

University of Birmingham

Runtime analysis of competitive co-evolutionary
algorithms for maximin optimisation of a bilinear
function
Lehre, Per Kristian

DOI:
10.1145/3512290.3528853

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Lehre, PK 2022, Runtime analysis of competitive co-evolutionary algorithms for maximin optimisation of a
bilinear function. in JE Fieldsend (ed.), GECCO '22: Proceedings of the Genetic and Evolutionary Computation
Conference. GECCO: Genetic and Evolutionary Computation Conference, Association for Computing Machinery
(ACM), New York, pp. 1408–1416, GECCO '22: Genetic and Evolutionary Computation Conference, Boston,
Massachusetts, United States, 9/07/22. https://doi.org/10.1145/3512290.3528853

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2022 Association for Computing Machinery. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in GECCO '22: Proceedings of the Genetic and Evolutionary Computation
Conference, https://doi.org/10.1145/3512290.3528853

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1145/3512290.3528853
https://doi.org/10.1145/3512290.3528853
https://birmingham.elsevierpure.com/en/publications/cecddf9d-a2ce-4859-82ae-98f5877c4cc5

Runtime Analysis of Competitive co-Evolutionary

Algorithms for Maximin Optimisation of a

Bilinear Function*

Per Kristian Lehre

School of Computer Science
University of Birmingham

United Kingdom

April 19, 2022

Abstract

Co-evolutionary algorithms have a wide range of applications, such as
in hardware design, evolution of strategies for board games, and patching
software bugs. However, these algorithms are poorly understood and ap-
plications are often limited by pathological behaviour, such as loss of gra-
dient, relative over-generalisation, and mediocre objective stasis. It is an
open challenge to develop a theory that can predict when co-evolutionary
algorithms find solutions efficiently and reliably.

This paper provides a first step in developing runtime analysis for
population-based competitive co-evolutionary algorithms. We provide a
mathematical framework for describing and reasoning about the perfor-
mance of co-evolutionary processes. An example application of the frame-
work shows a scenario where a simple co-evolutionary algorithm obtains a
solution in polynomial expected time. Finally, we describe settings where
the co-evolutionary algorithm needs exponential time with overwhelm-
ingly high probability to obtain a solution.

1 Introduction

Many real-world optimisation problems feature a strategic aspect, where the so-
lution quality depends on the actions of other – potentially adversarial – players.
There is a need for adversarial optimisation algorithms that operate under re-
alistic assumptions. Departing from a traditional game theoretic setting, we
assume two classes of players, choosing strategies from “strategy spaces” X and

*To appear in Proceedings of Genetic and Evolutionary Computation Conference (GECCO
’22).

1

Y respectively. The objectives of the players are to maximise their individual
“payoffs” as given by payoff functions f, g : X × Y → R.

A fundamental algorithmic assumption is that there is insufficient compu-
tational resources available to exhaustively explore the strategy spaces X and
Y. In a typical real world scenario, a strategy could consist of making n bi-
nary decisions. This leads to exponentially large and discrete strategy spaces
X = Y = {0, 1}n. Furthermore, we can assume that the players do not have
access to or the capability to understand the payoff functions. However, it
is reasonable to assume that players can make repeated queries to the payoff
function Fearnley and Savani (2016). Together, these assumptions render many
existing approaches impractical, e.g., Lemke-Howson, best response dynamics,
mathematical programming, or gradient descent-ascent.

Co-evolutionary algorithms (CoEAs) (see (Popovici et al., 2012) for a sur-
vey) could have a potential in adversarial optimisation, partly because they
make less strict assumptions than the classical methods. Two populations are
co-evolved (say one in X , the other in Y), where individuals are selected for
reproduction if they interact successfully with individuals in the opposite popu-
lation (e.g. as determined by the payoff functions f, g). The hoped for outcome
is that an artificial “arms race” emerges between the populations, leading to
increasingly sophisticated solutions. In fact, the literature describe several suc-
cessful applications, including design of sorting networks Hillis (1990), software
patching Arcuri and Yao (2008), and problems arising in cyber security O’Reilly
et al. (2020).

It is common to separate co-evolution into co-operative and competitive co-
evolution. Co-operative co-evolution is attractive when the problem domain
allows a natural division into sub-components. For example, the design of a
robot can be separated into its morphology and its control Pollack et al. (2001).
A cooperative co-evolutionary algorithm works by evolving separate “species”,
where each species is responsible for optimising one sub-component of the overall
solution. To evaluate the fitness of a sub-component, it is combined with sub-
components from the other species to form a complete solution. Ideally, there
will be a selective pressure for the species to cooperate, so that they together
produce good overall designs Potter and Jong (2000).

The behaviour of CoEAs can be abstruse, where pathological population
behaviour such as loss of gradient, focusing on the wrong things, and relativism
Watson and Pollack (2001) prevent effective applications. It has been a long-
standing open problem to develop a theory that can explain and predict the
performance of co-evolutionary algorithms (see e.g. Section 4.2.2 in Popovici
et al. (2012)), notably runtime analysis. Runtime analysis of EAs Doerr and
Neumann (2020) have provided mathematically rigorous statements about the
runtime distribution of evolutionary algorithms, notably how the distribution
depends on characteristics of the fitness landscape and the parameter settings
of the algorithm.

The only rigorous runtime analysis of co-evolution the author is aware of fo-
cuses on co-operative co-evolution. In a pioneer study, Jansen and Wiegand con-
sidered the common assumption that co-operative co-evolution allows a speedup

2

for separable problems Jansen and Wiegand (2004). They compared rigorously
the runtime of the co-operative co-evolutionary (1+1) Evolutionary Algorithm
(CC (1+1) EA) with the classical (1+1) EA. Both algorithms follow the same
template: They keep the single best solution seen so far, and iteratively pro-
duce new candidate solution by “mutating” the best solution. However, the
algorithms use different mutation operators. The CC (1+1) EA restricts mu-
tation to the bit-positions within one out of k blocks in each iteration. The
choice of the current block alternates deterministically in each iteration, such
that in k iterations, every block has been active once. The main conclusion
from their analysis is that problem separability is not a sufficient criterion to
determine whether the CC (1+1) EA performs better than the (1+1) EA. In
particular, there are separable problems where the (1+1) EA outperforms the
CC (1+1) EA, and there are inseparable problems where the converse holds.
What the authors find is that CC (1+1) EA is advantageous when the problem
separability matches the partitioning in the algorithm, and there is a benefit
from increased mutation rates allowed by the CC (1+1) EA.

Much work remains to develop runtime analysis of co-evolution. Co-operative
co-evolution can be seen as a particular approach to traditional optimisation,
where the goal is to maximise a given objective function. In contrast, com-
petitive co-evolutionary algorithms are employed for a wide range of solution
concepts Ficici (2004). It is unclear to what degree results about co-operative
CoEAs can provide insights about competitive CoEAs. Finally, the existing
runtime analysis considers the CC (1+1) EA which does not have a popula-
tion. However, it is particularly important to study co-evolutionary population
dynamics to understand the pathologies of existing CoEAs.

This paper makes the following contributions: Section 2 introduces a generic
mathematical framework to describe a large class of co-evolutionary processes.
We then discuss how the population-dynamics of these processes can be de-
scribed by a stochastic process. Section 3 defines “runtime” in the context of
generic co-evolutionary processes and presents an analytical tool (a co-evolutionary
level-based theorem) which can be used to derive upper bounds on the expected
runtime. Section 4 specialises the problem setting to maximin-optimisation,
and introduces a theoretical benchmark problem Bilinear which we envisage
could play the role of OneMax for traditional runtime analysis. Section 5 in-
troduces the algorithm PD-CoEA which is a particular co-evolutionary process
tailored to maximin-optimisation. We then analyse the runtime of PD-CoEA on
Bilinear using the level-based theorem, showing that there are settings where
the algorithm obtains a solution in polynomial time. Finally, in Section 6 we
demonstrate that the PD-CoEA possesses an “error threshold”, i.e., a mutation
rate above which the runtime is exponential for any problem. Due to space
limitations, substantial parts of the technical analysis have been moved to the
appendix.

3

1.1 Preliminaries

For any natural number n ∈ N, we define [n] := {1, 2, . . . , n} and [0..n] :=
{0}∪[n]. For a filtration (Ft)t∈N and a random variable X we use the shorthand
notation Et [X] := E [X | Ft]. A random variable X is said to stochastically
dominate a random variable Y , denoted X ⪰ Y , if and only if Pr (Y ≤ z) ≥
Pr (X ≤ z) for all z ∈ R. The Hamming distance between two bitstrings x and
y is denoted H(x, y). For any bitstring z ∈ {0, 1}n, |z| :=

∑n
i=1 zi, denotes the

number of 1-bits in z.

2 Co-Evolutionary Algorithms

This section describes in mathematical terms a broad class of co-evolutionary
processes (Algorithm 1). The definition takes inspiration from level-processes
(see Algorithm 1 in Corus et al. (2018)) used to describe non-elitist evolutionary
algorithms.

Algorithm 1 Co-evolutionary Process

Require: Population size λ ∈ N and strategy spaces X and Y.
Require: Initial populations P0 ∈ X λ and Q0 ∈ Yλ.
1: for each generation number t ∈ N0 do
2: for each interaction number i ∈ [λ] do
3: Sample an interaction (x, y) ∼ D(Pt, Qt).
4: Set Pt+1(i) := x and Qt+1(i) := y.
5: end for
6: end for

We assume that in each generation, the algorithm has two1 populations
P ∈ X λ and Q ∈ Yλ which we sometimes will refer to as the “predators”
and the “prey”. We posit that in each generation, the populations interact λ
times, where each interaction produces in a stochastic fashion one new predator
x ∈ X and one new prey y ∈ Y. The interaction is modelled as a probability
distribution D(P,Q) over X × Y that depends on the current populations. For
a given instance of the framework, the operator D encapsulates all aspects that
take place in producing new offspring, such as pairing of individuals, selection,
mutation, crossover, etc. (See Section 5 for a particular instance of D).

As is customary in the theory of evolutionary computation, the definition
of the algorithm does not state any termination criterion. The justification for
this omission is that the choice of termination criterion does not impact the
definition of runtime we will use.

Notice that the predator and the prey produced through one interaction are
not necessarily independent random variables. However, each of the λ inter-
actions in one generation are independent and identically distributed random
variables.

1The framework can be generalised to more populations.

4

2.1 Tracking the algorithm state

We will now discuss how the state of Algorithm 1 can be captured with a
stochastic process. To determine the trajectory of a co-evolutionary algorithm,
it is insufficient to track only one of the populations, as the dynamics of the
algorithm is determined by the relationship between the two populations.

We shall see that it will be convenient to describe the state of the algorithm
via the Cartesian product Pt×Qt. In particular, for subsets A ⊂ X and B ⊂ Y ,
we will study the drift of the stochastic process Zt := |(Pt × Qt) ∩ (A × B)|.
Naturally, there will be multiple probability dependencies among the λ2 pairs in
the product Pt ×Qt. In order to not have to explicitly take these dependencies
into account later in the paper, we now characterise properties of the distribution
of Zt in Lemma 1.

Lemma 1. Given subsets A ⊂ X , B ⊂ Y, assume that for any δ > 0 and
γ ∈ (0, 1), the sample (x, y) ∼ D(Pt, Qt) satisfies

Pr (x ∈ A) Pr (y ∈ B) ≥ (1 + δ)γ.

Then the random variable Zt+1 := |(Pt+1 ×Qt+1) ∩A×B| satisfies

1) Et [Zt+1] ≥ λ(λ− 1)(1 + δ)γ.

2) Et

[
e−ηZt+1

]
≤ e−ηλ(γλ−1) for 0 < η ≤ (1− (1 + δ)−1/2)/λ

3) Pr t (Zt+1 < λ(γλ− 1)) ≤ e
−δ1γλ

(
1−

√
1+δ1
1+δ

)
for δ1 ∈ (0, δ).

Proof. In generation t+1, the algorithm samples independently and identically
λ pairs (Pt+1(i), Qt+1(i))i∈[λ] from distribution D(Pt, Qt). For all i ∈ [λ], define
the random variables X ′

i := 1{Pt+1(i)∈A} and Y ′
i := 1{Qt+1(i)∈B}. Then since

the algorithm samples each pair (Pt+1(i), Qt+1(i)) independently, and by the

assumption of the lemma, there exists p, q ∈ (0, 1] such that X ′ :=
∑λ

i=1X
′
i ∼

Bin(λ, p), and Y ′ :=
∑λ

i=1 Y
′
i ∼ Bin(λ, q), where pq ≥ γ(1 + δ). By these

definitions, it follows that Zt+1 = X ′Y ′.
Note that X ′ and Y ′ are not necessarily independent random variables be-

cause X ′
i and Y ′

i are not necessarily independent. However, by defining two
independent binomial random variables X ∼ Bin(λ, p), and Y ∼ Bin(λ, q), we
readily have the stochastic dominance relation

Zt+1 = X ′Y ′ ⪰ XY −
λ∑

i=1

XiYi. (1)

The first statement of the lemma is now obtained by exploiting (1), Lemma 27,
and the independence between X and Y

Et [Zt+1] ≥ E

[
XY −

λ∑
i=1

XiYi

]
= E [X]E [Y]−

λ∑
i=1

E [Xi]Et [Yi]

= pλqλ− λpq = pqλ(λ− 1) ≥ (1 + δ)γλ(λ− 1).

5

For the second statement, we apply Lemma 18 wrtX, Y , and the parameters
σ :=

√
1 + δ − 1 and z := γ. By the assumption on p and q, we have pq ≥

(1 + δ)γ = (1 + σ)2z, furthermore the constraint on parameter η gives

η ≤ 1

λ

(
1− 1√

1 + δ

)
=

√
1 + δ − 1

λ
√
1 + δ

=
σ

(1 + σ)λ
.

The assumptions of Lemma 18 are satisfied, and we obtain from (1)

Et

[
e−ηZt+1

]
≤ E

[
exp

(
−ηXY + η

λ∑
i=1

XiYi

)]
< eηλ · E

[
e−ηXY

]
< eηλ · e−ηγλ2

= e−ηλ(γλ−1).

Given the second statement, the third statement will be proved by a standard
Chernoff-type argument. Define δ2 > 0 such that (1 + δ1)(1 + δ2) = 1 + δ. For

η :=
1

λ

(
1− 1√

1 + δ2

)
=

1

λ

(
1−

√
1 + δ1
1 + δ

)
and a := λ(γλ− 1), it follows by Markov’s inequality

Pr t (Zt+1 ≤ a) = Pr t
(
e−ηZt+1 ≥ e−ηa

)
≤ eηa · Et

[
e−ηZt+1

]
≤ eηa · exp (−ηλ(γ(1 + δ1)λ− 1))

= eηa−ηa−ηγλ2δ1 = e−ηγλ2δ1

= exp

(
−δ1

(
1−

√
1 + δ1
1 + δ

)
γλ

)
,

where the last inequality applies statement 2.

The next lemma is a variant of Lemma 1, and will be used to compute the
probability of producing individuals in “new” parts of the product space X ×Y
(see condition (G1) of Theorem 3).

Lemma 2. For A ⊂ X and B ⊂ Y define

r := Pr ((Pt+1 ×Qt+1) ∩A×B ̸= ∅) .

If for (x, y) ∼ D(Pt, Qt), it holds Pr (x ∈ A) Pr (y ∈ B) ≥ z, then

1

r
<

3

z(λ− 1)
+ 1.

Proof. Define p := Pr (x ∈ A) , q := Pr (y ∈ B) and λ′ := λ − 1. Then by the
definition of r and Lemma 25

r ≥ Pr (∃k ̸= ℓ s.t. Pt+1(k) = u ∧Qt+1(ℓ) = v)

≥ (1− (1− p)λ)(1− (1− q)λ
′
) >

(
λ′p

1 + λ′p

)(
λ′q

1 + λ′q

)
≥ λ′2z

1 + λ′(p+ q) + λ′z
≥ λ′2z

1 + 2λ′ + λ′2z
.

6

Finally, 1
r ≤ 2

zλ′ +
1

zλ′2 + 1 < 3
zλ′ + 1.

3 A Level-based Theorem for Co-Evolutionary
Processes

This section defines a notion of runtime for Algorithm 1, and provides a generic
tool (Theorem 3) for deriving upper bounds on the runtime. The proof of this
theorem has been moved to Section A.

We will restrict ourselves to solution concepts that can be characterised as
finding a given target subset S ⊆ X × Y. This captures for example maximin
optimisation or finding pure Nash equilibria. Within this context, the goal of
Algorithm 1 is now to obtain populations Pt and Qt such that their product
intersects with the target set S. We then define the runtime of an algorithm A
as the number of interactions before the target subset has been found.

Definition 1 (Runtime). For any instance A of Algorithm 1 and subset S ⊆
X × Y, define TA,S := min{tλ ∈ N | (Pt ×Qt) ∩ S ̸= ∅}.

We follow the convention in analysis of population-based EAs that the gran-
ularity of the runtime is in generations, i.e., multiples of λ. The definition
overestimates the number of interactions before a solution is found by at most
λ− 1.

We now present a level-based theorem for co-evolution, which is one of the
main contributions of this paper. The theorem states four conditions (G1),
(G2a), (G2b), and (G3) which when satisfied imply an upper bound on the
runtime of the algorithm. To apply the theorem, it is necessary to provide a
sequence (Aj×Bj)j∈[m] of subsets of X×Y called levels, where A1×B1 = X×Y,
and where Am × Bm is the target set. It is recommended that this sequence
overlaps to some degree with the trajectory of the algorithm. The “current
level” j corresponds to the latest level occupied by at least a γ0-fraction of the
pairs in Pt×Qt. Condition (G1) states that the probability of producing a pair
in the next level is strictly positive. Condition (G2a) states that the proportion
of pairs in the next level should increase by a multiplicative factor larger than
1. Condition (G2a) implies that the fraction of pairs in the current level should
not decrease below γ0. Finally, Condition (G3) states a requirement in terms of
the population size.

In order to make the “current level” of the populations well defined, we need
to ensure that for all populations P ∈ X λ and Q ∈ Yλ, there exists at least one
level j ∈ [m] such that |(P ×Q)∩(Aj×Bj)| ≥ γ0λ

2. This is ensured by defining
an initial level A1 ×B1 := X × Y.

Notice that the notion of “level” here is more general than in the classical
level-based theorem Corus et al. (2018), in that they do not need to form a
partition of the search space.

Finally, in this initial work, we have not made an effort in optimising the
expression for the expected runtime. We conjecture that the dependency on λ
can be reduced below λ3, and that the leading constant c′′ is relatively small.

7

Theorem 3. Given subsets Aj ⊆ X , Bj ⊆ Y for j ∈ [m] where A1 := X
and B1 := Y, define T := min{tλ | (Pt × Qt) ∩ (Am × Bm) ̸= ∅}, where
for all t ∈ N, Pt ∈ X λ and Qt ∈ Yλ are the populations of Algorithm 1 in
generation t. If there exist z1, . . . , zm−1, δ ∈ (0, 1], and γ0 ∈ (0, 1) such that for
any populations P ∈ X λ and Q ∈ Yλ with “current level” j := max{i ∈ [m−1] |
|(P ×Q) ∩ (Ai ×Bi)| ≥ γ0λ

2}

(G1) for (x, y) ∼ D(P,Q)

Pr (x ∈ Aj+1) Pr (y ∈ Bj+1) ≥ zj ,

(G2a) for all γ ∈ (0, γ0) if |(P ×Q) ∩ (Aj+1 ×Bj+1)| ≥ γλ2, then for (x, y) ∼
D(P,Q),

Pr (x ∈ Aj+1) Pr (y ∈ Bj+1) ≥ (1 + δ)γ,

(G2b) for (x, y) ∼ D(P,Q),

Pr (x ∈ Aj) Pr (y ∈ Bj) ≥ (1 + δ)γ0,

(G3) and the population size λ ∈ N satisfies for a sufficiently large constant c′,
where z∗ := mini∈[m−1] zi,

λ ≥ c′ log(m/z∗),

then for a constant c′′ > 0, E [T] ≤ c′′λ
(
λ2m+

∑m−1
i=1 1/zi

)
.

4 Maximin Optimisation of Bilinear Functions

4.1 Maximin Optimisation Problems

This section introduces maximin-optimisation problems which is an important
domain for competitive co-evolutionary algorithms Jensen (2004); Al-Dujaili
et al. (2019); Miyagi et al. (2021). We will then describe a class of maximin-
optimisation problems called Bilinear.

It is a common scenario in real-world optimisation that the quality of can-
didate solutions depend on the actions taken by some adversary. Formally, we
can assume that there exists a function

g : X × Y → R,

where g(x, y) represents the “quality” of solution x when the adversary takes
action y.

A cautious approach to such a scenario is to search for the candidate solution
which maximises the objective, assuming that the adversary takes the least
favourable action for that solution. Formally, this corresponds to the maximin
optimisation problem, i.e., to maximise the function

f(x) := min
y∈Y

g(x, y). (2)

8

It is desirable to design good algorithms for such problems because they have im-
portant applications in economics, computer science, machine learning (GANs),
and other disciplines.

However, maximin-optimisation problems are computationally challenging
because to accurately evaluate the function f(x), it is necessary to solve a
minimisation problem. Rather than evaluating f directly, the common approach
is to simultaneously maximise g(x, y) with respect to x, while minimising g(x, y)
with respect to y. For example, if the gradient of g is available, it is popular to
do gradient ascent-gradient descent.

Following conventions in theory of evolutionary computation Droste et al.
(2006), we will assume that an algorithm has oracle access to the function g.
This means that the algorithm can evaluate the function g(x, y) for any selected
pair of arguments (x, y) ∈ X × Y, however it does not have access to any other
information about g, including its definition or the derivative. Furthermore, we
will assume that X = Y = {0, 1}n. To develop a co-evolutionary algorithm for
maximin-optimisation, we will rely on the following dominance relation on the
set of pairs X × Y.

Definition 2. Given a function g : X ×Y → R and two pairs (x1, y1), (x2, y2) ∈
X×Y, we say that (x1, y1) dominates (x2, y2) wrt g, denoted (x1, y1) ⪰g (x2, y2),
if and only if

g(x1, y2) ≥ g(x1, y1) ≥ g(x2, y1).

4.2 The Bilinear Problem

In order to develop appropriate analytical tools to analyse the runtime of evo-
lutionary algorithms, it is necessary to start the analysis with simple and well-
understood problems Wegener (2002). We therefore define a simple class of
a maximin-optimisation problems that has a particular clear structure. The
maximin function is defined for two parameters α, β ∈ (0, 1) by

Bilinear(x, y) := |y|(|x| − βn)− αn|x|, (3)

where we recall that for any bitstring z ∈ {0, 1}n, |z| :=
∑n

i=1 zi denotes the
number of 1-bits in z. The function is illustrated in Figure 1 (left). Extended
to the real domain, it is clear that the function is concave-convex, because
f(x) = g(x, y) is concave (linear) for all y, and h(y) = g(x, y) is convex (linear)
for all x. The gradient of the function is ∇g = (|y| − αn, |x| − βn). Clearly, we
have ∇g = 0 when |x| = βn and |y| = αn.

Assuming that the prey (in Y) always responds with an optimal decision for
every x ∈ X, the predator is faced with the unimodal function f below which
has maximum when |x| = βn.

f(x) := min
y∈{0,1}n

g(x, y) =

{
|x|(1− αn)− βn if |x| ≤ βn

−αn|x| if |x| > βn.

We now characterise the dominated solutions wrt Bilinear.

9

Figure 1: Left: Bilinear for α = 0.4 and β = 0.6. Right: Dominance relation-
ships in Bilinear.

Lemma 4. Let g :=Bilinear. For all pairs (x1, y1), (x2, y2) ∈ X×Y, (x1, y1) ⪰g

(x2, y2) if and only if

|y2|(|x1| − βn) ≥ |y1|(|x1| − βn) ∧
|x1|(|y1| − αn) ≥ |x2|(|y1| − αn).

Proof. The proof follows from the definition of ⪰g and g:

g(x1, y2) ≥ g(x1, y1)

⇐⇒ |x1||y2| − αn|x1| − βn|y2| ≥ |x1||y1| − αn|x1| − βn|y1|
⇐⇒ |y2|(|x1| − βn) ≥ |y1|(|x1| − βn).

The second part follows analogously from g(x1, y1) ≥ g(x2, y1).

Figure 1 (right) illustrates Lemma 4, where the x-axis and y-axis correspond
to the number of 1-bits in the predator x, respectively the number of 1-bits in
the prey y. The figure contains four pairs, where the shaded area corresponds
to the parts dominated by that pair: The pair (x1, y1) dominates (x2, y2), the
pair (x2, y2) dominates (x3, y3), the pair (x3, y3) dominates (x4, y4), and the
pair (x4, y4) dominates (x1, y1). This illustrates that the dominance-relation is
intransitive. Lemma 5 states this and other properties of ⪰g.

Lemma 5. The relation ⪰g is reflexive, antisymmetric, and intransitive for
g = Bilinear.

Proof. Reflexivity follows directly from the definition. Assume that (x1, y1) ⪰g

(x2, y2) and (x1, y1) ̸= (x2, y2). Then, either g(x1, y2) > g(x1, y2), or g(x1, y1) >
g(x2, y1), or both. Hence, (x2, y2) ̸⪰g (x1, y1), which proves that the relation is
antisymmetric.

10

To prove intransitivity, it can be shown for any ε > 0, that p1 ⪰g p2 ⪰g

p3 ⪰g p2 ⪰g p1 where

p1 = (β + ε, α− 2ε) p2 = (β − 2ε, α− ε)

p3 = (β − ε, α+ 2ε) p4 = (β + 2ε, α+ ε).

We will frequently use the following simple lemma, which follows from the
dominance relation and the definition of Bilinear.

Lemma 6. For Bilinear, consider two samples (x1, y1), (x2, y2) ∼ Unif(P ×
Q). Then the following conditional probabilities hold.

Pr ((x1, y1) ⪰ (x2, y2) | y1 ≤ y2 ∧ x1 > βn ∧ x2 > βn) ≥ 1/2

Pr ((x1, y1) ⪰ (x2, y2) | y1 ≥ y2 ∧ x1 < βn ∧ x2 < βn) ≥ 1/2

Pr ((x1, y1) ⪰ (x2, y2) | x1 ≥ x2 ∧ y1 > αn ∧ y2 > αn) ≥ 1/2

Pr ((x1, y1) ⪰ (x2, y2) | x1 ≤ x2 ∧ y1 < αn ∧ y2 < αn) ≥ 1/2.

Proof. All the statements can be proved analogously, so we only show the first
statement. If y1 ≤ y2 and x1 > βn, x2 > βn, then by Lemma 4, (x1, y1) ⪰
(x2, y2) if and only if x1 ≤ x2.

Since x1 and x2 are independent samples from the same (conditional) dis-
tribution, it follows that

1 ≥ Pr (x1 > x2) + Pr (x1 < x2) = 2Pr (x1 > x1) (4)

Hence, we get Pr (x1 ≤ x2) = 1− Pr (x1 > x2) ≥ 1− 1/2 = 1/2.

5 A co-Evolutionary Algorithm for Maximin Op-
timisation

We now introduce a co-evolutionary algorithm for maximin optimisation (see
Algorithm 2).

The predator and prey populations of size λ each are initialised uniformly
at random in lines 1-3. Lines 6-17 describe how each pair of predator and prey
are produced, first by selecting a predator-prey pair from the population, then
applying mutation. In particular, the algorithm selects uniformly at random
two predators x1, x2 and two prey y1, y2 in lines 7-8. The first pair (x1, y1)
is selected if it dominates the second pair (x2, y2), otherwise the second pair
is selected. The selected predator and prey are mutated by standard bitwise
mutation in lines 14-15, i.e., each bit flips independently with probability χ/n
(see Section C3.2.1 in Back et al. (1997)). The algorithm is a special case of the
co-evolutionary framework in Section 2, where line 3 in Algorithm 1 corresponds
to lines 6-17 in Algorithm 2.

Next, we will analyse the runtime of PD-CoEA on Bilinear using Theo-
rem 3. For an arbitrary constant ε > 0, we will restrict the analysis to the

11

Algorithm 2 Pairwise Dominance CoEA (PD-CoEA)

Require: Min-max-objective function g : {0, 1}n × {0, 1}n → R.
Require: Population size λ ∈ N and mutation rate χ ∈ (0, n]
1: for i ∈ [λ] do
2: Sample P0(i) ∼ Unif({0, 1}n)
3: Sample Q0(i) ∼ Unif({0, 1}n)
4: end for
5: for t ∈ N until termination criterion met do
6: for i ∈ [λ] do
7: Sample (x1, y1) ∼ Unif(Pt ×Qt)
8: Sample (x2, y2) ∼ Unif(Pt ×Qt)
9: if (x1, y1) ⪰g (x2, y2) then

10: (x, y) := (x1, y1)
11: else
12: (x, y) := (x2, y2)
13: end if
14: Obtain x′ by flipping each bit in x with prob. χ/n.
15: Obtain y′ by flipping each bit in y with prob. χ/n.
16: Set Pt+1(i) := x′ and Qt+1(i) := y′.
17: end for
18: end for

Figure 2: Partitioning of search space X × Y of Bilinear.

12

case where α − ε > 4/5, and β < ε. Our goal is to estimate the time until the
algorithm reaches within an ε-factor of the maximin-optimal point (βn, αn).

In this setting, the behaviour of the algorithm can be described intuitively
as follows. The population dynamics will have two distinct phases. In Phase 1,
most prey have less than αn 1-bits, while most predators have more than βn
1-bits. During this phase, predators and prey will decrease the number of 1-bits.
In Phase 2, a sufficient number of predators have less than βn 1-bits, and the
number of 1-bits in the prey-population will start to increase. The population
will then reach the ε-approximation described above.

From this intuition, we will now define a suitable sequence of levels. We will
start by dividing the space X × Y into different regions, as shown in Figure 2.
Again, the x-axis corresponds to the number of 1-bits in the predator, while the
y-axis corresponds to the number of 1-bits in the prey.

For any k ∈ [0, (1− β)n], we partition X into three sets

S0 := {x ∈ X | 0 ≤ |x| < βn} (5)

S1(k) := {x ∈ X | βn ≤ |x| < n− k} , and (6)

S2(k) := {x ∈ X | n− k ≤ |x| ≤ n} . (7)

Similarly, for any ℓ ∈ [0, αn), we partition Y into three sets

R0 := {y ∈ Y | αn ≤ |y| ≤ n} (8)

R1(ℓ) := {y ∈ Y | ℓ ≤ |y| < αn} , and (9)

R2(ℓ) := {y ∈ Y | 0 ≤ |y| < ℓ} . (10)

For ease of notation, when the parameters k and ℓ are clear from the context,
we will simply refer to these sets as S0, S1, S2, R0, R1, and R2. Given two
populations P and Q, and C ⊆ X × Y, define

p(C) := Pr
(x,y)∼Unif(P×Q)

((x, y) ∈ C)

psel(C) := Pr
(x,y)∼select(P×Q)

((x, y) ∈ C) .

In the context of subsets of X ×Y, the set Si refers to Si ×Y, and Ri refers to
X × Ri. With the above definitions, we will introduce the following quantities
which depend on k and ℓ:

p0 := p(S0) p(k) := p(S1(k)) q0 := p(R0) q(ℓ) := p(R1(ℓ))

During Phase 1, the typical behaviour is that only a small minority of the
individuals in theQ-population belong to regionR0. In this phase, the algorithm
“progresses” by decreasing the number of 1-bits in the P -population. In this
phase, the number of 1-bits will decrease in the Q-population, however it will
not be necessary to analyse this in detail. To capture this, we define the levels

for Phase 1 for j ∈ [0..(1−β)n] as A
(1)
j := S0 ∪S1(j) and B

(1)
j := R2((α− ε)n).

During Phase 2, the typical behaviour is that there is a sufficiently large
number of P -individuals in region S0, and the algorithm progresses by increasing

13

the number of 1-bits in the Q-population. The number of 1-bits in the P -
population will decrease or stay at 0. To capture this, we define the levels for

Phase 2 for j ∈ [0, (α− ε)n] A
(2)
j := S0 and B

(2)
j := R1(j).

The overall sequence of levels used for Theorem 3 becomes

(A
(1)
0 ×B

(1)
0), . . . , (A

(1)
(1−β)n, B

(1)
(1−β)n),

(A
(2)
0 ×B

(2)
0), . . . , (A

(2)
(α−ε)n, B

(2)
(α−ε)n),

The notion of “current level” from Theorem 3 together with the level-
structure can be exploited to infer properties about the populations, as the
following lemma demonstrates.

Lemma 7. If the current level is A
(1)
j ×B

(1)
j , then p0 < γ0/(1− q0).

Proof. Assume by contradiction that p0(1−q0) ≥ γ0. Note that by (10), it holds
R2(0) = ∅. Therefore, 1− q(0)− q0 = 0 and q(0) = 1− q0. By the definitions of
the levels in Phase 2 and (9),∣∣∣(P ×Q) ∩ (A

(2)
0 ×B

(2)
0)
∣∣∣ = |(P ×Q) ∩ (S0 ×R1(0))|

= p0q(0)λ
2 = p0(1− q0)λ

2 ≥ γ0λ
2,

implying that the current level must be level A
(2)
0 × B

(2)
0 or a higher level in

Phase 2, contradicting the assumption of the lemma.

5.1 Ensuring Condition (G2) during Phase 1

The purpose of this section is to provide the building-blocks necessary to estab-
lish conditions (G2a) and (G2b) during Phase 1. The progress of the population
during this phase will be jeopardised if there are too many Q-individuals in R0.
We will employ the negative drift theorem for populations Lehre (2010) to prove
that it is unlikely that Q-individuals will drift via region R1 to region R0. This
theorem applies to algorithms that can be described on the form of Algorithm 3
which makes few assumptions about the selection step. The Q-population in
Algorithm 2 is a special case of Algorithm 3.

We now state the negative drift theorem.

Theorem 8 (Negative Drift Theorem for Populations Lehre (2010)). Given
Algorithm 3 on Y = {0, 1}n with population size λ ∈ poly(n), and transition
matrix pmut corresponding to flipping each bit independently with probability
χ/n. Let a(n) and b(n) be positive integers s.t. b(n) ≤ n/χ and d(n) :=
b(n) − a(n) = ω(lnn). For an x∗ ∈ {0, 1}n, let T (n) be the smallest t ≥ 0,

s.t. minj∈[λ]H(Pt(j), x
∗) ≤ a(n). Let Rt(i) :=

∑λ
j=1[It(j) = i]. If there are

constants α0 ≥ 1 and δ > 0 such that

1) E [Rt(i) | a(n) < H(Pt(i), x
∗) < b(n)] ≤ α0 for all i ∈ [λ]

14

Algorithm 3 Population Selection-Variation Algorithm Lehre (2010)

Require: Finite state space Y.
Require: Transition matrix pmut over Y.
Require: Population size λ ∈ N.
Require: Initial population Q0 ∈ Yλ.
1: for t = 0, 1, 2, . . . until the termination condition is met do
2: for i = 1 to λ do
3: Choose It(i) ∈ [λ], and set x := Qt(It(i)).
4: Sample x′ ∼ pmut(x) and set Qt+1(i) := x′.
5: end for
6: end for

2) ψ := ln(α0)/χ+ δ < 1, and

3) b(n)
n < min

{
1
5 ,

1
2 − 1

2

√
ψ(2− ψ)

}
,

then Pr
(
T (n) ≤ ecd(n)

)
≤ e−Ω(d(n)) for some constant c > 0.

To apply this theorem, the first step is to estimate the reproductive rate
Lehre (2010) of Q-individuals in R0 ∪R1.

Lemma 9. If there exist constants δ1, δ2 ∈ (0, 1) such that q + q0 ≤ 1 − δ1,
p0 <

√
2(1− δ2) − 1, and p0q = 0, then there exists a constant δ ∈ (0, 1) such

that psel(R0 ∪R1)/p(R0 ∪R1) < 1− δ.

Lemma 10. If p0 = 0 and q0+ q ≤ 1/3, then no Q-individual in Q∩ (R0 ∪R1)
has reproductive rate higher than 1.

Proof. Consider any individual z ∈ Q ∩ (R0 ∪R1). The probability of selecting
this individual in a given iteration is less than

Pr (y1 = z ∧ y2 ∈ R0 ∪R1) Pr ((x1, y1) ⪰ (x2, y2) | y1 = z ∧ y2 ∈ R0 ∪R1)

+ Pr (y2 = z ∧ y1 ∈ R0 ∪R1) Pr ((x1, y1) ̸⪰ (x2, y2) | y2 = z ∧ y1 ∈ R0 ∪R1)

+ Pr (y2 = z ∧ y1 ∈ R2) Pr ((x1, y1) ̸⪰ (x2, y2) | y2 = z ∧ y1 ∈ R2)

≤ 2

λ
(q0 + q) + (1− q − q0)/(2λ) =

1

2λ
(1 + 3(q + q0)) ≤

1

λ
.

Hence, within one generation of λ iterations, the expected number of times this
individual is selected is at most 1.

We now have the necessary ingredients to prove the required condition about
the number of Q-individuals in R0.

Lemma 11. Assume that λ ∈ poly(n), and for two constants α, ε ∈ (0, 1) with
α − ε ≥ 4/5, the mutation rate is χ ≤ 1/(1 − α + ε). Let T be as defined in

15

Theorem 14. For any τ ≤ ecn where c is a sufficiently small constant, define
τ∗ := min{T/λ− 1, τ}, then

Pr

(
τ∗∨
t=0

(Qt ∩R0) ̸= ∅

)
≤ τe−Ω(n) + τe−Ω(λ).

Proof. Each individual in the initial population Q0 is sampled uniformly at
random, with n/2 ≤ (α − ε)n/(1 + 3/5) expected number of 1-bits. Hence,
by a Chernoff bound Motwani and Raghavan (1995) and a union bound, the
probability that the initial population Q0 intersects with R0 ∪ R1 is no more
than λe−Ω(n) = e−Ω(n).

We divide the remaining t− 1 generations into a random number of phases,
where each phase lasts until p0 > 0, and we assume that the phase begins with
q0 = 0.

If a phase begins with p0 > 0, then the phase lasts one generation. Further-
more, it must hold that q((α−ε)n) = 0, otherwise the product Pt×Qt contains
a pair in S0×R1((α−ε)n), i.e., an ε-approximate solution has been found, which
contradicts that t < T/λ. If q((α − ε)n) = 0, then all Q-individuals belong to
region R2. In order to obtain any Q-individual in region R0, it is necessary that
at least one of λ individuals mutates at least εn 0-bits, an event which holds
with probability at most λ ·

(
n
εn

) (
χ
n

)εn ≤ λe−Ω(n) = e−Ω(n).
If a phase begins with p0 = 0, then we will apply Theorem 8 to show that

it is unlikely that any Q-individual will reach R0 within ecn generations, or the
phase ends. We use the parameter x∗ := 1n, a(n) := (1 − α)n, and b(n) :=
(1− α+ ε)n < n/χ. Hence, d(n) := b(n)− a(n) = εn = ω(ln(n)).

We first bound the reproductive rate of Q-individuals in R1. For any gen-
eration t, if q0 + q < (1 − δ2), then by Lemma 9, and a Chernoff bound,
|Qt+1 ∩ R0 ∪ R1| ≤ (q0 + q)λ with probability 1 − e−Ω(λ). By a union bound,
this holds with probability 1 − te−Ω(λ) within the next t generations. Hence,
by Lemma 10, the reproductive rate of any Q-individual within R0 ∪ R1 is
at most α0 := 1, and condition 1 of Theorem 8 is satisfied. Furthermore,
ψ := ln(α0)/χ + δ = δ′ < 1 for any δ′ ∈ (0, 1) and χ > 0, hence condition 2
is satisfied. Finally, condition 3 is satisfied as long as δ′ is chosen sufficiently
small. It follows by Theorem 8 that the probability that a Q-individual in R0

is produced within a phase of length at most τ < ecn is e−Ω(n).
The lemma now follows by taking a union bound over the at most τ phases.

We can now proceed to analyse Phase 1, assuming that q0 = 0. For a lower
bound and to simplify calculations, we pessimistically assume that the following
event occurs with probability 0

(x1, y1) ∈ S1 ×R1 ∪R2 ∧ (x2, y2) ∈ S2 ∪R0.

Lemma 12. If there exist constants δ, ψ ∈ (0, 1) such that

1) p0 ≤
√
2(1− δ)− 1

16

2) q0 ≤
√
2(1− δ)− 1

3) p0q = 0

then if (p0 + p)(1− q − q0) ≤ ψ, it holds that

φ :=
psel(S0 ∪ S1)

p(S0 ∪ S1)
· psel(R2)

p(R2)
≥ 1 + δ(1−

√
ψ),

otherwise, if (p0 + p)(1− q − q0) ≥ ψ, then psel(S0 ∪ S1)psel(R2) ≥ ψ.

Proof. Given the assumptions, Lemma 23 and Lemma 24 imply

φ ≥ (1 + δ(1− p− p0))(1 + δ(q + q0)) ≥ 1. (11)

For the first statement, we consider two cases:
Case 1: If p0 + p <

√
ψ, then by (11) and q0 + q ≥ 0, it follows φ ≥

(1 + δ(1−
√
ψ)) · 1.

Case 2: If p0+ p ≥
√
ψ, then by assumption (1− q− q0) ≤

√
ψ. By (11) and

1− p− p0 ≥ 0, it follows that φ ≥ 1 · (1 + δ(1−
√
ψ)).

For the second statement, (11) implies

psel(S0 ∪ S1)psel(R2) = φp(S0 ∪ S1)p(R2)

= φ(p0 + p)(1− q − q0) ≥ 1 · ψ.

5.2 Ensuring Condition (G2) during Phase 2

We now proceed to analyse Phase 2.

Corollary 13. For any constant δ ∈ (0, 1), if γ0 < 1− δ and 0 ≤ q0 < δ/1200
and p0 ∈ (1/3, 1], then there exists a constant δ′ > 0 such that

psel(S0)

p(S0)

psel(R1)

p(R1)
> 1 + δ′.

Proof. We distinguish between two cases. If p0 ∈ (1/3, 1 − δ/10), we apply
Lemma 19. The conditions of Lemma 19 hold for the parameter δ1 := δ/10,
and the statement follows for δ′ = δ′1. If p0 ∈ (1−δ/10, 1], the statement follows
immediately from Lemma 19 for the parameter δ′ = 23δ/300.

5.3 Main Result

We now obtain the main result: Algorithm 2 can efficiently locate an ε-approximate
solution to an instance of Bilinear.

Theorem 14. Assume that for a sufficiently large constant c, it holds c log(n) ≤
λ ∈ poly(n). Let α, β, ε ∈ (0, 1) be three constants where α − ε ≥ 4/5. Define
T := min{λt | (Pt×Qt)∩S0×R1((α−ε))n}where Pt and Qt are the populations
of Algorithm 2 applied to Bilinear α,β. Then if the mutation rate χ is a
sufficiently small constant, and at most 1/(1−α+ ε), there exists a constant c0
such that for all r ∈ poly(n), it holds Pr

(
T > c0rλ

3n
)
≤ (1/r)(1 + o(1)).

17

6 A Co-Evolutionary Error Threshold

The previous section presented a scenario where Algorithm 2 obtains an ap-
proximate solution efficiently. We now present a general scenario where the
algorithm is inefficient. In particular, we show that there exists a critical muta-
tion rate above which the algorithm fails on any problem, as long as the problem
does not have too many optima. The critical mutation rate is called the “error
threshold” of the algorithm Ochoa (2006); Lehre (2010). As far as the author is
aware, this is the first time an error threshold has been identified in co-evolution.

Theorem 15. There exists a constant c > 0 such that the following holds.
If A and B are subsets of {0, 1}n with min{|A|, |B|} ≤ ecn, and Algorithm 2
is executed with population size λ ∈ poly(n) and constant mutation rate χ >
ln(2)/(1− 2δ) for any constant δ ∈ (0, 1/2), then there exists a constant c′ such

that Pr
(
TA×B < ec

′n
)
= e−Ω(n).

Proof. Without loss of generality, assume that |B| ≤ |A|. For a lower bound on
TA×B , it suffices to compute a lower bound on the time until the Q-population
contains an element in B.

For any y ∈ B, we will apply Theorem 8 to bound Ty := min{t | H(Qt, y) ≤
0}, i.e., the time until the Q population contains y. Define a(n) := 0 and
b(n) := nmin{1/5, 1/2 − (1/2)

√
1− δ2, 1/χ}. Since δ is a constant, it follows

that d(n) = b(n)− a(n) = ω(lnn). Furthermore, by definition, b(n) ≤ n/χ.
We now show that condition 1 of Theorem 8 holds for α0 := 2. For any

individual u ∈ Y, the probability that the individual is selected in lines 7-12 is
at most 1−Pr (y1 ̸= u ∧ y2 ̸= u) = 1− (1−1/λ)2 = (1/λ)(2−1/λ). Thus within
the λ iterations, individual u is selected less than 2 times in expectation. This
proves condition 1.

Condition 2 is satisfied because by the assumption on the mutation rate,
ψ := ln(α0)/χ + δ ≤ 1 − δ < 1. Finally, condition 3 trivially holds because
b(n) ≤ n/5 and 1/2−

√
ψ(2− ψ)/2 ≤ 1/2−

√
1− δ2/2 ≤ b(n)/n.

All conditions are satisfied, and Theorem 8 imply that for some constant c′,

Pr
(
Ty∗ < ec

′n
)
= e−Ω(n). Taking a union bound over all elements in B, we get

for sufficiently small c Pr
(
TA×B < ec

′n
)
≤ Pr

(
TB×Y < ec

′n
)
≤
∑

y∈B Pr
(
Ty < ec

′n
)
≤

ecn · e−Ω(n) = e−Ω(n).

7 Conclusion

Co-evolutionary algorithms have gained wide-spread interest, with a number of
exciting applications. However, their population dynamics tend to be signifi-
cantly more complex than in standard evolutionary algorithms. A number of
pathological behaviours are reported in the literature, preventing the potential
of these algorithms. There has been a long-standing goal to develop a rigorous

18

theory for co-evolution which can explain when they are efficient. A major ob-
stacle for such a theory is to reason about the complex interactions that occur
between multiple populations.

This paper provides the first step in developing runtime analysis for population-
based, competitive co-evolutionary algorithms. A generic mathematical frame-
work covering a wide range of CoEAs is presented, along with an analytical
tool to derive upper bounds on their expected runtimes. To illustrate the
approach, we define a new co-evolutionary algorithm PD-CoEA and analyse
its runtime on a bilinear maximin-optimisation problem Bilinear. For some
problem instances, the algorithm obtains a solution within arbitrary constant
approximation ratio to the optimum within polynomial time O(rλ3n) with
probability 1 − (1/r)(1 + o(1)) for all r ∈ poly(n), assuming population size
λ ∈ Ω(log n)∩ poly(n) and sufficiently small (but constant) mutation rate. Ad-
ditionally, we present a setting where PD-CoAE is inefficient. In particular, if
the mutation rate is too high, the algorithm needs with overwhelmingly high
probability exponential time to reach any fixed solution. This constitutes a
co-evolutionary “error threshold”.

Future work should consider broader classes of problems, as well as other
co-evolutionary algorithms.

Acknowledgements

Lehre was supported by a Turing AI Fellowship (EPSRC grant ref EP/V025562/1).

References

Abdullah Al-Dujaili, Shashank Srikant, Erik Hemberg, and Una-May O’Reilly.
2019. On the application of Danskin’s theorem to derivative-free minimax
problems. AIP Conference Proceedings 2070, 1 (Feb. 2019), 020026. https:

//doi.org/10.1063/1.5089993 Publisher: American Institute of Physics.

Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to au-
tomatic software bug fixing. In 2008 IEEE Congress on Evolutionary Com-
putation (IEEE World Congress on Computational Intelligence). 162–168.
https://doi.org/10.1109/CEC.2008.4630793 ISSN: 1941-0026.

Thomas Back, David B. Fogel, and Zbigniew Michalewicz. 1997. Handbook of
Evolutionary Computation (1st ed.). IOP Publishing Ltd., GBR.

Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre.
2018. Level-Based Analysis of Genetic Algorithms and Other Search Pro-
cesses. IEEE Transactions on Evolutionary Computation 22, 5 (Oct. 2018),
707–719. https://doi.org/10.1109/TEVC.2017.2753538

Duc-Cuong Dang and Per Kristian Lehre. 2016. Runtime Analysis of Non-
elitist Populations: From Classical Optimisation to Partial Information.

19

https://doi.org/10.1063/1.5089993
https://doi.org/10.1063/1.5089993
https://doi.org/10.1109/CEC.2008.4630793
https://doi.org/10.1109/TEVC.2017.2753538

Algorithmica 75, 3 (July 2016), 428–461. https://doi.org/10.1007/

s00453-015-0103-x

Benjamin Doerr and Frank Neumann (Eds.). 2020. Theory of Evolutionary
Computation. Springer.

Stefan Droste, Thomas Jansen, and Ingo Wegener. 2006. Upper and Lower
Bounds for Randomized Search Heuristics in Black-Box Optimization. Theory
of Computing Systems 39, 4 (July 2006), 525–544. https://doi.org/10.

1007/s00224-004-1177-z

John Fearnley and Rahul Savani. 2016. Finding Approximate Nash Equilib-
ria of Bimatrix Games via Payoff Queries. ACM Trans. on Economics and
Computation 4, 4 (Aug. 2016), 1–19. https://doi.org/10.1145/2956579

Sevan G Ficici. 2004. Solution Concepts in Coevolutionary Algorithms. Ph.D.
Dissertation. Brandeis University.

W. Daniel Hillis. 1990. Co-evolving parasites improve simulated evolution as an
optimization procedure. Physica D: Nonlinear Phenomena 42, 1 (June 1990),
228–234. https://doi.org/10.1016/0167-2789(90)90076-2

Thomas Jansen and R. Paul Wiegand. 2004. The Cooperative Coevolutionary
(1+1) EA. Evolutionary Computation 12, 4 (Dec. 2004), 405–434. https:

//doi.org/10.1162/1063656043138905

Mikkel T. Jensen. 2004. A New Look at Solving Minimax Problems with Coevo-
lutionary Genetic Algorithms. InMetaheuristics: Computer Decision-Making,
Mauricio G. C. Resende and Jorge Pinho de Sousa (Eds.). Springer US,
Boston, MA, 369–384. https://doi.org/10.1007/978-1-4757-4137-7_17

Per Kristian Lehre. 2010. Negative Drift in Populations. In Proceedings of
the 11th International Conference on Parallel Problem Solving from Nature
(PPSN 2010) (LNCS, Vol. 6238). Springer Berlin / Heidelberg, 244–253.
https://doi.org/10.1007/978-3-642-15844-5_25

Per Kristian Lehre. 2011. Fitness-levels for non-elitist populations. Proceedings
of the 13th annual conference on Genetic and evolutionary computation -
GECCO ’11 (2011), 2075. https://doi.org/10.1145/2001576.2001855

Atsuhiro Miyagi, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto. 2021.
Adaptive scenario subset selection for min-max black-box continuous opti-
mization. In Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO ’21). Association for Computing Machinery, New York, NY,
USA, 697–705. https://doi.org/10.1145/3449639.3459291

Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-
bridge University Press.

20

https://doi.org/10.1007/s00453-015-0103-x
https://doi.org/10.1007/s00453-015-0103-x
https://doi.org/10.1007/s00224-004-1177-z
https://doi.org/10.1007/s00224-004-1177-z
https://doi.org/10.1145/2956579
https://doi.org/10.1016/0167-2789(90)90076-2
https://doi.org/10.1162/1063656043138905
https://doi.org/10.1162/1063656043138905
https://doi.org/10.1007/978-1-4757-4137-7_17
https://doi.org/10.1007/978-3-642-15844-5_25
https://doi.org/10.1145/2001576.2001855
https://doi.org/10.1145/3449639.3459291

Gabriela Ochoa. 2006. Error Thresholds in Genetic Algorithms. Evolutionary
Computation 14, 2 (June 2006), 157–182. https://doi.org/10.1162/evco.

2006.14.2.157

Una-May O’Reilly, Jamal Toutouh, Marcos Pertierra, Daniel Prado Sanchez,
Dennis Garcia, Anthony Erb Luogo, Jonathan Kelly, and Erik Hemberg. 2020.
Adversarial genetic programming for cyber security: a rising application do-
main where GP matters. Genetic Programming and Evolvable Machines 21, 1-
2 (June 2020), 219–250. https://doi.org/10.1007/s10710-020-09389-y

Jordan B. Pollack, Hod Lipson, Gregory Hornby, and Pablo Funes. 2001. Three
Generations of Automatically Designed Robots. Artificial Life 7, 3 (July
2001), 215–223. https://doi.org/10.1162/106454601753238627

Elena Popovici, Anthony Bucci, R. Paul Wiegand, and Edwin D. De Jong.
2012. Coevolutionary Principles. In Handbook of Natural Computing, Grze-
gorz Rozenberg, Thomas Bäck, and Joost N. Kok (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 987–1033. https://doi.org/10.1007/

978-3-540-92910-9_31

Mitchell A. Potter and Kenneth A. De Jong. 2000. Cooperative Coevolu-
tion: An Architecture for Evolving Coadapted Subcomponents. Evolution-
ary Computation 8, 1 (March 2000), 1–29. https://doi.org/10.1162/

106365600568086

Richard A. Watson and Jordan B. Pollack. 2001. Coevolutionary Dynamics in a
Minimal Substrate. In Proceedings of the 3rd Annual Conference on Genetic
and Evolutionary Computation (GECCO’01). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 702–709. http://dl.acm.org/citation.

cfm?id=2955239.2955343 event-place: San Francisco, California.

Ingo Wegener. 2002. Methods for the Analysis of Evolutionary Algorithms
on Pseudo-Boolean Functions. In Evolutionary Optimization, Ruhul Sarker,
Masoud Mohammadian, and Xin Yao (Eds.). Springer US, Boston, MA, 349–
369. https://doi.org/10.1007/0-306-48041-7_14

21

https://doi.org/10.1162/evco.2006.14.2.157
https://doi.org/10.1162/evco.2006.14.2.157
https://doi.org/10.1007/s10710-020-09389-y
https://doi.org/10.1162/106454601753238627
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1007/978-3-540-92910-9_31
https://doi.org/10.1162/106365600568086
https://doi.org/10.1162/106365600568086
http://dl.acm.org/citation.cfm?id=2955239.2955343
http://dl.acm.org/citation.cfm?id=2955239.2955343
https://doi.org/10.1007/0-306-48041-7_14

A Proof of the Level-based Theorem

This section provides the proof of the level-based theorem. The proof follows
closely the proof of the original level-based theorem, however there are some no-
table differences, particularly in the assumptions about the underlying stochas-
tic process and the choice of the “level-functions”. For ease of comparison, we
have kept the proof identical to the classical proof where possible.

Definition 3 (Corus et al. (2018)). A function g : ({0} ∪ [λ2]) × [m] → R is
called a level function if the following three conditions hold

1. ∀x ∈ {0} ∪ [λ2],∀y ∈ [m− 1] : g(x, y) ≥ g(x, y + 1),

2. ∀x ∈ {0} ∪ [λ2 − 1],∀y ∈ [m] : g(x, y) ≥ g(x+ 1, y),

3. ∀y ∈ [m− 1] : g(λ2, y) ≥ g(0, y + 1).

It follows directly from the definition that the set of level-functions is closed
under addition.

Lemma 16 (Corus et al. (2018)). If Yt+1 ≥ Yt, then for any level function g

g
(
X

(Yt+1+1)
t+1 , Yt+1

)
≤ g

(
X

(Yt+1)
t+1 , Yt

)
.

Proof. The statement is trivially true when Yt = Yt+1. On the other hand, if
Yt+1 ≥ Yt + 1, then the conditions in Definition 3 imply

g
(
X

(Yt+1+1)
t+1 , Yt+1

)
≤ g (0, Yt+1) ≤ g (0, Yt + 1)

≤ g
(
λ2, Yt

)
≤ g

(
X

(Yt+1)
t+1 , Yt

)
.

Proof of Theorem 3. We apply Theorem 26 (the additive drift theorem) with

respect to the parameter a = 0 and the process Zt := g
(
X

(Yt+1)
t , Yt

)
, where g

is a level-function, and (Yt)t∈N and (X
(j)
t)t∈N for j ∈ [m] are stochastic processes,

which will be defined later. (Ft)t∈N is the filtration induced by the populations
(Pt)t∈N and (Qt)t∈N.

We will assume w.l.o.g. that conditions (G2a) and (G2b) are also satis-
fied for j = m − 1, for the following reason. Given Algorithm 1 with a cer-
tain mapping D, consider Algorithm 1 with a different mapping D′(P,Q): If
(P × Q) ∩ (Am × Bm) = ∅, then D′(P,Q) = D(P,Q); otherwise D′(P,Q) as-
signs probability mass 1 to some pair (x, y) of P × Q that is in Am, e. g., to
the first one among such elements. Note that D′ meets conditions (G1) and
(G2). Moreover, (G2a) and (G2b) hold for j = m − 1. For the sequence
of populations P ′

0, P
′
1, . . . and Q′

0, Q
′
1, . . . of Algorithm 1 with mapping D′, we

can put T ′ := min{λt | (P ′
t ×Q′

t) ∩ (Am ×Bm) ̸= ∅}. Executions of the original
algorithm and the modified one before generation T ′/λ are identical. On gen-
eration T ′/λ both algorithms place elements of Am into the populations for the

22

first time. Thus, T ′ and T are equal in every realisation and their expectations
are equal.

For any level j ∈ [m] and time t ≥ 0, let the random variable X
(j)
t := |(Pt ×

Qt)∩(Aj×Bj)| denote the number of pairs in level Aj×Bj at time t. The current

level Yt of the algorithm at time t is defined as Yt := max
{
j ∈ [m]

∣∣∣ X(j)
t ≥ γ0λ

2
}
.

Note that (X
(j)
t)t∈N and (Yt)t∈N are adapted to the filtration (Ft)t∈N because

they are defined in terms of the populations (Pt)t∈N and (Qt)t∈N.
When Yt < m, there exists a unique γ ∈ [0, γ0) such that

X
(Yt+1)
t = |(Pt ×Qt) ∩ (AYt+1 ×BYt+1)| = γλ2, and (12)

X
(Yt)
t = |(Pt ×Qt) ∩ (AYt

×BYt
)| ≥ γ0λ

2. (13)

Finally, we define the process (Zt)t∈N as Zt := 0 if Yt = m, and otherwise,
if Yt < m, we let

Zt := g
(
X

(Yt+1)
t , Yt

)
,

where for all k ∈ [λ2], and for all j ∈ [m− 1], g(k, j) := g1(k, j) + g2(k, j) and

g1(k, j) :=
η

1 + η
· ((m− j)λ2 − k)

g2(k, j) := φ ·

e−ηk

qj
+

m−1∑
i=j+1

1

qi

 ,

where the parameters η, φ ∈ (0, 1) will be specified later, and for j ∈ [m − 1],
qj := λzj/(4 + λzj).

Both functions have partial derivatives ∂gi
∂k < 0 and ∂gi

∂j < 0, hence they
satisfy properties 1 and 2 of Definition 3. They also satisfy property 3 because
for all j ∈ [m− 1]

g1(λ
2, j) =

η

1 + η
((m− j)λ2 − λ2) = g1(0, j + 1)

g2(λ
2, j) >

m−1∑
i=j+1

φ

qi
= g2(0, j + 1).

Therefore g1 and g2 are level-functions, and thus also their linear combination
g is a level function.

Due to properties 1 and 2 of level-functions (see Definition 3), it holds for

23

all k ∈ [0..λ2] and j ∈ [m− 1]

0 ≤ g(k, j) ≤ g(0, 1) <
ηmλ2

1 + η
+

m−1∑
i=1

φ

qi
(14)

<
ηmλ2

1 + η
+ φ

m−1∑
i=1

4 + λzi
λzi

(15)

< m

(
2ηλ2 +

4φ

λz∗

)
. (16)

Hence, we have 0 ≤ Zt < g(0, 1) <∞ for all t ∈ N which implies that condition
2 of the drift theorem is satisfied.

The drift of the process at time t is Et [∆t+1], where

∆t+1 := g
(
X

(Yt+1)
t , Yt

)
− g

(
X

(Yt+1+1)
t+1 , Yt+1

)
.

We bound the drift by the law of total probability as

Et [∆t+1] = (1− Pr t (Yt+1 < Yt))Et [∆t+1 | Yt+1 ≥ Yt]

+ Pr t (Yt+1 < Yt)Et [∆t+1 | Yt+1 < Yt] . (17)

The event Yt+1 < Yt holds if and only if X
(Yt)
t+1 < γ0λ

2, which by Lemma 1 state-
ment 3, condition (G2b), and condition (G3) with a sufficiently large constant
c′ such that c′λ > (2/c) log(4m/z∗) is upper bounded by

Pr t (Yt+1 < Yt) = Pr t

(
X

(Yt)
t+1 < γ0λ

2
)

(18)

< e−cλ < e−(c/2)λe−(c/2)λ <
48

(cλ)3
· z∗
4m

, (19)

where the last inequality uses ex > x3/3! from the Maclaurin series of the
exponential function. Given the low probability of the event Yt+1 < Yt, it
suffices to use the pessimistic bound (16)

Et [∆t+1 | Yt+1 < Yt] ≥ −g(0, 1) (20)

If Yt+1 ≥ Yt, we can apply Lemma 16

Et [∆t+1 | Yt+1 ≥ Yt]

≥ Et

[
g
(
X

(Yt+1)
t , Yt

)
− g

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
.

If X
(Yt+1)
t = 0, then X

(Yt+1)
t ≤ X

(Yt+1)
t+1 and

Et

[
g1

(
X

(Yt+1)
t , Yt

)
− g1

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
≥ 0,

24

because the function g1 satisfies property 2 in Definition 3. Furthermore, we
have the lower bound

Et

[
g2

(
X

(Yt+1)
t , Yt

)
− g2

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
> Pr t

(
X

(Yt+1)
t+1 ≥ 1

)
(g2 (0, Yt)− g2 (1, Yt)) ≥

ηφ

1 + η
.

where the last inequality follows because

Pr t

(
X

(Yt+1)
t+1 ≥ 1

)
= Pr t ((Pt+1 ×Qt+1) ∩ (AYt+1 ×BYt+1) ̸= ∅)

≥ qYt
,

due to condition (G1) and Lemma 2, and

g2 (0, Yt)− g2 (1, Yt) = (φ/qYt
)(1− e−η) ≥ φη

(1 + η)qYt

In the other case, where X
(Yt+1)
t = γλ2 ≥ 1, Lemma 1 and condition (G2a)

imply for φ := δ(1− δ′) for an arbitrary constant δ′ ∈ (0, 1),

Et

[
g1

(
X

(Yt+1)
t , Yt

)
− g1

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
=

η

1 + η
Et

[
X

(Yt+1)
t+1 | Yt+1 ≥ Yt

]
− η

1 + η
X

(Yt+1)
t

≥ η

1 + η
(λ(λ− 1)(1 + δ)γ − γλ2) >

η

1 + η
δ(1− δ′) =

ηφ

1 + η
, (21)

where the last inequality is obtained by choosing the minimal value γ = 1/λ2.
For the function g2, we get

Et

[
g2

(
X

(Yt+1)
t , Yt

)
− g2

(
X

(Yt+1)
t+1 , Yt

)
| Yt+1 ≥ Yt

]
=

φ

qYt

(
e−ηX

(Yt+1)
t − Et

[
e−ηX

(Yt+1)
t+1

])
> 0,

where the last inequality is due to statement 2 of Lemma 1 for the parameter
η := (1− (1 + δ)−1/2)/λ.

Taking into account all cases, we have

Et [∆t+1 | Yt+1 ≥ Yt] ≥
ηφ

1 + η
. (22)

We now have bounds for all the quantities in (17) with (19), (20), and (22),
and we get

Et [∆t+1] = (1− Pr t (Yt+1 < Yt))Et [∆t+1 | Yt+1 ≥ Yt]

+ Pr t (Yt+1 < Yt)Et [∆t+1 | Yt+1 < Yt]

≥ ηφ

1 + η
− 48

(cλ)3
z∗
4m

(
m2ηλ2 +

4mφ

λz∗
+

ηφ

1 + η

)
>
ηφ(1− δ′′)

1 + η

25

for an arbitrary small constant δ′′ as long as m and λ are sufficiently large.
We now verify condition 3 of Theorem 26, i. e., that T has finite expec-

tation. Let p∗ := min{(1 + δ)(1/λ2), z∗} > 0, and note by conditions (G1)
and (G2a) that the current level increases by at least one with probability
Pr t (Yt+1 > Yt) ≥ (p∗)

γ0λ. Due to the definition of the modified process D′, if
Yt = m, then Yt+1 = m. Hence, the probability of reaching Yt = m is lower
bounded by the probability of the event that the current level increases in all
of at most m consecutive generations, i. e., Pr t (Yt+m = m) ≥ (p∗)

γ0λm > 0. It
follows that E [T] <∞.

By Theorem 26 and the upper bound on g(0, 1) in (15),

E [T] ≤ λ · (1 + η)g(0, 1)

ηφ(1− δ′′)

<
λ(1 + η)

(1− δ′′)
·
m2ηλ2 + 4φ

λ

∑m−1
i=1

1
zi

ηφ

=
λ(1 + η)

(1− δ′′)
·

(
2λ2m

φ
+

4

λη

m−1∑
i=1

1

zi

)

≤ λ

(1− δ′′)

(
2λ2m

δ(1− δ′)
+

4

1− (1 + δ)−1/2

m−1∑
i=1

1

zi

)

≤ c′′λ

(
λ2m+

m−1∑
i=1

1

zi

)
,

assuming that c′′ is a sufficiently large constant.

B Other proofs moved due to space limitations

Proof of Lemma 9. The conditions of Lemma 24 are satisfied. Hence, for δ :=
δ1δ2, we get

psel(R0 ∪R1) = 1− psel(R2)

≤ 1− (1 + δ2(q0 + q))p(R2)

= 1− (1 + δ2(q0 + q))(1− q − q0)

= (q0 + q)(1− (1− q − q0)δ2)

≤ (q0 + q)(1− δ1δ2)

= p(R0 ∪R1)(1− δ).

Lemma 17 (Lemma 18 in Lehre (2011)). If Z ∼ Bin(λ, r) with r ≥ α(1 + δ),
then for any κ ∈ (0, δ], E

[
e−κX

]
≤ e−καλ.

26

Lemma 18. Consider any pair of independent binomial random variables X ∼
Bin(λ, p) and Y ∼ Bin(λ, q), where pq ≥ (1 + σ)2z, p, q, z ∈ (0, 1) and σ > 0.

Then E
[
e−ηXY

]
≤ e−ηzλ2

for all η where 0 < η ≤ σ
(1+σ)λ .

Proof. The proof applies Lemma 17 twice.
First, we apply Lemma 17 for the parameters Z := X, α := (z/q)(1+σ) and

κ := ηY . The assumptions of the lemma then imply p ≥ z(1+σ)2

q = α(1 + σ)

and κ ≤ σY
(1+σ)λ ≤ σ, i.e., the conditions of Lemma 17 are satisfied. This then

gives

E
[
e−ηXY | Y

]
= E

[
e−κX | Y

]
≤ e−καλ = exp

(
−ηz
q
(1 + σ)λY

)
. (23)

Secondly, we apply Lemma 17 for the parameters Z := Y , α := q/(1 + σ)
and κ := zη

q (1 + σ)λ. We have q = α(1 + σ), and by the assumption on η and
the fact that 1 ≥ q ≥ z > 0, it follows that

κ ≤ σ

(1 + σ)λ

z

q
(1 + σ)λ ≤ σ.

The conditions of Lemma 17 are satisfied, giving

E
[
exp

(
−ηz
q
(1 + σ)λY

)]
= E

[
e−κY

]
≤ e−καλ (24)

= exp

(
−zη
q
(1 + σ)λ

q

1 + σ
λ

)
= e−ηzλ2

. (25)

By (23), (25), and the tower property of the expectation, it follows that

E
[
e−ηXY

]
= E

[
E
[
e−ηXY

]
| Y
]
< e−ηzλ2

.

Lemma 19. For any constant δ1 ∈ (0, 1), if 1/3 < p0 < 1−δ1 and q0 ≤ δ1/120,
then there exists a constant δ′1 > 0 such that

φ :=
psel(S0)

p(S0)

psel(R1)

p(R1)
> 1 + δ′1.

Proof.

φ >

(
3

2
(2− p0)p0(1− q) + q − 4q0

)
× 1

2
((1− q0)(3 + q0)− p0(1− q0(2 + q0)))

>
1

4
(3(2− p0)p0(1− q) + 2q − 8q0)

× (3− q0(2 + q0)− p0 + p0q0(2 + q0)

>
1

4
(3(2− p0)p0 + q(2− 3(2− p0)p0)− 8q0)

× (3− p0 − 4q0)

27

Considering the variable q independently, we distinguish between two cases.
Case 1: 2 < 3(2− p0)p0(1− q). In this case, the expression is minimised for

q = 1, giving

φ >
1

4
(2− 8q0) (3− p0 − 4q0)

>
1

4
(2− 8q0) (2 + δ1 − 4q0)

>
1

4
(2(2 + δ1)− 8q0 − (2 + δ1)8q0)

> 1 + δ1/2− 8q0

> 1 + δ1/4.

Case 2: 2 ≥ 3(2− p0)p0(1− q). In this case, the expression is minimised for
q = 0, giving

φ >
1

4
(3(2− p0)p0 − 8q0) (3− p0 − 4q0)

>
3

4
(2− p0)p0(3− p0)−

q0
4
(4 · 3(2− p0)p0 + 8(3− p0))

>
3

4
(2− p0)p0(3− p0)− 12q0

Note that the function f(x) := (2 − x)(3 − x)x has derivative f ′(x) < 0 for
(5−

√
7)/2 < x < 1 and f ′(x) > 0 if 1/3 < x < (5−

√
7)/2. Hence, to determine

the minimum of the expression, it suffices to evaluate f at the extremal values
x = 1/3 and x = 1, where f(1/3) = 40/27 and f(1) = 2. Hence, in case 2, we
lower bound φ by φ > 3

4 · 40
27 − 12q0 > 1 + 1

90 .

Lemma 20. For any constant δ ∈ (0, 1), if p0q < γ0 < 1 − δ, p0 > 1 − δ/10
and q0 < δ/90 then

psel(S0)

p(S0)

psel(R1)

p(R1)
> 1 +

23δ

300
.

Proof. Note first that the assumptions imply

3p0q0 < δ/30. (26)

When p0 is sufficiently large, it suffices to only consider the cases where both
x1 and x2 are selected in S0. More precisely, conditional on the event x1 ∈
S0 ∧ x2 ∈ S0, the probability of selecting an element in R1 is

psel(R1 | x1 ∈ S0 ∧ x2 ∈ S0)

≥ Pr (y1 ∈ R1 ∧ y2 ∈ R1)

+ Pr (y1 ∈ R1 ∧ y2 ∈ R2) /2

+ Pr (y1 ∈ R2 ∧ y2 ∈ R1)

= q2 + q(1− q − q0)/2 + (1− q − q0)q

=
q

2
(3− q − 3q0).

28

Hence, the unconditional probability of selecting a pair in R1 is

psel(R1) >
p20q

2
(3− q − 3q0)

>
p0q

2
(3(1− δ/10)− (1− δ)− 3p0q0)

>
p0q

2
(2 + δ − δ(3/10)− δ/30)

= p0q (1 + δ/3) .

Using that p(R1) = q, and psel(S0) ≥ p20, we get

psel(S0)

p(S0)

psel(R1)

p(R1)
≥ p20
p0

psel(R1)

p(R1)

> (1− δ/10)2 (1 + δ/3)

= 1 +
2δ

15
− 17δ2

300
+

δ3

300

> 1 +
23δ

300
.

Lemma 21.

φ :=
psel(S0)

p(S0)
≥ 1

2
((3 + q0)(1− q0)− p0(1− q0(2 + q0)))

Proof. Using Lemma 6, we get

psel(S0) = Pr (x1 ∈ S0 ∧ x2 ∈ S0)+

+ Pr (x1 ∈ S0 ∧ x2 ̸∈ S0)

× Pr ((x1, y1) ⪰ (x2, y2) | x1 ∈ S0 ∧ x2 ̸∈ S0)

+ Pr (x1 ̸∈ S0 ∧ x2 ∈ S0)

× (1− Pr ((x1, y1) ⪰ (x2, y2) | x1 ̸∈ S0 ∧ x2 ∈ S0))

≥ Pr (x1 ∈ S0 ∧ x2 ∈ S0)+

+ Pr ((x1, y1) ∈ S0 ×R1 ∪R2 ∧ (x1, y1) ∈ S1 ∪ S2 ×R1 ∪R2) /2

+ Pr (x1 ̸∈ S0 ∧ x2 ∈ S0) (1− Pr (y1 ∈ R0 ∧ y2 ∈ R0))

≥ p20 + p0(1− p0)(1− q0)
2/2 + p0(1− p0)(1− q20)

Recalling that p(S0) = p0, we get

φ ≥ p0 + (1− p0)(1− q0)
2/2 + (1− p0)(1− q20)

=
1

2
((3 + q0)(1− q0)− p0(1− q0(2 + q0)))

29

Lemma 22.

φ :=
psel(R1)

p(R1)
>

3

2
(2− p0)p0(1− q) + q − 4q0.

Proof. Using Lemma 6, we get

psel(R1) = Pr (y1 ∈ R1 ∧ y2 ∈ R1)+

+ Pr (y1 ∈ R1 ∧ y2 ̸∈ R1)

× Pr ((x1, y1) ⪰ (x2, y2) | y1 ∈ R1 ∧ y2 ̸∈ R1)

+ Pr (y1 ̸∈ R1 ∧ y2 ∈ R1)

× (1− Pr ((x1, y1) ⪰ (x2, y2) | y1 ̸∈ R1 ∧ y2 ∈ R1))

≥ Pr (y1 ∈ R1 ∧ y2 ∈ R1)+

+ Pr ((x1, y1) ∈ S0 ×R1 ∧ (x2, y2) ∈ S0 ×R2) /2

+ Pr ((x1, y1) ∈ S0 ×R1 ∧ (x2, y2) ∈ S1 ∪ S2 ×R2)

+ Pr ((x1, y1) ∈ S1 ×R1 ∧ (x2, y2) ∈ S1 ×R0) /2

+ Pr ((x1, y1) ∈ S1 ×R1 ∧ (x2, y2) ∈ S2 ×R0)

+ Pr ((x1, y1) ∈ S2 ×R1 ∧ (x2, y2) ∈ S2 ×R0) /2

+ Pr (y2 ∈ R1)

× (1− Pr (y1 ∈ R1)

− Pr ((x1, y1) ∈ S0 ×R0 ∧ x2 ∈ S0)

− Pr ((x1, y1) ∈ S1 ×R2 ∧ x2 ∈ S1 ∪ S2)

− Pr ((x1, y1) ∈ S2 ×R2 ∧ x2 ∈ S2))

≥ q2 + qp0(1− q − q0)(p0/2 + 1− p0)+

+ qpq0(p/2 + 1− p− p0) + q(1− p− p0)
2q0/2

+ q(1− q − p20q0

− (1− q − q0)(p(1− p0) + (1− p− p0)
2)

Recalling that p(R1) = q and noting that (4− p0)p0 < 4, it follows that

φ >
3

2
(2− p0)p0(1− q) + q

+ q0

(
3

2
− (4− p0)p0

)
+ p(1− q − q0)(1− p− p0)

>
3

2
(2− p0)p0(1− q) + q − 4q0.

Lemma 23. If there exists a constant δ > 0 such that

1) q0 ≤
√
2(1− δ)− 1

30

then

φ :=
psel(S0 ∪ S1)

p(S0 ∪ S1)
> 1 + δ(1− p− p0).

Proof. Using Lemma 6, we get

psel(S0 ∪ S1)

= Pr (x1 ∈ S0 ∪ S1 ∧ x2 ∈ S0 ∪ S1)+

+ Pr (x1 ∈ S0 ∪ S1 ∧ x2 ̸∈ S0 ∪ S1)

× Pr ((x1, y1) ⪰ (x2, y2) | x1 ∈ S0 ∪ S1 ∧ x2 ̸∈ S0 ∪ S1)

+ Pr (x1 ̸∈ S0 ∪ S1 ∧ x2 ∈ S0 ∪ S1)

× (1− Pr ((x1, y1) ⪰ (x2, y2) | x1 ̸∈ S0 ∪ S1 ∧ x2 ∈ S0 ∪ S1))

≥ Pr (x1 ∈ S0 ∪ S1 ∧ x2 ∈ S0 ∪ S1)+

+ Pr ((x1, y1) ∈ S0 ∪ S1 ×R0 ∪R1 ∧ (x2, y2) ∈ S2 ×R0 ∪R1) /2

+ Pr (x2 ∈ S0 ∪ S1)

× (1− Pr (y2 ∈ R0 ∧ (x1, y1) ∈ S2 ×R0)− Pr (x1 ∈ S0 ∪ S1))

≥ (p0 + p)2 + (p0 + p)(1− q0)
2(1− p− p0)/2+

+ (p0 + p)(1− (p0 + p)− q20(1− p− p0))

Recalling that p(S0 ∪S1) = p0 + p, and the assumption of the lemma, it follows
that

φ ≥ 1 + (1− p− p0)((1− q0)
2/2− q0)

= 1 + (1− p− p0)(1/2− q0(1− q0/2))

≥ 1 + (1− p− p0)(1/2− (1− 2δ)/2)

= 1 + δ(1− p− p0).

Lemma 24. If there exist a constant δ > 0 such that

1) p0q = 0.

2) p0 <
√

2(1− δ)− 1

then

φ :=
psel(R2)

p(R2)
≥ 1 + δ(q0 + q).

31

Proof. Using Lemma 6, we get

psel(R2)

= Pr (y1 ∈ R2 ∧ y2 ∈ R2)+

+ Pr (y1 ∈ R2 ∧ y2 ̸∈ R2)

× Pr ((x1, y1) ⪰ (x2, y2) | y1 ∈ R2 ∧ y2 ̸∈ R2)

+ Pr (y1 ̸∈ R2 ∧ y2 ∈ R2)

× (1− Pr ((x1, y1) ⪰ (x2, y2) | y1 ̸∈ R2 ∧ y2 ∈ R2))

≥ Pr (y1 ∈ R2 ∧ y2 ∈ R2)+

+ Pr ((x1, y1) ∈ S1 ∪ S2 ×R2 ∧ (x2, y2) ∈ S1 ∪ S2 ×R0 ∪R1) /2

+ Pr (y2 ∈ R2)

× (1− Pr ((x1, y1) ∈ S0 ×R1)

− Pr ((x1, y1) ∈ S0 ×R0 ∧ y2 ∈ R2)− Pr (y1 ∈ R2))

= (1− q − q0)
2

+ (1− q − q0)(1− p0)
2(q0 + q)/2

+ (1− q − q0)(1− p0q − p20q0 − (1− q − q0))

From p(R2) = 1− q − q0 and the assumptions of the lemma,

φ ≥ 1 + (1− p0)
2(q0 + q)/2− p0q − p20q0

= 1 + (q0 + q)/2− p0q0(1 + p0/2)

≥ 1 + (q0 + q)/2− q0(1/2− δ)

≥ 1 + (q0 + q)δ.

C Proof of the main theorem

Proof of Theorem 14. Note that we can guarantee χ ≤ 1/(α + ε), for a suffi-
ciently small constant χ.

Define τ := c0rλ
3n ∈ poly(n) and τ∗ := min{T/λ− 1, τ}. We will condition

on the event that q0 = 0 holds for the first τ∗ generations, and consider the
run a failure otherwise. By Lemma 11, the probability of such a failure is no
more than τe−Ω(λ) + τe−Ω(n) = e−Ω(λ) + e−Ω(n), assuming that the constraint
λ ≥ c log(n) holds for a sufficiently large constant c.

We apply Theorem 3 with the m = O(n) levels

(A
(1)
0 ×B

(1)
0), . . . , (A

(1)
(1−β)n, B

(1)
(1−β)n),

(A
(2)
0 ×B

(2)
0), . . . , (A

(2)
(α−ε)n, B

(2)
(α−ε)n),

defined in Section 5. It will suffice to choose the parameter γ0 such that 1/3 <
γ0 ≤

√
2(1− δ)− 1 (e.g., γ0 = 2/5 assuming that δ is sufficiently small).

32

We now prove conditions (G1), (G2a), and (G2b) separately for Phase 1 and
Phase 2.

Phase 1: Assume that the current level belongs to phase 1 for any j ∈
[0, (1 − β)n]. To prove that condition (G2a) holds, we will now show that the
conditions of Lemma 12 are satisfied for the parameter ψ := γ0. By Lemma 7,
we have p0 < γ0 ≤

√
2(1− δ) − 1, hence condition 1 is satisfied. Condition

2 is satisfied by the assumption on q0 = 0. By the definition of the level,
(p0 + p)(1− q − q0) < γ0 = ψ. Finally, we can assume that p0q = 0, otherwise
the algorithm has already found an ε-approximate solution. All three conditions

of Lemma 12 are satisfied. To produce an individual in A
(1)
j+1, it suffices to

select and individual in A
(1)
j+1 and not mutate any of the bits, and analogously

to produce an individual in B
(1)
j+1. In overall, for a sample (x, y) ∼ D(P,Q), this

gives

Pr
(
x ∈ A

(1)
j+1

)
Pr
(
y ∈ B

(1)
j+1

)
(27)

≥ psel(A
(1)
j+1)psel(B

(1)
j+1)

(
1− χ

n

)2n
(28)

≥ (1 + δ(1−√
γ0))p(A

(1)
j+1)p(B

(1)
j+1)e

−2χ(1− o(1)) (29)

≥ (1 + δ′′)γ, (30)

assuming sufficiently small mutation rate χ and parameter δ′′ > 0. Condition
(G2a) of the level-based theorem is therefore satisfied for Phase 1. To prove

(G2b), we apply Lemma 12 with parameter ψ = γ0(1 + δ). If p(A
(1)
j)p(B

(1)
j) ≥

γ0(1 + δ), then (G2b) follows from the second statement of Lemma 12. If

γ0 ≤ p(A
(1)
j)p(B

(1)
j) ≤ γ0(1 + δ), then (G2b) follows from the first statement of

Lemma 12.
Assume that p(A

(1)
j ×B(1)

j) = (p0+ p)(1− q− q0) ≥ γ0 and (x, y) ∼ D(P,Q)

Then, a P -individual can be obtained in A
(1)
j+1 by selecting an individual in A

(1)
j ,

and mutate one of n− j ≥ βn 1-bits, and no other bits, an event which occurs
with probability at least

Pr
(
x ∈ A

(1)
j+1

)
≥ psel(A

(1)
j)(n− j)

χ

n

(
1− χ

n

)n−1

≥ psel(A
(1)
j) · Ω(1).

A Q-individual can be obtained in B
(1)
j+1 by selecting an individual in B

(1)
j+1 and

not mutate any bits. By (30), this event occurs with probability at least

Pr
(
y ∈ B

(1)
j+1

)
≥ psel(B

(1)
j)

(
1− χ

n

)n
≥ Ω(1)

psel(A
(1)
j)

.

Hence, for a sample (x, y) ∼ D(P,Q), we obtain

Pr
(
x ∈ A

(1)
j+1

)
Pr
(
y ∈ B

(1)
j+1

)
= Ω(1),

33

hence condition (G1) will be satisfied for some parameter zj ∈ Ω(1).
Phase 2: The analysis is analogous for this phase. To prove (G2a), assume

that the current level belongs to phase 2 for any j ∈ [0, (α − ε)n]. By the
definitions of the levels in this phase, we must have p0q(j − 1) ≥ γ0, thus
p0 ≥ γ0 > 1/3 where the last inequality follows from our choice of γ0. Together
with the assumption q0 = 0, Corollary 13 gives

Pr
(
x ∈ A

(2)
j

)
Pr
(
y ∈ B

(2)
j

)
(31)

≥ psel(A
(2)
j)psel(B

(2)
j)

(
1− χ

n

)2n
(32)

≥ (1 + δ′)p(A
(1)
j)p(B

(1)
j)e−2χ(1− o(1)) (33)

≥ (1 + δ′′)γ, (34)

assuming sufficiently small mutation rate χ and parameter δ′′ > 0. Condition
(G2b) can be proved analogously to Phase 1, with the help of Corollary 13.

To prove condition (G1), we proceed as for Phase 1 and observe that to

produce an individual in A
(2)
j+1, it suffices to select an P -individual in A

(2)
j and

not mutate any of the bits. To produce an individual in B
(2)
j+1, it suffices to select

a Q-individual in B
(2)
j and flip one of the at least (1 − ε)n = Θ(n) number of

0-bits. Again, we obtain Pr
(
x ∈ A

(2)
j+1

)
Pr
(
y ∈ B

(2)
j+1

)
= Ω(1), hence condition

(G1) will be satisfied for some parameter zj = Ω(1).
Condition (G3) is satisfied as long as λ ≥ c′ log(m/z∗).
All the conditions are satisfied, and assuming that q0 = 0, it follows that the

expected time to reach an ε-approximation of Bilinear is no more than

E [T] ≤ c′′λ

(
λ2m+

m−1∑
i=1

1

zi

)
= O(λ3n).

By Markov’s inequality, the probability that a solution has not been obtained
in O(rλ3n) time is less than 1/r. Hence, in overall, we obtain for some constant
c0 > 0 and λ ≥ log(n) and λ ∈ poly(n)

Pr
(
T > c0rλ

3n
)
≤ 1/r + e−Ω(n) + e−Ω(λ) ≤ (1/r)(1 + o(1)).

D Additional technical results

Lemma 25 (Dang and Lehre (2016)). For n ∈ N and x ≥ 0, we have 1− (1−
x)n ≥ 1− e−xn ≥ xn

1+xn

Theorem 26 (Additive drift theorem Corus et al. (2018)). Let (Zt)t∈N be a
discrete-time stochastic process in [0,∞) adapted to any filtration (Ft)t∈N. De-
fine Ta := min{t ∈ N | Zt ≤ a} for any a ≥ 0. For some ε > 0 and constant
0 < b <∞, define the conditions

34

1.1) E [Zt+1 − Zt + ε ; t < Ta | Ft] ≤ 0 for all t ∈ N,

1.2) E [Zt+1 − Zt + ε ; t < Ta | Ft] ≥ 0 for all t ∈ N,

2) Zt < b for all t ∈ N, and

3) E [Ta] <∞.

If 1.1), 2), and 3) hold, then E [Ta | F0] ≤ Z0/ε.
If 1.2), 2), and 3) hold, then E [Ta | F0] ≥ (Z0 − a)/ε.

Lemma 27. Let X and Y be two non-negative random variables with finite
expectations. If X ⪰ Y , then E [X] ≥ E [Y].

Proof. By definition, X ⪰ Y implies Pr (Y ≤ z) ≥ Pr (X ≤ z) for all z ∈ R.
Using that X and Y are non-negative random variables,

E [X] =

∫ ∞

0

1− Pr (X ≤ z) dz ≥
∫ ∞

0

1− Pr (Y ≤ z) dz = E [Y] .

35

	Introduction
	Preliminaries

	Co-Evolutionary Algorithms
	Tracking the algorithm state

	A Level-based Theorem for Co-Evolutionary Processes
	Maximin Optimisation of Bilinear Functions
	Maximin Optimisation Problems
	The Bilinear Problem

	A co-Evolutionary Algorithm for Maximin Optimisation
	Ensuring Condition (G2) during Phase 1
	Ensuring Condition (G2) during Phase 2
	Main Result

	A Co-Evolutionary Error Threshold
	Conclusion
	Proof of the Level-based Theorem
	Other proofs moved due to space limitations
	Proof of the main theorem
	Additional technical results

