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Abstract
In this survey, we explain a few key ideas of the theory of graphs, and how these ideas
have grown to form the foundation of entire research areas. Graph Theory is a fairly
young mathematical discipline; here we explain some of its major challenges for the
21st century.

László Lovász was recently awarded the Abel Prize. He made important contribu-
tions to all the areas discussed in this survey, and we close by summarising his main
achievements.

1 What Is a Graph?

A graph consists of a set of vertices together with a set of edges such that each edge
is incident with exactly two vertices. These two incident vertices are called the end-
vertices of that edge. Sometimes, it will be convenient to allow these two endvertices
to be the same or to allow edges with the same pair of endvertices. For now, how-
ever, we restrict our attention to graphs where this does not happen. Topologically
speaking, a graph is simply a 1-dimensional simplicial complex.

Two graphs are considered the same; that is, they are isomorphic, if there are
bijections between their vertex sets and edge sets that commute with their incidence
relations, see Fig. 1.

While road networks, and various networks associated to the internet give immedi-
ate examples of graphs, see Fig. 2, here is an example how graphs are used in another
area of mathematics. Given a presented group, the vertex set of its Cayley graph is
the set of elements of the group, and we join two elements a and b by an edge if
there is a nontrivial element s in the generating set such that a · s = b. Many highly
symmetric graphs are Cayley graphs of groups. For example the cube is a Cayley
graph of the dihedral group D4, whereas the Petersen graph depicted in Fig. 1 is not
the Cayley graph of any group. Of particular interest are properties of Cayley graphs
that are invariant under changing the presentation, and thus they are properties of the
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Fig. 1 The graph on the left is
isomorphic to the graph on the
right

Fig. 2 Graphs are used to model road networks (left) and networks associated to the internet (right),
(Images from Wikipedia, the right picture is an An Opte Project visualization of routing paths through a
portion of the Internet)

underlying groups; for example ends of groups in the sense of Freudenthal [31]. The
structure of ends in groups can be studied through graphs using Bass-Serre Theory1

[84, 88].

2 An Introduction to Graph Theory

Many questions in graph theory arise from studying the structure of natural classes of
graphs. There are different approaches to deriving solutions to such questions. Over
the years these approaches have been refined into a profound tool box of methods;
and often graph theory is thought of as being composed of the subfields that emerged
out of these approaches. In what follows I will introduce some of the basic questions
of graph theory, and explain how its subfields arose by providing answers to these
questions.

Extremal Graph Theory A natural ordering on graphs is the ‘subgraph relation’; here
we say that a graph H is a subgraph of a graph G if H can be obtained from G by
deleting edges and deleting isolated vertices – that is, vertices not incident with any
edges. Given a natural number r , the class of graphs with r vertices has a unique
maximal graph with respect to the subgraph relation (up to isomorphism). This graph
has edges between all

(
r
2

)
pairs of vertices; it is referred to as the complete graph

on r vertices, denoted by Kr . It is natural to ask: which graphs contain the complete

1Bass-Serre theory is a subfield of combinatorial group theory that deals with analysing groups acting by
automorphisms on trees. Tools in this area allow us to detect free products with amalgamation or HHN-
extensions.
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Fig. 3 The Turán graph for
r = 4 on 10 vertices

graph Kr as a subgraph? Or restating it through the complementary class: what is the
structure of the class of graphs that do not have Kr as a subgraph? While this class of
graphs seems to be pretty wild and a complete characterisation of the class may well
be elusive, in 1941 Turán provided the following partial answer (extending an earlier
observation of Mantel from 1907).

Consider a graph G formed by r − 1 classes of vertices such that two vertices are
adjacent if and only if they are in different classes (here two vertices are adjacent
if they are joined by an edge), see Fig. 3. Clearly the graph G does not have the
complete graph Kr as a subgraph. We say that G is a Turán-graph if any two of its
r − 1 classes of vertices differ in size by at most one. Note that up to isomorphism,
there is only one Turán-graph on a fixed number n > r of vertices. In 1941 Turán
proved that any graph on n > r vertices that does not have the complete graph Kr as
a subgraph and has as many edges as possible must be isomorphic to the Turán-graph
on n vertices.

Turán’s theorem is the foundational example for the approach of Extremal Graph
Theory. A key tool in extremal graph theory is Szemerédi’s regularity lemma. This
says that the vertex set of every large-enough graph G can be partitioned into few
subsets so that the edges of G between almost all of these subsets are distributed
‘regularly’: as one would expect it if they were picked at random, given the actual
density of the edges of G between those two sets of vertices. Due to this inherent
randomness, results in extremal graph theory that rely on the regularity lemma in
their proof are often only asymptotic and approximate; that is, they are only valid for
graphs on sufficiently many vertices and quantify by how many edges those graphs
differ from a list of constructions.

To summarise, in extremal graph theory we aim to draw structural conclusions
(such as the existence of a Kr subgraph) from merely quantitative assumptions (such
as having more edges on n vertices than the Turán-graph does). Many of its methods
are closely related to probability theory.

Structural Graph Theory In the early days of graph theory, an influential problem was
the 4-Colour Conjecture. Informally speaking, it says that the countries on any map
can be coloured with at most four colours so that adjacent countries receive different
colours, see Fig. 4.

This problem can be modelled by a graph. Just assign a vertex to each country and
join two of these vertices by an edge if their corresponding countries share a border.
This graph has the property that it is planar; that is, its geometric realisation (the
associated 1-dimensional simplicial complex) can be injectively and continuously
embedded in the two-dimensional plane, see Fig. 5. Hence the formal statement of
the 4-Colour Theorem is that the vertex set of any planar graph can be partitioned into
four classes so that no edge has both its endvertices in the same class. In 1976, well
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Fig. 4 A colouring of the countries of the world with just four different colours (source: Wikipedia)

Fig. 5 A planar graph with an
embedding

over a hundred years after it had been proposed, the 4-Colour Theorem was proved
by Appel and Haken. Next to Haken’s foundational contributions to computational
topology, in particular the theory of normal surfaces, the 4-Colour Theorem is re-
garded as one of his main achievements. As for Hales’ proof of Kepler’s Conjecture,
so far we only know computer-assisted proofs of the 4-Colour Theorem, which may
be unexpected given the statement of the 4-Colour Theorem.

Possibly motivated by the 4-Colour Conjecture, in the 1930s mathematicians like
Kuratowski, Wagner and Whitney initiated the systematic study of the class of planar
graphs. As we shall see, these investigations eventually led to the development of
Graph Minor Theory, which nowadays is considered as far more important than the
4-Colour Theorem itself, the intriguing puzzle with which all these developments
started.

In the above definition of ‘planar graphs’ we might as well have defined them
slightly differently, requiring that the embedding of the edges is not only continu-
ous but differentiable, or piece-wise linear, or even that the edges are embedded as
straight lines. In 1943 Koebe proved that all these notions of embeddability are equiv-
alent (for finite graphs, for infinite graphs see [43]) by proving that they are equivalent
to an even stronger notion of embeddability. After being forgotten due to the horri-
ble catastrophe of World War Two, this theorem was rediscovered independently by
Andreev and Thurston and subsequently it was shown by Rodin and Sullivan in 1987
that this theorem can be applied in differential geometry to obtain a short combina-
torial proof of the Riemannian Mapping Theorem [78], see also [44]. To summarise,
there are many potential definitions of planar graphs, and it has been shown that they
are all equivalent (for finite graphs), leading to a single class of planar graphs.

Making use of Euler’s Polyhedra Formula, it is an easy exercise to show that the
complete graph K5 is not planar. Similarly, the complete bipartite graph K3,3, see
Fig. 6, is not planar.

Since subgraphs of planar graphs are planar, it may be tempting to try to charac-
terise the class of planar graphs by making a list of all the minimally non-planar
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Fig. 6 The graphs K5 (on the
left) and K3,3 (on the right)

Fig. 7 The graph G is the black graph on the left. Its plane dual is depicted in grey in the same figure. The
grey graph on the right is obtained from the grey graph on the left by deleting the edge e. The black graph
on the right is dual of the grey graph on the right. However, it is not a subgraph of the graph G we started
with

Fig. 8 The minor of the graph
on the left obtained by deleting
the dashed red edges and
contracting the gray edges is
depicted on the right

graphs: those non-planar graphs all whose proper subgraphs are planar. Unfortu-
nately, the list of these graphs is far too complicated. From a structural perspective,
the reason for this is that the subgraph relation is not closed under planar duality in
the following sense: start with a graph G embedded in the plane, take its planar dual,
delete an edge, and take the planar dual again. The resulting graph is always planar
but need not be a subgraph of the graph G we started with, see Fig. 7.

In 1933, Wagner introduced the ‘minor relation’ as a refinement of the subgraph
relation that solved the above problem resulting from the deficit of the subgraph rela-
tion that it does not ‘behave well with planar duality’, as follows. A minor of a graph
is obtained by deleting edges and contracting connected2 edge sets to single vertices,
see Fig. 8. Minors of graphs may have multiple edges between a pair of vertices and
may have edges whose two endvertices are the same; this slight extension of the class
of graphs is referred to as the class of multigraphs.3 The difference between graphs
and multigraphs is mostly of a technical nature and with slight abuse of notation we
shall not distinguish between the two in this survey; we shall always use the term
‘graph’ although sometimes the objects can actually be multigraphs.

2An edge set is connected if any two of their endvertices can be joined by a path.
3In Graph Minor Theory, the term ‘graph’ is used for ‘multigraphs’, while ‘graphs’ as we defined them
here are referred to as ‘simple graphs’.
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Fig. 9 Contracting an edge in a planar graph is the same operation as dualising, deleting that edge in the
dual, and then dualising back; in other words the diagram in this figures commutes. See Fig. 7 for an
example for contraction of an edge

For planar graphs, the minor relation is obtained from the subgraph relation by
closing it under planar duality (Fig. 9), but note that the minors are defined combina-
torially for arbitrary graphs.

Planarity of graphs can be characterised through the minor relation: a graph is pla-
nar if and only if it does not have K5 or K3,3 as a minor. With a slightly different no-
tation, this was first proved by Kuratowski [51], and it is referred to as ‘Kuratowski’s
Theorem’. This theorem is an example of what Edmonds calls a good characterisa-
tion.4 Given a graph, if it is planar, then there is a simple certificate for it: just give the
drawing. If it is not planar, by Kuratowski’s theorem, there is also a simple certificate
for it: it must have one of the two graphs K5 or K3,3 as a minor.

In addition to the class of planar graphs, there are quite a few other natural classes
of graphs that are closed under the minor relation, for example the class of graphs
embeddable in any fixed surface. Graph Minor Theory, initiated through the works
of Kuratowski and Wagner in the 1930s, investigates the minor relation on general
graphs.

A far-reaching generalisation of Kuratowski’s Theorem is the Robertson-Seymour
Theorem. This theorem is concerned with general classes of graphs closed under
taking minors. Each such class is characterised by its excluded minors, the minor-
minimal graphs outside it. This theorem says that for any minor-closed class its list
of excluded minors must be finite. While the proof easily spans over 500 pages, at the
core of the proof of this theorem is the Graph Minor Structure Theorem, which in a
sense gives a topological construction rule for any minor-closed class, establishing a
deep connection between graph theory and topology.

To summarise, in Structural Graph Theory we aim to relate structural graph prop-
erties to one another, such as embeddability in a surface or the existence of certain
minors. Often, results in this area are related to other areas of mathematics, such as
topology, geometry or algebra, or to the design of efficient algorithms.

What Is the Difference Between Extremal Graph Theory and Structural Graph Theory?
There are many results in the intersection of these areas. In Extremal Graph Theory,
theorems typically relate a numerical graph invariant, such as the number of edges, to
a structural one, or even take the form of an inequality between two numerical graph
invariants. Results are relatively easy to compare through these estimates. Typical
methods, such as Szemerédi’s regularity lemma, are sometimes not even referred to as

4Formally, a problem has a good characterisation if it is in the complexity class NP ∩ co-NP [24, 55, 96].
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Fig. 10 The 5-cycle is isomorphic to its complement and does not contain a complete graph K3. Hence
the Ramsey number R(3) is at least 6; and it is indeed an easy exercise to check that the complete graph
K3 appears in any graph on six vertices or its complement as a subgraph

‘theorems’, and often applying these methods requires a fair amount of computation
and estimating.

In Structural Graph Theory, theorems typically establish a connection between
two structural graph properties; such results are then used directly to prove further
results, forming a diverse landscape of interconnected theorems.

Both approaches have their advantages, and it depends on the type of problem you
are trying to solve which is more suitable.

3 Highlights in Extremal Graph Theory

Ramsey Theory Today, with data science emerging rapidly as a new discipline of
science, it is time to refine our mathematical understanding of what types of structure
occur necessarily in any large-enough sample.

In 1930, Ramsey proved that for every natural number r there is a number n –
much larger than r – such that every graph with at least n vertices either contains the
complete graph Kr or its complement, which consists of r vertices with no edges in
between [72].

Ramsey’s theorem is the first of its kind, in fact it finds certain pre-determined
substructures in all large-enough graphs. In addition to numerous applications within
combinatorics, extensions of Ramsey’s theorem to infinite sets provide tools in set
theory, and there is a close connection between Ramsey’s theorem and Van der Waer-
den numbers for arithmetic progressions in number theory. Natural variants of Ram-
sey’s Theorem suggest themselves and have been studied a lot in the past century,
and are usually subsumed to form the field of ‘Ramsey Theory’.

While Ramsey’s theorem as such is not too difficult to prove, the quantitative
behaviour of this phenomenon seems to be particularly difficult to handle; more about
this in a moment. Given r , the Ramsey number is the smallest number n such that
every graph on n vertices contains a Kr or its complement, see Fig. 10. The Ramsey
number is denoted by R(r). The observation that Ramsey numbers, even for pretty
small values of r , are difficult to compute was popularised by Paul Erdős [87].

While determining particular Ramsey numbers for r ≥ 6 exactly is certainly not
an easy task, the real challenge here is to understand their asymptotic behaviour. The
known proofs give an exponential upper bound of the order 22r . The best known
lower bounds are based on randomly constructed graphs, and are of the order of
magnitude 2r/2.

Open Question 3.1 Can you find accurate asymptotic upper and lower bounds for the
Ramsey numbers R(r)?
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More precisely,5 determine a constant c such that R(r) = �(2c·r ).

By the above, we know that 1
2 ≤ c ≤ 2. Combining results of Spencer [87] and

Conlon [21] gives the best known bounds to date:

[1 + o(1)]
√

2r

e
2

r
2 ≤ R(r) ≤ r−(c log r)/(log log r)4r

It seems that in order to improve the bounds for c fundamentally new ideas are
required. Interestingly, as soon as we assume some structure for the graphs in which
we seek to determine c, it is possible to prove upper bounds that are much lower.

For example, in the simplified Ramsey problem for triangle-free graphs much bet-
ter quantitative bounds are known; see recent work of Bohman and Keevash [9] and
Ajtai, Komlós and Szemerédi [5].

A useful strengthening of the notion of a subgraph is that of an induced subgraph:
a graph obtained from another graph by deleting some of its vertices, and all their
incident edges. Given a graph H , we denote by FH the class of graphs with no
induced subgraph isomorphic to H . While random graphs have fairly large Ramsey
numbers, as mentioned above, Erdős and Hajnal conjectured that in any class FH –
which cannot contain large random graphs, in the sense that those contain every fixed
H with probability tending to 1 as their size grows – Ramsey numbers restricted to
that class are reasonably small:

Conjecture 3.2 (Erdős-Hajnal Conjecture 1989) For all graphs H , there exists a con-
stant δH > 0 such that the n-vertex graphs in FH contain either a complete graph,
or its complement, of size �(nδH ) as an induced subgraph.

While there are a few theorems proving this conjecture for particular graphs H ,
this conjecture remains widely open; see Chudnowski’s survey [16] for details.

Probabilistic Method There are many beautiful conjectures out there that only have
one little problem: they are not true. And we all know that sometimes it can be hard to
find a construction for a counterexample. The ‘Probabilistic Method’ provides a sys-
tematic way to produce counterexamples: rather than constructing a concrete coun-
terexample explicitly, one proves that they occur with some positive probability and
hence must exist. Over the years this method has been applied successfully to a large
class of problems in combinatorics.

Let us start at the beginning, with a conjecture that is just too beautiful to be
true. A colouring of a graph is an assignment of colours to its vertices such that
adjacent vertices receive different colours. The chromatic number of a graph is the
least number of colours required. For example, the complete graph Kr has chromatic
number r , while trees – that is, connected graphs without cycles – have chromatic
number two (to see this, pick a vertex of the tree, call it the root, and assign one colour
to all vertices of even distance from the root and the other colour to the vertices of

5Given functions f and g, we write g = θ(f ) as a shorthand for: there are constants a and b such that
a · f ≤ g ≤ b · f .
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Fig. 11 Although every path can be coloured by alternating between two colours, cycles of odd lengths
cannot be coloured using only two colours. They are the simplest examples of graphs where local reasons
alone do not determine the chromatic number

Fig. 12 A graph on n = 50
vertices generated in such a way
that every edge was added with
probability p = 1

2 (source:
[82]). It is unlikely that two
graphs generated independently
in this way are isomorphic. In
contrast to this, any two random
graphs on a countably infinite
vertex set are isomorphic with
probability one [1, 30, 71]

odd distance). Above we discussed the 4-Colour Theorem, which says that planar
graphs have chromatic number at most four.

Assume our task is to colour a huge graph with a small number of colours and
we are given colourings with just two colours of all connected subgraphs of some
bounded size. One might imagine that there would be a ‘local-global principle’ al-
lowing us to stick together the local colourings of the bounded-sized graphs to pro-
duce a global colouring with two colours – or perhaps, allowing for a small slack,
with boundedly many colours, see Fig. 11. In 1959 Erdős showed that such a strategy
cannot work, by proving probabilistically the existence of a large class of counterex-
amples. He showed that for any number k, there are graphs of chromatic number k

such that all connected subgraphs on at most k vertices are trees. Put another way,
local 2-colourings of graphs cannot always be combined to global colourings with
just boundedly many colours.

How do we randomly generate such a graph? In the simplest (Erdős-Renyi) model,
we start with a set of n vertices and put in each possible edge with the same proba-
bility p – which may depend on n. With some abuse of terminology, we then say that
a random graph has a particular property if the measure of the set of n-vertex graphs
with that property in the resulting probability space G(n,p) tends to 1 as n tends to
infinity, see Fig. 12.

We can thus estimate probabilities for events like ‘containing no cycle of length at
most k’, or of ‘having chromatic number at least k’. If both these probabilities were
greater than one-half, then the existence of a graph with both properties is proved:
the existence of a graph that is locally 2-colourable (because it contains no ‘short’
cycles) yet needs many (> k) colours globally. Unfortunately, in reality things are
slightly more complicated; see [24] for the easy but beautiful details.

In our examples the probabilistic method was introduced to construct graphs with
two properties simultaneously. In 1973, more than twenty years after the probabilis-
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tic method had been introduced to graph theory, Erdős and Lovász initiated a more
systematic study of probabilistic constructions in combinatorics, as follows.

The Chernoff bound from Probability Theory is a commonly used tool to control
the joint distribution of many random variables – as long as they are independent.
However, in many potential applications in graph theory, we would like to control
lots of events but they are not all independent. Still most of the pairs of these events
are independent. In this situation, Erdős and Lovász decided to encode this informa-
tion about the dependencies in a graph, and study which structural property of this
dependency graph allow for a solution to all the constraints given by the events. More
precisely, the Lovász Local Lemma says that given a family of events such that their
dependency graph has maximum degree d and all these events occur with probability
at most p such that ep(d +1) ≤ 1 (where e = 2.7182..), there is a positive probability
that none of these events occurs.

For example, initially with the probabilistic method one was able to prove only the
non-existence of a colouring with few colours, in contrast to this the Lovász Local
Lemma can be used to prove the existence of such a colouring, significantly expand-
ing the potential applications. In a nutshell, the probabilistic method grew from a
useful tool to construct counterexamples to persistent conjectures, through Lovász’
contributions, to one of the key construction methods in the area of Probabilistic
Algorithms. While new applications of the Lovász Local Lemma are still being dis-
covered today, Moser and Tardos found a constructive version of the Lovász Local
Lemma in 2010 [62, 63].

Limits of Graphs Given that many theorems in graph theory are asymptotic in nature,
it is a natural step to study these problems through a suitable limit object. Asymptotic
problems for dense graph classes – classes consisting of graphs whose number of
edges is a constant fraction of all possible edges – are quite often studied through
graphons, which are symmetric measurable functions from the unit square to the
unit interval. Indeed, finite graphs can be represented by the following graphons W :
partition the unit interval into equally sized segments Iv , one for each vertex v. Now
define the graphon W(x,y) to be one if there is an edge between the vertices v and
w satisfying x ∈ Iv and y ∈ Iw , and zero otherwise. Another example of a graphon is
given in Fig. 13.

Given a sequence of finite graphs, represented by graphons taking only the values
zero and one, there is a suitable notion of a limit graphon, similar as the example of
Fig. 13, whose values represent densities from the unit interval obtained by averaging
out vertex-adjacencies, roughly speaking; see the foundational book of Lovász [56]
for details.

This way a whole class of graphs can be represented by a single graphon. For
example, the graphon that takes constantly the value 1

2 represents the class of Erdős-
Renyi random graphs, where edges are drawn with probability 1

2 . Graph parameters
such as edge densities or numbers of triangles can be interpreted as integrals over
graphons. This allows us to translate many problems from extremal graph theory into
inequalities over multidimensional real-valued integrals.

This topological construction of graphons as limits is accompanied by algebraic
constructions, see the flag algebra calculus of Razborov [73]. In some cases the au-
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Fig. 13 A graphon is a function from the unit square to the unit interval. We draw them as a unit square,
whose points are coloured black if they attain the value 1, white if they attain the value zero, and various
shades of grey for all values in between. The graphon here represents the class of graphs that can be
partitioned into two equally sized vertex sets such that all edges between them are present. In one of these
vertex sets no edge is present. The other vertex set can be partitioned into two independent sets such that
an edge between these sets is present with probability one half

tomatisation of extremal problems through limits is at a level that parts of the prob-
lem solving can be done through computer search [74]. The theory of graphons is
closely related to Szemerédi’s regularity lemma. For example, in this language the
regularity lemma can be restated in the form that every arbitrary large graph can be
approximated (in a suitably quantified way) by a graphon given by a partition of the
unit square into boundedly many equally sized squares that is constant on all these
partition classes.

Within this framework of graph limits, in 2016 Reiher proved his clique-density
theorem, a far-reaching extension of Turán’s classical theorem, which for every nat-
ural number r determines the minimal number of complete graphs on r vertices that
are contained in any graph with a given edge density [75]. This solved a conjecture of
Lovász and Simonovits from the 1970s and extended earlier results of Razborov and
Nikiforov. An important conjecture in this area that remains is the following. Given
a graph H and a graph G, denote by t (H,G), the ‘homomorphism density of H in
G’ – up to some low-order terms this is equal to the probability that if we pick a set
of |V (H)| vertices of G at random that the subgraph of G spanned by these vertices
has the graph H as a subgraph.

Conjecture 3.3 (Sidorenko 1986 [86]) For any bipartite graph H and every graph G

we have that:

t (H,G) ≥ t (K2,G)|E(H)|

Informally, this conjecture says that in every graph G, the edge-density t (K2,G)

can be used lower-bound densities of arbitrary bipartite graphs H in the most natural
way. In additional to his foundational contributions to the development of the theory
of graphons, Lovász asked questions about them with the aim to determine the poten-
tial and boundaries of this approach, quite a few of them have been answered recently
by Král’ et al. [23, 40].

The theory of dense graphs can be used to solve problems in all types of areas,
for example it can be applied in number theory to study arithmetic progressions in
random subsets of the integers; see for example the works of Schacht [80] and Conlon
and Gowers [22].
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While the methods of graphons and flag algebras are tailored to dense classes of
graphs, a theory of limits for sparser classes of graphs has not been fully developed
yet [50].

Open Question 3.4 Can you develop a theory of limits of sparse graphs that provides
a systematic framework to study a great variety of asymptotic questions on sparse
graphs?

One hope of such a theory of sparse graphs would be that it might provide tools to
study Gromov’s question whether all finitely presented groups are sofic [38] through
the Aldous-Lyons Conjecture [6], see [42]. For the emerging theory of sparse graphs
see the book of Nešetřil and Ossana de Mendez [68]. The subfield of Structural Graph
Theory that traditionally deals with problems of limits of graphs is called Infinite
Graph Theory, which we explore in a separate paragraph below.

4 Highlights in Structural Graph Theory

Matchings, Packings and Coverings in Graphs Graph theory is a fairly young math-
ematical discipline, many of whose foundational results were proved in the 1930s
and 1940s. Now it has reached a stage with an abundance of applications in science
and connections to other areas of mathematics, where its theorems accumulate and
greater patterns between the theorems are recognised. Let me try to illustrate this
by explaining four theorems answering four seemingly very different problems, and
their common unification.

Firstly, given a graph G together with two vertex sets A and B , what is the largest
size of a set of vertex-disjoint paths from A to B? In 1927 Menger answered this
question by proving that the largest cardinality of a set of vertex-disjoint paths from
A to B is equal to the minimum size of a vertex set whose removal separates A from
B [59]; note that it clearly cannot be larger, see Fig. 14a.

Secondly, given a graph G, how many subtrees of G are necessary to cover all its
edges? Note that when covering the edges of a (connected) graph with trees, we may
as well assume that each of these trees contains all vertices of the graph; that is, it is
a spanning tree. In 1964 Nash-Williams [65] answered that question by proving that
the minimum number of trees necessary is no larger than the maximum local density
of the graph – the largest ratio of the edges over vertices in any subgraph and which
clearly is a lower bound since in trees this number is less than 1, see Fig. 14b.

Thirdly, given a connected graph, what is the maximum number of pairwise edge-
disjoint spanning trees? Nash-Williams and Tutte [64, 91] answered this question
by proving that this number is equal to the minimum local density of a contraction
minor6 (that is, a minor obtained by only contracting edges).

Fourth, in a small village, what is the maximum number of marriages that can be
arranged between men and women, given a graph encoding the possible matchings?

6There is a variant of this theorem with ‘contraction minor’ replaced by ‘quotient’ [24]. These two versions
are clearly equivalent.
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Fig. 14 Examples related to (a) Menger’s Theorem, (b) the Covering Theorem and (c) the Marriage The-
orem, all special cases of the Packing Covering Theorem

Formally, we are given a bipartite graph, a graph whose vertex set is partitioned into
two classes such that all edges go between these classes; and we are interested in
finding a set of vertex-disjoint7 edges – such a set of edges is called a matching. In
1931 Kőnig answered this question by proving that the maximum size of a match-
ing is equal to the minimum size of a vertex set covering all edges, see Fig. 14c.
Independently in 1935, Hall proved an equivalent result, which has been popularised
as the ‘Marriage Theorem’. Most certainly it was clear at that time that matchings
have numerous applications outside mathematics, for example in scheduling prob-
lems. An application within mathematics is a short combinatorial proof of the Cantor-
Schröder-Bernstein Theorem in set theory. For details on the theory of matchings, we
refer to the book of Lovász and Plummer [57].

Despite their differences, all these four theorems have the following unification
[10, 24]. Given a graph G and a natural number k, its edge set can be partitioned into
a set P and a set C satisfying the following:

• the graph G�P – the subgraph of G obtained by deleting the edges outside P –
has k edge-disjoint spanning trees in each of its connected components. The edge
set P is referred to as a packing;

• the graph Gi.C – the minor obtained from G by contracting the edges outside C –
has a covering of its edge set by k trees. The edge set C is referred to as a covering.

Informally speaking, this theorem says that the edge set of any graph can be par-
titioned into a dense part, which admits a packing, and a sparse part that admits a
covering. The Packing-Covering Theorem is the natural generalisation of this state-
ment where one takes k matroids sharing a common ground set instead of a single
graph G. While the reductions of the above four theorems from the Packing-Covering

7We say that a set of edges is vertex-disjoint if no two edges in that set share a vertex.
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Fig. 15 The fano plane is a Steiner-system with parameters (7,3,2); here a Steiner-system with parameters
(n, q, r) is a set S of q-subsets of an n-set X, such that every r-subset of X belongs to exactly one element
of S. Steiner-systems have applications in error-correcting codes

Theorem are automatic once we specify to which family of graphs (or matroids) we
apply this theorem, the choice of a suitable family requires a little bit of thought.

Quite often in graph theory, people only consider finite graphs – it is the con-
vention to always assume that graphs are finite unless stated explicitly that they are
infinite. In the Packing-Covering Theorem allowing the set E to be infinite, one ob-
tains the Packing-Covering Conjecture [10], which is still open; important special
cases of this conjecture include the Aharoni-Berger Theorem from 2009 [4], which is
an infinite analogue of Menger’s Theorem conjectured by Erdős in the 1960s, and it is
a far-reaching extension of the Infinite Hall Theorem of Aharoni, Nash-Williams and
Shelah from the 1980s. Quite recently Joó [7] made a big advance on the Packing-
Covering Conjecture.

In its most general form, the Packing Covering Theorem is equivalent to the Ma-
troid Intersection Theorem. This theorem expresses these ideas in terms of submod-
ular rank functions; here a function f from the power set 2E of a set E to the reals is
submodular if f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) for all A,B ⊆ E. The Lovász
extension of a function f from 2E to the reals is the function f̂ from the unit cube
[0,1]E to the reals given by f̂ (x) = E[f (xλ)], where the expectation is taken over
the parameter λ ∈ [0,1] and xλ is the binary vector that has a one in all coordinates
where x has a value of at least λ [54]. This construction is designed so that the func-
tion f is submodular if and only if its extension f̂ is convex. This established an
important link with optimisation, allowing us to derive integral solutions for a large
class of graph-theoretic problems through fractional relaxations thereof [39]. Another
connection with the related field of Combinatorial Optimisation is described in the
paragraph on perfect graphs below.

While the Packing-Covering Theorem gives us a good understanding of how to
pack spanning trees in graphs, it is natural to try to pack other graphs. In Design
Theory, we are given a large host graph G and a small graph F . The task is to partition
the edge set of G into graphs all isomorphic to F . For simplicity we assume here
that all the vertices of G and F have the same number of neighbours, and denote
these numbers by d(G) and d(F ), respectively. For such a partition of the edge set
G to exist, it is necessary that d(F ) divides d(G), and that the number of edges of
F divides the number of edges of G. In this case we say that G is F -divisible. In
1853 Steiner conjectured that if G and F are both complete graphs such that G is F -
divisible and G and F are sufficiently large, then the edge set of G can be partitioned
into copies of F . In 2014 Keevash [47] announced a proof of this conjecture (in a
more general form including Steiner triples, see Fig. 15 for details), which is widely
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Fig. 16 A graph embedded in
the torus. This embedding
induces a toridal embedding of
every minor of this graph

believed to be correct though still under review. For general graphs this problem is
widely open:

Conjecture 4.1 (Nash-Williams 1970 [66], generalised by Gustavsson [41] beyond
the case r=3) For every r ≥ 3, there exists a constant n0 = n0(r) such that every
Kr -divisible graph G with n ≥ n0(r) vertices such that every vertex has at least (1 −

1
r+1 ) · n neighbours admits a partition of its edge set into graphs all isomorphic to
Kr .

See [37] by Glock, Kühn, Lo, Montgomery and Osthus for recent progress towards
this conjecture.

Graph Minor Theory Graph Minor Theory sits at the interface of topology and graph
theory, with many algorithmic applications. An important aspect is the connection
between embeddings of graphs in 2-dimensional surfaces and the minor relation. The
discovery of this connection began in the 1930s when the pioneers Wagner, Kura-
towski and Whitney characterised embeddability of graphs in the plane by completely
combinatorial conditions [51, 94, 95] and this connection provided crucial tools for
the proof of the Robertson–Seymour Theorem [76] in 2004, which is often regarded
as the deepest theorem of combinatorics today. On one hand, the class of graphs em-
beddable in a fixed surface is closed under taking minors. This means that, like for
Kuratowski’s Theorem, embeddability in a fixed surface can be characterised through
the minor relation in terms of a list of minimal graphs that do not embed; such graphs
are called excluded minors. The Robertson-Seymour theorem says that this list of
excluded minors is finite for every minor-closed class of graphs. On the other hand,
Robertson’s and Seymour’s structure theorem provides a topological construction for
every minor-closed class of graphs; drastically oversimplifying, this theorem says
that any minor-closed class of graphs can be built from classes of graphs embedded
in a fixed surface by sticking them together in a tree-like way, see Fig. 16.

This theoretical breakthrough demonstrates the potential of the minor-theoretic
approach. Still it seems like we are very much at the beginning of constructing Minor
Theory, as the current machinery cannot be used to derive quite a few seemingly
natural applications. For example, while Mohar proved that there is a linear time
algorithm that verifies embeddability in a fixed surface [46, 61] and the Robertson-
Seymour theorem predicts that the class of graphs embeddable in a fixed surface is
characterised by a finite list of excluded minors, computing this list explicitly for a
fixed surface is a challenge – even for the simple surface of the torus this list is not
known! Another example is Negami’s Conjecture on coverings of planar graphs from
1988 [67]. For Hadwiger’s Conjecture see the paragraph on ‘Graph Colouring’.
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The spectral theorist Colin de Verdière, introduced the parameter μ(G). It origi-
nated from the study of the maximum multiplicity of the second eigenvalue of certain
Schrödinger operators on Riemann surfaces [93]. A discretisation led to a graph-
theoretic description of this quantity. Very roughly, μ(G) is the largest co-rank of a
class of generalised adjacency matrices satisfying a certain linear algebra property
called the ‘Strong Arnol’d Property’. While this definition is purely given in terms
of linear algebra, it can be shown that the class of graphs with μ(G) ≤ c for some
constant c is closed under taking minors. So by the Robertson-Seymour Theorem
the condition that ‘μ(G) ≤ c’ can be characterised by finitely many excluded minors
and the structure theorem suggests that this class can be characterised in topological
terms. For small values of c it has been shown that this is indeed the case, for example
for c = 3 the class of graphs G with μ(G) ≤ c is equal to the class of planar graphs,
while for c = 4 this class is the class of linklessly embeddable graphs. For c = 5 so far
there is only a conjecture. We say that a graph G is 4-flat if the 2-complex obtained
from G by gluing a disc onto each of its cycles is embeddable in 4-dimensional space
(in a piece-wise linear way).

Conjecture 4.2 (Van der Holst 2006 [92]) A graph is 4-flat if and only if μ(G) ≤ 5.

There are quite a few areas of Graph Minor Theory, where exciting new structural
methods are being developed. For example, the dichotomy between tree-structure and
highly connected clusters led to the Tangle-Tree Theorem, the Cops-and-Robbers
Theorem, the Branch Width Theorem, and the Grid Theorem. The Grid Theorem
[28] roughly says that for every number n there is a number t such that every graph
can be constructed from graphs of size at most t by gluing them together along a
tree or it has a 2-dimensional n × n grid as a minor. Of particular interest in this
dichotomy result between tree-structure and grid minors is the dependence between
the parameters n and t ; recently it was proved by Chuzhoy et al. [15, 20] that this
dependence is polynomial.

A central aim in network theory is to identify ‘clusters’; that is, somewhat highly
connected regions in networks. While clusters themselves are usually ‘fuzzy’ in the
sense that it is hard to decide where they have their boundary exactly, this does not
mean that they must have a fuzzy definition. One type of such clusters are tangles,
which obey a precise mathematical axiomatisation and are key in Robertson’s and
Seymour’s proof of their structure theorem to detect large grid minors. Diestel et al.
developed a systematic theory of tangles [25] that can also be applied in areas outside
Structural Graph Theory such as image recognition [26, 27, 29].

Finally, there are ideas – at various stages – to extend the theory beyond graphs.
These include extensions to other natural relations on graphs such as vertex minors
and pivot minors by Oum et al. [34, 48, 69], extensions to directed graphs by Archon-
tia, Kawarabayashi, Kreutzer and Kwon [36], extensions to 2-dimensional simplicial
complexes (see the paragraph on ‘Topological Graph Theory’ for details) and exten-
sions to matroids, as follows.

Like the abstraction that came with a base point free axiomatisation of vector
spaces deepened our understanding of linear algebra, matroids can be thought of as a
‘vertex-free’ abstraction of graphs. Matroids are fairly general objects which provide
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Fig. 17 The vertices of the black graph K4 are assigned colours from the set {0,1,2,3}. The dual graph,
which is also a K4, is drawn in gray. The colouring of the black K4 induces a flow on the gray K4, as
follows. Each gray directed edge crosses a unique black edge. It is assigned the value of the left endvertex
of that edge minus the value of the right endvertex of that edge, viewed from the crossing point in the
direction of the gray edge. This is a flow on the gray graph as the amount flowing into each gray vertex
is equal to the amount flowing out of it. Tutte’s duality theorem formalises a duality between colourings
of plane graphs and flows in their duals. Through this duality, the 4-Colour Theorem can be restated as a
theorem about the existence of certain flows in plane graphs. Tutte made various related conjectures about
flows in graphs

a unified way to understand cycles in graphs and linear dependences in vector spaces,
which also captures more complicated algebraic constructions like those coming from
field extensions [70]. An exciting conjecture in this area is Rota’s basis conjecture
(not to be confused with Rota’s Well-quasi-ordering conjecture mentioned below);
for an approach through extremal combinatorics, see [12] authored by Bucić, Kwan,
Pokrovskiy and Sudakov.

Geelen, Gerards and Whittle announced their proof of Rota’s Well-quasi-ordering
conjecture [35], a far-reaching extension of the Robertson-Seymour Theorem from
graphs to matroids representable over finite fields – which can be thought of as a well-
quasi ordering result for matrices over a fixed finite field, roughly speaking. Matroid
Minor Theory is emerging as a research area of its own, which can be applied in
coding theory as well as extremal matroid theory, see for example the growth rate
theorem for matroids by Geelen and Nelson [32, 33].

Graph Colouring In Graph Colouring we study the chromatic number and related
graph parameters, for example fractional relaxations thereof and inductive strength-
enings like list-colourings as well as flows, which can be understood for plane graphs
through the chromatic number of their plane dual, see Fig. 17. While the proof of
the 4-Colour Theorem in the 1970s resolved a long standing conjecture, during these
investigations lots of related questions were asked, some of which go far beyond
the 4-Colour Theorem and motivate a lot of research in the field of Graph Colour-
ing till today. Examples include Thomassen’s theorem that planar graphs are 5-list
colourable [89] or Tutte’s flow conjectures [24].

Amongst such questions, Hadwiger’s conjecture – which seeks for a structural
understanding of the chromatic number – has probably attracted the most attention.
This development began in 1937 when Wagner proved that the 4-Colour Conjecture
is equivalent to the statement a graph with no K5-minor is 4-colourable [94], de-
topologising the 4-Colour Conjecture. Inspired by this, Hadwiger made the following
bold conjecture:
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Fig. 18 The complement of the
7-cycle. This graph has no
K4-subgraph, yet it is not
3-colourable. So this graph is
not perfect

Conjecture 4.3 (Hadwiger 1943) For all t ≥ 0, every graph of chromatic number t

has a complete graph Kt as a minor.

In 1993, Robertson, Seymour and Thomas proved the case t = 5 [77]. While this
conjecture certainly belongs in the area of Structural Graph Theory, a hot topic are
quantitative relaxations of this conjecture; so proving statements of the form, chro-
matic number f (t) implies a Kt -minor with the goal to eventually prove such a result
for the function f (t) = t . See Seymour’s survey [85] for details.

Perfect Graphs Quite a few important theorems in combinatorics can be stated in a
min-max form; usually such theorems involve two parameters one of which is clearly
bounded by the other, and the theorem says that these two parameters are equal. For
example, Berge observed that in complements of bipartite graphs – that is, graphs
whose vertex set can be partitioned into two complete graphs, the chromatic num-
ber is always equal to the clique number, the largest size of a complete subgraph.
While the clique number is an obvious lower bound for the chromatic number, in the
paragraph on the ‘Probabilistic Method’ we explained that in general the chromatic
number can be much larger than the clique number. So Berge’s observation is an
example of a min-max theorem.

Many min-max theorems can be proved through the duality theorem of linear pro-
gramming; in such cases one of the parameters is determined by a linear maximisation
problem and the other parameter can be described by the dual minimisation problem.
In fact, Berge’s observation is of this form. There are many classes of graphs that
allow for a min-max relation between clique number and chromatic number. In the
1960s Berge began to systematically study these classes.

Recall that an induced subgraph of a graph G is obtained by deleting a set of
vertices and those edges with at least one endvertex in that set. We say that a graph
G is perfect if in each of its induced subgraphs, the clique number is equal to the
chromatic number, see Fig. 18. For example, complements of bipartite graphs are
perfect but also bipartite graphs themselves are perfect, as are chordal graphs – graphs
such that all induced cycles have length three. Put another way, the class of perfect
graphs is the class of those graphs such that they and all their induced subgraphs
satisfy a min-max relation between clique number and chromatic number.

While min-max theorems tend to have connections with the duality theorem of
linear programming, it is a priori not clear that the class of perfect graphs has pleasant
algorithmic (or structural) properties. The theory of perfect graphs today answers the
following questions. Is there a natural characterisation of the class of perfect graphs
in terms of induced subgraphs? In view of the fact that determining the chromatic
number of a graph is an NP-hard problem, is there a polynomial algorithm for perfect
graphs? Can we recognise a perfect graph in polynomial time?
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Recall that the complement of a graph G is obtained by flipping the adjacency
between vertices; that is, the complement of G is a graph with the same vertex set
where two vertices are adjacent if and only if they are not adjacent in G. Proving a
conjecture of Berge in 1972, Lovász proved that a graph is perfect if and only if its
complement is perfect. Given that the definition of perfect graphs is not symmetric
under complementation, this may come as a surprise.

In [39], Grötschel, Lovász and Schrijver constructed a polynomial algorithm to
determine the chromatic number of perfect graphs, as follows. In view of the fact that
determining the chromatic number or the clique number are NP-hard problems for the
class of all graphs, this is just another possibly unexpected aspect of perfect graphs.
The key to this algorithm is the Lovász number8 θ(G) [53]. Lovász carefully designed
this geometric graph parameter so that it is essentially ‘sandwiched’ between the
clique number ω(G) and the chromatic number χ(G); in formulas ω(G) ≤ θ(G) ≤
χ(G), where G is the complement of G. So for perfect graphs, the chromatic number
can be computed through the Lovász number of the complement graph. One of the
cornerstone results in Combinatorial Optimisation is the fact that the Lovász number
can be computed through a semi-definite program, providing a polynomial algorithm
to determine the chromatic number of perfect graphs.

Simple examples of graphs that are not perfect are cycles of odd length greater
than three – and their complements. In 2006, Chudnovsky, Robertson, Seymour, and
Thomas showed that these graphs actually characterise the class of perfect graphs, by
showing that a graph is perfect if and only if neither it nor its complement contains
an odd cycle of length at least five as an induced subgraph [18]. This is a far-reaching
extension of Lovász’ theorem that complements of perfect graphs are perfect, and
settles a conjecture of Berge. As part of this proof, the authors developed a structural
decomposition theory for perfect graphs, which in turn was applied by Chudnovsky,
Cornuéjols, Liu, Seymour and Vušković to construct a polynomial recognition algo-
rithm for perfect graphs [17]. It is remarkable that so far it is still open to find a way
how to use these decomposition tools to find a combinatorial algorithm to compute
the chromatic number of perfect graphs; see [19] for recent progress in this direction.

Motivated by these successes, in recent years there was a significant interest in
understanding graph classes where clique number and chromatic number are not nec-
essarily equal but at least close in a quantified sense. A central conjecture in this area
is the following.

Conjecture 4.4 (Gyárfás–Sumner 1975) For every tree T and natural number r , there
is a constant c such that every graph either contains T as an induced subgraph, or
contains the complete graph Kr as an induced subgraph, or has chromatic number
at most c.

If true, this conjecture would nicely complement the theorem that there are graphs
of large chromatic number such that all bounded-size connected subgraphs are trees,
discussed in the paragraph on the ‘Probabilistic Method’. In fact this would be a
local-global principle for the chromatic number after all. For details, see the survey
by Seymour and Scott [83].

8Sometimes the Lovász number is also called the Lovász theta-function.
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Fig. 19 A finite graph covered
by an infinite graph. Local
separators of finite graphs can
be defined through genuine
separators of the cover; a local
separator and its lift are
highlighted in grey

Infinite Graph Theory Recent breakthroughs in this area include the proof of the
Erdős-Menger Conjecture by Aharoni and Berger in 2009 [4], Diestel’s topologi-
cal principle which lifts theorems about finite graphs to topological statements about
infinite graphs with ends, which climaxed in the solution of Rado’s problem by pro-
viding cryptomorphic axiomatisations of infinite matroids in terms of independent
sets, cases, circuits, hyperplanes and rank [11]; and the subsequent development of a
theory of infinite matroids by Bowler, Carmesin, Joó and others. An important con-
jecture in Infinite Graph Theory is that countable graphs are well-quasi ordered.

While there is no doubt that there is an abundance of natural challenges in the field
of Infinite Graph Theory, I see the greatest potential for its development in the next
decades in questions that apply Infinite Graph Theory in finite graphs.

Let me illustrate this by an example. Developments in science such as parallel
computing and large networks motivate the study of local separators – vertex sets
that separate graphs locally but not necessarily globally [14]. More precisely, we are
interested in small vertex sets whose removal disconnected a subgraph of bounded ra-
dius, while outside that subgraph connections may still exist. The key idea in [14] is
to define these local separators as those vertex sets that lift to separators of a suitable
cover; this way they inherit submodularity properties and many structural decompo-
sition theorems can be extended from separators to local separators, see Fig. 19.

There is a subtle, but important, difference to Diestel’s topological principle.
While Diestel’s principle builds exciting problems concerning infinite graphs out of
finite graph theory, we go the other way: harness the power of infinite graphs to study
local behaviour in finite graphs. There is much to explore in this direction, for ex-
ample it connects to Open Question 3.4 mentioned above in the paragraph on Graph
Limits.

Topological Graph Theory Above we have seen how the Probabilistic Method can be
used to prove the existence of graphs with large chromatic number and large girth,
and the 4-Colour Theorem and Hadwiger’s Conjecture are concerned with bound-
ing the chromatic number for specific classes of graphs. Lovász developed a method
going the other way round, employing algebraic topology to deduce that certain
graph classes have high chromatic number. One such class is that of ‘Kneser-graphs’:
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Fig. 20 The cone over K5. The
fact that the graph K5 does not
embed in the plane lifts to the
non-embeddability of the cone
over K5 in 3-space

given natural numbers n and k, the Kneser-graph K(n, k) has as its vertex set all k-
subsets of an n-element set, where two vertices are adjacent if their sets are disjoint.
M. Kneser conjectured that K(n, k) has chromatic number exactly n − 2k + 2 for
n ≥ 2k.

Example 4.5 The Kneser graph K(5,2) is isomorphic to the Peterson-graph, see
Fig. 1.

Lovász’ approach is based on the following construction. Given a graph G, de-
fine the neighbourhood complex of G to be the simplicial complex that has the same
vertex set as G, whose simplicies are those subsets that are contained in the neigh-
bourhood of a single vertex of G. Lovász [52] proved if the neighbourhood complex
is k-connected in the sense of homology theory, then the chromatic number of G is at
least k − 1. An application is the proof of the above mentioned conjecture of Kneser.

Since then a whole research area, usually referred to as Combinatorial Algebraic
Topology, has grown out of these ideas, for details we refer to book of Kozlov [49],
Babson and Kozlov [8] or Ziegler [98]. Aharoni and Berger extended these methods
allowing them to study many more graph parameters than just colourings [3], and this
work inspired them to propose a matroidal strengthening of Ryser’s conjecture [2].

In the 1930s Kuratowski, MacLane, Wagner and Whitney proved various charac-
terisations of the topological property of embeddability of graphs in the plane through
algebraic and combinatorial properties; a linear algorithm for testing planarity was
discovered by Hopcroft and Tarjan [45] in 1974, and at the end of the 1970s sev-
eral algorithms had been published that construct plane embeddings in linear time,
see [58] for details. The higher dimensional analogue of this problem is to embed
2-dimensional simplicial complex into 3-dimensional space, see Fig. 20.

In his survey article on Graph Minor Theory, Lovász asked whether there is an
analogue of graph minors in three dimensions. This was answered by Carmesin in
2017, who characterised embeddability of simply connected 2-dimensional simplicial
complexes in 3-space in a way analogous to Kuratowski’s characterisation of graph
planarity, by excluded minors. This characterisation also answered related questions
of Pardon and Wagner. A tool in the proof is Perelman’s Theorem that any simply
connected compact 3-manifold is isomorphic to the 3-sphere.

While Perelman’s Theorem is certainly a great advancement in mathematics, the
algorithmic aspects of the Poincaré Conjecture remain open: is there a polynomial
time algorithm that tests isomorphy with the 3-sphere for triangulated 3-manifolds?
While existence of some algorithm was proved by Rubinstein [90],9 Schleimer [81]
strengthened this by showing that this problem lies in NP, and Zentner [97] showed

9See for example [81] for details on the history.
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that this problem lies in co-NP provided the generalised Riemann Hypothesis. An
equivalent combinatorial version is the following:

Open Question 4.6 Is there a polynomial algorithm that tests embeddability in 3-
dimensional space for the class of 2-dimensional simplicial complexes whose first
homology group over the rationals is trivial?

Without the assumption on the homology group, de Mesmay, Rieck, Sedgwick
and Tancer [60] have shown that such a polynomial algorithm cannot exist. In con-
trast to this, if we strengthen the assumption requiring that the 2-complex is simply
connected, the proof of Carmesin’s Kuratowski Theorem gives a quadratic time al-
gorithm [13]. This algorithm relies on Perelman’s theorem. It would be desirable to
have a combinatorial proof of Perelman’s Theorem. Towards this goal Rubinstein, a
pioneer in computational topology, asked the following.

Open Question 4.7 (Rubinstein [79]) Is there a robust notion of discrete curvature
that allows for a discrete analogue of Ricci flow?

5 Outlook

In this survey, we made an attempt to explain what graph theory is by sketching some
of its main lines of research. By doing so, we were forced to omit many exciting
developments in graph theory. For example, an important problem at the interface of
group theory, combinatorics and computer science is the graph isomorphism problem,
which asks whether there is a polynomial time algorithm that decides whether two
given graphs are isomorphic. Despite Babai’s recent subexponential time algorithm,
it is not even known whether this problem is NP-hard. The P 	= NP -Conjecture is
another problem that we did not explain here although there are many problems in
graph theory that are known to be NP-complete, for example deciding whether a
graph has a cycle that contains all its vertices [96].

6 László Lovász

In the past century, graph theory emerged as a new area of mathematics. We explained
some of its fundamental ideas, its diverse links to other areas of mathematics, as
well as today’s questions and challenges. Many of these challenges are foundational
in nature and are motivated by recent developments in science, intrinsic questions
or link to mysteries in other parts of mathematics. Today’s graph theorists owe the
privilege to work in this exciting area of research to the hard work and deep insights
of generations of graph theorists before. In particular László Lovász played a key role
through his inspiring ideas, guiding the field. His main contributions include:

• He played a leading role in the development of the Theory of Graphons, which
allow us to solve many problems of extremal graph theory through this limit object.
A prominent example is the clique density theorem of Reiher, which had been
conjectured by Lovász and Simonovits a few decades before.
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• The Lovász Local Lemma (LLL) revolutionised Probabilistic Combinatorics, and
is a fundamental result in the area of randomised algorithms.

• His topological methods to compute the chromatic number of Kneser graphs were
foundational to the field of Combinatorial Algebraic Topology.

• Lovász developed sophisticated tools such as the Lovász Theta function and the
Lovász extension of submodular functions. These connect to the ellipsoid method,
a central result in optimization, whose applications to combinatorial optimisation
were developed by Grötschel, Lovász and Schrijver.

• The Lovász Theta function connects Combinatorial Optimisation with the theory
of perfect graphs, to which Lovász also made important contributions.

• He shaped mathematics as President of the International Mathematical Union
(2007-2010) and President of the Hungarian Academy of Sciences (2014-2020).

• Beyond solving hard problems, he also wrote comprehensive text books on cutting
edge research areas making them accessible to a much broader audience, for ex-
ample his book ‘Large networks and graph limits’ or the book on Matching Theory
with Plummer.

• Lovász is known for his inspiring questions and conjectures. For example his ques-
tion on a 3-dimensional graph minor theory is foundational to the development of
3-dimensional Combinatorics. Another puzzle of his is the Erdős-Lovász-Faber
conjecture, which has recently been proved by Kang, Kelly, Kühn, Methuku and
Osthus.

7 Further Reading

Diestel’s textbook ‘Graph Theory’ is an excellent introduction to the topic, which
also treats some of its advanced methods in later chapters.
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