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Responses to River Inundation Pressures Control Prey
Selection of Riparian Beetles
Matt J. O’Callaghan1*, David M. Hannah1, Ian Boomer1, Mike Williams2, Jon P. Sadler1*
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Abstract

Background: Riparian habitats are subjected to frequent inundation (flooding) and are characterised by food webs that
exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian
floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that
allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial
positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey
choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance.

Method/Principal Findings: We used hydrological, isotopic and habitat analyses to investigate the diet of riparian
Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale
and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or
emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits
that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further
predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under
moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring.
Prey selection became exaggerated towards aquatic prey in downstream samples.

Conclusions/Significance: Our results suggest that partitioning of resources and habitat creates overlapping niches that
increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work
advances understanding of floodplain ecosystem processes and highlights the importance of hydrological variability. With
an increasing interest in reconnecting rivers to their floodplains, these invertebrates represent a key functional element in
ensuring that such reconnections have demonstrable ecological value.
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Introduction

Riverine landscapes and their associated floodplains are

dynamic environments characterised by high levels of physical

habitat heterogeneity and turnover [1]. Longitudinal and lateral

structuring of these habitats is controlled fundamentally by the

river flow regime [2] and geomorphology, notably sediment supply

[3]. Levels of connectivity between the channel and wider

landscape are variable [4] with often strong flows of nutrients

and food resources [5,6,7,8]. Floodplains are vulnerable to direct

and indirect anthropogenic disturbance, becoming increasingly

degraded by pressures of urbanisation, pollution, dam impound-

ment, water abstraction [9] and climate change [10]. As a result,

more dynamic channel planforms (such as wandering channels

and braided floodplain systems) have declined dramatically to a

point where they are regarded as one of the world’s most

endangered types of freshwater systems [11]. The complex

interconnectedness of in-channel, riparian and floodplain zones

has been demonstrated hydrologically, geomorphologically [12],

biogeochemically [13] and ecologically [4,14,15,16]. This ecolog-

ical dynamic is partially responsible for the conservation signifi-

cance of floodplains [17,18,19,20,21] with flooding (inundation) as

a structuring force for the communities [22], leading to clear

functional variability in life forms and traits, especially in the

numerically abundant invertebrate fauna [23]. Concurrently,

floodplains contribute significant ecosystem services, not least

their role in mitigating against flooding impacts [24].

Coleoptera associated with riparian margins are numerically

dominant and highly adapted invertebrates [22,25]. The apparent

similarity of the species found in riparian coleopteran communities

has been hypothesised as a rare example of a lack of ‘intrageneric

isolation’ [26], that is multiple species occupying the same niche

within individual microhabitats, indicating the utilisation of

mechanisms to reduce competitive interactions. Common to all

riparian specialists are traits (behavioural and/or morphological)

which are beneficial under the environmental pressures of

inundation, potentially high sediment temperatures and low

moisture. In more stochastic environments, strong trait-based

responses may be required [27,28], with species being ‘filtered out’

[29] from continued habitat and associated resource use if they
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lack the necessary traits. Characteristic coleopteran traits in this

habitat include high reflectivity [30], flattened bodies [31],

avoidance behaviour [32], spatial positioning [33,34] and seasonal

changes in habitat choice [35,36,37]. The last three of these

mechanisms enable species to tolerate the high levels of

inundation-driven disturbance [22,38]. Where there is a strong

seasonal element of flooding the inundation pressure may be

reduced by timing of lifecycles or translocation from the habitat.

For instance in the UK, highest flows are typically observed during

the winter, when adults move inland and to higher ground [39].

However, year-round, episodic high flows, e.g. associated with

summer convective rainfall [40] are also possible, subjecting adult

communities active in riparian habitats to strong selective

pressures. Specific traits reducing flood inundation pressures serve

to spatially delineate community composition along longitudinal

and lateral gradients [22]; changes to the flooding frequency or

magnitude can further alter this composition [38], and cause short

to medium term variability in abundance and assemblage

composition [41,42]. When traits are matched to local habitat

and environmental conditions, the match allows dominance and

maximises resource use [43]. The high level of riparian habitat

reworking excludes many other species, allowing species with

specific traits to fully utilise available prey. However, the presence

of multiple traits within an assemblage [23] and microhabitats

existing within the matrix of local habitat [19,44], also suggests

multiple strategies for minimising inundation pressures. Although

these traits are utilised within individual disturbance events, this

environment is characterised by frequent and stochastic distur-

bance, which is likely to reinforce their value but also the

functional consequences of their possession. We seek to address a

critical research gap in this article by testing the hypothesis that the

traits that enable species to inhabit disturbed floodplains also drive

prey choice under differing environmental conditions.

Understanding how complex assemblages utilise the resource

and react to environmental pressures is essential for understanding

the ecological functioning of floodplains. The extent of the aquatic

subsidy to predatory Coleoptera is known to vary longitudinally,

rising from 40% in headwater streams to 80% in higher order,

lowland rivers [45,46], which is at least partly due to increased

downstream productivity as well as prey availability. Other

invertebrate studies of the riparian zone have used stable isotope

analysis (SIA) to examine the strength of aquatic subsidies to

Aranea [47,48], Orthoptera [49], Formicidae and Coleoptera

[46], although these have not distinguished between the functional

traits of the species present in this important ecotone environment.

That said SIA techniques provide an efficient and increasingly well

understood mechanism for investigating prey sourcing [50], and

with invertebrates, analysis of whole organisms is useful for

providing a baseline ‘average’ reflecting long term patterns of

consumption [51]. The level of uptake of aquatic resources by

riparian consumers has been observed to vary spatially and

seasonally between taxa [45,47,52]. Predatory invertebrates with a

lifecycle at least partially dependent on bare and exposed

sediments situated in the active floodplain, are likely to have a

stronger dependence on aquatic prey items than itinerant species

that utilise short-term influxes. There is some evidence that

specialist predator abundances are linked to emergence levels of

aquatic insects [52], although it is unclear whether this abundance

is enabled by the subsidy, or whether the two groups have a level

of life-cycle synchronicity, predator emergence coinciding with

maximum prey abundances. Within-species spatial variation in

subsidy level [42,53] indicates that dietary plasticity is an

important strategy for riparian predators, a concept however,

which remains untested. As temporal hydrologic variability

decreases downstream from variable headwaters [54], we

hypothesise that the ‘value’ of different traits will vary, favouring

different functional groups and altering the stakes of the risk :

subsidy trade off for riparian consumers.

Although there is an increasing amount of work on riparian

invertebrate community dynamics there is limited knowledge

about their functional response to hydrological (and habitat)

variability and how functional groupings change under different

inundation conditions [23,41]. In the light of on-going anthropo-

genic impacts, global threats to floodplain integrity and changing

hydrological regimes envisaged under present climate change

scenarios [10], the ecological function of this important group

needs to be better understood.

We aimed to investigate functional processes in riparian

Coleoptera, using stable isotope analysis to identify environmen-

tally, spatially and temporally driven variation in dietary

composition occurring amongst functional groups. We achieved

this through addressing a series of three linked objectives to: (i)

define hypothetical functional groups, using dispersal related traits,

(ii) examine variations in dietary composition between these

groups along a lateral gradient away from the river’s edge and

longitudinally downstream, and over three seasons (iii) investigate

the role of different inundation pressures on prey choice by the

different functional groups.

We achieved our aims and objectives and address in the

Discussion the contributions the study has made to floodplain

ecology research. We also highlight some of the methodological

issues with the work in relation to the temporal and spatial scales of

the study and the role of detritivores and phytophagous species in

nutrient processing.

Results

Invertebrate data and functional groups
The samples were derived from 1,695 terrestrial Coleoptera,

973 potential aquatic prey and 260 potential terrestrial prey. Some

samples (Collembola and aphids) comprised multiple individuals

(3–5) due to the small size of organisms. Isotopic values were

obtained for 50 terrestrial prey samples, 262 aquatic prey samples

(reduced to 130; see methods) and 366 predatory terrestrial

coleopteran samples. Consumers were assigned to 5 functional

groups defined by statistical analysis of morphological variation

and behavioural characteristics (Table 1).

Measured morphological variation analysed via ANOVA

showed significant difference between the leg : body length ratios

of all ground beetles, specialist click and rove beetles (p,0.001: F.

82.04, df 2 and 75), all ground beetles had significantly longer legs.

Between wing: body length ratio of specialist ground beetles and

all other beetles (including species of non-specialist ground beetles)

also differed significantly (p,0.001: F 102.62, df; 2 and 75)), the

specialist ground beetles had longer wings. Generalised Linear

Modelling further refined these groups. The specialist ground

beetles were subdivided, into a distinct headwater grouping,

including Bembidion atrocaeruleum (Stephens, 1828) and Bembidion

decorum (Zanker in Panzer, 1800) (AIC 82.61, p,0.005: d 8.17,

19df) and a lowland associated grouping, including Bembidion

punctulatum (Drapaiz, 1821) and Bembidion tibiale (Duftschmid, 1812)

(AIC 77.77, p ,0.05: d 27.99, df 19). Specialist click and rove

beetles which lack both the longer legs and wings of ground beetles

also exhibited a high affinity with headwater habitat (AIC 93.49,

p,0.005: d 21.07, df 19). The resulting five groups, defined by

morphological and modelling of distribution, comprised; headwa-

ter specialist ground beetles (group 1), lowland specialist ground

beetles (group 2), low affinity ground beetles (group 3), no affinity

Prey Selection by Riparian Beetles
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ground beetles (group 4) and specialist non-ground beetles (group

5).

Environmental and Habitat Variation
Digital elevation models (DEM), river level and flow (discharge)

data were used to identify three inundation classes for analysis of

patch scale processes (Table 2; and methods for details). Five bars

experienced low inundation pressure (,50% loss of habitat), 6

bars experienced moderate pressure (51–90% loss) and 9 bars

experienced high pressure (.90%), examples of inundation extent

are shown in Figure 1. River depth (level) was higher consistently

during autumn and winter associated with higher rainfall. The

spring-summer maximum depth of 143.3 cm was exceeded seven

times between October and March, the peak event being

176.2 cm, which inundated all patches (1.23 m above the depth

measured in April 2009 when the d-GPS surveys were conducted).

Figure 2 shows the daily river depth during the period of peak

invertebrate activity in the study (April–October 2009), six bars

experienced total inundation during this period, whilst the five

least affected bars lost less than 50% of available area under the

highest flows in September 2009 (1.4 m above April 2009). The

depth data also shows that the duration of inundation events

varied between bars, from several weeks in July for shallow profile

bars, to hours for steeper profile bars in short-lived pulse events in

July, September and October. The extent, or presence of habitat

availability, was compromised for prolonged periods on the lower

bars, requiring greater use of refugia by resident fauna; more

elevated bars retain the shingle habitat under all but autumn-

winter flows.

Correlation analysis of environmental and inundation variables

conducted to establish covariance that might influence inverte-

brate behaviour indicated the presence of significant relationships

between inundation and extent of vegetation cover (negative), also

bar area and length of wetted edge (positive) (Table 3). An

assessment was then made which of the correlating variables had

the strongest environmental effect and these were selected for

exploration in isotopic modelling; inundation and bar area being

selected.

Isotope data
Exploration of the potential prey within the SIAR (Stable

Isotopes in R) [55] mixing model indicated that four invertebrate

groups formed the majority of all prey selected: simuliids,

Plecoptera, Collembola and aphids. Simuliid larvae showed

greater abundance in comparison to similarly sized Chironomidae,

whilst Plecoptera typically emerge directly onto the riparian zone,

rather than from the river surface, or from vegetation (e.g. caddis

and mayflies). These potential prey exhibited a clear separation of

isotopic values, with aquatic sources (simuliids and Plecoptera)

relatively enriched in d15N compared to terrestrial sources

(Collembola and aphids), with values between 4.07–12.63 d15N

for the former and 1.44–8.26 d15N for the latter. Coleopteran

values consistently lay between those of terrestrial and aquatic

sources, indicating contributions from both prey groups (Figure 3).

Table 1. Functional groups of predatory terrestrial Coleoptera sampled from ERS on the upper River Severn, giving example
member species, geographical and micro-spatial preferences, and morphological characteristics.

Functional group Micro-spatial preference Morphology Example member species

Group 1 Specialist ground beetles Headwaters
Mobile within patch

Long legs & wings B. atrocaeruleum
B. tibiale

Group 2 Specialist ground beetles Lowland
Wetted edge

Long legs & wings B. punctulatum
B. decorum

Group 3 Low affinity ground beetles Damp ground Long legs B. tetracolum
P. albipes

Group 4 Ground beetles with no ERS association In land Long legs P. madidus

Group 5 Specialist non-ground beetles Headwaters
Raised ERS

Shorter legs & wings Stenus spp.
C. 5-punctata

doi:10.1371/journal.pone.0061866.t001

Table 2. Inundation classes of studied habitat patches (bars),
with percentage habitat lost with a 1 m increase above base
flow measurements (summer maxima), or for patches lower
than 1 m, at the point at which they were submerged.

Patch
% of habitat submerged with 1
metre increase over base flow

Inundation
susceptiblity

1 100 High

2 86 Moderate

3 89 Moderate

4 58 Moderate

5 53 Moderate

6 100 High

7 100 High

8 100 High

9 100 High

10 28 Low

11 51 Moderate

12 39 Low

13 13 Low

14 39 Low

15 100 High

16 96 High

17 93 High

18 40 Low

19 92 High

20 62 Moderate

doi:10.1371/journal.pone.0061866.t002

Prey Selection by Riparian Beetles
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Isotopic niche positioning
Estimation of isotopic niche area for member species from

predefined coleopteran functional groups indicates differing levels

of aquatic prey utilisation (Figure 4). Non- specialist ground beetles

(Group 4) and Stenus spp. and Coccinella 5-punctata (Linnaeus, 1758)

(Group 5) and showed low levels of d15N enrichment, indicative of

a terrestrially sourced diet. Conversely, two specialist ground

beetles with different preferred positions, stream edge and whole

patch (B. atrocaeruleum and B. punctulatum respectively) exhibited the

highest levels of d15N enrichment, indicating greater use of aquatic

prey. Overlapping the basal and top positions a weak specialist,

Bembidion tetracolum (Say, 1823) exhibited median levels of d15N

enrichment.

Physical habitat variability
Exploration of influence of habitat variables in SIAR identified

two controls of prey choice, but only for B. tetracolum which has a

weak affinity to the floodplain habitat. In coarser substrates (Phi

class 25 to 26) the terrestrial component of diet increased from

50% to 72%. Terrestrial prey subsidy ranged from 50–70% as the

levels of habitat heterogeneity on the bars increased. Bar area,

which was highlighted as a potential influence in the environ-

mental correlations, showed no influence on prey selection in any

group.

Effect of lateral sampling position
Different dietary composition was detected for all groups

according to the sampling distance from the stream edge. B.

atrocaeruleum (Group 1), known to be mobile within the habitat and

associated with headwaters, showed the strongest variation in diet

(Figure 5a). Median (most probable) values revealed 60% aquatic

and 40% terrestrial contributions at the wetted edge, compared to

a 30%:70% split further inland. B. punctulatum (Group 2), known to

have a preference for the wetted edge area of the disturbed

riparian habitat, showed a similar but smaller decrease in aquatic

contributions inland from 62% to 55% (Figure 5b). Stenus spp. and

C. 5-punctata (Group 5) and non-specialised ground beetles (Group

4) showed no change according to sampling position, at 70%

Figure 1. Digital Elevation Models showing the different extent of habitat loss under low, medium and high flows for
representative gravel bars with (a) elevated profile and (b) shallow profile. Figure 1a shows patch 10, a large area, complex habitat patch,
of which only 28% is submerged when levels are 1 m above base flows; Figure 1b shows patch 15, a low elevation habitat patch, of which 100% is
submerged under the same conditions.
doi:10.1371/journal.pone.0061866.g001
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terrestrial prey for ground beetles with no affinity and .95%

terrestrial for specialist non-ground beetles. B. tetracolum (Group 3)

showed a stable dietary composition, at 30% aquatic derived prey,

regardless of sampling position.

Seasonal variation
Specialist riparian ground beetles exhibited a strong seasonal

variation in dietary composition, with the importance of aquatic

prey declining sharply in spring samples (Figure 6). B. atrocaeruleum

exhibited 50% aquatic prey, 50% terrestrial prey in summer and

autumn, changing to 32% aquatic, 68% terrestrial in the spring. B.

punctulatum exhibited consistent 60:40% aquatic: terrestrial split for

summer/autumn changing to 35%:65% in the spring.

Inundation and resource acquisition
The three numerically dominant species B. atrocaeruleum

(headwater), B. punctulatum (lowland) and B. tetracolum (low habitat

affinity) are all from the same genus, and are similar sizes

(,5 mm). Median values of dietary proportions indicated differing

responses to inundation pressures (Figure 7). B. atrocaeruleum and B.

punctulatum show values indicative of their preferred micro-spatial

positioning, which converge under high inundation levels, as

available habitat is reduced and encounters with alternative prey

increase, stream-edge B. punctulatum reduces its intake of aquatic

prey under higher levels of inundation pressure, whilst the mobile

B. atrocaeruleum reduces its intake of terrestrial prey under the same

conditions. B. tetracolum appears to switch rapidly to a terrestrially

based diet under moderate inundation risk, which may be

indicative of flood aversion behaviour. On bars with low

inundation pressures, B atrocaeruleum showed values of 35% aquatic

and 65% terrestrial dietary composition, which changed to 42%

aquatic and 58% terrestrial under moderate inundation pressures

and 45% aquatic, 55% terrestrial under high inundation pressures.

Under low to moderate pressures, the values of B. punctulatum show

a dominance of aquatic subsidy (60%), declining to 35% under

high pressure. B. tetracolum has both aquatic and terrestrial sources

at ,50% under low pressure, with the aquatic subsidy declining to

30% at moderate levels and 15% under high pressure.

The longitudinal patterns of variation across the additional 15

sites revealed strong trends downstream, especially for B.

punctulatum (Figure 8a), which had a 55% aquatic signal from

samples taken in the headwaters to a maximum of 80% at the site

170 km downstream. Conversely, B. atrocaeruleum (Figure 8b)

maintained a terrestrially dominated diet (70%) from the

headwaters to the most downstream sampling location (60%),

albeit with an increase in aquatic subsidy for mid-catchment

sampling points. Finally, B. tetracolum exhibited a switch from 65%

terrestrial diet at its highest sampling point to a consistent 55%

aquatic diet at the two sampling areas furthest downstream.

Discussion

The results demonstrate the presence of strong variations in the

choice of prey by riparian Coleoptera across multiple gradients.

The evidence indicates that these choices are in part driven by

behavioural and morphological traits that determine the resilience

of representative species to inundation pressures. Dietary compo-

sition shows that under the highest levels of disturbance (autumn-

winter flooding), all species employ avoidance strategies until

inundation pressure becomes reduced in spring. These data also

suggest that the beetles do not undergo total quiescence during the

winter and maintain at least some level of activity away from the

active floodplain. Finally, our results show evidence of exaggerated

relative source contributions with increasing distance from the

headwaters, with the species which preferentially inhabit the

stream edge markedly increasing uptake of aquatic prey at

downstream sites. We discuss each element in turn.

Trait possession and influence on prey selection
Trait groupings were defined by behavioural and morphological

characteristics [56], and these groupings became clearly function-

Figure 2. Daily depth readings for the River Severn at Llandinam Gravels between April-October 2009 showing variations around
the baseline depth of 54 cm on April 4th, the date on which gravel bars were surveyed.
doi:10.1371/journal.pone.0061866.g002
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ally delineated when relative isotopic niche positions were

investigated. An increasing utilization of aquatic subsidies was

present when the species possessed traits that reduced the risks

associated with high flows. Previous investigations have tended to

class functionality by taxa; ant raiding parties [57] web building

spiders [58], predatory beetles [20,21,59], but there has been little

or no success in establishing how species with life-cycles tied to the

floodplain may differ functionally from generalist, opportunistic

species. Our evidence confirms, to our knowledge, for the first time

that not only do riparian invertebrates make different prey

selection choices (as observed by [45,52]) but, that there is a

gradation of trait-driven specialisms, which dictate functional

responses to the high-flow events characteristic of the habitat. This

supports recent research on desert riparian arthropods, which

suggests concurrent low flow drivers[16]. This flow-related

relationship demonstrates the persistent influence of the stream

into terrestrial environments, continuing the in-stream, trait-

driven responses that have elsewhere been demonstrated [27,60].

Species may possess a total affinity to the habitat (e.g. C. 5-

punctata), but lack the traits which allow full utilisation of the

subsidies available. Conversely, a combination of beneficial traits

(e.g. mobility, positioning preference) which provide advantages

during disturbance [30] allows flexible, and therefore broader

utilisation of available subsidies. B. tetracolum is known to exhibit

morphological plasticity, with wing length increasing with

proximity to rivers [25], therefore the individuals in this study

may be assumed to be within the upper range of wing size for this

species, with the pressures of flooding selecting strengthened

macroptery. In contrast, other species with stronger, or total

affinity to the habitat, are more strongly aligned with the riparian

habitat and do not exhibit downstream assemblage heterogeneity

Table 3. Spearman’s rank correlation coefficients for environmental variables, showing significant relationships between the area
and edge length of patch, area of patch and incline, and frequency of inundation and incline.

Heterogeneity Vegetation Incline Area Substrate Phi Edge length Inundation

Heterogeneity 1.000

Vegetation 0.398 1.000

Incline 0.218 0.265 1.000

Area 2.083 0.158 0.612* 1.000

Substrate Phi 20.356 20.084 0.263 20.042 1.000

Edge length 0.086 0.110 0.38 0.703* 0.14 1.000

Inundation 2.145 20.357 20.544* 0.286 0.835 0.515 1.000

*significant at.0.05.
doi:10.1371/journal.pone.0061866.t003

Figure 3. Biplot of principle identified prey sources and
consumer data. Aquatic invertebrates (blackflies and stoneflies show
greatest d15N, relative to terrestrial invertebrates (springtails and
aphids). The majority of consumer data lies within observed prey
values, indicative of dietary contributions from both aquatic and
terrestrial prey. Mean isotopic values for prey items are shown 6 SD,
individual consumer values are shown.
doi:10.1371/journal.pone.0061866.g003

Figure 4. The isotopic niche areas for hypothesized functional
groups (1 is headwater specialist ground beetles, 2 is lowland
specialist ground beetles, 3,weak affinity ground beetles, 4,
ground beetles with no habitat affinity; 5, specialist non-
ground beetles associated with headwaters). Dotted lines
indicate the convex hull for each group, the extent of all individuals’
plotted isotopic values; ellipses represent the probable area in which
the population’s plotted values are likely to be found. Greater levels of
d15N are indicative of greater contributions from aquatic prey items.
doi:10.1371/journal.pone.0061866.g004
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or utilize other riparian habitats. Whilst micro-spatial positioning

has been demonstrated [33,34,44] as evidence of resource

partitioning amongst specialist invertebrates, we believe that this

is the first that trait-driven resource partitioning has been shown to

extend to prey selection in these riparian systems.

Influence of habitat variability on prey selection
Although micro-spatial positioning of species is believed to be

controlled by various physical components of the landscape,

including sediment calibre, vegetation levels, and humidity (e.g.

[44]), the only species where any of these induced a prey selection

response is B. tetracolum, which has a low affinity to the habitat. Its

response to sediment calibre showed a reduction in aquatic prey

on larger substrates, and highest levels of aquatic prey at the lowest

level of habitat heterogeneity. Both of these variables are tied

inherently to inundation: coarser sediments with greater inunda-

tion [38] and increased heterogeneity symptomatic of terrestria-

lisation of the riparian habitat [20] and reduced permeability for

aquatic prey [61]. The level of hydrological variation is the

primary driver of habitat formation/removal in floodplains [3]. It

is possible that the observed responses of B. tetracolum to these

variables are an indirect measure of the role of changing flows,

higher inundation which results in coarser calibre sediments, also

reduces access to aquatic prey, and low heterogeneity provides

greater permeability for emergent insects, increasing access to

aquatic prey.

Lateral influence of aquatic prey subsidies
Variation in the strength of aquatic influence on the isotopic

signal of consumers with differing traits illustrates strong functional

differences with the riparian coleopteran fauna. As the biomass of

emerging and stranded aquatic invertebrates drops off rapidly

within a few metres of stream edge [47], species which are highly

dependent on the subsidy must necessarily place themselves at

great ‘risk’ of inundation by staying close to their prey. The other

alternative is to employ dietary plasticity, so that under adverse

conditions, alternative prey are selected. Some species do exhibit a

strong preference for stream edge positioning (e.g. B. punctulatum,

B. decorum) and use greater proportion of aquatic prey. Similar

species with equally high dispersal potential (e.g. B. atrocaeruleum)

exhibit different behaviour, with individuals typically showing

greater within patch mobility [34]. Whilst the majority of the

individuals of the B. punctulatum/B. decorum will be found close to

the stream edge, B. atrocaeruleum is less densely clustered. The

Figure 5. Probability density function of dietary proportions of two species of specialist ground beetles, B. atrocaeruleum (a) and B.
punctulatum (b) illustrating the relative dietary contributions made by aquatic and terrestrial prey according to whether samples
were collected from the wetted edge of the habitat patch, or inland, at the point of permanent vegetation. The mid-line represents
their mean with 25%, 75% and 95% credibility intervals.
doi:10.1371/journal.pone.0061866.g005
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former strategy allows for a greater, more reliable uptake of the

aquatic subsidy but potentially places an entire local population at

risk from inundation events; the latter strategy reduces access to

the aquatic subsidy, but in the event of flooding, a larger

proportion of the local population avoids the disturbance. When

we tested whether these positioning choices influenced prey

preference, all of the Bembidion species in this study (regardless of

grouping) demonstrated levels of dietary plasticity between stream

edge individuals and those sampled further inland, with increasing

levels of terrestrial subsidy at inland sampling points. Given the

relative impermeability of the riparian zone to the aquatic subsidy,

this increase in prey sourcing is to be expected, as terrestrial items

become more abundant than aquatic, but it also supports the

hypothesis that prey-switching is an important trait in these

species, allowing them to make best use of available resources.

Seasonal variation in prey choice
The strength of this capacity for dietary plasticity is best

demonstrated by data on seasonal variations in isotopic signals of

consumers. This seasonal element has been observed before

[46,62], although this was within the context of shifting levels of

subsidy tied to emergence rates from the river. Our study, based

on data collected over 12 months, appears to substantiate the

behavioural observations made of European and FennoScandian

riparian communities [35,39], where the default overwintering

strategy is to move inland, away from the active channel and

thereby removing the population from higher winter flows with

potential to rework the floodplain habitat. We hypothesised that as

this movement begins in early autumn, it might be possible to

detect an obligative shift in diet by riparian consumers, driven

both by reduced prey and habitat availability. Our findings

indicate that this is the case for all functional groups, even for those

with the stream-edge preference. In addition, the strength of this

switch toward terrestrial indicates, we suggest, that the overwin-

tering sites are not characterized by total quiescence, but levels of

activity that allow enough prey consumption as to alter the isotopic

signal of the community. This appears to be the first time that such

a shift has been demonstrated in species usually described as

having total affinity to the disturbed riparian habitat.

Inundation pressure as a driver of prey selection
By analysing a geographically proximate population, where

environmental variables rather than phenotypic variation are most

likely to drive observed variation between bars, we could first test

that inundation is the demonstrable factor influencing prey

selection (after eliminating habitat characteristics associated with

within-patch distributions). Tellingly, those species with traits less

beneficial under the disturbance regime were absent from highly

inundated patches, as such our data covers only the groups with

strong locomotive and/or flight abilities, which were all species of

Bembidion. At low levels of inundation pressure, there is evidence of

resource partitioning between the two species with strongest

Figure 6. Probability density function of seasonal change in dietary composition in B. atrocaeruleum and B. punctulatum showing
summer (A) 2009, autumn (B) 2009 and spring (C) 2010. The mid-line represents the mean with 25%, 75% and 95% credible intervals shown.
doi:10.1371/journal.pone.0061866.g006
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avoidance traits, with the stream edge species dominated by

aquatic and the mobile species by terrestrial isotopic signals. The

convergence of these dietary contributions under heightened

inundation pressures is indicative of reduced foraging area. As

water levels rise, stream edge species migrate up the floodplain

[11], encountering more terrestrial prey; whilst mobile species

have a greater likelihood of entering the stream edge zone and

encountering aquatic prey items. Both responses indicate an

opportunistic plasticity in diet that is only mildly affected by

flooding pressures. Their mutual dispersal abilities allow them to

persist within the habitat (rather than emigrating) and exploit its

resources with reduced risk of mortality. The observed, extreme

change in prey selection by B. tetracolum is indicative of its lack of

specialism. B. tetracolum is able to opportunistically take aquatic

prey items under low risk conditions, but forced by a relative lack

of useful traits to abandon the habitat and its subsidy under higher

inundation conditions. Species-specific variations in population

recovery have been found following major flood events [22,42];

our data seems to indicate that alongside flood survival mecha-

Figure 7. Probability density functions of ground beetle species from each of the groups with a level of association with the
disturbed floodplain habitat, (A) B. atrocaeruleum, (B) B. punctulatum and (C) B. tetracolum, showing variation in dietary composition
grouped by inundation levels (Low, Moderate, High; see Table 1 for descriptions of levels). The mid-line represents the mean with 25%,
75% and 95% credible intervals shown.
doi:10.1371/journal.pone.0061866.g007
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nisms, continued ability to utilise resources may play a part in

these species-specific variations.

Downstream changes in prey selection
The increasing contribution of aquatic prey to B. punctulatum

downstream is in accord with studies of higher order rivers

[42,46], but the trend is less strong in B. atrocaeruleum and B.

tetracolum. Elsewhere, we mention that B. atrocaeruleum is associated

with headwater habitats [63], although it persists for considerable

distances downstream (.150 km). The within-patch mobility is

appropriate for habitat vulnerable to the unpredictable high flow

events characteristic of high altitude streams. It ensures that a

proportion of the local population has reduced exposure to sudden

rises in flow. However, there is a trade off, as it also reduces the

local population’s total access to aquatic subsidies. Habitat further

downstream has a less flashy hydrological response and greater

area of floodplain. Consequently stream-edge positioning incurs

less sudden inundation risk. Under these conditions, traits which

favour stream-edge positioning have optimum value, as the whole

local population can benefit from the increased stability to utilise

the subsidy. The exclusion of B. atrocaeruleum may indicate a

reduction in the efficiency of its traits under lowland, downstream

conditions, the temporary rise in subsidies perhaps indicative of a

convergence of trait value at mid-points in the river.

Conclusions and significance
Although easily overlooked due to their physical size and the

presence of more charismatic species (e.g. birds), the invertebrate

fauna of floodplains represent a major component of floodplain

biodiversity. This study demonstrates that hydrologically driven

pressures of the stream:riparian ecotone require the possession of

specific traits. Without these traits, species are either unable to

process the aquatic subsidy, enhancing its movement onto the

floodplain, or may only do so under low flow conditions.

Subtle changes in behaviour and the strength of physical traits

dictate the optimum positioning of different beetle species, altering

their functional contribution to the riparian zone. High affinity

species, with relatively weak dispersal traits, have reduced access to

the potential subsidy available from the adjacent stream due to

their positioning above the zone at greatest risk of flooding.

However, this positions them to utilise available terrestrial prey,

suggesting that they possess traits that fit them for the specific

demands of this micro-habitat. Strong dispersal traits better fit

species to utilise the aquatic subsidy, but a second trait filter acts

upon able dispersers that favours different strategies under the

different hydrological regimes occurring downstream. We have

demonstrated that long-term patterns of local hydrology will

determine the baseline isotopic signal of predatory Coleoptera.

Beyond the scope of this study, and an area that seems ripe for

further exploration, is the importance of individual events to this

fauna. Utilising tissues (wings or reproductive organs) with rapid

isotopic turnover rates may provide a mechanism to examine these

Figure 8. Probability density functions of longitudinal variation in prey source for the two specialist species, B. atrocaeruleum (a)
and B. punctulatum (b), along a headwater to lowland floodplain gradient. The mid-line represent their median and the shaded boxes
representing the 50%, 75% and 95% credible intervals from dark to light grey.
doi:10.1371/journal.pone.0061866.g008
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short-term processes, eliminating the influence of chitinous

material which although has some isotopic turnover [64] may

retain a strong larval isotopic signature [65].

Observed abundances of riparian Coleoptera in floodplain

habitats have been explained as a functional response to the

specific pressures of the habitat: high disturbance, low productivity

and relatively strong external subsidies from adjacent aquatic

ecosystems [20,46,66]. With high levels of rarity, the assemblages

represent a valuable component of floodplain biodiversity, and as

consumers of emerging invertebrates, a major vector for trans-

porting aquatically derived nutrients into the floodplain. This

study has explored some of the complexities inherent in these

assemblages, for instance, why dispersal ability and proclivity

varies so much between specialist floodplain invertebrates.

Variation in feeding strategies and uptake efficiency in an

apparently homogenous grouping, extends laterally and longitu-

dinally, partitioning habitat and prey resources. The complexity of

floodplain invertebrate communities has been well described, but

we are now able to suggest how that complexity translates into

important invertebrate functional roles within the floodplain. With

an increasing interest in reconnecting floodplains and rivers [67],

these invertebrates represent a key functional element in ensuring

that such reconnections have demonstrable ecological value.

Materials and Methods

Ethics Statement
The landowners gave permission for access to the sites. Permits

were not required specifically for the collection of invertebrates at

the survey sites. The sampling was based around hand searching

thus was of a relatively low intensity and unlikely to have impacts

on local populations.

Study System
The sampling was nested to include: (i) a detailed study of 20

sampling points on a 5 km stretch of the upper River Severn in

mid-Wales (52.5uN, 23.4uE), which contains extensive areas of

gravel and sand bars, and (ii) 15 further sampling points along a

150 km stretch of the River Severn, incorporating similar habitat,

from the headwaters at Llandiloes, down to Ironbridge Gorge in

the English Midlands (Figure 9). Care was taken to avoid sampling

bars where livestock had access due to the potential for nutrient

enrichment and invertebrate community alteration [68].

Despite impoundment further upstream, the river flow regime

retains high variability, sustaining the river’s wandering gravel bed

(sensu [69]) form within its floodplain, this ensures a high turnover

of riparian habitat, utilised by characteristic specialist arthropods.

The stretch of the river immediately downstream of Llandinam

has been studied extensively for over a decade and is known to

contain a diverse and abundant assemblage of specialist inverte-

brates [20,44,70] including dominant ground beetle species (B.

atrocaeruleum, B. punctulatum and B. tetracolum) which persist along the

150 km gradient.

Environmental Variables
A suite of environmental variables were measured on each of

the 35 patches (gravel bars). Incline (1–gentle; 2–moderate; 3–

steep), area (m2), length of wetted edge (m) were measured in situ.

Habitat heterogeneity (1–low; 2–moderate; 3–high), vegetation

structure (1- bare; 2 – annual/biannual; 3- perennial) and

substrate calibre/size measured in Phi classes (1 – coarse gravel;

2 - very coarse gravel) were derived from previous survey data

[71]. Inundation susceptibility was assessed by surveying each bar

during a period of low flow (April 2009) using a Leica Geosystems

1200 d-GPS for 20 gravel bars in the upper reach of the river. The

surveying was done by first walking the outline of each bar, then

collecting point data using a 565 metre grid, and finally targeting

all breaks in slope [72]. These surveys were used to produce a

digital elevation model (DEM) of each habitat patch in a GIS

(ArcGIS 9.2, ESRI Redlands, USA). Detailed contour maps were

produced using splining within ArcGIS Spatial Analyst at 20 cm

resolution. The GIS layer was tilted to replicate the water slope

through the river reach [38] and related to stage data (river depth)

provided by a permanently installed pressure transducer, which

recorded data at fifteen minutes intervals throughout the study

period (April 2009–April 2010). When compared against available

long-term data, the study year shows a comparable hydrograph

with peak flows in November-December 2009, lowest flows in

April and June, with stochastic high flows events in June, and then

August. The GIS and flow data were used to model the area and

percentage of habitat submerged under differing river depths,

allowing each patch to be assigned an inundation susceptibility

value of low (,50% loss of habitat), moderate (51–90% loss) or

high (.90% loss) at a river depth 1 m above the April 2009 flow

(Figure 2). The validity of the inundation maps was ground-

truthed by direct observation across the range of flow events

during the sampling period. Pressure transducer data for the site,

which indicates local hydrological stage, was examined to assess

the speed with which river levels rose. The rising limb of high flow

events was consistently between 3.5–5 cm per hour, regardless of

timing, magnitude or duration of the inundation event. Given that

this rate of increase would take 2–4 hours to submerge even the

shallowest profile habitat it is likely that repeated inundation over

time would be more important at patch level than single high flow

events.

Invertebrate Sampling and Trait Groups
Samples of numerically dominant terrestrial Coleoptera (Car-

abidae, Staphylinidae and Coccinelidae) and their potential prey

(aquatic and terrestrial) were collected three times during the study

(June 2009, September 2009 and April 2010). Terrestrial

Coleoptera were collected by hand searching twice at the stream

edge, and at the point where perennial vegetation became

established on each bar (four searches per bar). Potential terrestrial

prey (Collembola,aphids, sedentary Coleopteran larvae (G. viridula)

and mites, usually parasitic on resident Coleoptera and Aranea)

were collected systematically by timed hand searching from the

substrate and host plants, taking 10–30 mins per location

proportional to the size of the habitat (Table S1). Potential

aquatic prey were collected using a standard three minute kick

sample with a 500 mm net [73], repeated three times at four

positions per season within the sample reaches to incorporate

major channel forms (e.g. pools, riffles, glides). All major families of

invertebrates were sorted from the samples, with late instar

individuals selected for analysis, as they are isotopically closest to

adults [46]. Individuals represented Diptera (including Chirono-

midae, Simuliidae and Tipulidae), Ephemeroptera, Plecoptera and

Trichoptera. Although the diversity of potential prey items was

reduced in this system, in comparison to studies conducted in

European systems, we collected and analysed all potentially

important and dominant food sources. For the SIA analyses,

orders were separated into families to account for different feeding

strategies (e.g. predator/herbivore). As with other published

isotope studies, we inferred the signal of a wholly terrestrial-

sourced diet from the values derived from predatory beetles with

no affinity to the habitat, found away from the stream edge [52].

These possessed a reduced d15N signal relative to gravel bar
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associated species and the majority of aquatic organisms analysed

(Table S1).

In an adaptation of the methodology used by Ribera et al. [56]

six specimens of each of twelve dominant sampled Coleoptera had

wing, leg and body measurements taken, these were then Ln

transformed to attain statistical normality, which was accepted

following visualisation and assessment of linearity via QQ plots

[74]. These morphological data provided ratios of wing: body and

leg: body which were analysed using ANOVA with a post-hoc

Tukey test to identify statistically-significantly/similar different

groups. Species were grouped according to morphological

similarity. To examine the ecological validity of these groupings

data from a larger regional study [75] were used to derive

Spearman’s rank coefficients of species’ co-existence based on

presence and abundance and significant correlations grouped [76].

Regional variations in assemblage were modelled using general-

ised linear modelling [77] to further explain longitudinal changes

in species’ distribution, after assessing normality (via QQ plots)

and visual assessment of the presence and importance of outlying

data and heterogeneity of variance in graphical outputs from the

Figure 9. Sample sites on the River Severn, UK, indicating headwater study area containing 20 bars used for inundation data, and
the five reaches sampled (15 sites in total) for longitudinal data.
doi:10.1371/journal.pone.0061866.g009
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regression models [74]. This process suggested groupings (Table 1),

based on measured traits, modelled distributions and known

behaviour [34,44,63], and identified target Bembidion species for

SIA analysis.

Stable Isotope Analysis
After collection the samples were returned to the laboratory and

frozen, prior to identification to species (for Coleoptera) and family

(for potential prey) levels. All samples had gut contents removed,

were rinsed and dried. Individual samples were split, with one half

undergoing lipid extraction prior to analysis for d13C and the other

retained for d15N. Lipid extraction was chosen over post-analytical

correction methods to reduce the strength of between sample and

season variability [78]. A 2:1 mix of ethanol: methanol was added

to samples for a minimum of 30 minutes before centrifuging and

disposal of the solvent. This process was repeated three times

before the remaining sample was dried for 24 hours at 60uC [79].

Individual samples were then weighed (Carbon: 0.2 mg60.05 mg:

Nitrogen: 0.6 mg60.06 mg) into tin cups prior to combustion.

Stable isotope composition was measured by continuous flow mass

spectrometry at the SILLA Laboratory, University of Birmingham

using an IsoprimeTM IRMS connected to an Elementar PYRO

cube�. Precision was ensured by reference to calibrated standards

CH3 and N1 from International Atomic Energy Agency (IAEA).

The two techniques were analysed on separate sub-samples

avoiding observed influences of the lipid extraction process on

d15N [80] and precision was better that 0.7%. The ratios of
13C/12C and 15N/14N are presented as relative difference per mil

(%) using the equation:

dX ~ Rsample=Rstandard{ 1
� �

x 1000

where X = 13C or 15N, and R = 13C/12C or 15N/14N. 13C:12C is

expressed relative to PDB (Pee Dee Belemnite), where

Rstandard = 1.1237 atom % 13C [81]. 15N:14N is expressed relative

to atmospheric N2, where Rstandard = 0.3663 atom % 15N [82].

Data Analysis
Species data were analysed separately and by the functional

groupings shown in Table 1. Sample sizes were large enough to

allow species-specific analysis of three ground beetles with an

affinity to the habitat, B. atrocaeruleum, B. punctulatum and B.

tetracolum. This study did not attempt to characterise responses of

phytophagous specialist species present in the habitat and which sit

in the same morphological groupings as predatory Stenus spp and

C. 5-punctata, e.g. Zorochros minimus (Boisduval and Lacordaire,

1835) or Fleutiauxellus maritimus (Curtis, 1840). Neither did we seek

to analyse the fossorial Staphylinids, e.g. Hydrosmecta spp.

associated with the habitat, due to their small size. These remain

areas for potential further exploration but were beyond the scope

of the current study.

Analyses were conducted to determine how dietary composition

was influenced by habitat variables: inundation susceptibility

(Inundation), sampling position (wetted edge or vegetated inland),

patch area (Area), sediment calibre (Phi), gradient (incline),

vegetation type (Vegetation), wetted perimeter length (Edge) and

patch heterogeneity (Heterogeneity), season and longitudinal

position along the catchment. The inundation analysis excluded

specialist non-ground beetles (group 4) and generalist ground

beetles (group 5) due to the small sample numbers retrieved from

highly inundated(.90%) patches. This analysis was conducted

only on samples collected in autumn 2009, as these represented

individuals exposed to known inundation pressures. Correlation

between environmental variables and inundation susceptibility was

assessed using a Spearman’s rank coefficients (Table 3). Where

significant correlations occurred, these were assessed for ecological

relevance (i.e. which was the stronger driver in the relationship)

and individually were run in SIAR to determine their influence

upon consumer isotopic signals.

Isotope Analyses
SIA provides a mechanism for assessing variation in dietary

composition both spatially and within assemblages. d13C and d15N

are naturally occurring isotopic forms which are fractionated by all

organisms during metabolism and excretion [83] allowing for

studies of trophic positioning within food webs [84,85]. Stable

Isotope analysis was conducted using a Bayesian mixing model,

SIAR (version 4), available as an open source package [86] within

R (v 12.3.1) [87]. Isotopic position was assigned using a Bayesian

probability framework to evaluate most likely distributions of

isotopic values by functional group, data were plotted to provide a

visual estimation of trophic positioning via isotopic niche [88]. A

refinement of the ‘total area’ concept was used to assess the spatial

extent of a food web [84]. Dietary proportions were determined in

SIAR in a model fitted via a Markov Chain Monte Carlo

(MCMC) method, which provides probability density function

distributions of the feasible (total range) and most probable

(median) proportions of the organisms’ diet. The model captures

errors associated with input variables including trophic enrichment

factors and source variability, as well as an overall residual error

term [86]. As it is not currently feasible to use a multivariate

approach, the importance of the environmental variables was

examined by adding them individually into the mixing models one

variable at a time. The variable that showed the strongest patterns

in relation to isotopic values was inundation.

We utilised data from previous gut content and isotopic studies

[45,46,89] to inform a priori selection of potential prey items before

repeated modelling produced a final two-source model of aquatic

and terrestrial energy sources to riparian invertebrate production.

This method reduced the original multisource data set (mean

isotopic values of a representative range of these is presented in

Table S1), and allowed repeated testing against variables to

circumvent the lack of a multivariate component in the mixing

model. Trophic enrichment occurs in all consumers, although

rates vary between organisms, individuals and tissues [78,90,91].

For invertebrates a standard trophic enrichment rate has been

established at 2.3%60.15 for d15N and 0.5%60.13 d13C [92],

which we included in the mixing models.

Supporting Information

Table S1 Mean isotopic values from selection of
potential prey items and consumers from both aquatic
and terrestrial systems; ranked according to d15N value.

(DOCX)
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