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Summary

Robust aiding of inertial navigation systems in GNSS-denied environments is critical
for the removal of accumulated navigation error caused by the drift and bias inherent
in inertial sensors. One way to perform such an aiding uses matching of geophysi-
cal measurements, such as gravimetry, gravity gradiometry or magnetometry, with a
known geo-referenced map. Although simple in concept, this map matching proce-
dure is challenging: the measurements themselves are noisy; their associated spatial
location is uncertain; and the measurements may match multiple points within the
map (i.e. non-unique solution). In this paper, we propose a probabilistic multiple
hypotheses tracker to solve the map matching problem and allow robust inertial nav-
igation aiding. Our approach addresses the problem both locally, via probabilistic
data association, and temporally by incorporating the underlying platform kinematic
constraints into the tracker. The map matching output is then integrated into the navi-
gation system using an unscented Kalman filter. Additionally, we present a statistical
measure of local map information density — the map feature variability — and use
it to weight the output covariance of the proposed algorithm. The effectiveness and
robustness of the proposed algorithm are demonstrated using a navigation scenario
involving gravitational map matching.
KEYWORDS
Map Matching, Gravity Map Matching,Expectation Maximisation, Multiple Hypotheses Tracker, Proba-
bilistic Data Association

1 INTRODUCTION

In GNSS-denied (or contested) environments, platform navi-
gation performance is dominated by the accuracy of onboard
inertial sensors. Even with high end inertial sensors, which
exhibit extremely low bias and drift, it is not possible to avoid
the build up of navigation errors over long time frames (Titter-
ton &Weston, 2004). Removing these accumulated navigation
errors is crucial to retain the confidence of navigation accu-
racy (Groves, 2013). This removal, or correction, is achieved
using one or more aiding sources that provide positional infor-
mation, i.e. a position fix. Aiding sources can be categorised
into three groups based on the technologies involved: 1) Radio-
based aiding, which uses a transmitted ratio signal to obtain

a position fix – the canonical example is GNSS-based aiding.
2) Electromagnetic imaging, such as visual camera systems
or Synthetic Aperture Radar (SAR) imaging, which obtain
a position fix by imaging the terrain around the platform
and registering the corresponding image to known landmarks.
3) Geophysics-based aiding, which obtain a position fix by
measuring geophysical quantities andmatching thesemeasure-
ments to a known geo-referenced map – a process known as
map matching. Examples of the geophysical quantities, and
their associated maps, include one or more of the elements
of the gravitation vector and/or the gravity gradient tensor;
the corresponding magnetic quantities; and bathymetry. In this
paper, we focus on this geophysics-based aiding and present a
novel map matching algorithm.
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FIGURE 1 Illustration of a generic single recursion map
matching aided Inertial Navigation System (INS). The map
matching block takes the current kinematic state estimate and
covariance of the platform, (x̂,�), and augments its position
component by matching the geophysical measurement sk to a
geo-reference map. The kinematic state estimate, x̂, is
obtained by integrating the accelerator and gyroscope
measurements, respectively fb and !b, in the INS block.
Finally, XINS denotes the full state vector from the INS and
(x̂s,�s) represents the estimated platform position and error
covariance using sk by the map matching.

Map matching techniques are widely used in localisation
and navigation scenarios where GNSS is not readily avail-
able such as underwater, urban or hostile environments. Based
on how the measurements and corresponding maps are used,
approaches to geophysical map matching navigation can be
split into two groups: implicit map matching and explicit map
matching. Implicit map matching techniques feed the geo-
physical measurements directly into statistical filters along
with the inertial measurements. In this framework, the geo-
referenced maps are used as look-up functions to compute
the predicted geophysical measurements in the prediction step
of the statistical filters. Due to the non-linear relationship
between the estimation states and geo-physical measurements,
early approaches opted to use extended Kalman filters (EKF)
to perform the estimation; examples include EKFs involving
gravimetry (Affleck & Jircitano, 1990), gravity gradiome-
try (Jekeli, 2006), or both for submarine navigation (Moryl
et al., 1996). A performance analysis of a gravity gradiome-
try EKF was presented in (Lee et al., 2015). More recently, to
avoid the linearisation present in the EKF, unscented Kalman
filters (UKF) have been proposed for gravimetry (Wu et al.,
2010) and gravity gradiometry (Gao et al., 2021). Finally, par-
ticle filters have been proposed for terrain-aided navigation
using bathymetry data (Teixeira et al., 2017). A limitation of
implicit map matching techniques however is that the statis-
tical filters need to be re-designed when either changing the
type of geophysical measurements used or incorporating new
geophysical quantities. A more flexible approach is found in
explicit map matching.

Explicit map matching techniques determine an estimate of
the platform’s location by directly matching the geophysical
measurement to a point in the map, i.e. the matching occurs
explicitly in the map space. The resulting location estimate
is then integrated into the navigation system in a similar way
to a loosely coupled GNSS/INS system. Figure 1 shows a
block diagram of a generic inertial navigation system (INS)
with aiding from an explicit map matching system. The key
idea is to match the geophysical measurements s to a loca-
tion in the map and then use this location to improve the INS
position estimate x. The improved position estimate xm is then
integrated into the full INS state vector XINS. Although con-
ceptually simple, this map matching procedure is challenging
for the following reasons. First, the geophysical measurements
themselves are corrupted by sensor noise so the measurements
will not match the map exactly. Second, the measurements
may match multiple points within the map (i.e. non-unique
solution). Finally, the locations where the measurements were
acquired is of course uncertain. We term these challenges as
themapmeasurement ambiguity problem and the development
of a technique to resolve this problem is the main interest of
this paper.
In the literature, one approach to explicit map matching is

to choose a position (or set of positions) in the map that min-
imise a standard error, such as mean square error or mean
absolute error, between the geophysical measurement (or mea-
surements) and the values in the map within a given region.
However, as noted above, this is unlikely to yield a unique
solution as multiple locations in the map may match the mea-
surements. To solve this issue, the trajectory of the positions
were constrained in (Wu et al., 2015 2017) using the obser-
vation that the relative INS position change is approximately
equal to relative change between the true locations. In con-
trast, DeGregoria (DeGregoria, 2010) opted to constrain the
problem by performing a joint minimisation over all five of the
independent elements of the gravity gradient tensor. Although
straightforward, these approaches do not take account of the
uncertainty in both the measurements and positional estimates,
nor the structure of the map. An alternative set of approaches
focus on utilising the non-uniqueness of a geophysical mea-
surement in the map space. Specifically, a single scalar mea-
surement belongs to an iso-contour of similar values in the
geo-referenced map. Using this concept, the authors of (Tuohy
et al., 1996) proposed a generic map matching technique for
use with two or more maps; each measurement results in a dif-
ferent contour and the position of the platform is determined
by the intersection of these contours.Measurement uncertainty
was introduced by expanding the contours to a surface enve-
lope. Building on this work, a single map approach based on
iso-contours was proposed in (Kamgar-Parsi & Kamgar-Parsi,
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1999). The authors posed the problem in terms of fitting a tra-
jectory to set of iso-contours based on initial position estimates
and sensor measurements. To make the problem well-posed,
a stiffness regularization term was introduce to regularise the
shape of the trajectory. However, linking the kinematic con-
straints of the platform’s motion to the regularization term is
not straightforward.
In this paper, we propose a probabilistic multiple hypotheses

tracking map matching (PMHT-MM) algorithm to aid the
onboard INS that performs platform localisation by matching
the onboard gravimetric sensor measurements with a geo-
referenced data map. The INS compensation is treated as a
recursive Bayesian estimation problem. At each epoch, the
prior platform location distribution is obtained from the INS
computed navigation state and updated by the gravimetric sig-
nal coordinates, estimated from map matching using a UKF.
Map measurement ambiguity is addressed with the Expecta-
tion Maximisation iterative approach, locally using a proba-
bilistic data association, and temporally by considering the
kinematic constraints of platform motion. Simulations using
online data maps demonstrate that the proposed PMHT-MM
aided INS can effectively eliminate long term INS position
errors caused by inertial sensor bias and drift in the GNSS
denied environment. To the best of our knowledge, the use of
probabilistic multiple hypotheses tracking algorithm for map
matching is novel and is a major contribution presented in this
paper.
Following the introduction, the problem formulation is

given in Section 2. We then present the PMHT-MM algorithm
for INS aiding in Section 3. In Section 4, the performance of
the proposed algorithm for aiding of INS using onlinemaps are
demonstrated in a realistic navigation scenario without GNSS.
Results and discussions are presented, followed by conclusions
in Section 5.

2 PROBLEM FORMULATION

Let s represent the sensed signal. This may reasonably
be assumed a Gaussian distributed random variable s ∼
 (s0, �2), where s0 is the noiseless signal and � the stan-
dard deviation of signal error. We assume, too, that the prior
distribution of platform location is Gaussian with mean and
covariance being xs and �s, respectively. The signal location
from the map, denoted by, based on the measurement s can
be expressed as

Zm = f (xs,�s, s,). (1)
Equation (1) is referred to as the map lookup function. Note
that the prior location distribution of the platform, together
with a threshold 
 , defines an ellipsoidal area on the map
centered at xs. Regardless of field measurement noise, the

distribution of the map lookup function from a single mea-
surement s can result in more than one likely location being
compatible with the measurement. Fig. 2 illustrates an one
dimensional example of the map lookup process via (1). We

data magnitude

x 2x
3x
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σs −3 

δxx − 
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x +δx
s

signal level

search window1D map

geo−reference1

FIGURE 2 Illustration of the map lookup process by an one
dimensional example. The location of the sensed signal s
with standard deviation of noise � on the 1D map is found the
search window centred at the prior of signal location xs with
uncertain off-set �x. In this example, the collected signal
location candidates on the map are x1,x2 and x3.

write Zm = {zi, i = 1,⋯ , n} for the collection of possible
candidate locations of s from the measurement that also satisfy

(zi − xs)(�s)−1(zi − xs)′ ≤ 
, (2)
where 
 is a constant probability threshold. Choice of the value
of 
 means that the ellipsoid area contains the signal location
with a certain level of confidence. In this work, we refer to
such an area as a search window. It will often approximated
by a rectangular area (rather than ellipsoidal); this provides
significant computational efficiency with only a minor loss of
accuracy. Fig. 3 shows an example of a search window on a
gravity map corresponding to the down component of the grav-
itational vector. It spreads over an area of 5 × 5 km2 with a
collectionZm of 50 candidate locations of the measured signal
with the mean of prior at the centre.
The map matching problem is to find the posterior density

p(x|Zm) of the location x of the signal s on the map based
on the candidate locations, Zm, and the prior.
In this work, we propose the PMHT-MM tracker to estimate

this posterior density for INS aiding. The algorithm works
with a sequence of sensor measurements that corresponding
to a batch of platform locations over time. Each time, the
algorithm runs iteratively, using an Expectation-Maximisation
technique (Dempster et al., 1977) to approximate the optimal
estimator, taking into account data correlation locally and over
time through the platform kinematic constraints.
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FIGURE 3 Illustration of signal location search window with
the collection of signal location candidates (red dots) obtained
via the map lookup function (1) with the field measurement
s = 9.7974m∕s2 and the standard deviation of measurement
noise � = 0.9776 × 10−5 m∕s2. The green dot is the true
signal location and black dot signifies the PDA solution,
presented next. The data map is the Global Gravity Model
Plus gravity field map obtained from (Geodecy Group, 2016).

3 PROBABILISTIC MULTIPLE
HYPOTHESES MAP MATCHING

In this section, we present our method to solve the map match-
ing problem. This combines a probabilistic data association
(PDA) technique from (Bar-Shalom & Fortmann, 1988), used
to resolve the mapmeasurement ambiguity issue, with a proba-
bilistic multiple hypotheses tracker (Streit &Luginbuhl, 1994),
to provide a robust map matching solution in the context of
INS aiding.

3.1 Map access via probability data
association
Under the assumption that the location of a sensed signal s
(e.g., obtained from the onboard INS) is of Gaussian distribu-
tion x ∼  (xs, Σs), the PDA solution of the map location
z of signal s using the map lookup function (1) is a proba-
bilistic combination of the set of n candidate locations Zm =
{z1,⋯ , zn}. The probability weight of each candidate location
zi is proportional to the geometric distance between zi and the
window centre xs. The probability weight can be calculated as

wi =
p(zi|xs)

∑n
j=1 p(zj|xs)

, (3)

where p(zi|xs) ∼
(

zi −xs, Ri(�)
), andRi(�) is the associ-

ated variance which is a function of the signal noise variance,

or in other words, signal-to-noise ratio (SNR). Thus, the PDA
solution, combining multiple locations to a single location, for
the map location of sensed signal s over the area described by
(2) is the following weighted mean:

z̄ =
n
∑

i=1
wizi. (4)

and the associated weighted variance:
R̄ =

∑n
i=1wiRi(�)
∑n
j=1wj

. (5)

3.2 PMHT-MM algorithm
The proposed PMHT-MM algorithm is derived directly from
the PMHT algorithm, originally proposed by (Streit & Lug-
inbuhl, 1994) for the application of multi-target tracking in
clutter. We adopt this technique here for the map matching
to aid an INS, where only a single target - the platform - is
involved. It provides an iterative multiple hypotheses process-
ing framework that handles measurement ambiguity locally,
and system uncertainties over time under platform kinematic
constraints. As pointed out in (Davey, 2007), it has good data
association performance with a cost that is linear in time and
the number of targets.
Let xt denote the kinematic state of the platform, which

involves position and velocity. Its evolution over time is locally
described by the state space model:

xt+1 = Fxt +wt, wt ∼ (0, Q), (6)
and measurement model:

zt = Hxt + vt, vt ∼ (0, R), (7)
where F ,H ,Q and R are known matrices.
The PMHT-MM algorithm works in a batch mode involving

T > 1 data sampling periods, also known as scans. Let
X = {x1,x2,⋯ ,xT },

denote the kinematic states over a batch of T scans and
Z = {Z1, Z2,⋯ , ZT }

be the set of measurements during the batch of scans, where
Zt = {z1, z2,⋯ , zn(t)} signifies the set of n(t) measurements
collected at scan t.
The PMHT-MM seeks to maximise the posterior proba-

bility density function p(X|Z) by performing the following
expectation-maximisation (EM) iteration

X̂(i+1) = argmax
X
Φ(X) (8)

where
Φ(X) =

∑

Θ
p(Θ|Z,X(i)) log p(Z,Θ|X) (9)
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and Θ = {kr(t)} represents a set of measurement-to-platform
association events, e.g., kr(t) is the event that the rth mea-
surement zr(t) at scan t originates from the platform. In the
EM terminology, Θ is the latent variable, Z is called the
incomplete data and (Z,Θ) is referred to as the complete
data. In the context of map matching, Z is the batch of T
subsets of platform location candidates corresponding to the
field measurements observed in the T scans, and Θ represents
the way of selecting the locations associated with these field
measurements from Z.
At time k = t+ T , the prior kinematic state of platform X̂k,

as expressed in (11) for i = 0, is obtained from the naviga-
tion state of the INS, and the set of signal candidate locations
Zk which are obtained via the map lookup function (1) based
on the set of gravimeter sensed signals {sk−T ,⋯ , sk}. The
PMHT-MM then runs the following two steps iteratively. At
the ith iteration:

Step 1: Calculate the PDA solution of map locations
{z̄1,⋯ , z̄T } and their associated variances
{R̄1,⋯ , R̄T } for the set of sensed signals {sk−T ,⋯ , sk}
based on knowledge of X̂(i)

k via (3),(4) and (5). Note
that the likelihood of the jth candidate location p(zj|xs)
in (3) is replaced by
p(zj|xs) = (zj ;Hx̂

(i)
t|t−1, R̄t), t = 1,⋯ , T . (10)

where x̂(i)t|t−1 is the ith iteration PMHT-MM predicted
kinematic state of the platform at time k − t.

Step 2: State update and smoothing. The prior state estimates
and the associated covariance matrices
x(i)1 ,x

(i)
2 ,⋯ ,x(i)T , and �(i)1 ,�

(i)
2 ,⋯ ,�(i)T , (11)

are updated via a fixed lagKalman smoother in a forward
(update) and backward (smoothing) recursion using the
set of measurements obtained from Step 1.

• Forward process
ŷ1|1 = x

(i)
1 , and P1|1 = �(i)1

For t = 1,⋯ , T − 1, we have (standard Kalman
filtering)

Pt+1|t = FPt|tF
′ +Q

Kt+1 = Pt+1|tH
′(HPt+1|tH

′ + R̄(i+1)
t+1

)−1

Pt+1|t+1 = Pt+1|t −Kt+1HPt+1|t
ŷt+1|t+1 = F ŷt|t +Kt+1

(

z̄(i+1)t+1 −HF ŷt|t
) (12)

• Backward process:
x(i+1)T = ŷT |T

For t = T − 1,⋯ , 2, 1, (smoothing)
x(i+1)t = ŷt|t + Pt|tF

′P −1t+1|t
(

x(i+1)t+1 − F ŷt|t
) (13)

The iteration may be stopped if the criterion ‖X(i+1)−X(i)
‖ ≤

" is met, or after a fixed number of iterations. In this work, we
chose the number of iterations as 15 in all simulations as, in our
context, almost no error difference between two consecutive
iterations is observed after 15 iterations.

3.3 Map matching aiding
The PMHT-MM algorithm is designed to work locally in coor-
dinates consistent with the INS and map geo-reference, so
that it deals with the (noisy) linear kinematics using standard
Kalman filters. In this work, the kinematic components of the
INS navigation state are taken as priors and an estimate is
made of the current platform kinematic state based on a batch
of sensed signals taken from a gravimetric sensor independent
of INS. As illustrated in Fig. 1 , the posterior estimate (x̂, �)
of the platform is integrated into the INS via a loosely cou-
pled unscented Kalman filter (UKF). Interested readers may
refer to (Titterton & Weston, 2004) and (Crassidis, 2006) for
more information on the strapdown INS with UKF integra-
tion. We highlight several points below specifically regarding
PMHT-MM aiding integration.

• Platform kinematic behaviour may be quite complex,
but locally, within the batch length T , can be approx-
imated by a linear system. A trade-off between aiding
robustness and allowable platform maneuver capability
is achieved by choosing a suitable batch length.

• Two alternative approaches can be used to implement
the PMHT-MM algorithm:
Standard: an update occurs after every batch time

duration “T × Δt”, for example, T = 30,Δt = 10,
then the aiding interval will be 300s, where Δt is
the gravimetric sensor sampling interval.

Retrodiction: update occurs after every “T × Δt” with
all navigation state components involved in the
batch processing by retrodiction. This is equivalent
to have an aiding interval Δt = 10s.

Our simulation suggests that the estimated platform tra-
jectory is more smoother by using retrodiction, though
more computational resources are required.

• In view of the fact that the data variability (variation
of features) of a map varies from place to place, it is
desirable to define a measure to describe that variability
and to find a way to take this into account in the filter
for map matching aiding. In this work, such a measure,
called map feature variability, is defined. It is denoted
by i, where i indicates the pixel around which the vari-
ability is quantified. The map feature variability at the
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ith pixel (location xsi ) within a fixed search window
template centred at i is
i =

1
n

n
∑

j
(xsi−xj)

2, ∀xj ∈ search window, xj ≠ xsi ,

(14)
where n is the number of points in the search window.
The map feature variability for a given map location
provides a confidence measure on the local map accu-
racy level. In practice, this quantity is normalised over
a fixed number of samples. If it is too small, it might
be more effective to stop the aiding as, in these circum-
stances, it contributes little andmight actually impair the
performance of the INS tracker. In the aiding process,
the covariance of the estimated location by PMHT-MM
algorithm is weighted by the map feature variability.
Fig. 4 shows an example of the map feature variabil-
ity sequence computed along the platform travel path in
the simulation scenario presented next. The magnitude
of the map feature variability reflects the level of data
variation on the map as indicated by the vertical grav-
ity disturbance measurement sequence curve shown in
the top figure along the platform trajectory taken by a
noiseless sensor.

FIGURE 4 Noiseless vertical gravity disturbance
measurements and the map feature variability of the map
along the vehicle travel trajectory. Note that in practice, the
vertical gravity disturbance measurement is the vertical part
of the deflections from the normal gravity. In this work, we
assume that the reading error of deflection angle is
determined by the onboard gyroscope accuracy and is
contained in the field sensor model.

4 EXPERIMENT AND RESULTS

In this section, the proposed PMHT-MM aiding method is
tested in a scenario of inertial navigation with aiding only
from map matching using gravimetric sensor measurements
with associated data maps. The maps used in the experiment
are the ultra-high resolution, non-parametric gravity maps,
known as GGMplus (Hirt et al., 2013). We use two maps from
GGplus: a vertical gravity field data map and a vertical grav-
ity disturbance map, both obtained online (Geodecy Group,
2016).

4.1 Geophysical Data
To exemplify our algorithm, we use the ultra-high resolu-
tion, non-parametric, gravity maps presented in (Hirt et al.,
2013 2014). These maps, known as Global GravityModel Plus
(GGMplus), achieve a spatial resolution of ∼ 250 m and cov-
ers all land and near-coastal areas for the Earth between ±60◦
latitude. This ultra-high resolution map is obtained by fusing
the following three elements:

1. GOCE/GRACE satellite gravity (spatial scales of
∼10,000 km down to ∼100 km).

2. Global geopotential model EGM2008 (spatial scales of
∼100 km to ∼10 km).

3. Topographic gravity due to terrain (spatial scales of
∼10 km to ∼250 m).

Note that the topographic gravity is obtained assuming a mass
density of 2670 kgm−3. For our simulations, we use gravita-
tional acceleration in the down and the gravity disturbance (the
radial derivatives of the disturbing gravity potential). These
maps can be accessed at (Geodecy Group, 2016).

4.2 Simulation scenario
The simulation scenario is a constant velocity vehicle travel-
ing along the surface of the earth at a fixed height of 100 m
from [−38◦, 144.5◦] to [−35◦, 150◦] (i.e., fromMelbourne area
to Sydney area) and at a ground speed of 22 m/s. The entire
journey takes more than 3.6 hours and the PMHT-MM tracker
is the only form of aiding to the onboard INS. Fig. 5 shows
the vehicle travel trajectory and the geo-referenced data map
used for the test. The onboard INS computes the navigation
state consisting of the platform geographical coordinates, nav-
igation frame velocity, attitude and associated accelerometer
and gyroscope biases at a sampling rate of 1 Hz, correspond-
ing to a standard INS implementation as described in (Groves,
2013; Titterton &Weston, 2004). We assume that a low noise
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FIGURE 5 The ultrahigh resolution data map of gravity
field obtained from (Geodecy Group, 2016). The platform
travel trajectory (blue line) is superimposed on the map.

gravimeter is onboard the vehicle to take gravity field measure-
ments at an interval of every Δt = 10 seconds. As mentioned
earlier, a UKF is used to incorporate the PMHT-MM output
to update navigation state of the INS at an interval of T × Δt.
For comparison, we choose the batch lengths of PMHT-MM
T = 15 and T = 30, respectively.
The primary simulation objectives is to compare the per-

formance of the INS equipped high end inertial sensors with
that of the INS aided by PMHT-MM to see what level of
bias correction can be acquired after the PMHT-MM aiding.
The performance is measured using the metric of root-mean-
squared (RMS) position error on the vehicle trajectories. In
addition, track divergence rate in multiple Monte Carlo runs is
counted as an indication of the robustness of the PMHT-MM.
A track in a single run is deemed to be divergent if the RMS
position error becomes increasingly large over time without
apparent bound. PMHT-MM tracker divergence is caused by a
large uncertainty in a search window center estimation with a
short batch length T ; this results in repeated exclusion of true
signal locations in the search windows.
100 Monte Carlo runs are carried out for the INS with each

of the following two sets of inertial sensors:
1. Precision grade accelerometer and gyroscope (PCAG);
2. Quantum grade accelerometer and precision grade gyro-

scope (QAPCG);
The noise characterisation of the inertial sensors is given in
Table 1 .
In addition, 100 Monte Carlo runs are carried out for each

of the PMHT-MM aided INS cases:

TABLE 1 Bias and noise ranges of inertial sensors in the
simulation according to (Jekeli, 2005).
Sensor Grade Sensor Type Bias b White Noise �
Precision (PC) Accel. horiz. 2 × 10−6m∕s2 8 × 10−5m∕s2∕

√

Hz
Accel. Vert. 2.5 × 10−8m∕s2 1.6 × 10−6m∕s2∕

√

Hz
Gyro. horiz. 2 × 10−5deg∕ℎ 1 × 10−3deg∕ℎ∕

√

Hz
Gyro. vert. 1 × 10−3deg∕ℎ 3 × 10−2deg∕ℎ∕

√

Hz
Quantum (QS) Accel. 1 × 10−8m∕s2 3 × 10−8m∕s2∕

√

Hz
Gyro. 1 × 10−5deg∕ℎ 1.2 × 10−4deg∕ℎ∕

√

Hz

1. Batch length T = 15 and the standard deviation of
gravimetric sensor noise is � = 10−5 m∕s2 or � =
2 × 10−4 m∕s2;

2. Batch length T = 30 and the standard deviation of
gravimetric sensor noise is � = 10−5 m∕s2 or � =
2 × 10−4 m∕s2.

where precision grade inertial sensors (PCAG) are used. Both
low and high noise levels are chosen for the gravimetric sensor
in the simulation. The sensor of low noise level represents a
best possible high end field sensor. On the other hand, the value
of high noise level is chosen such that below which the PMHT-
MM algorithm with the underlying map will work robustly
without divergence.
In the map matching, at each map location of the measured

signal s “predicted” by the onboard INS, a set of up to 20
locations (of data values closest to s) are collected via the
map lookup function (1). The average size of search windows
is about 5 × 5 km2 for using the gravity field map shown in
Fig. 5 and this number is slightly larger for using the gravity
disturbance map shown in Fig. 6 .
The above mentioned simulations are also repeated with the

map matching using the gravity disturbance map, which has a
larger grid cell (thus lower resolution) than that of the gravity
field map as shown in Fig. 6 . In that case, the gravity distur-
bance measurement at each epoch is obtained by processing
of the measurement of onboard gravimetric sensor. Two sen-
sor noise levels are considered: the standard deviations of the
sensor noise are 10−6m∕s2 and 4 × 10−5m∕s2, respectively.

4.3 Results and discussions
4.3.1 Overview simulation results
Before going to detail, we present a summary of the simulation
results in Fig. 7 . The figure compares the RMS position errors
of computed vehicle trajectories by the INS equippedwith each
of the two inertial sensor suites PCAG and QAPCG, respec-
tively. Along them we plot the RMS position errors of the INS
navigated trajectories with PCAG aided by the PMHT-MM
algorithm with a batch length of T = 30 using the two GGplus
maps, respectively. Each of the results are averaged over 100
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FIGURE 6 Ultrahigh resolution data map of gravity
disturbance (unit: m∕s2) downloaded from (Geodecy Group,
2016). The platform trajectory (red line) is superimposed on
the map.

FIGURE 7 Comparison of RMS position errors of the INS
1) with PCAG; 2) with QAPCG; 3) with PCAG and
PMHT-MM aiding using the vertical gravity field map (black
curve); 4) with PCAG and PMHT-MM aiding using the
vertical gravity disturbance map (pink curve).

runs. In the navigation experiment aided by the PMHT-MM a
PCAG inertial sensor suite is used, and the aiding from PMHT-
MM is integrated by an UKF whose predicted state is purely
based on INS.
Observations are made from Fig. 7 as follows.
• In the INS without aiding scenario, the RMS position

error caused by the accumulative bias and drift grow
over time unbounded, even with the high end inertial
sensors.

• Use of the quantum grade accelerometers, which have
extremely low bias and drift, results in a reduction of the
RMS position error by a little over 6% after 3.5 hours
compared with the PCAG. Nevertheless, the position
error drift is still unbounded.

• With aiding from the proposed PMHT-MM algorithm
using field measurements and data map, the position
drift accumulated from the INS over time is bounded
and a stable RMS position error performance can be
maintained.

• In this simulated example, high end inertial sensors
are used for the onboard INS, the benefit of aiding by
PMHT-MM appears after 2 hours.

• The sampling period of the field sensors is 10 s and the
aiding period of the PMHT-MM is 10 × 30 = 300s. On
the other hand, the sampling period of the INS is 1 s.
This is a partial reason that the RMS error curves of the
aided INS appear a little jagged though averaged from
100 runs each. In addition, it is worth mentioning that
the error bound level of the PMHT-MM aiding depends
on the field sensor precision and map resolution.

4.3.2 Result with the gravity field map
The gravimetric sensor measurement sequences along the plat-
form travel trajectory with the standard deviations of noise
� = 0, 10−5 and 2 × 10−4 m∕s2 are shown in Fig. 8 . The

FIGURE 8 Gravity field measurements along the vehicle
trajectory with noise � = 0, 10−5 and 2 × 10−4 m∕s2,
respectively.

mean position error and track divergence rate under three lev-
els of measurement noise, and averaged over 100 runs, are
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shown in Table 2 . The results shown in Table 2 suggest

TABLE 2 Mean error and diverge rate of the INS with
PMHT-MM aid using the GGplus gravity field map.
Batch Length Mean position error � (m∕s2)& SNR Diverge Rate

T=30 507 m � = 10−5, SNR = 120 dB 0%
T=15 510 m � = 10−5, SNR = 120 dB 0%
T=30 1820 m � = 2 × 10−4, SNR = 93 dB 6%
T=15 4199 m � = 2 × 10−4, SNR = 93 dB 22%

that the position aiding output estimated by the PMHT-MM
from gravimeter measurements matched against the GGplus
map yields an average position error in excess of 500 m at the
measurement noise level � = 10−5 m∕s2 (SNR = 120 dB).
This position error grows rapidly as the measurement noise
level increases. Correspondingly, the tracker divergence rate
also increases. The RMS position error comparison for T = 30
shown in Fig. 9 confirms this observation. A similar situation

FIGURE 9 Comparison of RMS position error of the INS
with PMHT-MM aiding for T = 30 at measurement noise
levels � = 10−5 m∕s2 (SNR = 120 dB) and 2 × 10−4 m∕s2
(SNR = 93 dB), respectively.

for T = 15 is shown in Fig. 10 , though the error differences
between the two levels of sensor noise become even larger. We
see from Table 2 that with low sensor noise (� = 10−5 m∕s2)
map matching is robust with zero divergence rate for both
T = 15 and T = 30 and RMS error performance is dependent
on the quality of data map.

FIGURE 10 RMS position error of the INS with
PMHT-MM aiding for T = 15 at measurement noise levels
� = 10−5 m∕s2 (SNR = 120 dB) and 2 × 10−4 m∕s2 (SNR =
93 dB), respectively.

4.3.3 Result with gravity disturbance map
In the case of PMHT-MM aiding using the gravity disturbance
map, the mean position error and track divergence rate under
three levels of measurement noise, and averaged over 100 runs,
are shown in Table 3 .

TABLE 3 Mean error and divergence rate with the GGplus
gravity disturbance map.
Batch Length Mean position error � (m∕s2) & SNR Diverge Rate

T=30 544 m 1e-6, 51 dB 0%
T=15 868 m 1e-6, 51 dB 13%
T=30 1056 m 4e-5, 20 dB 13%
T=15 2673 m 4e-5, 20 dB 69%

The RMS position error performances of the PMHT-MM
aided INS along the platform trajectory are shown in Fig. 11
for T = 30 and Fig. 12 for T = 15, respectively. These results
obtained with the GGplus gravity disturbance map show no
significant difference compared with those using the GGplus
vertical gravity field map shown in Fig. 9 and Fig. 10 .
In addition, map-dependent PMHT-MM aiding accuracy is
clearly observed from the RMS position error of vehicle first
hour trip; this is overwhelmingly large because of a small map
feature variability in that area evidenced by the map feature
variability along the trajectory shown in the bottom plot of
Fig. 4 .
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FIGURE 11 RMS position errors of the INS with
PMHT-MM aiding at every 300 seconds using the GGplus
vertical gravity disturbance map shown in Fig. , where the
batch length of PMHT-MM is T = 30.

FIGURE 12 RMS position errors of the INS with
PMHT-MM aiding at every 300 seconds using the GGplus
vertical gravity disturbance map shown in Fig. , where the
batch length of PMHT-MM is T = 15.

4.3.4 Discussions

• The experimental results show that a robust map
matching performance is obtained by the PMHT-MM
algorithm because it takes account of both local and
spatial data correlation to provide an estimate of sig-
nal coordinates using an EM approach. While it works
in a batch mode, only relatively small amount of data
samples are required to obtain a reasonable signal loca-
tion estimate. This is in contrast to those map matching

FIGURE 13 A snapshot of the PMHT-MM iteration process
with gravity field map at the Scan 4951. The PMHT-MM
starts the iteration from the INS predicted sensed locations
(pink circles) and ends the iteration after 15 iterations at the
final estimated locations (black stars) based on the the
sequence of T=15 subsets of candidate measurement
locations (blue plus symbols).

approaches, i.e., (Wang et al., 2017; Wu et al., 2017)
that require enormousmeasurements to carry out an area
based cross correlation.

• We plot a snapshot of the PMHT-MM iterative locali-
sation process at a sampling epoch in Fig. 13 in a run
with aiding using the gravity field map. The plot shows
the process that the algorithm drag the “belief state (pink
circle from INS)” to the final estimated locations (black
stars), i.e., to the state iteratively updated by the mea-
surement location collection (blue plus symbols) with a
linear kinematic constraints.

• Gravimetric sensor noise levels have a direct impact on
the accuracy and robustness of map matching aiding.
The simulation results suggest that using a low noise
field sensor, the PMHT-MM algorithm is able to use a
batch state of small length to yield a robust aided inertial
navigation performance without track divergence.

• The proposed algorithm may be used for map match-
ing with other type of sensor measurements, such as
the gravity gradient tensor (Jekeli, 2006), magnetome-
ter measurements (Kim et al., 2019), or terrain-based
navigation (Nygren & Jansson, 2004),etc.
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5 CONCLUSIONS

In this paper, we present a probabilistic multiple hypotheses
tracking map matching algorithm for gravimetric data map
matching to aid an inertial navigation system in the absence
of other aiding sources. The approach eliminates map mea-
surement ambiguity by taking into account the kinematic con-
straints of the platform and permits incorporation of data maps
with a range of accuracy levels. Simulation results using online
maps show the robustness and effectiveness of the algorithm
for removing position drift that arises in INS over a long
duration. Although the application shows an integrated gravi-
metric sensor map matching inertial navigation scenario, the
algorithm is applicable to other map matching based applica-
tions with measurements under a low data sampling regime.
The proposed PMHT-MM solves the map matching local-

isation problem via an iterative batch processing procedure
that handles map measurement ambiguity with kinematic con-
straints. As suggested by simulation results, it is capable of
working at a low measurement rate with low resolution geo-
physical maps and giving a larger margin for trade-off between
aiding robustness and ability of the tracker to handle vehicle
maneuvers.
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