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Abstract
Bacteria have developed resistance to antibiotics by various mechanisms, notable
amongst these is the use of permeation barriers and the expulsion of antibiotics via
efflux pumps. The resistance-nodulation-division (RND) family of efflux pumps is
found in Gram-negative bacteria and a major contributor to multidrug resistance
(MDR). In particular, Salmonella encodes five RND efflux pump systems: AcrAB,
AcrAD, AcrEF, MdsAB and MdtAB which have different substrate ranges including
many antibiotics. We produce a spatial partial differential equation (PDE) model gov-
erning the diffusion and efflux of antibiotic in Salmonella, via theseRNDefflux pumps.
Using parameter fitting techniques on experimental data, we are able to establish the
behaviour of multiple wild-type and efflux mutant Salmonella strains, which enables
us to produce efflux profiles for each individual efflux pump system. By combining
the model with a gene regulatory network (GRN) model of efflux regulation, we sim-
ulate how the bacteria respond to their environment. Finally, performing a parameter
sensitivity analysis, we look into various different targets to inhibit the efflux pumps.
Themodel provides an in silico framework with which to test these potential adjuvants
to counter MDR.

Keywords Salmonella · Efflux pumps · Resistance-nodulation-division ·
Mathematical modelling · Parameter fitting

B George Youlden
ghy245@alumni.bham.ac.uk

1 School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

2 School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK

3 Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-022-01011-9&domain=pdf
http://orcid.org/0000-0002-1652-1949


   56 Page 2 of 38 G. Youlden et al.

1 Introduction

1.1 Efflux Mediated Antibiotic Resistance

Antibiotics are natural or synthetic drugs that are used to treat bacterial infections by
killing bacteria or preventing them from growing (Walsh et al. 2003). The widespread
use of antibiotics, however, has resulted in the selection for antibiotic resistant strains
of bacteria that are problematic to treat (Davies and Davies 2010). Bacteria develop
resistance by adapting in the presence of antibiotics; factors that determine this include
the dosage and how frequent an antibiotic is administered. In 2015 the World Health
Organisation (WHO) stated that without immediate global action, the world is headed
towards a post-antibiotic era (World Health Organization 2015).

Bacteria have developed resistance to antibiotics by various mechanisms, notable
however, is the use of permeation barriers and the expulsion of antibiotics via efflux
pumps (Nikaido 1998). Efflux was first identified as a resistance mechanism for tetra-
cycline in Escherichia coli (E. coli) (McMurry et al. 1980). There are six types of
bacterial efflux pumps that are capable of expelling antibiotics, these are the major
facilitator (MF) superfamily, the adenosine triphosphate (ATP) binding cassette (ABC)
family, the small multidrug resistance (SMR) family, the multidrug and toxic com-
pound extrusion (MATE) family, the proteobacterial antimicrobial compound efflux
(PACE) transporter family andfinally the resistance-nodulation-division (RND) family
(Alav et al. 2021). The RND family can be found in Gram-negative bacteria, they facil-
itate expulsion of a wide range of substrates including antibiotics which contributes
to multidrug resistance (MDR) (Nikaido 1998). Due to the existence of RND efflux
pumps and a dual membrane structure, Gram-negative bacteria intrinsically less sen-
sitive to antimicrobials than Gram-positive bacteria (Li et al. 2016). Over-expression
of RND efflux pumps commonly confers MDR in bacteria, an example of this is the
overexpression of the AcrAB-TolC efflux pump in E. coli and Salmonella (Blair et al.
2014). This over-expression is often controlled by mutations within gene regulatory
networks (GRNs) that govern the expression of efflux pump proteins (Webber and
Piddock 2003).

1.2 RND Efflux Pumps in Salmonella

Salmonella spp. is a genus of rod-shaped Gram-negative bacteria that is comprised of
two species Salmonella: S. enterica and S. bongori (Tindall et al. 2005). These species
existworldwide and are responsible for causing gastroenteritis, septicaemia and enteric
fever (Zhang et al. 2003), for example. Estimates show that Salmonella gastroenteri-
tis is annually responsible for 93.8 million illnesses and 155,000 deaths worldwide
(Majowicz et al. 2010). Salmonella enterica serovar Typhimurium (S. Typhimurium)
is one of the leading causes of non-typhoidal salmonellosis. MDR S. Typhimurium
strains have been shown to over-express proteins forming theRNDefflux pump system
AcrAB-TolC, exhibiting resistance to fluoroquinolone, chloramphenicol–florfenicol
and tetracyclines (Baucheron et al. 2002, 2004).
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Fig. 1 The five RND efflux pump systems found in Salmonella. Each of these pumps export drugs from
within the cell via proton motive force, driven by the electrochemical gradient caused by hydrogen ions
(H+) moving into the cytoplasm (Piddock 2006)

From genomic analysis, it has been shown that Salmonella strains contain five
RND efflux pump systems, AcrAB, AcrAD, AcrEF, MdsAB and MdtAB (Horiyama
et al. 2010) (Fig. 1). Various antibiotics have been shown to be substrates of multiple
of these efflux pump systems (Nishino 2016). A potential novel treatment strategy to
combat resistance is through the use of efflux pump inhibitors (EPIs) (Martínez 2012).
EPIs inhibit the action of efflux pumps; they can target efflux pumps directly (efflux
inhibitors), or can be used indirectly to target gene expression (efflux modulators)
(Gill et al. 2015). Their main purpose is to increase the intracellular concentration
of antibiotic, such that the bacteria are unable to survive (Sharma et al. 2019). The
development of novel EPIs is considered a promising strategy to make a bacterium
more sensitive to antibiotics and reverse MDR in Gram-negative pathogens (Spengler
et al. 2017; Blanco et al. 2018). However in Salmonella, it has been demonstrated that
inhibition of one of the RND efflux pump systems results in drug expulsion through
another RND efflux pump system, commonly as a result of gene over-expression in
the alternative system (Nishino et al. 2006; Hirakawa et al. 2008; Blair et al. 2014).
Therefore, effective inhibition of efflux may involve multiple targets. A theoretical
model of these interacting systems will accelerate our understanding of how best to
approach this.

1.3 Mathematical Models of Cellular Diffusion and Efflux

In order to model efflux, we must consider the diffusion of the antibiotic between the
intracellular and extracellular spaces. Cellular drug diffusion models have primarily
been used to model the drug diffusion in tumour cells. For an overview of some
of these models, see Kim et al. (2013). More closely related to this study however,
Rahman et al. (2018) present a simplemodel of a spherical tumour cell with a depleting
outer boundary condition. Here, they model the case where a drug is injected to the
centre of the cell and diffuses outwards. They are then able to produce links between
the intracellular concentration to cell death. Yi et al. (1999) develop a single cell
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model to look into the diffusion and efflux of MDR cancer cells. This model also
includes a supply of drug via injection. Efflux is modelled through active transport
usingMichaelis–Menten equations.Michelson and Slate (1992, 1994) present models
of the p-glycoprotein pump, associated with MDR in cancer patients. This pump is
energy dependent relying on dephosphorylation processes to function. Notably, this
efflux pump functions differently to the proton motive force driving the RND efflux
pumps in this study.

In terms of spherical drug diffusion models, many models have been produced to
investigate the dynamics of drug delivery capsules.Wang et al. (2010) produce amodel
of diffusion in a spherical drug delivery device, surrounded by a finite medium. This
finite medium is defined by a no flux outer boundary, i.e. there is no drug depletion.
The model is effectively fitted to data to achieve drug diffusion coefficients. Kaoui
et al. (2018) produce a similar model governing the release of drug from a multi-
layer spherical capsule as a drug delivery system. This capsule is surrounded by an
outer shell that protects the release of drug into the outside medium. A PDE model
is produced, with boundary conditions imposed to include the dynamics of diffusion
between the various layers and the outer shell. A two-layer capsule is first modelled,
with the extension of the solution procedure shown to produce an infinite number of
layers.

With regard to related efflux models, Perez et al. (2017) develop an ODE model
of efflux in E. coli by TetB. This type of efflux pump spans one membrane. Their
model has diffusion through two membranes of the antibiotic into the cytoplasm,
with efflux from the cytoplasm to the periplasm. Diao et al. (2016) produce an ODE
model of a yeast efflux pump found in Saccharomyces cerevisiae. They model the
negative feedback loop of a regulator, efflux pump and inducer (a substrate of the
efflux pump). Charlebois et al. (2014) also produce an ODE model of the efflux pump
in Saccharomyces cerevisiae. Here, a more complex model is produced, consisting
of three genes that are part of a drug resistance network involved with efflux pump
expression.

Concerningmodels of the fiveRNDefflux pumps found in Salmonella, thesemainly
revolve around the dominant pump AcrAB which is also found in E. coli. Nagano and
Nikaido (2009) exhibit an ODE model of antibiotic efflux via AcrAB-TolC in E. coli.
Here, they model diffusion via Fick’s Law and model transport via Michaelis–Menten
kinetics. Parameter fitting is used to obtain binding coefficients for various antibiotics.
Lim and Nikaido (2010) extend this work further to find binding coefficients for
penicillins. Rossi et al. (2018) produced a model of the regulation of MarA, the main
activator of acrAB expression inE. coli. Analysis from thismodel showed the resulting
effects on downstream genes including acrAB. Langevin and Dunlop (2018) exhibit
a model showing the stress tolerance involved in expressing AcrAB in E. coli. In this
model, they compared wild-type and acrAB knockout strains. They varied the levels
of environmental stress and measured the resulting effects on population size.

Finally, Youlden et al. (2021) produced a model of the GRN governing the
expression of the efflux pumps AcrAB and AcrEF in Salmonella. A time-dependent
asymptotic analysis was performed, breaking down the ODEmodel into a step by step
model. By performing this analysis, they were able to identify the most suitable targets
within the network for combating antibiotic resistance as well as information about
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when inhibition methods should be deployed. However, this model did not explicitly
consider the concentration of antibiotic and how this impacts theGRN.We address this
in the current study by developing a substrate efflux model that we then link with the
existing (but updated) GRNmodel. For this, we consider a cellular model of substrate
efflux governed by the RND family in Salmonella. This cellular model is derived using
a similar approach to the spherical capsule diffusion models previously mentioned.
Using experimental data, we first parametrise this model using a simplified equation
governing the regulation of the efflux pump systems, later replacing this equation with
the more complex GRN model. We are then able to conduct analysis into how the
cells are able to react to their environments, enabling us to identify potential targets
to counter efflux-mediated MDR.

2 Model Formulation

2.1 Experimental Protocol

We base our mathematical model upon experiments completed by the Blair laboratory,
based at the University of Birmingham (McNeil et al. 2019; Smith and Blair 2013).
Cultures of Salmonella are adjusted to an optical density (measured at a wavelength of
600nm, OD600) of 0.2 and are placed into standard 96 well plates. Individual cultures
are loaded with high concentrations of ethidium bromide (a substrate of multiple RND
efflux pumps). At this stage, an efflux inhibitor (CCCP) is present which dissipates
the proton motive force of the RND efflux pumps, resulting in substrate accumulation.
Ethidium bromide is a DNA-intercalating agent that fluoresces when it is bound to
DNA (Duhamel et al. 1996) and is commonly used as a measurable substitute for
antibiotics when investigating efflux systems. Ethidium bromide dye has been used by
many research teams to measure the activity of efflux through RND pumps. Examples
include (Blair and Piddock 2016; Paixão et al. 2009; Pal et al. 2020; Viveiros et al.
2008; Ma et al. 1995). By measuring this fluorescence (measured in arbitrary units),
the concentration of ethidium bromide within a culture can be approximated. The cells
are washed to remove extracellular substrate and are then re-energised with glucose so
that the efflux pumps begin to extrude the substrate. The fluorescence is thenmeasured
over 1 hour (Blair and Piddock 2016). Experiments were performed on Salmonella
strains, including those lacking various efflux genes to see the differences caused
by expressing various efflux pump systems. For these experiments, four RND efflux
pumpswere considered: AcrAB,AcrEF,MdsAB andMdtAB.All of these efflux pump
proteins share the same outer membrane protein TolC, with MdtAB also having the
ability to form a system with the outer membrane protein MdtC (Nishino 2016).

2.2 Cell Efflux Model

To formulate our model, we assume that each cell in a population acts identically, i.e.
we consider a single cell that represents an ‘average’ of the population.We also assume
that the concentration of ethidium bromide is evenly distributed in the population such
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Fig. 2 A schematic of the cell efflux model. The solid line represents our cell membrane at radius RM ,
whereas the dashed line represents our outer boundary at radius RB . We have placed our equations where
they apply in the intracellular and extracellular space

that every cell has an identical initial concentration of ethidium bromide. To reduce
model complexity, we assume this distributed concentration of ethidium bromide is
localised and independent to each cell, meaning that if the substrate has been expelled
into the extracellular space, it can diffuse back into the original cell. We consider
ethidium bromide in two states. The first state is ethidium bromide that fluoresces
because it is bound to DNA, we will further refer to this state as bound ethidium
bromide. In this state the ethidium bromide cannot pass through the cell membrane
via efflux or diffusion. The second state is ethidium bromide that is not bound to DNA.
We will further refer to this state as unbound ethidium bromide. In this state, ethidium
bromide does not fluoresce and can move freely through the cell membrane via efflux
or diffusion. Since one state is bound, we assume that the two states will diffuse at
different rates and hence apply a different diffusion coefficient for each state. We
assume a directly proportional relation between the fluorescence of ethidium bromide
and the concentration of bound ethidium bromide.

We exhibit a schematic of our model in Fig. 2. We consider the cells to be spher-
ical and axisymmetric and hence use spherical coordinates with intracellular space
bounded at radius RM . This is surrounded by extracellular space with an outer bound-
ary of radius RB . At the cell radius,wehave a thin permeablemembranewhich contains
all of our efflux pump systems that expel unbound substrate from the intracellular to
the extracellular space. Whilst Salmonella are rod-shaped bacteria, we opt to model
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them spherically for simplicity in implementing boundary conditions, but note that the
model is generalisable to alternative coordinate systems. The equations for the model
are a system of partial differential equations (PDEs) as follows

∂cB
∂t

= DB∇2cB − αcB + βcI , (1)

∂cI
∂t

= DI∇2cI + αcB − βcI , (2)

∂cE
∂t

= DE∇2cE . (3)

Here, cB denotes the bound concentration of substrate, cI denotes the intracellular
unbound concentration of substrate, and cE denotes the extracellular unbound con-
centration of substrate. Each concentration diffuses at an independent rate DB, DI or
DE . In addition, the intracellular ethidium bromide undergoes DNA binding at rate
β and unbinding at rate α. We assume that there is always a sufficient concentration
of DNA that is well mixed throughout the cell such that ethidium bromide is able to
bind at all times.

We note that under these assumptions, the model can also be formulated as a
compartmentalised ODE system. By formulating and comparing simulations of the
two models, we have been able to show that the ODE model works and behaves
similarly (but not identically) to the PDE model (see Youlden 2021 for details). We
choose, however, to maintain the more mechanistic PDE model as we are able to
visualise and analyse the profile of the drug. In addition, it is also much easier to
generalise the model to other spatial dependencies and include additional flows, such
as those around a wound or infection site, that may be present outside of a laboratory
experiment setting. Furthermore, the use of the PDEmodel in its current form could be
important in future investigations into potential therapies or substrates with different
diffusivities for which the ODE model may fail to encapsulate the correct behaviour,
for example.

2.2.1 Boundary Conditions

The boundary conditions at r = 0 are:

DB
∂cB
∂r

∣
∣
∣
∣
r=0

= 0, DI
∂cI
∂r

∣
∣
∣
∣
r=0

= 0. (4)

Here, we assume axisymmetric properties of the cell for the intracellular concentra-
tions. This also avoids singularities about the point r = 0. We note that the substrate
cannot cross the membrane when it is bound; hence, we set a no flux boundary for cB
here:

DB
∂cB
∂r

∣
∣
∣
∣
r=RM

= 0. (5)
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Fig. 3 A schematic showing the processes involved at the membrane RM with small finite thickness ε. We
show fictitious points R−

M and R+
M that are part of the intracellular and extracellular space, respectively.

Efflux of substrate is directly from the intracellular space to the extracellular space through the RND efflux
pumps. Diffusion of substrate is in both directions through each membrane from the intracellular and
extracellular spaces into the periplasm

cI and cE , however, are free to cross the membrane. We demonstrate the properties
of the membrane in Fig. 3. Here, the membrane has small but finite thickness δ, with
the fictitious points R−

M and R+
M being the intracellular and extracellular points of the

membrane, respectively. We can see that we have both diffusion and efflux through
the membrane and thus the total flux through the membrane will be a combination of
diffusive and advective flux through efflux. Via Fick’s law (1855), we can calculate
the diffusive flux through the membrane:

JD = −DM∇c(RM , T ), (6)

= −DM
c(R+

M , T ) − c(R−
M , T )

ε
,

= DM

ε
(cI (RM , T ) − cE (RM , T )).

Here, DM denotes the diffusion coefficient of substrate inside themembrane. In regards
to the advective flux, this is proportional to the product of substrate concentration and
the volume flow (Koch 1970)

JA = X c(R−
M , T ), (7)
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= X cI (RM , T ).

Here, X represents the volume flow caused by active transport via the efflux pump
systems. Taking the combination of fluxes, the total flux through the membrane is

J = JD + JA, (8)

= P (cI (RM , T ) − cE (RM , T )) + X cI (RM , T ).

Here, P = DM

ε
is a mass transfer coefficient related to the permeability of the mem-

brane. We require continuity of flux at the membrane and therefore the boundary
condition at R = RM can be written as

− DI
∂cI
∂r

∣
∣
∣
∣
r=RM

= − DE
∂cE
∂r

∣
∣
∣
∣
r=RM

= (P + X) cI (RM , t) − P cE (RM , t). (9)

This condition encompasses flux continuity between the intracellular and extracellular
space,with interface conditions that characterise the properties of themembranewhich
we assume are constant for the full duration of our simulations (Cussler and Cussler
2009). If we set X = 0 such that there is no efflux, we can see that as P → 0 this
condition becomes a no flux boundary condition (which is expectedwith nomembrane
permeability), in contrast as P → ∞ we approach cI (RM , t) = cE (RM , t) which
models the case with no membrane. In order to implement a feedback mechanism
from the bacteria upon the intracellular substrate concentration, we assume that the
volume flow X is dependent on the antibiotic concentration within the cell which we
model as

dX

dt
= φ I − δX , X(0) = X0, I (t) = 3

R3
M

∫ RM

0
r2 cB(r , t) dr , (10)

where φ and δ are the efflux pump formation (or upregulation) rate and degradation (or
downregulation) rate, respectively, and I is the averaged intracellular concentration
of substrate. Note that X(t) will differ depending on which efflux pumps are active in
a given strain—more details are given in Sect. 3.

Finally, we have the outer boundary condition. We assume that the extracellular
space is limited, such that substrate expelled out of the cell will always be within
range to diffuse back in, as shown by the experimental data. Therefore, we set the
outer boundary to be a no flux condition,

DE
∂cE
∂r

∣
∣
∣
∣
r=RB

= 0. (11)

2.2.2 Initial Conditions

As the cultures are washed to remove extracellular substrate before the initial fluo-
rescence is measured, we assume that there is no substrate in the extracellular space
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Table 1 A summary of the strains involved in the experiments

Strain name Active efflux pumps Variable Parameters

Wild-type AcrAB, AcrEF, MdsAB, MdtAB XAEST φAEST , δAEST

A Knockout AcrEF, MdsAB, MdtAB XEST φEST , δEST

E Knockout AcrAB, MdsAB, MdtAB XAST φAST , δAST
S Knockout AcrAB, AcrEF, MdtAB XAET φAET , δAET
T Knockout AcrAB, AcrEF, MdsAB XAES φAES , δAES

AE Knockout MdsAB, MdtAB XST φST , δST
AEST Knockout N/A N/A N/A

We list each strain’s active efflux pumps as well as their corresponding efflux variable and parameters.
Notably, the ‘T knockout’ strain has inactive MdtAB periplasmic adaptor protein rather than inactive gene
mdtAB

initially. In regards to the intracellular space, we do not know the ratio of unbound
to bound substrate, thus we introduce the parameter γ into our initial conditions that
will define the ratio of unbound to bound substrate. The initial conditions for each
concentration are as follows

cB(r , 0) = CB0, cI (r , 0) = γ CB0, cE (r , 0) = 0, (12)

where CB0 is the initial concentration of bound substrate.

3 Parametrisation of the Cell EffluxModel

3.1 Parametrisation Data

Experiments were carried out on different cultures of Salmonella with various efflux
pump knockouts as described in Sect. 2.1. We summarise all of these strains with
their active efflux pumps and their corresponding efflux variable and parameters in
Table 1. In regards to efflux variable and parameter notation, we list the efflux pumps
that are still active in the subscript (e.g. A (or AcrAB) knockout is noted by XEST ).
We include each strain’s efflux parameter in the following parameter fitting exercises
by modifying the membrane boundary condition (9) and efflux flow equation (10) for
each strain. This enables us to find the corresponding efflux profile for each strain
through multiple parameter fitting exercises.

For each experiment with a given strain, we have multiple assays (biological
repeats). Within these individual assays, we have technical repeats for each strain.
The mean and standard deviations are found of these technical repeats. Data were
taken from the timepoint at which fluorescence peaked before reducing as a result of
efflux. This ensures that the systems have all stabilised following the glucose injection
that re-enables efflux and facilitates better comparison across the assays. In order to
combine the data from all assays, we normalise our data by dividing the fluorescence
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over time by the peak initial fluorescence. As not all assays run for the same length of
time (until the data show evidence that the efflux is levelling off), we split our combi-
nations into three time periods (short, medium and long-time). Whilst the short-time
plots include data of all assays, the medium- and long-time plots are restricted to the
assays that reach the final time point on the corresponding plot.

3.2 ParametrisationMethods

We employ the function fminsearch in MATLAB to obtain our parameter estimates.
The function uses theNelder–Mead simplexmethod (described in Lagarias et al. 1998)
to minimise a given objective function starting from initial parameter guesses. In order
to obtain these parameter guesses, we use a Latin hypercube method of sampling as
described in McKay et al. (1979). On establishing realistic upper and lower parameter
bounds, we create a parameter space from which a range of initial parameter guesses
are chosen. We use this sampling method in order to choose a well-spread distribution
of initial parameter guesses (something that is not guaranteed from using a random
method of sampling). The objective function that we attempt tominimise is as follows:

f = 1

tmax

∑

| y(t) − I (t)) | (13)

where

I (t) = 1
4
3πR3

M

∫∫∫

V
r2 sin(θ) cB(r , t) dr dθ dφ

= 3

R3
M

∫ RM

0
r2 cB(r , t) dr .

Here, y denotes the experimental data, I denotes the averaged intracellular concentra-
tion of bound substrate, and tmax is the maximum time for the simulations. We divide
the objective function by the amount of data points in the corresponding assay to
which we are fitting. This gives us a comparison point between the accuracy of fits to
different strains that differ in assay length. In addition, we have applied a constraint to
the parameters to be nonnegative by ensuring that the absolute value of each parameter
is taken through every iteration of finding the objective function. We note that the data
values are measured in relative fluorescence and our model in concentration. How-
ever, as we assume a directly proportional relationship between the fluorescence and
intracellular concentration of substrate, we directly fit the model to the data. Finally,
we list all parameters and their units used in this model in Table 2.

In order to produce numerical simulations of the PDE model, we use the forward
time centralised space (FTCS) finite difference method (LeVeque 2007; Versypt and
Braatz 2014). We set the cell to have a radius of 2 µm so that it yields a similar
spherical volume and surface area to the typical rod-shaped dimensions of Salmonella.
We have also set the outer boundary to be at 4 µm; this distance has been chosen as it
provided the best results in early iterations of the parameter fitting exercises (omitted
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here for brevity). For the following results, we have fitted to the long-time data only.
We withhold the short-time and medium-time assays (where available) for model
validation by testing the accuracy of the fit. For simplicity of our parameter fitting
exercises, we set our bound ethidium bromide diffusion rate to be zero (DB = 0)
reducing the number of parameters in the following fits. This is under the assumption
that the bound molecules will be large compared to unbound molecules such that the
diffusion will be negligible compared to the unbound state. For a complete overview
of the numerical method and parameter fitting exercises used to obtain these results,
see Youlden (2021).

3.2.1 Wild-Type and AEST Knockout

We initially fit themodel to the datawhere noRNDefflux pumps are active in the strain.
Whilst there is the possibility of less significant efflux pump systems being active in
this case, efflux contributed from these pumps is likely to be negligible compared to
the efflux caused by the RND efflux pumps. Thus by initially fitting to these data, we
can construct a base for the diffusion parameters and membrane permeability as these
should not vary between experiments. The parameters identified for the AEST are as
follows

[RB, DI , DE , P, α, β, γ ] = [4, 2.30, 1.01, 1.47 × 10−2, 0.22, 8.89 × 10−2, 2.59],
(14)

given to three significant figures and resulting in an objective function of 2.44×10−4.
We plot the resulting parameter fit in Fig. 4. We can see that these parameters produce
a good fit to the long-time data (Fig. 4a) and whilst the model does not lie within the
standard deviation of the medium- and short-time data (Fig. 4b, c), we can see that the
model is able to reproduce very similar dynamics. By fixing our optimal parameters
from the AEST knockout case, we continue to find the remaining efflux parameters
from the other strains. Fitting to the wild-type data, we achieve the parameters

[X0, φ, δ] = [4.00 × 10−2, 7.99 × 10−2, 0.60], (15)

given to three significant figures and resulting in an objective function of 3.76×10−4.
We plot the resulting parameter fit in Fig. 5. With the addition of efflux in this case,
we can see that again the model provides a good fit to the long-term data (Fig. 5a). In
addition to this, good fits are shown against the medium- and short-time data (Fig. 5c,
d). The efflux profile is also exhibited in 5b, we see that the initial condition of efflux
is small; however, there is a sharp increase in efflux before decreasing to reach steady
state.

3.2.2 Efflux Knockouts

The model is able to encapsulate the behaviour of the two most extreme cases of full
and no efflux (wild-type and AEST knockout). We now fit new efflux parameters for
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(a)

(b) (c)

(d) (e)

Fig. 4 Parameter fitting results of the PDE model fitting to the long-time AEST data (a). We test the model
against the data for the medium-time and short-time assays in (b) and (c), respectively. Finally in d and
e, we demonstrate the distribution profiles for both bound and unbound concentrations upon fitting to the
long-time data (Color figure online)

each case of efflux knockouts, keeping the AEST parameters fixed (14). For notation,
we list all fitted parameters as XG0, φG and δG together with their corresponding
objective function θG , whereG represents the efflux pumps that are active in that case.
The parameters we achieve are

[XEST 0, φEST , δEST , θEST ] = [8.99 × 10−3, 4.89 × 10−3, 0.26, 4.53 × 10−4], (16)

[XAST 0, φAST , δAST , θAST ] = [1.35 × 10−2, 4.18 × 10−2, 0.24, 6.15 × 10−4], (17)

[XAET 0, φAET , δAET , θAET ] = [7.01 × 10−8, 4.30 × 10−2, 0.32, 6.53 × 10−4], (18)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Parameter fitting results of the PDE model fitting to the long-time wild-type data (a) with resulting
efflux profile (b). We test the model against the data for the medium-time and short-time assays in (c) and
(d), respectively. Finally in e and f, we demonstrate the distribution profiles for both bound and unbound
concentrations upon fitting to the long-time data (Color figure online)

[XAES0, φAES, δAES, θAES] = [7.87 × 10−8, 3.42 × 10−2, 0.25, 9.53 × 10−4], (19)

[XST 0, φST , δST , θST ] = [2.12 × 10−4, 1.57 × 10−4, 2.94 × 10−2, 1.30 × 10−3],
(20)

given to three significant figures and resulting in a combined objective function of
3.98× 10−3. We plot the resulting fits in Fig. 6. We can immediately see that for each
efflux knockout case, the dynamics are closely matched with the majority of the model
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(a)

(b)

(c)

(d)

(e)

Fig. 6 Parameter fitting results of the bound ethidium bromide model to the data of efflux knockouts, with
fixed AEST parameters (14). We show the model fits with their resulting efflux knockouts. We show in a A
knockout, b E knockout, c S knockout, d T knockout and finally, e AE knockout. Plots here are only shown
on one timescale, due to no experiments taken for shorter or longer time periods (Color figure online)
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Fig. 7 Individual efflux profiles estimated from parameter fitting results. Here, A denotes AcrAB, E denotes
AcrEF, and ST denotes MdsAB and MdtAB (Color figure online)

fitting within the standard deviation of the data. It is also interesting to note that nearly
all efflux profiles (barring the AE knockout in Figure 6e) starts off at a low value,
then rapidly increases before decreasing to a steady-state value. The efflux profile for
the AE knockout (Fig. 6e) has a very different efflux profile to the other cases. In this
case, only the efflux pumps MdsAB and MdtAB are active, these are both weaker
efflux pumps compared to AcrAB and AcrEF, explaining the lower efflux and initial
peak. Notably these strains parameters take very different values to the other knockout
strains. All other knockout strains containing similar upregulation and downregulation
rates φ and δ, with only the AcrAB knockout having a reduced upregulation rate. This
is expected as the efflux pump systems will be regulated at varying time periods, and
therefore, a larger ratio (

φ
δ
) will correspond to a faster reacting efflux pump.

Notably, all strains that contain active AcrAB have similar efflux profiles (Fig. 6b–
d). The amount of efflux in these strains is also much larger compared to the other
strains. This shows the clear dominance of the AcrAB efflux pump over the other RND
systems and without this pump present a strain would be much more susceptible to an
antibiotic. In Fig. 7, we plot individual efflux profiles for the various pumps, combining
MdsAB and MdtAB due to the minimal efflux shown from these pumps. We note that
experimentally, the expression of acrEF has been shown to become prevalent when
there is less production of AcrAB (Wang-Kan et al. 2017). Therefore to achieve these
efflux profiles, we have assumed that all efflux profiles are additive. However, for the
strains where AcrAB is active, we assume that AcrEF is in a down regulated state,
setting XE = 0 (i.e. acrEF is not expressed). We therefore can estimate the individual
efflux profiles as:

XA = XAST − XST , XE = XEST − XST . (21)
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Fig. 8 A schematic of themultiscalemodel. The solid lines represent mechanisms incorporated in themodel
of Youlden et al. (2021). The dashed lines illustrate additional mechanisms incorporated to the GRN in this
study, whilst the dot-dashed lines capture the interactions between the GRN and the intracellular substrate

From these efflux profiles, we can see that the behaviour for the two main efflux
pumps (AcrAB and AcrEF) are very similar, showing an early increase before rapidly
decreasing to reach a steady state. Interestingly, these dynamics follow closely the
expression profiles of the mathematical model of the GRN in Youlden et al. (2021).
Since we know that the GRN determines efflux timing and level, this strongly supports
the qualitative dynamics of the model in Youlden et al. (2021). We now proceed to
combine the two models.

4 Multiscale Model

By creating a multiscale model of the intracellular GRN that regulates efflux with
the PDE model encapsulating the substrate distribution, we can draw hypotheses on
manipulating aspects of the GRN and the resulting effect upon substrate concentration
in a culture (with a view to the development of novel therapeutics). By creating this
multiscale model, we have a more realistic and complete model that should capture a
larger range of aspects for the population’s behaviour than the previous models.

4.1 Model Formulation

We plot a schematic of the updated GRN model that has substrate concentration as
a signal in Fig. 8. Following our asymptotic analysis in the previous study, we have
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identified the genes that dominate processes within the network. Thus for simplicity,
in this section we use this analysis to create a simplified version of the GRN. The
adaptations we take to simplify the model are:

– Removal of the secondary transcription activators soxS, marA and rob.
– Removal of the post-transcriptional activator CsrA.

Our asymptotic analysis concluded that once ramA is expressed, these secondary tran-
scription activators did not produce a noticeable effect at long-time on the expression
of the efflux pump genes. In addition, as CsrA is not linked to other mechanismswithin
the network, mathematically we can easily incorporate the effect of this protein by
altering the translation rate of acrAB mRNA. We also incorporate additional detail
into the network (Dijun et al. 2018):

– RamA activates acrEF as well as acrAB.
– The link between the expression of acrAB and acrEF, is governed by heat-stable
nucleoid-structuring protein (H-NS).

In regards to the first change, in the previous model the expression of acrEF was only
governed by EnvR. Thus, we should see new interesting dynamics to the network with
acrEF now also being dependent on the activator protein RamA to be transcribed. In
regards to the second change, we have replaced our theoretical link between both efflux
pumps in our previous GRN model with the molecule H-NS. When H-NS is active,
it inhibits expression of both envR and acrEF (Blair et al. 2014). H-NS is believed
to be involved in the experimentally observed switching dynamics of the two efflux
pumps, such that acrEF expression is activated when acrAB expression is low. We
include these switching dynamics by assuming that a high concentration of AcrAB
will activate the molecule H-NS, hence inhibiting the expression of both acrEF and
envR. To include this into our model, we assume that the variable H-NS will vary
between 1 (when active) and 0 (when inactive). We represent the variable for H-NS
through the following equation

dH

dt
= kh B(1 − H) − mhH , (22)

where kh is the activation rate of H-NS linked to AcrAB concentration and mh is the
deactivation rate of H-NS. For simplicity, we take (22) to be in quasi-steady state, with

KH = mh

kh
:

H = B

B + KH
. (23)

From our parameter fitting exercises, we achieved the most accurate results when
efflux was dependent upon the substrate concentration, as presented in this study (see
Youlden (2021) for alternative scenarios). To combine the two models, rather than
choosing the substrate concentration to have a direct effect upon the expression of
both efflux pumps, we choose to target the areas in the network that are deemed most
likely to be affected by an antibiotic stressor:
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– The internal substrate concentration inhibits expression of ramR (Holden andWeb-
ber 2020).

– The internal substrate concentration inhibits the concentration of Lon Protease
within the cell (Holden and Webber 2020).

In regards to the first change, ramR is the local repressor of ramA, the primary activator
of both efflux pumps. By targeting ramR, we should see an indirect effect upon ramA
expression. For the second change, by targeting Lon Protease concentration, we indi-
rectly affect RamA concentration by altering the protein’s degradation. In regards to
the efflux of the substrate, we assume that efflux will correspond with both translation
of AcrAB and AcrEF. We incorporate this by assuming that the efflux volume flow
coefficient (X ) is proportional to the combined concentrations of these efflux pump
proteins. In addition, since both MdsAB andMdtAB (which were both involved in the
experiments) and their corresponding genes are not captured in this GRN, we include
their corresponding efflux rate from the parameter fitted equation from the cell efflux
model. The equations for the combined GRN model are as follows:

dRm

dt
= k1

KI

KI + I
− δm Rm, (24)

dAm

dt
= k2

KR A + KRKA1

(A + KA1)(R + KR)
− δm Am, (25)

dCm

dt
= k3

KA2

A + KA2

− δmCm, (26)

dBm

dt
= k4

KE2KC A

(KC E + KE2KC + KE2C)(KA1 + A)
− δmBm, (27)

dEm

dt
= k5

KH

KH + B
− δmEm, (28)

dFm
dt

= k6
KH KE1 A

(KH + B)(KE1 + E)(KA3 + A)
− δmFm, (29)

dR

dt
= μ(m1Rm − δp R), (30)

dA

dt
= m2Am − δp A − d1

KI

KI + I
A, (31)

dC

dt
= m3Cm − δpC, (32)

dB

dt
= m4Bm − δpB, (33)

dE

dt
= m5Em − δpE, (34)

dF

dt
= m6Fm − δpF, (35)

dXST

dt
= φST cB − δST XST , (36)

∂cB
∂t

= DB∇2cB − αcB + βcI , (37)
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∂cI
∂t

= DI∇2cI + αcB − βcI , (38)

∂cE
∂t

= DE∇2cE , (39)

I (t) = 3

R3
M

∫ RM

0
r2 cB(r , t) dr . (40)

Here, I denotes the averaged internal concentration of bound substrate. As the
mRNAs and proteins in the GRN only exist in the intracellular space, for simplicity
of reducing the number of unknown parameters we have opted to not include spatial
effects on these variables. In regards to ourGRNequations, firstly by using insights into
the asymptotic analysis we have adapted Eqs. (27) and (33). From the former, we have
removed activation from SoxS (also removing soxSmRNA and SoxS entirely from the
model) whilst the latter we have removed CsrA from the translation terms of acrAB.
We have also updated Eqs. (28) and (29), including the assumption that H-NS must
not be active for mRNA transcription in both equations, whilst including dependence
on RamA concentration on the latter. In addition, we have modified our basal ramA
transcription rate in (25). Rather than including a standard basal transcription rate
regardless of whether a protein is bound to the promoter region of ramA, we have
chosen to only include transcription in the times where RamA or no proteins are bound
to the promoter region. Finally, we have included the GRN influence from internal
bound substrate by regulating ramR mRNA transcription in (24) and regulating Lon
Protease degradation in (31). Whilst MdsAB and MdtAB do not feature within the
GRNwe include their efflux in (36), this is in order for us to replicate the full dynamics
of the PDEmodel.We denote the variables and parameters used in this model in Tables
3 and 4 respectively. The boundary conditions used in the above model are

DB
∂cB
∂r

∣
∣
∣
∣
r=0

= 0, DI
∂cI
∂r

∣
∣
∣
∣
r=0

= 0, (41)

DI
∂cI
∂r

∣
∣
∣
∣
r=RM

= DE
∂cE
∂r

∣
∣
∣
∣
r=RM

=
(

P + B + F

XC
+ XST

)

cI (RM , t) − PcE (RM , t), (42)

DB
∂cB
∂r

∣
∣
∣
∣
r=RM

= 0, DE
∂cE
∂r

∣
∣
∣
∣
r=RB

= 0. (43)

The first set of boundary conditions (41) represents axisymmetry in both angular
dimensions for bound and unbound substrate. The boundary condition (42) represents
our membrane boundary condition for unbound substrate. In this boundary condition,

we have set the volume flow from efflux as X = B + F

XC
+ XST . We have included the

efflux ofMdsAB andMdtAB directly as XST in this equation; however for AcrAB (B)
and AcrEF (F), we link their concentrations to their efflux rates by assuming a directly
proportional relationship, dividing both concentrations by an efflux rate constant XC .
The final set of boundary conditions (43) represents no flux boundary conditions, for
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Table 3 Variables used in our multiscale model along with their respective units

Variables Description Units

Rm Concentration of ramR mRNA nM

R Concentration of RamR nM

Am Concentration of ramA mRNA nM

A Concentration of RamA nM

Cm Concentration of acrR mRNA nM

C Concentration of AcrR nM

Bm Concentration of acrAB mRNA nM

B Concentration of AcrAB nM

Em Concentration of envR mRNA nM

E Concentration of EnvR nM

Fm Concentration of acrEF mRNA nM

F Concentration of AcrEF nM

X Combined efflux rate of all pumps µm min−1

XST Efflux rate of MdsAB and MdtAB µm min−1

cB Relative concentration of bound substrate N/A

cI Relative concentration of unbound intracellular substrate N/A

cE Relative concentration of unbound extracellular substrate N/A

I Averaged concentration of bound substrate N/A

bound substrate at the membrane and unbound substrate at the outer boundary. The
initial conditions for each concentration are as follows

cB(r , 0) =
{

CB0, 0 ≤ r ≤ RM ,

0, RM < r ≤ RB,

cI (r , 0) =
{

γ CB0, 0 ≤ r ≤ RM ,

0, RM < r ≤ RB,
cE (r , 0) = 0, (44)

where CB0 is the initial concentration of bound substrate. We express the initial con-
dition for the unbound substrate as a ratio of the bound substrate using γ . The initial
condition for the efflux rate of MdsAB and MdtAB follows from the fitted initial con-
dition in the previous chapter. In regards to the initial conditions for the GRN, we have
down-regulated initial conditions for the mRNAs and proteins of all repressor genes
(ramR, acrR and envR). For the mRNAs and proteins of the remaining genes (ramA,
acrAB and acrEF), we will estimate their initial conditions in order to replicate the
experiments. In the experiments, the cell has had a short amount of time to react to
the substrate before the first measurement is taken, and thus, we should expect some
activation of expression of the efflux genes and their activator genes. This behaviour
is also shown in the parameter fitted efflux dynamics, as the initial conditions for the
efflux rates of individual pumps are not fully down regulated. The notation for the
initial conditions is then as follows:
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Table 5 A summary of the strains involved in this section

Strain name Active efflux pumps Mutations

Wild-type AcrAB, AcrEF, MdsAB, MdtAB N/A

EST AcrEF, MdsAB, MdtAB AcrAB

RamR Mutant AcrAB, AcrEF, MdsAB, MdtAB RamR

We list each strain’s active efflux pumps and any mutations to their GRNs

Rm(0) = Cm(0) = Em(0) = Gm0, R(0) = C(0) = E(0) = G0, XST (0) = XST 0,

Am(0) = Am0, Bm(0) = Bm0, Fm(0) = Fm0,

A(0) = A0, B(0) = B0, F(0) = F0. (45)

4.2 Numerical Simulations

4.2.1 Parameterisation

We exhibit numerical simulations of the multiscale model, again attempting to repro-
duce the parameter experimental data. Since we have data for both wild-type and EST
knockout strains, we compare the model against the data of these strains using param-
eter values from Table 4. We maintain the parameter sizes from the GRNmodel in the
previous study (Youlden et al. 2021) as closely as possible. This is due to the extensive
parameter value selection drawn from literature review and consultationwith experts in
the GRN (the most comprehensively studied efflux GRN at this time). In addition, we
have also maintained the fitted spatial parameters from Sect. 3. We opt not to compare
against the data of the remaining strains: AST (AcrAB, MdsAB and MdtAB), AET
(AcrAB, AcrEF and MdtAB), AES (AcrAB, AcrEF and MdsAB), ST (MdsAB and
MdtAB). These data are not used as the first three strains (which have AcrAB active)
do not particularly differ in dynamics to the wild-type strain. Furthermore for the last
strain, the genes that govern MdsAB and MdtAB do not feature within the GRN. To
achieve the fits for the EST strain, we knock out the gene acrAB in the GRN by setting
k4,m4 = 0. In addition, there is a specific strain of S. Typhimurium (SL1344) that
displays MDR as a consequence of a ramR::aph mutation in the ramR gene. This
strain produces a non-functional RamR protein that is unable to repress ramA expres-
sion, indirectly causing over-expression of the efflux pump genes. Although we do
not have data for this mutant strain, we can run simulations to predict the behaviour
of the strain by mutating RamR in the GRN, setting μ = 0. In total we simulate four
strains: wild-type and an EST knockout fitted to data, and a RamR mutant. We detail
the strains with their active efflux pumps andGRNmutations (if applicable) in Table 5.

For the following simulations, we set down-regulated initial conditions for the
repressor mRNAs and proteins (Gm0 = G0 = 0.01nM). For the mRNAs and proteins
of the remaining genes ramA, acrAB and acrEF, their initial conditions will vary
depending on the strain we are modelling. To choose these initial conditions, we first
run a simulation for each strain with down-regulated initial conditions for all mRNAs
and proteins (Am0 = A0 = Bm0 = B0 = Fm0 = F0 = 0.01nM). For the wild-
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Table 6 Initial condition values for strains involved in this section

Strain name Am0 (nM) A0 (nM) Bm0 (nM) B0 (nM) Fm0 (nM) F0 (nM) G0 (nM)

Wild-type 3.6256 12.1458 3.1665 36.9524 0.01 0.01 0.01

EST 3.5985 12.2401 0 0 0.4798 3.5434 0.01

RamR mutant 10 25.3726 5.0964 102.0014 0.01 0.01 0.01

type and RamR mutant strains, we expect acrEF expression to be down-regulated
as acrAB is active, so we maintain the initial conditions Fm0 = F0 = 0.01nM. For
the EST strain, the gene acrAB is knocked out entirely so we set Bm0 = B0 = 0.
For the remaining variables, in the wild-type and EST strains, we choose the initial
condition of the variables to be half of the maximum value over the full time course
in the down-regulated simulation, i.e. the system has had a short period of time to
activate from a fully down-regulated state. For the RamRmutant strain, we choose the
initial condition of the variables to be the steady state values in the down-regulated
simulation, i.e. with RamR mutated we always expect ramA and acrAB or acrEF to
be up-regulated. We display these initial conditions in Table 6.

4.2.2 Simulations

We produce simulations of the model using these initial conditions in Figs. 9 and 10
for the wild-type strain and EST strain, omitting mRNA plots (that follow closely to
the protein plots) for brevity. For the wild-type strain proteins (Fig. 9a), at early time
we see low concentrations of ramR mRNA and RamR as the gene is inactive in the
presence of a high internal substrate concentration. This in turn allows fast expression
of ramA, resulting in large concentrations of RamA protein, activating the expression
of the efflux pump gene acrAB. Since the local efflux repressor acrR is inhibited by
a large concentration of RamA, we see higher expression of acrAB. This leads to an
increase in efflux rate (Fig. 9c) and resulting expulsion of substrate fromwithin the cell
(Fig. 9b). Once the intracellular bound substrate concentration is sufficiently low, we
see increased activation of ramR expression resulting in inhibition of the expression of
the network’s main activator ramA. The local efflux repressor acrR is able to express
at a faster rate due to a lower concentration of RamA. The lower concentration of
RamA and larger AcrR concentration result in less acrAB expression both indirectly
and directly, respectively. This results in a decrease in efflux rate and results in an
equilibrium between the transfer of intracellular and extracellular substrate. We note
that the model comparison to the data (Fig. 9b) is not perfect, with mid time dynamics
appearing outside the standard deviation of the data. However, we have opted not
to largely differ our GRN parameter choices from the previous study by manually
editing parameters as little as possible. Alternatively, we could run new parameter
fitting exercises including the GRN parameters; however due to the high number of
parameters within the network compared to the available data, there will likely be
many non-identifiable parameters.

We show the simulation of the EST strain in Fig. 10. For (a), we note that for all
time there is no expression of acrAB due to the gene being knocked out in this strain.
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(a)

(b) (c)

Fig. 9 Simulations of the multiscale model for the wild-type strain, run for the time course of the wild-type
data. In a, we show the concentration of proteins. In b, we exhibit the substrate concentration over time
against the experimental data and c the corresponding efflux coefficient X , with the individual contributions
of AcrAB (AB), AcrEF (EF) and the sum of MdsAB and MdtAB (ST) indicated (Color figure online)

Without the presence of AcrAB in this strain, there is no activation of H-NS meaning
that both envR and acrEF can be expressed freely. Thus at early time, similar to the
wild-type strain, with low concentrations of RamR due to a high internal substrate
concentration, we see activation of ramA expression, with RamA this time activating
expression of acrEF. Due to the difference in the dissociation constants of RamA
with acrEF and acrAB, we see less acrEF expression compared to the expression of
acrAB in the wild-type strain (Fig. 9a). The expression of acrEF is also reduced by
the constitutive expression of envR, and hence, we see a lower efflux rate (Fig. 10c)
than in the wild-type strain (Fig. 9c). Thus, substrate is expelled from the intracellular
space at a slower rate (Fig. 10b). There is also less expression of ramR due to a higher
intracellular substrate concentration, which reaches an equilibrium steady state with
the extracellular substrate at a higher concentration than that of thewild-type strain.We
note that our default parameters achieve a good comparison against the data in this case
(Fig. 10b), with almost all of themodel fittingwithin the standard deviation of the data.
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(a)

(b) (c)

Fig. 10 Simulations of the multiscale model for the EST strain (acrAB knockout, k4,m4 = 0), run for the
time course of the EST data. In a, we show the concentration of proteins. In b, we exhibit the substrate
concentration over time against the experimental data and c the corresponding efflux coefficient X , with the
individual contributions of AcrAB (AB), AcrEF (EF) and the sum of MdsAB and MdtAB (ST) indicated
(Color figure online)

In Fig. 11, we also produce simulations of potential RamRmutant strains and com-
pare the resulting substrate expulsions. In (a), we plot all time-dependent simulations
of the strains on one plot. In (b), we use the trapezium rule (function ‘trapz’ in MAT-
LAB) to approximate the area under the curve (AUC) of each strain simulated in (a).
The AUC shows us the overall relative substrate exposure over the simulated time
course (Urso et al. 2002). Immediately we can clearly see the benefits of the RamR
mutation for both strains as there is a clear reduction in substrate over all time for
strains with this mutation over their counterparts (Fig. 11b). Initially, the wild-type
strain and RamR mutant display similar levels of efflux (albeit the RamR mutant
exhibiting slightly faster expulsion). However in the long term, the RamR mutant
maintains high levels of efflux, almost eliminating all substrate from the intracellular
space. This clearly shows the advantages of the RamR mutation, the strain is able to
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(a) (b)

Fig. 11 Our multiscale model showing the intracellular bound substrate concentration over time for all
strains. In a we show time-dependent plots of all strains, in b we approximate the AUC of the strains using
the trapezium rule, to show the overall relative substrate exposure. The wild-type strain is simulated using
all parameters values in Table 4, the EST case has k4,m4 = 0 and RamR mutant μ = 0 (Color figure
online)

prevent large concentrations of intracellular substrate, and this is a huge contributor
to its ability to exhibit MDR.

4.3 Parameter Sensitivity

We conduct a sensitivity analysis of the parameters in our model. Here, our equation
for the relative sensitivity is

S = δ Ī

δP
, (46)

where δ Ī represents the change in the steady-state value of the bound intracellular
substrate concentration for the simulated strain, and δP represents the change of the
parameter being varied. Ifwe define P∗ to be the default parameter value for the current
parameter being varied, we then vary the parameter in the space [0, 10P∗]. By using
a Latin hypercube method of sampling, we choose 10,000 points in the parameter
space and apply these to each individual parameter, finding the relative sensitivity
for each point. We choose to omit the parameters primarily involved in the spatial
distribution of substrate, only varying parameters involved in the GRN, since this is
the mechanism we wish to target. We also choose to omit the degradation parameters,
since we have taken them to be universal to most genes in the model. Hence, varying
these parameters would involve targeting all genes simultaneously which is not only
an unrealistic target but will exhibit similar behaviour to preventing the whole network
from being expressed.

4.3.1 Wild-Type Strain

We exhibit the parameter sensitivity results using the steady state for the wild-type
strain with box plots in Fig. 12. In (a), we denote the dissociation and saturation
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(a) (b)

Fig. 12 Box plots showing the relative sensitivity of parameters involved in the GRN for the wild-type
strain, varying parameters in the region [0, 10P∗], where P∗ is the default parameter value. In a, we depict
the dissociation and saturation constants; in b, we depict the various transcription and translation rates
related to mRNAs and proteins (Color figure online)

constants involved in the model, we can immediately see that the dissociation constant
related to RamR (KR) is the most sensitive. By varying this parameter, we should see
direct effects on the activation of ramA transcription. It is interesting to note that the
sensitivity of this parameter is larger than that of any of the dissociations constants
related to RamA (KAi ). Thus in this strain, targeting ramA expression via a repressor
to reduce the genes expression may be a more effective method than targeting the
RamA binding process to the promoter regions of various other genes in the network.
However, we must note that the sensitivity of all RamA dissociation constants is still
significant, with the dissociationwith ramA and acrAB (KA1 ) showingmore sensitivity
than the dissociation with acrR (KA2 ) and acrEF (KA3 ). This is expected, as in this
wild-type strain we have normal levels of acrAB expression, so we should expect
lower expression of acrEF and hence a smaller sensitivity upon parameters related to
the gene. We note that the other two parameters with notable significance are related
to AcrR (KC ) and substrate (KI ). The first of these is expected due to direct inhibition
of expression of the efflux pump gene acrAB. Regarding KI , we do not know the full
mechanisms behind how the substrate interactswith the network, but this could provide
insight for potential further research.We show transcription and translation rates in (b).
We note that for each individual gene the transcription rates show similar sensitivity
to the translation rates. Thus when targeting gene expression, both transcription and
translation seem to be feasible targets. It is clear that the wild-type system is the most
sensitive to the expression of four genes, namely ramR and ramA, acrR and acrAB.
This gives us clear insights into the most important genes to target when inhibiting
efflux in a wild-type strain. The strain exhibits little sensitivity to envR and acrEF.
This again is expected, as with no major restrictions upon acrAB expression we expect
H-NS to be prevalent and the expression of envR and acrEF to be minimal.

4.3.2 EST Strain

We exhibit the parameter sensitivity results using the steady state for the EST strain in
Fig. 13. Due to the gene being knocked out, we can immediately see that all parameters
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(a) (b)

Fig. 13 Box plots showing the relative sensitivity of parameters involved in the GRN for the EST strain,
varying parameters in the region [0, 10P∗], where P∗ is the default parameter value. In a, we depict the
dissociation and saturation constants; in b, we depict the various transcription and translation rates related
to mRNAs and proteins (Color figure online)

(a) (b)

Fig. 14 Box plots showing the relative sensitivity of parameters involved in the GRN for the RamR mutant
strain, varying parameters in the region [0, 10P∗], where P∗ is the default parameter value. In a, we depict
the dissociation and saturation constants; in b, we depict the various transcription and translation rates
related to mRNAs and proteins (Color figure online)

involved with acrAB have lost all sensitivity. In (a) the most sensitive parameter is
the dissociation of RamA with acrEF (KA3 ). Which is due to AcrEF being the main
active efflux pump in this strain. Compared to the wild-type strain (Fig. 12), we can
see decreased sensitivity to the dissociation of RamR (KR). This could be due to
RamA having a smaller activation effect on acrEF expression than acrAB expression,
thus inhibition of ramA expression from RamR would have less of an effect on efflux
expression. We also see increased sensitivity of the dissociation of EnvR from acrAB
and acrEF. With envR being constitutively expressed in this case, we should expect
higher sensitivity from this local repressor. In (b),wenote themost sensitive parameters
are related to the expression of ramR, ramA, envR and acrEF. The strain shows similar
sensitivities to all of these genes and thus targeting any of their expressions should
be a viable target for inhibiting efflux. Notably however, the strain is most sensitive
to envR and acrEF, leading us to believe that repressing acrEF expression directly
or via envR may be a more effective target than preventing activation (via RamA for
example) of the gene’s expression.
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4.3.3 RamRMutant Strain

We exhibit the parameter sensitivity results using the steady state for the RamRmutant
strain inFig. 14. Immediately, compared to thewild-type strain (Fig. 12)we can see that
all of the parameters relating to ramR (KR , k1 andm1) all have no sensitivity due to the
mutations of RamR. Additionally, the sensitivity of the desaturation constant relating
to substrate (KI ) is reduced, which could be due to the substrate only now having
an effect on Lon Protease concentration. In (a), we can see that the dissociation of
RamA with acrR (KA2 ) is the most sensitive, this is interesting to note as the previous
study (Youlden et al. 2021) uncovered this link as one of the key mechanisms for
activating efflux in this mutant strain. The other RamA dissociation parameters range
of sensitivity are both decreased compared to the wild-type strain, which could be due
to the higher concentration of RamA in this strain, such that large activation will occur
regardless of the dissociation constant. We note the sensitivity of dissociation related
to acrEF (KA3 ) is minimal, which is expected due to high acrAB expression in this
strain.We also see an increase in the dissociation of H-NS (KH ), which could be due to
a high concentration of RamA. If H-NS does not inhibit acrEF expression so strongly,
we would see higher activation of acrEF expression through large concentrations of
RamA. In (b),we can see that themost sensitive parameters are related to the expression
of ramA, acrR and acrAB. The strain is most sensitive to acrAB expression, which
we would expect as it is direct expression of one of the efflux pumps, which is over-
expressed in this strain. Interestingly, there is increased sensitivity to changes in envR
expression compared to the wild-type (Fig. 12). Whilst we have hardly any expression
of envR in this strain, the sensitivity increase here could be due to the overexpression of
acrAB. Such that any repression of acrAB will have a larger change in concentration
compared to the wild type. We note that both RamR mutant and wild-type strains
exhibit similar sensitivity to changes in ramA and acrR expression, even with the
differences to their GRNs.

4.4 NetworkManipulation

Whilst the parameter sensitivity analysis has given us insight into the sensitivity of
the substrate at steady state, it is important to note that we do not know the effects
caused by manipulating parameters through the rest of the time course. Therefore, we
take the parameters to which the model is most sensitive in the above analysis and plot
relevant time-dependent simulations. In Fig. 15, we show the effects of varying either
ramA expression or ramA and envR expression. We have chosen these targets as they
proved to be sensitive to all strains in the parameter sensitivity analysis. For a more
comprehensive analysis of possible perturbations, see Youlden (2021).

We can see that thesemanipulations have clear effects on the dynamics in all strains,
although the EST strain (Fig. 15b) does show a lesser change in dynamics to the wild-
type and RamR mutant strains (Fig. 15a, c). In addition, the total substrate exposure
(15d) has similar differences in exposure for one manipulation in all strains; however,
multiple manipulations have larger effects to the wild-type and RamR mutant strains
than the EST strain. These differences are likely due to there being one efflux pump
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(a) (b)

(c) (d)

Fig. 15 Plots exhibiting the effects of varying ramA and envR expression on the bound intracellular substrate
over time. The default parameters are k2 = 10 and k5 = 10, variation 1 are k2 = 1, k5 = 10 (ramA
expression inhibited) and variation 2 are k2 = 1, k5 = 100 (ramA expression inhibited and envR expression
promoted). In a, we have the wild-type strain, b the EST strain, c the RamR mutant strain. Finally in d,
we exhibit the AUC between the default and each of the manipulated parameter value simulations for the
strains (Color figure online)

already inactive in the latter strain, meaning less efflux inhibition is required. In the
RamR mutant strain (Fig. 15c) however, we see much larger changes to the dynamics
compared to the non-mutant strains (Fig. 15a, b). This is a useful insight as the RamR
mutation has experimentally been shown to cause MDR. We note that in all strains
there is a notable difference in the mid time dynamics, with the efflux rate of substrate
slowed. Thus, in regards to an antibiotic substrate, the timing of slowing efflux may
be crucial. If cells within the culture cannot expel enough antibiotic at a fast enough
rate, the antibiotic may have already caused irreversible damage to the cells and hence
the cells may die even if they are able to pump out enough antibiotic to a low enough
concentration that would normally be under a killing threshold, thus preventing MDR
in the strain.

5 Discussion

Antibiotic resistance is a continually growing threat to global public health, such that
the WHO are predicting that we are heading to a post-antibiotic era (World Health
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Organization 2015). In Salmonella, it has been shown that MDR is commonly con-
ferred via the over-expression of RND efflux pumps (Blair et al. 2014). Inhibition of
these efflux pumps however is not a simple process, it has been demonstrated that inhi-
bition of one RND system results in efflux through another of the five RND systems
(Hirakawa et al. 2008; Nishino 2016). It is important to understand the contribution of
each of these systems towards MDR in order to create an effective treatment strategy
that optimises the usage of antibiotics.

In this paper, we have considered multiple strains of Salmonella. These strains
include a wild-type as well as various knockout strains containing combinations of
RND systems. Efflux assays have been performed on these strains, using a shared
substrate (ethidium bromide) of the RND systems. We have formulated a model to
replicate the behaviour of the Salmonella strains in these experiments. Parameter
fitting techniques showed the model matched the dynamics of the experimental data,
encapsulating the behaviour of all Salmonella strains and revealing their efflux activity.
Notably all strains that contained active acrAB displayed a similar efflux profile. The
model showed that these strains also exhibited much larger peaks of efflux over the
course of the experiment compared to strains with inactive acrAB. This agrees with
AcrAB-TolC system being the most dominant RND efflux pump in Salmonella. The
model suggests that it is upregulated to much higher levels than the other efflux pump
systems and in terms of inhibiting efflux it should be the highest priority target. In
regards to the other strains with inactive acrAB, we see a drop to veryminimal efflux in
the strain with acrEF also inactive. Themodel therefore suggests that the efflux pumps
MdsAB and MdtAB contribute very little to substrate efflux and therefore are a low
priority target for inhibiting efflux. Additionally, this suggests that when the AcrAB-
TolC system is not present the AcrEF-TolC system is the most dominant RND system
and therefore should be a secondary priority target for inhibiting efflux. Furthermore,
we recognised that the efflux profiles were similar to simulations of the expression of
genes from the GRN model of our previous study (Youlden et al. 2021). In addition,
the model produced the best results when efflux volume flow was dependent on the
intracellular substrate concentration. This has given us confidence that the existing
GRN model is appropriate and that gene expression is driving the behaviour of efflux
in these experiments.

By combining the two models of the GRN and substrate efflux, we created a mul-
tiscale model that encapsulates the behaviour of how a Salmonella culture expresses
genes in order to react to a substrate stressor. We incorporated this through linking the
intracellular substrate concentration to the expression and degradation of ramR and
RamA, respectively. By producing this model, we were able to consider an additional
strain (SL1344) that displays MDR due to a mutation in the ramR gene causing non-
functional RamR protein. We predict this strain’s behaviour by adapting parameters to
replicate the GRN of this strain. Simulations exhibited the higher potential for resis-
tance in the RamR mutant strain. The model suggests that intracellular substrate is
expelled quicker, to a lower concentration and a significant decrease in overall expo-
sure in the RamR mutant compared to the other strains. This shows the challenges
we face to combat MDR strains and the importance of targeting increased resistance
dynamics when producing novel treatment strategies.
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By conducting a parameter sensitivity analysis on parameters in the GRN, we were
able to identify the most suitable targets for inhibiting efflux for all strains. The model
showedus that the largest sensitivity commonbetween all strainswas towards the genes
ramA (the main activator gene of acrAB) and envR (a repressor gene of acrEF and
acrAB). This agrees with the conclusions of the previous study (Youlden et al. 2021),
as the same genes were considered the highest priority targets in the GRN to combat
antibiotic resistance. By producing time series simulations varying the expression of
these genes, we were able to show the behaviour of the strains under the effects of
a potential adjuvant. Interestingly, one ten-fold manipulation of ramA expression in
the RamR mutant strain achieves a higher overall substrate exposure than the default
wild-type strain with this parameter choice. Therefore, the model predicts that a single
targetmaybe sufficient to combatMDRin theRamRmutant strain.Alternatively, given
that targeting envR and ramA simultaneously produced even clearer improvements in
predicted substrate exposure in the wild-type and RamR mutant strains, the model
predicts that a combination of adjuvants (if achievable) could have quicker and more
significant results. Furthermore, the model showed that manipulations caused larger
differences to the mid time dynamics of substrate expulsion. Therefore, the utilisation
of timing and concentration of doses to coincide with the largest drop in expulsion
could be vital to produce an effective treatment method.

In summary, we have created a spatial model that has accurately replicated the
dynamics of efflux assay experiments. This model lends weight to a priority ordering
of the RND efflux pump systems for inhibiting efflux in Salmonella. By producing a
multiscale model combining the spatial model with an existing GRN model, we were
able to simulate and predict the behaviour of a MDR strain. Model analysis has given
us insights on how best to use a novel adjuvant to optimise antibiotic treatment. By
creating this model we have provided a basis for understanding efflux-mediated MDR
in Salmonellawithmultiple opportunities for further research. Themodel provides the
ability to target or manipulate any area of the GRN or cell spatial structure to achieve
new hypotheses on how the culture will react to an antibiotic. We could therefore use
this model to simulate other MDR strains and gain insights on the best targets within
these new strains to prevent drug resistance. Furthermore, the spatial model provides
the framework to be applied to different bacteria genera which could in turn be com-
bined with new GRN models to generate similar hypotheses. In addition, we could
introduce the administration of a potential treatment strategy to the model. This could
be in the form of an adjuvant targeting the previously mentioned priority genes in the
GRN, or a synthetic molecule directly slowing efflux activity or altering membrane
permeability. We have shown that the model in its current format does a good job of
replicating in vitro experiments, it would be important future work to also apply the
model to in vivo situations. This could be incorporated instead of considering drug
infusion, using a time-dependent drug source and analysing the activation of efflux
pumps through drug clearance. In addition, it would be instructive to consider poten-
tial differences in the parameters underpinning individual cells within a population:
by selecting parameter values from relevant parameter distributions, we could con-
sider how likely subpopulations of cells at the extremities might be to escape efflux
suppression for example. We believe that this model has broadened our knowledge in
efflux-mediated MDR in Salmonella leading to hypotheses on the production of novel
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treatment methods to combat antibiotic resistance. Predicting the effect of these on
efflux overall is complex given the nonlinear interplay between different efflux pumps
in any given strain; the model presented here provides a computational framework
(that can also be readily adapted to other strains of bacteria) with which to test these.
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