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Moving in time: Bayesian causal inference
explains movement coordination to
auditory beats

Mark T. Elliott1, Alan M. Wing1 and Andrew E. Welchman2

1School of Psychology, University of Birmingham, Edgbaston B15 2TT, UK
2Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK

Many everyday skilled actions depend on moving in time with signals that are

embedded in complex auditory streams (e.g. musical performance, dancing

or simply holding a conversation). Such behaviour is apparently effortless;

however, it is not known how humans combine auditory signals to support

movement production and coordination. Here, we test how participants syn-

chronize their movements when there are potentially conflicting auditory

targets to guide their actions. Participants tapped their fingers in time with

two simultaneously presented metronomes of equal tempo, but differing in

phase and temporal regularity. Synchronization therefore depended on inte-

grating the two timing cues into a single-event estimate or treating the cues

as independent and thereby selecting one signal over the other. We show

that a Bayesian inference process explains the situations in which participants

choose to integrate or separate signals, and predicts motor timing errors. Simu-

lations of this causal inference process demonstrate that this model provides a

better description of the data than other plausible models. Our findings

suggest that humans exploit a Bayesian inference process to control movement

timing in situations where the origin of auditory signals needs to be resolved.
1. Introduction
Many human activities, from holding a conversation to playing music, have their

basis in our ability to extract meaningful temporal structure from incoming

sounds. For rhythmical structures in particular, humans identify key events

and extract the underlying ‘beat’ of the auditory signals [1]. Such auditory

rhythms promote movements ‘in time’ with the beat with little apparent effort

[2,3], as demonstrated through the capacity to dance or play along to music com-

prising multiple rhythmic streams. Yet, for such complex stimuli, it is unknown

how temporal events are extracted and chosen as the targets to which movements

are synchronized.

The complexity of incoming auditory signals is partially reduced by early

sensory processing that filters out irrelevant auditory information [4]. Neverthe-

less, auditory signals of interest may still consist of multiple components. For

instance, keeping in time with other players in a quartet involves sensing differ-

ent sequences of tones (e.g. the notes played on the viola versus cello) that share

an underlying rhythm but are likely to fluctuate in relative phase, depending on

how well each player can remain in time with the rest of the group [5]. Based on

these discrepancies, the brain must determine whether to integrate relevant

components into a single stream or treat them as separate [6].

In multisensory settings, the decision to integrate cues or treat them as separ-

ate sources is well captured using the Bayesian framework of causal inference

[7–10], based on the statistical probability that sensory events relate to a single

event in the environment versus multiple events. If there is evidence that sen-

sations originate from a single environmental cause, the sensory cues are

combined in a statistically optimal way across modalities to gain the best estimate

of an object or event [11–13]. Within a single modality, there is also evidence for
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Figure 1. (a) An illustration showing the timing relationships between the two metronomes and the calculation of asynchronies. The square pulses show the regular
onset time of the metronome beats (before jitter applied). Both metronomes had the same underlying period, and metronome B had a phase-offset delay from
metronome A of f ¼ 0, 50, 100 or 150 ms. To create temporal uncertainty, a random perturbation (‘jitter’) was added to the regular onset time of each beat. The
s.d. of the jitter distribution differed between metronomes (A, B: f0, 0 msg; f10, 50 msg; f50, 10 msg (depicted)). Asynchronies (A) were calculated between the
finger-tap onsets and the onset of metronome A, before jitter was applied. (b) Probability distributions of metronome beat onsets. Illustration showing the expected
distributions of beat onsets relative to the regular beat onset of metronome A (0 ms). Distributions are shown for each phase offset (row) and jitter condition
(column). (Online version in colour.)
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statistically optimal combination, for instance in combining

distinct visual features such as disparity, motion or texture

[14–16]. Critically, however, such integration is believed to

be mandatory. Here, we test for the integration of within-

modality auditory cues to time. We evaluate whether the

brain applies a causal inference process to determine the cir-

cumstances under which auditory sequences (distinguished

only by tone frequency) should be integrated into a coherent

estimate of rhythm or separated into distinct events.

First, we develop a Bayesian causal inference model for

movement synchronization that describes the scenarios under

which a regular stream of sensory cues from same-modality

sources are integrated. Then, we test the model by asking

participants to tap their index finger in time to auditory

sequences that comprised two auditory metronomes presented

simultaneously with equal mean tempo. To test the causal

inference process, we manipulated these cues in two different

ways. First, we applied a phase offset between the metro-

nomes, such that the beats from one metronome occurred

shortly before the other. Second, we varied the temporal

reliability of the metronomes such that rather than having

isochronous beat onsets, they varied randomly around the

(underlying) isochronous onset time (referred to as ‘jitter’).

By adding small levels of jitter to one metronome and large

levels of jitter to the other, we manipulated the relative

reliability of the two metronome sources [17]. Thus, we were

able to observe changes in the timing and variability of partici-

pants’ finger taps and assess the conditions under which the

cues appeared to be integrated or treated as separate. Finally,

we test four models and fit the simulated results to the exper-

imental data to investigate whether causal inference best

describes the observed results. We found that a causal inference

model that adjusts for a consistent phase offset between cues

demonstrated a fit close to the empirical data, exceeding that

of alternative models based on the exclusive integration or

exclusive separation of cues.
2. Material and methods
(a) Participants
Staff and students from the University of Birmingham were

recruited to participate in the experiment. Participants provided

informed consent and were screened for sensory and motor def-

icits. Nine participants (seven male, four left-handed, mean age:

29.8+5.9 years) took part. Five participants had some musical

expertise (i.e. currently play a musical instrument; mean years

of experience ¼ 10.8).

(b) Experimental set-up
Participants sat at a table wearing a pair of headphones (Sennheiser

EH150) through which the auditory metronome cues were pre-

sented. They tapped the index finger of their dominant hand in

time to the metronome on to a wooden surface mounted on a

force sensor. Responses were registered using a data acquisition

device (USB-6229, National Instruments Inc., USA). Metronome

presentation was controlled using the MATTAP toolbox [18].

(c) Metronome stimuli
The auditory stimuli consisted of two independently controlled

auditory metronomes (metronome A, pitch 700 Hz; and metro-

nome B, pitch 1400 Hz; figure 1a). The metronomes were offset in

phase (0, 50, 100 or 150 ms), such that metronome B followed

metronome A (pilot testing established that pitch order (low–high

versus high–low) did not influence synchronization behaviour).

Metronome beats lasted 30 ms and the period was varied randomly

(by the same amount for A and B) across trials with a value between

470 and 530 ms, to minimize learning of tempo across trials and

encourage adaptive correction within trials.

To manipulate metronome reliability, we applied temporal

jitter independently to each metronome (figure 1b) by perturbing

the regular onset of the metronome beat by a random value

sampled from a Gaussian distribution (m ¼ 0; s ¼ 10 or 50 ms).

We tested the effect of differing reliabilities between the two

metronomes and whether this would influence finger movement

http://rspb.royalsocietypublishing.org/
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Figure 2. Schematic of the causal chain. (a) Common stream: signals are
generated from a common source (sA ¼ sB ¼ s). The sensory likelihood distri-
butions for the two metronome signals are modelled by Gaussian distributions
N(s, sA) and N(s, sB), respectively, where sA, sB describes the uncertainty
in the sensory registration. The observer has an expectation of where the mth
beat should occur, centred around a time mp relative to the true beat s. This
prior expectation is equal to the difference between their beat onset estimate
ŝ and the true onset time s on the preceding (m 2 1th) beat and is modelled
as a Gaussian distribution N(mp, sp), where sp defines the strength of the prior.
The observer estimates the cue onset times tA and tB, which are sampled from the
likelihood distributions. Using the information from mp, tA and tB, the causal
inference process results in evidence that the signals define a common beat
(C ¼ 1), and the estimated signal onset time ŝ is calculated as a weighted aver-
age of mp, tA and tB. The reliability of the three distributions 1/s2

p, 1/s2
A, 1/s2

B
defines the relative weightings. The observer plans their movement to coincide
with the estimated beat ŝ, introducing motor noise sM, and an anticipation
effect d , which results in the observable asynchrony between the movement
r, and the true beat s. (b) Independent streams: two signals are generated
from independent sources (sA and sB). The sensory estimation process is the
same as for (a); however, the prior is defined as the difference between their
beat onset estimate ŝ and the true onset time sA on the m 2 1th beat.
Based on mp, tA and tB, the causal inference model has more evidence that sig-
nals are independent (C ¼ 2). Signal onset estimates ŝA and ŝB are therefore
calculated independently as the weighted average of mp, tA and mp, tB, respect-
ively. Similarly, the relative weightings are proportional to their reliabilities,
1/s2

p, 1/s2
A and 1/s2

p, 1/s2
B. As the observer has two estimated signal

onsets, they select one with which to synchronize their movement. That is,
the observer will define the signal onset estimate to be either ŝ ¼ ŝA (as
depicted in figure), or ŝ ¼ ŝB. This choice varies for each beat, with observers’
esoteric preferences dominating the relative reliability of the two signals. The
observer plans their movement to coincide with the estimated beat ŝ, introducing
motor noise sM, and an anticipation effect d. This results in the observable asyn-
chrony between the movement r, and the referenced true beat (always sA, to
match experimental analyses). (Online version in colour.)
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onsets and variability. Hence, we used the following jitter con-

ditions (s.d. for metronome A and metronome B): f10, 50 msg,
f50, 10 msg and a baseline condition where both metronomes

were reliable f0, 0 msg.
Participants were not explicitly informed that the auditory

cues consisted of two metronomes. Instead, they were instructed

to ‘tap in time to the metronome’ with some trials appearing

‘harder to tap along to than others’. This instruction was

intended to encourage participants to use both cues and not

attempt to ignore one in favour of the other.

Participants completed 10 trials per condition (12 conditions

in all), with each trial consisting of 30 metronome beats. Con-

ditions were randomized across trials to minimize any prior

expectation about the metronome statistics building up across

trials. To allow participants to build up prior knowledge of the

metronome within a trial, analyses were performed on the tap-

metronome asynchronies of beats 15–28 (the last two were

ignored to discount anticipation or termination effects at the

trial end [19]).

To determine baseline movement synchronization behaviour,

we also presented 30 trials on which a single metronome was

presented, where the degree of jitter applied was varied across

trials (0, 10 or 50 ms).

(d) Analysis
To quantify synchronization behaviour, we measured the time

difference between the onset of the participants’ finger taps and

the metronome beat (asynchrony; figure 1a). We referenced all

metronome beats relative to the onset of metronome A (prior to

any jitter perturbations) to provide a consistent, static reference

point for all trials regardless of condition. Negative asynchronies

indicated that the finger tap preceded the onset of the beat. We

calculated the s.d. of asynchronies within a trial across partici-

pants and conditions. A repeated measures ANOVA was used to

determine any significant effects of phase offset or jitter on the

asynchrony s.d. We quantified the distribution of asynchronies

for each participant, grouped by condition and tested the exper-

imental data for unimodality or bimodality using Gaussian

mixture models (GMMs) with either one or two centres. Mean

asynchronies were then calculated based on the best fitting

GMM distribution.

For comparison with the simulated asynchrony distributions

of the models we tested, we fit the empirical data with probability

density functions (PDFs). These were estimated using a Gaussian

kernel density estimator (KDE) [20] method implemented in

MATLAB [21].

(e) Sensorimotor synchronization based on a causal
inference model

Here, we outline the features of the simulated task where an

observer uses Bayesian causal inference to synchronize their

movements. An overview is shown schematically in figure 2

while the full model derivation is provided in the electronic

supplementary material, A.

The observer’s task is to synchronize their movements to

rhythmic auditory cues presented to them. The cues consist of

two discrete tones of different pitch (sA and sB). The observer

must estimate the onsets of the underlying beats produced by

the auditory cues to make movements in synchrony with those

beats. They do this using a causal inference process based on:

(i) the likelihood of the onsets of the two auditory cues, whose

true onset times are corrupted by sensory noise; and (ii) the

prior expectation of where the beat will occur, which is based

on the previous beat onset estimate [22,23]. The causal inference

process allows the observer to determine whether the two audi-

tory cues should form a single common beat and hence combine

http://rspb.royalsocietypublishing.org/
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the likelihood of the two beats with the prior to obtain the esti-

mated onset time of that beat (ŝ; figure 2a). Alternatively, if the

causal inference process indicates that the two auditory cues

are in fact independent, then two beat onset times are estimated

(ŝA, ŝB) based on the prior and likelihood of each independent

cue onset (figure 2b). In this latter scenario, the observer must

choose one of the estimated beat onsets as the target for move-

ment synchronization. Here, we assume the observer has a bias

in selecting one stream over the other (regardless of the cue stat-

istics). Based on this bias, the observer will select auditory cues

from stream A on a certain proportion of trials, and stream B

for the complementary remainder of trials. The beat from the

selected stream defines the single beat onset estimate (ŝ). Finally,

the observer produces a motor action which is aligned with the

estimated beat onset time, but subjected to a negative motor

delay (representing the anticipation effect observed in many

sensorimotor synchronization studies see [24]) and motor noise.

The resulting output we observe is an asynchrony between the

observer’s movement and the ‘actual’ beat which, to be consist-

ent with the experimental analyses, we take to be the true

onset time of auditory cue sA.

( f ) Model comparisons
We compared three alternative models to the causal inference

model described above (denoted CI), to see which best described

the experimental data. First, we tested a model of mandatory

integration (MI), where the observer always considers the two

cues to form a single common beat, regardless of the cue stat-

istics. Similarly, we considered a mandatory separation (MS)

model, where the observer always deems the cues independent

and estimates the onset for two corresponding independent

beats (subsequently selecting the preferred beat for movement

synchronization). Finally, we tested an alternative causal infer-

ence model that included ‘phase-offset adaptation’ (CIPA),

where any consistent phase offset between cue A and B across

beats is accounted for in the inference process and hence is dis-

regarded in the judgement of whether the cues form a single

beat or independent beats. We tested this extra model to see

whether the fixed phase offsets we applied in the experimental

conditions resulted in participants adjusting their judgement of

the level of deviation required between cues before they were

considered separate beats.

(g) Parameter fitting to participant data
We developed simulations to test whether the models detailed

above could describe the experimental results. For each model,

we generated 2000 simulated finger-tap asynchronies for an obser-

ver synchronizing to auditory rhythmic cues that matched the

statistics of the experimental phase offset and jitter conditions.

The simulated asynchronies for each condition were converted into

likelihood functions for the model using an optimized Gaussian

KDE [20]. Three free parameters were used to fit each participant’s

asynchrony data to the model output likelihood function for

each condition (see the electronic supplementary material, A): the

strength of the prior expectation of the time of the next beat (sp;

range (10, 500) ms); the prior probability that the two cues will

form a common single beat ( psingle; range (0, 1), fixed to 0 for the

MS model and 1 for the MI model) and the negative asynchrony

offset (d; range (2100, 100) ms). A fourth free parameter, b was

fitted to experimental data from a single condition (phase offset:

150 ms, jitter: f0, 0 msg) to describe the proportion of time the

observer shows preference to cues from stream A versus stream

B. This parameter was applied to the remaining conditions.

We used a global search algorithm [25] that sequentially inter-

changed data between four different meta-heuristic optimizers

(genetic algorithm, particle swarm optimization, differential evol-

ution and simulated annealing) to ensure robust parameter
optimization. The fitting algorithm minimized the negative

log-likelihood of each participant’s data for each simulated condition.

To test the relative fit of the models to the data, we used the

Bayesian information criterion (BIC; [26]). This measure shows

the log-likelihood of the data given the model and penalizes for

the number of free parameters. BIC scores were summed across

conditions for each participant. The differences in BIC scores

between models were calculated and averaged across participants.

Similarly, we calculated the goodness of fit using the BIC. To

get an overall equivalent r2 value, BIC values (L(u)) were com-

pared to two points of reference [27]. The first point of

reference was the BIC of the data to a probability distribution

of the data itself (L(Max); fitted using a Gaussian KDE)—

i.e. the best fit achievable. The second was the BIC of the data

to a random distribution (L(Rand); fitted using a cubic

spline)—i.e. giving a worst case fit. The goodness of fit r2 was

scaled to a value between 0 and 1 as follows:

L(u)� L(Rand)

L(Max)� L(Rand)
: (2:1)
3. Results
(a) Experimental results
To test the role of a causal inference process when synchroniz-

ing movements to multiple streams of auditory events, we

asked participants to tap their index finger in time with beats

defined by two metronomes (A and B) that could differ in

their temporal reliability ( jitter) and their phase offset (B rela-

tive to A). We measured the time difference (asynchrony)

between the onsets of metronome A and the corresponding

finger taps. A standard approach to quantifying synchrony

performance is to calculate the variability (s.d.) of asynchronies

across conditions [28]. Here, we initially use that approach to

identify the effect of the jitter and phase-offset conditions on

participants’ performance. Subsequently, we apply more

detailed analyses on the asynchrony distributions.

We expected that when tapping to single metronome beats,

the asynchrony s.d. would increase with increasing jitter

applied to the metronome. By contrast, when two metronome

streams were presented in parallel, one with high jitter, the

other with low jitter, we predicted that participants would inte-

grate the cues and the resulting asynchrony s.d. would remain

low [17,29]. We further predicted that this integration effect

would reduce with increasing phase offset, as participants

become more ready to treat the cues as originating from

independent beats. Under this scenario, we expected the

asynchrony s.d. to increase with increasing phase offset

between metronomes.

First, we manipulated metronome jitter to verify that

asynchrony variability was affected, presenting a single metro-

nome jittered by 0, 10 or 50 ms. We measured the asynchrony

variability (s.d.) of the finger taps relative to the underlying

unjittered metronome beats. As expected, increasing the jitter

resulted in higher asynchrony variability (F2,16¼ 37.6, p ,

0.001; figure 3a).

Next, we considered synchronization performance when

two metronomes (A and B) were simultaneously presented,

one with high levels of jitter (50 ms) and the other only slightly

jittered (10 ms). In particular, we focused on the zero phase-

offset conditions and compared the asynchrony s.d. (averaged

over the two jitter conditions: f10, 50 msg and f50, 10 msg) to

that observed in the unjittered single metronome condition.

http://rspb.royalsocietypublishing.org/
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Using a paired t-test, we found no significant difference

between these two conditions (t8 ¼ 20.71, p ¼ 0.497). Hence,

in contrast to the single metronome conditions where jitter sub-

stantially impacted on participants’ performance, asynchrony

variability remained low in the dual metronome condition,

even though one of the metronomes was highly jittered. We

further found no main effect of jitter on asynchrony s.d.

(F1.2,9.5¼ 1.5, p ¼ 0.255) when we analysed all condi-

tions for the dual metronome presentations. This means

that asynchrony variability did not increase regardless of

whether one of the metronomes was highly jittered or both

were isochronous. These results highlight that participants

were able to take advantage of the more reliable metronome

to maintain their synchronization performance in the dual

metronome conditions.

We found that, as predicted, an increasing phase offset

between the two metronomes increased the asynchrony s.d.

(F1.6,12.8 ¼ 27.1, p , 0.001; figure 3b). While there was no

difference between 0 and 50 ms phase offsets ( p ¼ 0.311),

asynchrony s.d. increased significantly at phase offsets of

100 ms ( p ¼ 0.042) and 150 ms ( p ¼ 0.001). We suggest that

these results indicate two different strategies in participants’

synchronization. At low phase offsets, participants are inte-

grating the two cues into a single beat estimate, with the

outcome that the asynchrony s.d. remains low. However, as

the phase offset increases, participants are treating the cues

independently and switching between them. This switching

incurs a substantial increase in asynchrony variability,

regardless of the jitter applied to each metronome.

To examine these apparent strategies in more detail, we

considered the distributions of asynchronies in each con-

dition. Visual inspection indicated unimodal distributions at

low phase offsets (suggesting integration of cues) and bimo-

dal distributions at larger offsets (suggesting independent

targeting of the cues) (figure 4a). We quantified this obser-

vation by fitting two GMMs to each participant’s data:

either with one centre (indicating a unimodal distribution)

or two centres (indicating a bimodal distribution). The
difference between the BIC values for the two GMM

models was calculated to establish which provided a better

fit. We found that at low phase offsets (0, 50 ms), a unimodal

distribution was more likely, while bimodal distribu-

tions were more likely at 100 and 150 ms phase offsets

(figure 4b). Hence, it appeared that when the metronome

cues were separated by an offset of around 100 ms or greater,

participants did not treat them as a common beat, but rather

as independent beats. The bimodal distributions were a result

of participants switching their finger taps to be in synchrony

with either of the two sources.

We further calculated the mean asynchronies to under-

stand how the timing of participants’ movements relative to

the onsets of the metronome was affected by the experimental

manipulations. We observed changes in mean asynchrony

that depended on whether cues best fit a single or dual

centred GMM, highlighting the different tapping strategies

implemented by participants. For the low phase offsets,

mean asynchrony was more positive for the 50 ms phase

offset than the 0 ms offset (F1,8 ¼ 9.31, p ¼ 0.016; figure 4c),

indicating that participants were influenced by both metro-

nome streams and hence integrating the cues. In situations

where participants were more likely to show bimodal

asynchrony distributions, we observed that one distribu-

tion was centred around a negative asynchrony, the other

was positive, close to the onset of the second metronome,

highlighting the tendency to follow one cue or the other.
(b) Model fits to the experimental data
The experimental data suggest that human participants apply

different strategies under the different experimental con-

ditions: at low phase offsets, data is unimodal with low

variance regardless of jitter condition, suggesting integration

of the signals takes place. At high phase offsets, data are bimo-

dal and suggest switching behaviour in the use of the two

metronomes. This indicates that neither a scenario based on

exclusively integrating the timing signals nor one based exclu-

sively on selecting one signal over the other is sufficient to

explain the participants’ behaviour. Formally, we tested two

causal inference models and compared them against models

of MI and MS. The first causal inference model (CI) inferred

whether the auditory cues originated from a single beat or

independent beats using the deviations between the signals

caused by both a constant phase-offset and jitter manipula-

tions; the second (CIPA) assumed participants adapted to the

consistent phase offset between the cues and hence only

based their inference on deviations due to the jitter. Using a

global search optimization algorithm [25], we fit the four free

parameters (see the electronic supplementary material, A,

table S2) by minimizing the BIC of each participant’s data

for each condition and model. Summing the BIC across con-

ditions and averaging for each participant, we were able to

compare how well each model explained the data.

We found that, overall, both causal inference models (CI

and CIPA) outperformed the MI and MS models (figure 5a)

in terms of the BIC. Specifically, we found that the causal

inference models outperformed MI in all conditions and

MS in all but one condition (phase offset: 0 ms, jitter:

f0, 0 msg; see table 1). The general goodness of fit measure

indicated the simulated data fit well with the experimental

data (figure 5b) and confirmed differences between the
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Figure 4. (a) Histograms of asynchronies from the experimental data. Negative asynchronies indicate the tap preceded the onset of metronome A. Histograms are
shown for each phase-offset condition (rows). Each column plots histograms for the different jitter conditions: f0, 0 msg, f10, 50 msg and f50, 10 msg.
(b) Difference in Bayesian BIC values for GMM fits as function of phase offset. GMMs were fitted to each participant’s data with either one or two centres.
The goodness of fit of the data to each of the GMMs was measured using the BIC. The difference in BIC was calculated across conditions for each participant
and averaged to determine whether the histogram of data was more likely to originate from one or two distributions. Negative values indicate a better fit to
the single centred GMM; positive values indicate a better fit to the two centred GMMs. Error bars show s.e.m. (c) Mean asynchronies based on GMM centres.
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models (F3,24 ¼ 2.736, p , 0.001), with a significantly higher

r2 of the CIPA model over the MS and MI models (figure 5c).

Importantly, we found that the CIPA model outperformed

the CI model in terms of the BIC. This was surprising as

the model describes the observer adapting to a fixed phase

offset over the course of a trial and discounting this offset

when determining whether or not the cues should be inte-

grated. This appears contrary to our empirical results where

overall participants’ strategies depended on the level of

phase offset between the cues. This apparent contradiction

can be accounted for by individual differences between
participants. In particular, the phase-offset threshold between

integration of cues and treating them independently varied

across participants, with a minority demonstrating better

single-centre (i.e. integration) GMM fits to their distributions

even in the 150 ms phase-offset conditions. While the CIPA

model introduced an additional fixed parameter in the form

of subtracting the phase offset from any estimated deviation

between cues (see the electronic supplementary material, A),

we noted that this was subsequently modulated by the free

parameter psingle (representing the prior probability of a

common single beat). While psingle remained relatively constant
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Table 1. Mean difference in BIC between the CIPA model and the
mandatory separation (MS) model for each condition. (Positive values
indicate the CIPA model is a better fit to the data.)

offset (ms)

jitter (A, B; ms)

0,0 10,50 50,10
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across offsets for the CI model, it dropped as a function of offset

for the CIPA model (figure 5d). The effect of a reduced psingle

value was to reduce the likelihood of judging a given pair

of signals to be a common single beat. Hence, the CIPA

model was more able to adapt to the different individual

phase-offset thresholds for integration we observed across par-

ticipants, than the CI model. This resulted in a better fit of the

model to each participant’s data.
0 218.2 3.5 8.3

50 21.4 13.4 18.5

100 48.1 40.7 45.2

150 130.9 104.7 23.0
4. Discussion
Many simple and skilled actions depend on moving in time

with signals that are embedded in complex auditory streams.

http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20140751

8

 on June 12, 2014rspb.royalsocietypublishing.orgDownloaded from 
Often these streams share an underlying rhythm but differ in

temporal regularity and phase. Here, we tested how human

movement synchronization to two simultaneously presented

auditory metronomes was affected by differences in the

phase and regularity between the two timing signals. We

found that when the phase offset was low, participants

showed evidence of integrating the signals, minimizing the

variability in the timing of their responses. By contrast,

when phase offset was high, responses were more variable

and there was alternation in the response cue used for

synchronization (viz., bimodal distributions of movement

asynchronies; figure 4). This behaviour was well captured

by a Bayesian causal inference model. The model used four

free parameters and was able to explain situations in which

participants chose to integrate signals or keep them separate.

We applied two causal inference models to the data, one con-

sidering phase-offset adaptation (CIPA) and one without

adaptation (CI). Simulations indicated the causal inference

models provided a better account for the experimental data

than other models based on integration (MI) or selection

(MS) only. The causal inference model incorporating phase-

offset adaptation showed a better fit than the causal inference

model without phase-offset adaptation. However, the free

parameter describing the prior probability of considering the

cues to form a single beat was found to be a function of

phase offset in the CIPA model. This suggests that the improved

fit resulted from this model being more flexible to differences in

the phase-offset thresholds at which individual participants

switched from integrating cues to treating them independently.

Overall, the results suggest that humans exploit a Bayesian

inference process to control movement timing in situations

where the underlying beat structure of auditory signals

needs to be resolved.

Evidence for optimal cue integration for multisensory sig-

nals has been demonstrated across a range of tasks in both

spatial and temporal contexts [11–13]. Moreover, multisen-

sory cue integration has been shown to result in improved

motor performance in a movement timing task [17,29,30].

This improvement was consistent with a maximum-likeli-

hood model of integration based on the reliability of each

sensory modality. However, an important step in this process

involves deciding whether or not different sensory cues relate

to the same environmental event: if not, the signals should be

kept separate and not integrated [7–10]. Here, we focused on

this process of deciding whether different sensory events

relate to a common underlying beat. Our empirical data pro-

vided evidence that participants do integrate two auditory

signals into a single estimate of a metronome beat, but the

probability of integration was a function of both the time

offset between the signals and their relative temporal regula-

rity. For instance, when participants tapped to simultaneous

beats defined by two metronomes, with one jittered by 10 ms,

the other 50 ms, the variability in finger-tap asynchronies

remained equal to that when tapping to a single isochronous

metronome. This demonstrated that synchronization varia-

bility was reduced (relative to the individual signals) by

integrating information from the individual (noisy) timing

cues. This would not be expected if participants had simply

switched between timing cues. Moreover, if participants

had simply chosen the more reliable signal, the phase offset

between the metronomes would not have been important.

By contrast, we found an effect of phase offset, with move-

ment asynchronies for the high phase-offset conditions (100
and 150 ms) producing bimodal distributions of movement

timing, indicating that the two streams were treated indepen-

dently at these high phase offsets. This highlights that a

strategy based on integration alone could not account for

the participants’ behaviour. We suppose two modes of

behaviour—integration versus separation, with a causal infer-

ence process that decided whether to integrate signals or treat

them independently based on their relative reliability and

temporal separation. The evidence for causal inference

taking place was further corroborated by the single anoma-

lous condition where we found causal inference did not

provide the best fit. Namely, when the phase offset was

zero and both metronomes were isochronous, we found

that a causal inference model did not show a better fit than

MS (table 1). This can be explained by the fact that the partici-

pants only heard a single metronome cue in this condition

(the tones overlap on every beat forming a dyad) and there-

fore integration could not have taken place. The model was

unable to account for this scenario and by integrating the

cues described a lower expected variability than was

observed, resulting in a poor fit. The predicted poor fit

owing to this anomaly provides further evidence that

causal inference is taking place in other conditions, where

the fit is consistently better than the alternative models.

Exposure to a repeated, consistent asynchrony between

multisensory cues has been demonstrated to result in tempo-

ral recalibration, such that the point of subjective simultaneity

is shifted to compensate for the offset [31]. We considered

whether participants would, in a similar way, learn the con-

sistent phase offset between the beats and recalibrate in terms

of judging whether those cues defined a common beat or not.

We therefore tested two causal inference models: CIPA where

the phase offset is accounted for (i.e. not considered) when

inferring the causality of the signals, and CI that included

the phase offset in determining signal causality. We found

that the CIPA model showed a better fit than the CI model.

This was surprising given the empirical data showing an

effect of phase offset on the distributions. Further examination

of the free parameters indicated that psingle became a function of

phase offset for the CIPA model (figure 5d ). We suggest that

these results indicate that participants do not disregard the

full phase offset in their inference of a single common beat,

but instead account for a proportion of the offset. The CIPA

model was more able to account for the differences across par-

ticipants in the proportion of the phase offset accounted for and

hence resulted in a better fit. The results from the model can be

considered to show that participants generally underestimate

the actual phase offset presented. Under similar circumstances,

where repeated exposure to a temporal offset between multi-

sensory cues results in temporal recalibration, it has also been

found that an underestimation occurs in the recalibration,

explained by a bias in a neural population coding model [32].

Finally, it is interesting to speculate about the cortical

circuits underlying the behaviour we observed. There is evi-

dence that different areas of the brain are recruited during

beat processing versus duration or interval processing [2,33]:

measuring absolute time duration recruits the inferior olive

and cerebellum, while if intervals are regular (forming a

beat) a striato-thalamo-cortical network is recruited [33].

Here, we added jitter to the metronomes such that the cues pre-

sented varied from an isochronous beat (0 ms jitter) through to

a highly unpredictable beat (50 ms jitter). Therefore, we may

expect a switch from beat-based processing to duration-based
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activations depending on the level of jitter applied to the metro-

nome. However, by integrating the two cues into a single

stream, temporal irregularity is minimized, which is likely to

emphasize a beat-based structure. Minimizing the variability

and extracting a beat maintains a predictive timing process

(rather than reactive) [34], which is what we observed through

the typically negative asynchronies to the cue onsets.

In conclusion, when synchronizing actions to auditory

streams, people determine whether the cues define a

common underlying beat or independent beats through

Bayesian inference. As an extension of this work, it would

be interesting to investigate the presence of causal inference
in real group settings (e.g. a string quartet [5]), using the

foundations of the modelling work we have described here.
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