is the part of YT1,T2,Γ̃ where η̌′2 might be positive.

Note that, in case Γ̃ ⊂ Ṽ \Ṽν , since ν((Ṽ \Ṽν)×{0}) = 0, η̌′2(YT1,T2,Γ̃) = 0 and hence η̌2(YT1,T2,Γ̃)−
η̌′2(YT1,T2,Γ̃) ≥ 0 for all T1, T2. Therefore, below in this proof, we assume that Γ̃ ⊂ Ṽν .

To use equality (34) for calculating η̌2(YT1,T2,Γ̃), we put

χwT1,T2,Γ̃(φ((x̃0, 0), u)) := −I{(x̃0, u) ∈ YT1,T2,Γ̃},

and consider the following positive function decreasing along the flow:

wT1,T2,Γ̃(y) = wT1,T2,Γ̃((ỹ, t)) (36)

:= I{h(y) ∈ Γ̃} ×


T2 ∧ θ̃∗(h(y))− T1 ∧ θ̃∗(h(y)), if 0 ≤ t ≤ T1;

T2 ∧ θ̃∗(h(y))− t, if T1 < t ≤ T2 ∧ θ̃∗(h(y));

0, if t > T2 ∧ θ̃∗(h(y)).

See Figure 5. The function h was introduced in Definition 4.2. Clearly, wT1,T2,Γ̃ ∈W for all 0 ≤ T1 <

T2 <∞, Γ̃ ∈ B(Ṽ ), and

wT1,T2,Γ̃((x̃0, 0)) = I{x̃0 ∈ Γ̃}
(
T2 ∧ θ̃∗(x̃0)− T1 ∧ θ̃∗(x̃0)

)
;
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Figure 5: Graph of the function wT1,T2,Γ̃((ỹ, t)) = wT1,T2,Γ̃((φ̃(x̃0, t), t)) for a fixed value of h(y) = x̃0 ∈
Γ̃ and θ̃∗(h(y)) > T1.

wT1,T2,Γ̃(φ((x̃0, 0), u)) = I{x̃0 ∈ Γ̃} ×


T2 ∧ θ̃∗(x̃0)− T1 ∧ θ̃∗(x̃0), if u ≤ T1;

T2 ∧ θ̃∗(x̃0)− u, if T1 < u ≤ T2 ∧ θ̃∗(x̃0);

0, if u > T2 ∧ θ̃∗(x̃0).

The expression (35) takes the form

wA
T1,T2,Γ̃

(y) :=

∫
A
wT1,T2,Γ̃(l(y, a))η̃A(da|y).

From equality (34), using the expression η̂A(dx̃0) = a(x̃0)
n(x̃0)

ν̂(dx̃0), we have for

Γ̃θ := Γ̃ ∩ {x̃0 : θ̃∗(x̃0) ≥ T1} :

η̌2(YT1,T2,Γ̃) =

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
ν̂(dx̃0)−

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A([0, T1]|x̃0)

a(x̃0)

n(x̃0)
ν̂(dx̃0)

−
∫

Γ̃θ

∫
(T1,T2∧θ̃∗(x̃0)]

[
T2 ∧ θ̃∗(x̃0)− u

]
η̌A(du|x̃0)

a(x̃0)

n(x̃0)
ν̂(dx̃0)

+

∫
D
wA
T1,T2,Γ̃

(φ((x̃0, 0), u))η̌(dx̃0 × du).

For the last but one integral, note that η̌A({θ̃∗(x̃0)}|x̃0) = 0 for η̂A-almost all x̃0 since η̃A is concentrated
on V . The corresponding integrals over Γ̃ \ Γ̃θ equal zero and hence are omitted; the last term above,
denoted below as J(Γ̃), is positive. According to Lemma A.2, for η̂A-almost all x̃0 ∈ Γ̃θ,∫

(T1,T2∧θ̃∗(x̃0)]

[
u− T2 ∧ θ̃∗(x̃0)

]
η̌A(du|x̃0) =

∫
(T1,T2∧θ̃∗(x̃0)]

[u− T1] η̌A(du|x̃0)

−
[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A((T1, T2 ∧ θ̌∗(x̃0)]|x̃0)

=
[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A([T1, T2 ∧ θ̃∗(x̃0)]|x̃0)−

∫
(0,T2∧θ̃∗(x̃0)−T1]

η̌A([T1, T1 + s)|x̃0)ds

−
[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A((T1, T2 ∧ θ̃∗(x̃0)]|x̃0),
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so that

η̌2(YT1,T2,Γ̃) =

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
ν̂(dx̃0)−

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A([0, T1]|x̃0)

a(x̃0)

n(x̃0)
ν̂(dx̃0)

+

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A({T1}|x̃0)

a(x̃0)

n(x̃0)
ν̂(dx̃0)

−
∫

Γ̃θ

∫
(0,T2∧θ̃∗(x̃0)−T1]

η̌A([T1, T1 + s)|x̃0)ds
a(x̃0)

n(x̃0)
ν̂(dx̃0) + J(Γ̃)

=

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
ν̂(dx̃0)−

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
η̌A([0, T1)|x̃0)

a(x̃0)

n(x̃0)
ν̂(dx̃0)

−
∫

Γ̃θ

∫
(T1,T2∧θ̃∗(x̃0)]

η̌A([T1, u)|x̃0)du
a(x̃0)

n(x̃0)
ν̂(dx̃0) + J(Γ̃). (37)

According to the definitions of the measures η̃′2 and η̌′2,

η̌′2(YT1,T2,Γ̃) = η̃′2(F (YT1,T2,Γ̃)) =

∫
Ṽ

∫
R0
+

I{(x̃0, u) ∈ YT1,T2,Γ̃}
(
1− p̃([0, u)|(x̃0, 0))

)
du ν̂(dx̃0)

=

∫
Ṽν

∫
[T1,T2∧θ̃∗(x̃0))

I{x̃0 ∈ Γ̃}
(
1− p̃([0, u)|(x̃0, 0))

)
du ν̂(dx̃0) (38)

=

∫
Γ̃

∫
[T1,T2∧θ̃∗(x̃0))

du ν̂(dx̃0)−
∫

Γ̃

∫
[T1,T2∧θ̃∗(x̃0))

(
p̃([0, T1)|(x̃0, 0))

+p̃([T1, u)|(x̃0, 0))
)
du ν̂(dx̃0)

=

∫
Γ̃θ

[
T2 ∧ θ̃∗(x̃0)− T1

]
ν̂(dx̃0)−

∫
Γ̃θ

p̃([0, T1)|(x̃0, 0))
[
T2 ∧ θ̃∗(x̃0)− T1

]
ν̂(dx̃0)

−
∫

Γ̃θ

∫
(T1,T2∧θ̃∗(x̃0)]

p̃([T1, u)|(x̃0, 0))du ν̂(dx̃0).

Since YT1,T2,Γ̃\Γ̃θ = ∅,

η̌2(YT1,T2,Γ̃\Γ̃θ)− η̌
′
2(YT1,T2,Γ̃\Γ̃θ) = 0.

It remains to consider the set Γ̃θ. Below, we split it into three measurable subsets:

Γ̃1 := Γ̃θ ∩ {x̃0 : u∗(x̃0) < T1},
Γ̃2 := Γ̃θ ∩ {x̃0 : u∗(x̃0) ≥ T2 ∧ θ̃∗(x̃0)},

and Γ̃3 := Γ̃θ ∩ {x̃0 : T1 ≤ u∗(x̃0) < T2 ∧ θ̃∗(x̃0)}.

For each x̃0 ∈ Γ̃1, p̃([0, u)|(x̃0, 0)) = 1 for all u ∈ [T1, T2 ∧ θ̃∗(x̃0)). Hence, according to (38) with
Γ̃ = Γ̃1, η̌′2(YT1,T2,Γ̃1

) = 0 and

η̌2(YT1,T2,Γ̃1
)− η̌′2(YT1,T2,Γ̃1

) ≥ 0.

For each x̃0 ∈ Γ̃2 (see the point x̃0
1 on Figure 4),

p̃([0, T1)|(x̃0, 0)) = η̌A([0, T1)|x̃0)
a(x̃0)

n(x̃0)
and p̃([T1, u)|(x̃0, 0)) = η̌A([T1, u)|x̃0)

a(x̃0)

n(x̃0)

for all u ∈ (T1, T2 ∧ θ̃∗(x̃0)]. Therefore, by (37) and (38),

η̌2(YT1,T2,Γ̃2
)− η̌′2(YT1,T2,Γ̃2

) = J(Γ̃2) ≥ 0.
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For the set Γ̃3 (the typical points in Γ̃3 are x̃0
2 and x̃0

3 on Figure 4), we compute η̌2(YT1,T2,Γ̃3
) and

η̌′2(YT1,T2,Γ̃3
) using the representation YT1,T2,Γ̃3

= Y 1 ∪ Y 2, where

Y 1 := {(x̃0, u) : x̃0 ∈ Γ̃3, T1 ≤ u < u∗(x̃0)}; Y 2 := {(x̃0, u) : x̃0 ∈ Γ̃3, u
∗(x̃0) ≤ u < T2 ∧ θ̃∗(x̃0)}.

To compute η̌2(Y 1), we introduce the function

w(y) = w((ỹ, t)) = I{h(y) ∈ Γ̃3} ×


u∗(h(y))− T1, if t ≤ T1;
u∗(h(y))− t, if T1 < t ≤ u∗(h(y));
0 if t > u∗(h(y))

(cf (36)). Calculations similar to those presented above, lead to the following version of expression
(37):

η̌2(Y 1) =

∫
Γ̃3

[
u∗(x̃0)− T1

]
ν̂(dx̃0)−

∫
Γ̃3

[
u∗(x̃0)− T1

]
η̌A([0, T1)|x̃0)

a(x̃0)

n(x̃0)
ν̂(dx̃0)

−
∫

Γ̃3

∫
(T1,u∗(x̃0)]

η̌A([T1, u)|x̃0)du
a(x̃0)

n(x̃0)
ν̂(dx̃0) + J1.

The last term is similar to J(Γ̃), its calculation is based on the function similar to wA
T1,T2,Γ̃

: one only

has to replace Γ̃ with Γ̃3 and θ̃∗(·) with u∗(·). Like previously, J1 ≥ 0. Again, similarly to (38), we
have

η̌′2(Y 1) =

∫
Γ̃3

[
u∗(x̃0)− T1

]
ν̂(dx̃0)−

∫
Γ̃3

[
u∗(x̃0)− T1

]
p̃([0, T1)|(x̃0, 0))ν̂(dx̃0)

−
∫

Γ̃3

∫
(T1,u∗(x̃0)]

p̃([T1, u)|(x̃0, 0))du ν̂(dx̃0)

and, like in the case of Γ̃2, for each x̃0 ∈ Γ̃3

p̃([0, T1)|(x̃0, 0)) = η̌A([0, T1)|x̃0)
a(x̃0)

n(x̃0)
and p̃([T1, u)|(x̃0, 0)) = η̌A([T1, u)|x̃0)

a(x̃0)

n(x̃0)

for all u ∈ (T1, u
∗(x̃0)]. Therefore,

η̌2(Y 1)− η̌′2(Y 1) = J1 ≥ 0.

Finally, similarly to (38),

η̌′2(Y 2) =

∫
Γ̃3

∫
[u∗(x̃0),T2∧θ̃∗(x̃0))

(1− p̃([0, u)|(x̃0, 0)))du ν̂(dx̃0) = 0

because for each x̃0 ∈ Γ̃3, p̃([0, u)|(x̃0, 0)) = 1 for all u > u∗(x̃0). Hence,

η̌2(Y 2)− η̌′2(Y 2) ≥ 0.

To summarize, η̌2(YT1,T2,Γ̃3
) − η̌′2(YT1,T2,Γ̃3

) ≥ 0, and thus η̌2(YT1,T2,Γ̃) − η̌′2(YT1,T2,Γ̃) ≥ 0 for all

Γ̃ ∈ B(Ṽ ) and 0 ≤ T1 < T2 <∞.
Therefore, η̌2 ≥ η̌′2 set-wise on D, and hence η̃2 ≥ η̃′2 on V . Since the measures η̃2 and η̃′2 are

both normal, the difference η̃2 − η̃′2 is a normal measure on V by Lemma 4.2(b).
The proof is completed. 2
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Proof of Theorem 4.2. When x ∈ V c, we fix πi(dθ × da) := δf∗(x)(dθ × da), where f∗(x) = (∞, â) as
usual. Below, for two finite or normal measures ζ1 and ζ2 on V , the inequality ζ1(dx) ≤ ζ2(dx) is
understood set-wise. The same concerns measures on V ×A.

Let p′A(da|x) be the stochastic kernel on A given V coming from the decomposition η(dx× da) =
p′A(da|x)η(dx×A). For all i ≥ 1, we put

piA(da|x, θ) ≡ p′A(da|φ(x, θ))

for x ∈ V , θ < θ∗(x), and piA(da|x, θ) is an arbitrarily fixed stochastic kernel on A for x ∈ V , θ ≥ θ∗(x).
We will prove by induction the following statement.
For each i ≥ 1, there is a stochastic kernel πi on B = R̄0

+ ×A given V , having the form

πi(dθ × da|x) = piT (dθ|x)piA(da|x, θ),

such that, for each n ≥ 1 and the sequence {πi}ni=1, the following assertions are fulfilled.
(i) piT ([θ∗(x),∞)|x) = 0 for x ∈ V, i = 1, 2, . . . , n, and the (partial) aggregated occupation measures

{η̃i}ni=0, defined as in Lemma 7.1, exhibit the following properties:

η̃n(dx×2) ≤ η(dx×2) and

η̃n(dx× da) = η̃n(dx×A)p′A(da|x) ≤ η(dx×A)p′A(da|x) = η(dx× da) on B(V ×A).

(ii) The measure νn(dx) := P πx0(Xn ∈ dx) on V is such that, for each function w ∈W,

0 =

∫
V
w(x)νn(dx) +

∫
V
χw(x)[η − η̃n](dx×2)−

∫
V
w(x)[η − η̃n](dx×A)

+

∫
V×A

w(l(x, a))[η − η̃n](dx× da), (39)

and all the integrals here are finite. Note that νn is uniquely defined by the finite sequence {πi}ni=1:
see (4); moreover, νn(Ṽ × {t : t > 0}) = 0.

After that, πη := {πi}∞i=1 will be the desired Markov strategy.
When n = 0, η̃0(dy × 2) ≡ 0, η̃0(dy × da) ≡ 0, and ν0(dx) = δx0(dx). Assertions (i) and (ii) are

obviously fulfilled because the normal measure η satisfies equation (21).
Suppose assertions (i) and (ii) hold true for i = 0, 1, 2, . . . , n ≥ 0. We apply Lemma 7.4 to the

measures ν := νn, η̃2 := (η− η̃n)(dx×2), η̃A := (η− η̃n)(dx×A), and η̃ := (η− η̃n)(dx×da) satisfying
equation (39). All of them are finite, maybe apart from η̃2, which is normal by Lemma 4.2(b) and
Lemma 7.1. As a result, we have the stochastic kernel p̃(dt|x) on R̄0

+ given V and the measures

η̃′A(dx) ≤ (η − η̃n)(dx×A) and η̃′2(dx) ≤ (η − η̃n)(dx×2) (40)

on V , which satisfy equation (33):

0 =

∫
V
w(x)νn(dx) +

∫
V
χw(x)η̃′2(dx)−

∫
V
w(x)η̃′A(dx), w ∈W. (41)

All the integrals here are finite.
For x ∈ V , we put

pn+1
T (dθ|x) := p̃(dθ|x).
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Then by Lemma 7.4, pn+1
T ([θ∗(x),∞)|x) = 0 for all x ∈ V. All the kernels {πi}ni=1 were built on the

previous steps of the induction. According to the definition of the measure η̃n+1,

η̃n+1(Γ×2) = η̃n(Γ×2) +

∫
V

∫
R0
+

δφ(x,u)(Γ)p̃([u,∞]|x)du νn(dx)

= η̃n(Γ×2) + η̃′2(Γ) ≤ η(Γ×2), Γ ∈ B(V ); (42)

η̃n+1(Γ×A) = η̃n(Γ×A) +

∫
V

∫
R0
+

δφ(x,u)(Γ)p̃(du|x)νn(dx) = η̃n(Γ×A) + η̃′A(Γ) ≤ η(Γ×A),

Γ ∈ B(V ). (43)

Inequalities are valid according to the basic properties of the measures η̃′2 and η̃′A presented in (40).
Recall that

η̃n+1(ΓX × ΓA) = η̃n(ΓX × ΓA) +

∫
V

∫
R0
+

δφ(x,θ)(ΓX)pn+1
A (ΓA|x, θ)pn+1

T (dθ|x)νn(dx),

ΓX ∈ B(V ), ΓA ∈ B(A).

Since νn(Ṽ × {t : t > 0}) = 0, the last term equals

I :=

∫
Ṽ

∫
[0,θ̃∗(x̃0))

δφ((x̃0,0),θ)(ΓX)p′A(ΓA|φ((x̃0, 0), θ))p̃(dθ|(x̃0, 0))ν̂n(dx̃0), (44)

where ν̂n(Γ) := νn({(x̃0, 0), x̃0 ∈ Γ}). According to Lemma 7.4, for all Γ ∈ B(D) and for the mapping
F as in Definition 4.2,

η̃′A(F (Γ)) =

∫
Ṽ

∫
R0
+

I
{
φ((x̃0, 0), u) ∈ {y = φ((x̃0, 0), t) : (x̃0, t) ∈ Γ}

}
p̃(du|(x̃0, 0))ν̂n(dx̃0)

=

∫
Ṽ

∫
R0
+

I{(x̃0, u) ∈ Γ}p̃(du|(x̃0, 0))ν̂n(dx̃0) = ˇ̃η′A(Γ).

Lemma 7.2(a) implies that, for each bounded measurable function g on V ,∫
V
g(x)η̃′A(dx) =

∫
D
g(φ((x̃0, 0), u))ˇ̃η′A(dx̃0 × du) =

∫
Ṽ

∫
[0,θ̃∗(x̃0))

g(φ((x̃0, 0), u))p̃(du|(x̃0, 0))ν̂n(dx̃0).

(45)
Therefore, for each ΓX ∈ B(V ),

I =

∫
V
δx(ΓX)p′A(ΓA|x)η̃′A(dx) =

∫
ΓX

p′A(ΓA|x)η̃′A(dx),

meaning that on B(V ×A)

η̃n+1(dx× da) = η̃n(dx× da) + p′A(da|x)η̃′A(dx) = η̃n(dx×A)p′A(da|x) + η̃′A(dx)p′A(da|x)

= η̃n+1(dx×A)p′A(da|x)

≤ η̃n(dx×A)p′A(da|x) + [η − η̃n](dx×A)p′A(da|x) = η(dx×A)p′A(da|x).

The second equality is by the inductions supposition, the third equality follows from (43), and the
inequality is according to the basic property (40) of the measure η̃′A.

Property (i) for n+ 1 is established, recall also inequality (42).
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For the proof of Item (ii), note that, by (39) at n, (41), (42), and (43), we have equation

0 =

∫
V
χw(x)[η − η̃n+1](dx×2)−

∫
V
w(x)[η − η̃n+1](dx×A)

+

∫
V×A

w(l(x, a))[η − η̃n+1](dx× da) +

∫
V×A

w(l(x, a))[η̃n+1 − η̃n](dx× da)

valid for all functions w ∈ W, and all the integrals here are finite. According to property (i) for n
and n + 1, the stochastic kernel p′A(da|x) is the same in the decompositions η̃n(dx × da) = η̃n(dx ×
A)p′A(da|x) and η̃n+1(dx × da) = η̃n+1(dx ×A)p′A(da|x). Thus, the last integral, according to (43),
equals ∫

V

∫
A
w(l(x, a))p′A(da|x)η̃′A(dx),

i.e., the function w is integrated with respect to the measure

m(Γ) =

∫
V

∫
A
δl(x,a)(Γ)p′A(da|x)η̃′A(dx), Γ ∈ B(V ),

and it remains to show that this measure coincides with νn+1 on V .
From equation (45), we have for all Γ ∈ B(V ):

m(Γ) =

∫
Ṽ

∫
[0,θ̃∗(x̃0))

∫
A
δl(φ((x̃0,0),u),a)(Γ)p′A(da|φ((x̃0, 0), u))pn+1

T (du|(x̃0, 0))ν̂n(dx̃0),

and, keeping in mind that νn(Ṽ × {t : t > 0}) = 0, we have from (4):

νn+1(Γ) =

∫
Ṽ

∫
[0,θ̃∗(x̃0))

∫
A
δl(φ((x̃0,0),θ),a)(Γ)pn+1

A (da|(x̃0, 0), θ)pn+1
T (dθ|(x̃0, 0))ν̂n(dx̃0) = m(Γ)

for all Γ ∈ B(V ) because pn+1
A = p′A.

The proof of the induction statement for n+ 1 is completed.
According to Lemma 7.1, for the constructed Markov strategy π = {πi}∞i=1 and for the corre-

sponding aggregated occupation measure η̃, we have the convergence η̃n ↑ η̃ set-wise as n→∞. Since
η̃n ≤ η set-wise on V ×A2, the desired set-wise inequality η̃ ≤ η follows.

All the properties enlisted in Definition 3.1 are obviously satisfied for the strategy π. 2

Proof of Corollary 4.1. We denote by V al(16) and V al(20) the minimal values of linear programs (16)
and (20),(21), respectively. Recall that linear program (16) has an optimal solution by Proposition
3.1.

Suppose the finite measure µ∗ on V × R̄0
+×A (concentrated on M×A) solves linear program (16).

Then the aggregated occupation measure η∗, induced by µ∗, is normal by Lemma 4.2(a) and satisfies
equation (21) according to Theorem 4.1. The constraints-inequalities are also fulfilled by η∗. Thus

∞ > V al(16) =

∫
V×A2

C0(x, a)η∗(dx× da) ≥ V al(20).

In case the last inequality is strict, there exists a feasible solution η to linear program (20),(21)
satisfying inequality ∫

V×A2

C0(x, a)η(dx× da) < V al(16).
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Consider the induced reasonable Markov strategy πη as in Theorem 4.2 and the corresponding aggre-
gated occupation measure η̃. Since Cj ≥ 0 for j = 0, 1, . . . , J , all the conditions in linear program (16)
are satisfied for µπ

η
and∫

V×A2

C0(x, a)η̃(dx× da) ≤
∫
V×A2

C0(x, a)η(dx× da) < V al(16) <∞.

The measure µπ
η

cannot take infinite value as explained above linear program (10), (11). We obtained
a contradiction to the optimality of the measure µ∗. Hence, V al(16) = V al(20), and the measure η∗

solves linear program (20),(21).
Suppose now that the measure η∗ on V × A2 solves linear program (20),(21) and consider the

reasonable Markov strategy π∗ = πη
∗

as in Theorem 4.2. The corresponding occupation measure
µπ

∗
is feasible in linear program (16). More detailed reasoning is similar to that presented above.

Therefore, for the aggregated occupation measure η̃ induced by µπ
∗
, we have relations

V al(16) ≤
∫
V×A2

C0(x, a)η̃(dx× da) ≤
∫
V×A2

C0(x, a)η∗(dx× da) = V al(20).

But we have shown that V al(20) = V al(16), so that∫
V×A2

C0(x, a)η̃(dx× da) = V al(16)

meaning that the measure µπ
∗

solves linear program (16). The proof is completed. 2
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A Appendix

Lemma A.1 and its proof presented below are similar to Lemma 2.2 in [12], where the authors assumed
that E was a subset of an Euclidean space.

Let E be an arbitrary set and φ : E ×R0
+ → E be a flow in E possessing the semigroup property.

Definition A.1 A function w : E → R is said to be absolutely continuous along the flow if for all
x ∈ E the function t 7→ w(φ(x, t)), t ∈ R0

+ is absolutely continuous. It is called increasing (decreasing)
along the flow if so is the function t→ w(φ(x, t)), t ∈ R0

+ for all x ∈ E.

Lemma A.1 Suppose function w is absolutely continuous along the flow φ. Then the following as-
sertions are valid.

(a) There exists a function χw : E → R such that, for any x ∈ E, the function χw(φ(x, s)) is
Lebesgue integrable with respect to s on any finite interval [0, t] ⊂ R0

+ and

w(φ(x, t))− w(x) =

∫
[0,t]

χw(φ(x, s)) ds (46)

for all x ∈ E and t ≥ 0.
(b) If, additionally, E is a measurable space (that is, is equipped with a σ-algebra of subsets), w

is measurable, and the functions φ(·, t) : E → E are measurable for all t ≥ 0, then the function χw
satisfying (a) can be chosen measurable.
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Proof. We provide one common proof for (a) and (b) underlining the measurability properties as soon
as they appear.

Define the functions

W (x) := limn→∞
w(φ(x, 1

n))− w(x)

1/n
, W (x) := limn→∞

w(φ(x, 1
n))− w(x)

1/n

and the set D := {x ∈ E : W (x) = W (x) 6= ±∞}. Let us additionally define the function W : D → R
by W (x) := W (x); that is, W (x) coincides with the limit limn→∞ n [w(φ(x, 1

n)) − w(x)], if it exists
and is finite.

If w and φ(·, t) are measurable, then w(φ(x, 1
n)) is also measurable. Hence the functions W and W

are measurable as the upper and lower limits of the sequence of measurable functions n [w(φ(x, 1/n))−
w(x)]. Consequently, the set D is also measurable.

Define the function χw on E by

χw(x) :=

{
W (x), if x ∈ D;
g(x), otherwise,

(47)

where g is any function. In the measurable case we take g to be measurable and readily get that χw
is also measurable.

Since w is absolutely continuous along the flow then for any x ∈ E there exists a subset of full
measure Tx ⊂ R+ such that the derivative d

dt w(φ(x, t)) exists and is finite for all values t ∈ Tx. For
any such value (let it now be denoted by s ∈ Tx) we can write down the following (below we denote
x′ = φ(x, s) and use the semigroup property of the flow)

dw(φ(x, t))

dt

⌋
t=s

= lim
ε→0

w(φ(x, s+ ε))− w(φ(x, s))

ε
= lim

n→∞

w(φ(x′, 1
n))− w(x′)

1/n
.

The latter value exists and is finite, and therefore coincides with W (x′). This argument also shows
that φ(x, Tx) ⊂ D.

Since w is absolutely continuous along the flow, one can write down

w(φ(x, t))− w(x) =

∫
[0,t]∩Tx

dw(φ(x, τ))

dτ

⌋
τ=s

ds =

∫
[0,t]∩Tx

W (φ(x, s)) ds.

Now taking into account that [0, t]\Tx has Lebesgue measure zero and χw is an extension of W to E,
we conclude that the latter integral coincides with

∫
[0,t] χw(φ(x, s)) ds, and so, formula (46) is proved.

2

Proof of Lemma 4.1. In this proof, let us denote by ρ and ρ̃ the compatible metrics on X̃×R0
+ and X̃.

If yn → y, where yn = (ỹn, tn), y = (ỹ, t) ∈ X, then the sequence {tn}∞n=1 is bounded: t, tn ∈ [0, T ] for
some T <∞. Now ρ̃(h(yn), h(y)) ≤ supt∈[0,T ] d(t)ρ(yn, y)→ 0. Thus, h is continuous. The continuity

of the mapping h and of the original flow φ̃ immediately implies that the flows φ̃ and φ in the reverse
time are continuous.

The mapping F is continuous because the flow φ̃ is continuous. It is a bijection from X̃ × R0
+

to X, and the inverse mapping F−1(y) = (h(y), τy) is continuous, as has been proved above. (For
y = (ỹ, t) ∈ X, τy = t is obviously a continuous function of y.) Thus, F is a homeomorphism, and X
is a Borel space, being the homeomorphic image of the Borel space X̃ × R0

+. See also [5, Prop.7.15].
2
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Proof of Lemma 4.2. (a) The measure η is finite on V ×A because the measure µ is finite. Recall that
the measure µ is concentrated on Ṽ × {0} × R̄0

+ ×A. For the measure η(dx×2) on V , we have

η̌(Γ) = η(F (Γ)×2) =

∫
R0
+

{∫
Ṽ
I{φ((x̃, 0), u) ∈ F (Γ)}µ(dx̃× {0} × [u,∞]×A)

}
du

=

∫
R0
+

{∫
Ṽ
I{(x̃, u) ∈ Γ}µ(dx̃× {0} × [u,∞]×A)

}
du

=

∫
Ṽ

∫
R0
+

I{(x̃, u) ∈ Γ}
∫
A
pT ([u,∞]|(x̃, 0), a)pA(da|(x̃, 0))du µ(dx̃× {0} × R̄0

+ ×A),

for all Γ ∈ B(D): see (13) and (14). Thus, η on V ×A2 is normal.
(b) As mentioned in the proof of part (a), η(V ×A) <∞.
Consider the measures ζ1(dy) := η1(dy×2), ζ2(dy) := η2(dy×2), and ζ(dy) := η(dy×2). Since

ζ ≥ 0, we have ζ̌ = ζ̌1 − ζ̌2 ≥ 0 as well. If

ζ̌1(dx̃0 × du) = g1(x̃0, u)du L1(dx̃0) and ζ̌2(dx̃0 × du) = g2(x̃0, u)du L2(dx̃0),

then we put L := L1 + L2 and

g(x̃0, u) :=

[
g1(x̃0, u)

dL1

dL
(x̃0)− g2(x̃0, u)

dL2

dL
(x̃0)

]
I
{
g1(x̃0, u)

dL1

dL
(x̃0)− g2(x̃0, u)

dL2

dL
(x̃0) ≥ 0

}
.

The measurable set

Γ :=

{
(x̃0, u) : x̃0 ∈ Ṽ , 0 ≤ u < θ̃∗(x̃0), g1(x̃0, u)

dL1

dL
(x̃0)− g2(x̃0, u)

dL2

dL
(x̃0) < 0

}
⊂ D

is null with respect to the measure L(dx̃0) × du because, otherwise, we would have for some t < ∞,∫
Γt
L(dx̃0)× du > 0 for the set

Γt := Γ ∩ {(x̃0, u) : x̃0 ∈ Ṽ , u ≤ t},

and yield a desired contradiction:

0 >

∫
Γt

[
g1(x̃0, u)

dL1

dL
(x̃0)− g2(x̃0, u)

dL2

dL
(x̃0)

]
L(dx̃0)× du = ζ̌1(Γt)− ζ̌2(Γt) = ζ̌(Γt) ≥ 0

with all the terms being finite. Now, for ζ = ζ1 − ζ2, we have

ζ̌(dx̃0 × du) = ζ̌1(dx̃0 × du)− ζ̌2(dx̃0 × du) = g(x̃0, u)du L(dx̃0),

and the proof is completed. 2

Lemma A.2 Suppose m is a finite measure on R. Then, for each τ, t ∈ R,

tm([τ, τ + t]) =

∫
(0,t]

m([τ, τ + s))ds+

∫
(τ,τ+t]

(s− τ) dm(s)

and

tm([τ, τ + t)) =

∫
[0,t)

m([τ, τ + s))ds+

∫
[τ,τ+t)

(s− τ) dm(s).
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Proof. For all cadlag (i.e., right-continuous with left limits) real-valued functions U and V on R with
finite variation (on finite intervals),

U(t2)V (t2) = U(t1)V (t1) +

∫
(t1,t2]

U(s−) dV (s) +

∫
(t1,t2]

V (s) dU(s) (48)

for any −∞ < t1 < t2 <∞. (See [8, Appendix A4,§2].) Equivalently, in the symmetric form:

U(t2)V (t2) = U(t1)V (t1) +

∫
(t1,t2]

U(s−)dV (s) +

∫
(t1,t2]

V (s−)dU(s) +
∑

u∈(t1,t2]

∆Uu ∆Vu.

Introduce cadlag functions of finite variation (on finite intervals):

U(s) := m([τ, s]) and V (s) := s− τ, s ∈ R.

Then, for t > 0, applying the previous formulae to t1 = τ and t2 = τ + t, we see that

tm([τ, τ + t]) =

∫
(τ,τ+t]

m([τ, s))ds+

∫
(τ,τ+t]

(s− τ) dm(s) =

∫
(0,t]

m([τ, τ + s))ds+

∫
(τ,τ+t]

(s− τ) dm(s)

=

∫
[0,t]

m([τ, τ + s))ds+

∫
[τ,τ+t]

(s− τ) dm(s). (49)

For the last equality to be proved, it is sufficient to consider a strictly increasing sequence ti ↑ t > 0
and pass to the limit in (49). The case t ≤ 0 is trivial. 2
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[24] Lasserre, J., Henrion, D. Prieur, C. and Trêlat, E. (2008). Nonlinear optimal control via occupa-
tion measures and LMI-relaxations. SIAM J. Control Optim. 47, 1643–1666.

[25] Leander, R., Lenhart, S. and Protopopescu, V. (2015). Optimal control of continuous systems
with impulse controls, Optim. Control Appl. Meth. 36, 535–549.

[26] Liu, Y., Teo, K., Jennings, L. and Wang, S. (1998). On a class of optimal control problems with
state jumps. J. Optim. Theory Appl. 98, 65–82.

[27] Miller, B. and Rubinovich, E. (2003). Impulsive Control in Continuous and Discrete-Continuous
Systems. Springer, New York.

[28] Piunovskiy, A. (1997). Optimal Control of Random Sequences in Problems with Constraints.
Kluwer, Dordrecht.

[29] Piunovskiy, A., Plakhov, A., Torres, D. and Zhang, Y. (2019). Optimal impulse control of dy-
namical systems. SIAM J. Control Optim. 57, 2720–2752.

44



[30] Piunovskiy, A. and Zhang, Y. (2021). Linear programming approach to optimal im-
pulse control problems with functional constraints. J. Math. Anal Appl., in press.
https://doi.org/10.1016/j.jmaa.2020.124817.

45


