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The growing number of bacteria resistant to multiple
ibiotics pose a great risk to both animal and human
lth, yet despite this the role of the environment in the

dissemination of antibiotic resistance genes is still largely
unknown (Wellington et al., 2013). Anthropogenic activ-
ities such as agriculture increase the load of environmental
antibiotic resistant bacteria with recent reports of diverse
resistance genes present in farm environments (Zhu et al.,
2013) and increased levels of antibiotic resistance genes in
soil following the application of manure (Byrne-Bailey
et al., 2011). Waste water treatment plants (WWTPs) are a
hotspot for resistance gene transfer between bacteria from
different origins due to mixing of urban, industrial, clinical
and agricultural waste (Rizzo et al., 2013). The subsequent
disposal of effluent and solids from WWTPs can increase
loads of antibiotic resistant genes in the environment for
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The environment harbours a significant diversity of uncultured bacteria and a potential

source of novel and extant resistance genes which may recombine with clinically

important bacteria disseminated into environmental reservoirs. There is evidence that

pollution can select for resistance due to the aggregation of adaptive genes on mobile

elements. The aim of this study was to establish the impact of waste water treatment plant

(WWTP) effluent disposal to a river by using culture independent methods to study

diversity of resistance genes downstream of the WWTP in comparison to upstream.

Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic

resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance

genes were identified by using transposon mutagenesis. A significant increase down-

stream of the WWTP was observed in the number of phenotypic resistant clones recovered

in metagenomic libraries. Common b-lactamases such as blaTEM were recovered as well as

a diverse range of acetyltransferases and unusual transporter genes, with evidence for

newly emerging resistance mechanisms. The similarities of the predicted proteins to

known sequences suggested origins of genes from a very diverse range of bacteria. The

study suggests that waste water disposal increases the reservoir of resistance mechanisms

in the environment either by addition of resistance genes or by input of agents selective for

resistant phenotypes.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

Corresponding author. Tel.: +44 024 7652 2431;

 +44 024 7652 3568.

E-mail address: E.M.H.Wellington@warwick.ac.uk (E.M. Wellington).

European Centre for Environment and Human Health, University of

er Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro,

ed Kingdom.

Both authors contributed equally to this work.

Contents lists available at ScienceDirect

Veterinary Microbiology

jo u rn al ho m epag e: ww w.els evier .c o m/lo cat e/vetmic

://dx.doi.org/10.1016/j.vetmic.2014.02.017
8-1135/� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vetmic.2014.02.017&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vetmic.2014.02.017&domain=pdf
http://dx.doi.org/10.1016/j.vetmic.2014.02.017
http://creativecommons.org/licenses/by/3.0/
mailto:E.M.H.Wellington@warwick.ac.uk
http://www.sciencedirect.com/science/journal/03781135
http://dx.doi.org/10.1016/j.vetmic.2014.02.017
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


G.C.A. Amos et al. / Veterinary Microbiology 171 (2014) 441–447442
example via the application of sludge to land as fertilizer
(Gaze et al., 2011) and effluent to rivers which could act as
a reservoir of resistance genes (Korzeniewska et al., 2013).
The overall impact of WWTPs on environmental resistome
is poorly studied and has potentially far reaching impacts
of escalating resistance gene dissemination.

The application of metagenomics has revealed anti-
biotic resistance gene diversity in the uncultured bacterial
fraction of environmental samples is much higher than
observed in cultured isolates and resistance genes
associated with pathogens can be found in soil metagen-
omes (Forsberg et al., 2012; Pehrsson et al., 2013). The
mobilisation of blaCTX-M from Kluyvera sp. and qnr genes
from Shewanella sp. provide evidence of resistance gene
flow from non-clinical populations to clinical environ-
ments where they have had a significant role in conferring
antibiotic resistance to animal and human pathogens
(Nordmann and Poirel, 2005; Olson et al., 2005). Func-
tional metagenomics has been used to investigate
antibiotic resistance in a variety of environments includ-
ing Alaskan soil (Allen et al., 2009), apple orchards
(Donato et al., 2010), seabirds (Martiny et al., 2011),
and sludge (Parsley et al., 2010). Research is needed to
quantify the impacts of anthropogenic activities on the
environmental resistome.

In this study we aimed to investigate the impact of
WWTP effluent on the resistome of a river, with the
hypothesis that antibiotic resistance gene abundance and
diversity would be significantly impacted by the effluent
outflow. River sediment samples were taken from down-
stream and upstream of an effluent pipe and functional
metagenomics was used to investigate resistance gene
abundance and diversity.

2. Materials and methods

Sediment core samples were taken on January 23rd
2011 in triplicate from a river 300 m, 600 m and 900 m
upstream and downstream of a large WWTP in the UK
Midlands. The WWTP served a large urban catchment of
approximately 500,000 people.

2.1. Construction of metagenomic libraries

DNA was extracted from samples using FASTDNA Spin
kit for soil (MP biomedicals, UK) as per the manufacturer’s
instructions. DNA concentration was measured using
spectrophotometry and standardised to the same con-
centration across all samples. Downstream samples (DS)
were pooled into 1 ml final volume to create the library.
Upstream samples (US) were also pooled into 1 ml final
volume to create the library. DS and US DNA was initially
purified using gel fractionation; 1% agarose (Helena
Laboratories, UK) was prepared, samples were loaded
and gel electrophoresis was performed at 40 V for 18 h.
DNA was selected from the size range 5 kb–20 kb and
recovered via electroelution. Gel purified DNA was blunt-
ended and phosphorylated using an End-Repair kit
(Epicentre, USA), then purified and concentrated using
Microcon centrifugal filters (Millipore, UK). Blunt DNA was
ligated into vector pCC1 (Epicentre, USA) using Fast-link

DNA ligase with an extended 16 8C incubation overnight.
The ligation was desalted via drop dialysis using ‘V’ series
membranes (Millipore, UK), and electroporated into
Transformax Epi300 Escherichia coli (Epicentre, USA).
Libraries were titred using a dilution series.

2.2. Metagenomic library analysis

Both libraries were amplified in LB broth amended with
chloramphenicol (12 mg l�1) by incubating overnight at
room temperature. Chloramphenicol was used to maintain
the pCC1 vector. Resulting amplified libraries were stored
at 4 8C for analysis. Ten clones were selected from each
library and plasmid extractions were performed using a
Miniprep kit (Qiagen, UK). Plasmids were cut with BamHI
(New England Biolabs, USA) to excise inserts with resulting
digests analysed using gel electrophoresis. Banding
patterns were analysed to calculate the mean insert size
for each library.

2.3. Quantification of total bacterial numbers

The total quantity of bacteria in the DS and US samples
was analysed using qPCR for the 16S rRNA gene as
previously described (Gaze et al., 2011).

2.4. Metagenomic library screening for antibiotic resistance

phenotype

Both entire libraries were screened on the aminoglyco-
side antibiotics amikacin, gentamicin, neomycin, the
fluoroquinolone ciprofloxacin and the b-lactam ampicillin.
Concentrations for screening were selected by testing the
minimum inhibitory concentrations (MICs) in E. coli

Epi300 strain with an empty pCC1 vector, and choosing
a concentration a tenth higher than this MIC to ensure a
minimal amount of false positives. The Epi300 strain with
an empty pCC1 vector was subsequently used as a negative
control. Positive clones were selected and plasmid extrac-
tions were performed (Qiagen, UK). Restriction fragment
length polymorphism (RFLP) utilising restriction enzymes
BamH1, EcoRI and EcoRV was used for analysis of clones to
determine the positive number of clones resistant to each
antibiotic.

2.5. Characterisation of resistant clones

A selection of unique clones were chosen for further
characterisation. Unique positive clones were tested for
resistance at the clinical breakpoints of each selected
antibiotic using published methods (Andrews, 2001).
Resistance genes were elucidated using transposon muta-
genesis with the EZ-Tn5 kit (Epicentre, USA) which
inactivated the resistance gene allowing for selection of
clones by loss of phenotype. Clones were then sequenced
using the Kan-3 Fp-2 primer forward primer and Kan-3 RP
reverse primer. Sequence data was analysed with NCBI
blast (Camacho et al., 2009) and NCBI ORF finder (Available
at: http://www.ncbi.nlm.nih.gov/gorf/.html [last accessed
31/01/14]) to identify the resistance gene and flanking
regions.

http://www.ncbi.nlm.nih.gov/gorf/.html
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 Statistical analysis

Statistical analyses were performed using MedCalc for
dows, version 9.5.0.0 (MedCalc Software, Mariakerke,

gium). Differences in gene prevalence were tested for
ificance using a x2-test for the comparison of two

portions (from independent samples). The average E.

 genome size (4.6 Mb) was used to estimate how many
omes were in each library by dividing number of DNA

 in the library by 4.6. The estimated proportion of
teria in the sediment resistant to each antibiotic was
ulated by dividing the number of resistant unique
es by the average number of genomes in the library,

 was then expressed as a percentage.

 Phylogenetic analysis of resistance genes

DNA sequences were trimmed and aligned with
stalW (Thompson et al., 1994) using MEGA 5.2 (Kumar
l., 1994). Phylogenetic trees were constructed using the
ghbour-Joining method (Saitou and Nei, 1987). A
tstrap consensus tree inferred from 1000 replications

s generated, evolutionary distances were computed
ng the p-distance method (Tamura et al., 2011).
nches corresponding to partitions reproduced in less
n 50% bootstrap replicates were collapsed.

esults

 Metagenomic libraries

Estimated sizes of the libraries were 8.4 Gb for DS and
 Gb US (Table 1). Using the average genome size of E. coli

 Mb) it can be estimated that the DS library consisted of
roximately 1826 bacterial genomes and the US library
sisted of approximately 2043 bacterial genomes. The
l bacterial abundance in each sediment sample was
ulated by qPCR to be 9.11 � 107 bacteria g�1 sediment
and 6.78 � 107 bacteria g�1 sediment US. From this we

 calculate that the DS library captured approximately

0.002% of the bacteria in a gram of river sediment
downstream of the WWTP, and the US library captured
approximately 0.003% of the bacteria in a gram of river
sediment upstream of the WWTP.

3.2. Resistance gene abundance

Antibiotic resistant clones were selected and RFLP was
performed on extracted plasmid DNA to determine the
number of unique clones conferring resistance to each
antibiotic (Table 2). Several hundred clones conferring
ampicillin resistance were recovered in both the DS and US
libraries; analysis of a subset of these revealed more than
50 unique clones indicating that at least one in every 36
genomes carried an ampicillin resistance gene down-
stream. There was a significantly higher number of
antibiotic resistant clones from the DS library compared
to the US library for antibiotics neomycin (14 DS vs. 6 US)
(Chi Square 4.232 P = 0.0397), amikacin (4 DS vs. 0 US) (Chi
Square 23.040 P < 0.0001) and ciprofloxacin (4 DS vs. 1 US)
(Chi Square 18.181 P < 0.0001). All unique clones were
resistant at clinically significant breakpoints (Table 2)
using published methods (Andrews, 2001).

3.3. Antibiotic resistant gene identities

Transposon mutagenesis was performed on a subset of
antibiotic resistant clones selected at random in order to
investigate the genes responsible for conferring resistance
(Table 3). The b-lactamase gene blaTEM was identified in
multiple ampicillin resistant clones in both DS and US
libraries. The flanking regions of each blaTEM were unique
proving they were from different host backgrounds.
Resistance to gentamicin was conferred by genes bearing
similarity to clinically important genes such as aminoglyco-
side 30-adenylytransferase (90%) found in clinical pathogens
such as Yersinia pestis. Genes previously not associated with
gentamicin resistance were also recovered (Table 3). Cipro-
floxacin resistance was attributed to the proteins RecA (74%)
and RecX (33%), which have to date not been associated with
resistance to fluroquinolones. Other unusual genes were
recovered for neomycin and amikacin resistance.

3.4. Diversity of aminoglycoside resistance genes

Three clones conferring resistance to aminoglycosides
contained highly divergent acetyltransferases with 36–
59% protein similarity to known proteins. Phylogenetic

le 1

mary of metagenomic libraries made from DS and US samples.

mple Average

insert size

Average number

of clones

Library

coverage

 4.2 kb 2 � 106 8.4 Gb

 4.7 kb 2 � 106 9.4 Gb

le 2

lysis of resistant clones in DS and US libraries.

tibiotic MIC of

Epi300 strain

(mg L�1)

Number of

resistant

clones DS

Number of

resistant

clones US

Proportion of bacteria

carrying resistant gene

downsteam (%)

Proportion of bacteria

carrying resistant gene

upstream (%)

MIC tested for

resistant clones

(mg L�1)

picillin 8 >50 >50 2.74 2.45 16

ntamicin 3 15 9 0.82 0.44 6

omycin 8 14 6 0.76 0.29 16

ikacin 4 4 0 0.22 0 16

profloxacin 0.25 4 1 0.22 0.05 1
 estimated proportion of bacteria in the sediment resistant to each antibiotic was calculated by dividing the number of resistant unique clones by the

age number of genomes in the library, this was then expressed as a percentage.
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Fig. 1. Phylogenetic relationships of acetyltransferases recovered US and DS. (A) Gentamicin clone 3 US. (B) Gentamicin clone 5 DS and (C) Amikacin clone

1 DS. Bootstraps inferred from 1000 replications. Branches < 50% bootstraps were collapsed. The evolutionary distances were computed using the p-

distance method (Tamura et al., 2011) and are in the units of the number of amino acid differences per site.
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lysis revealed the three genes encoded for proteins
ted to aminoglycoside 30-N-acetyltransferases (Genta-
in clone 3 US), aminoglycoside 20-N-acetyltransferases
ntamicin clone 5 DS) and aminoglycoside 60-N-acetyl-
sferases (Amikacin clone 1 DS) (Fig. 1). Gentamicin
e US3 was not recovered in the aminoglycoside 30-N-

tyltransferase clade and formed an outlier with the
t. The two other clones were similar to genes present in
ironmental bacteria such as actinobacteria and cyano-
teria.

iscussion

This study revealed that WWTP effluent increased the
ndance of bacterial resistance to clinically important
ibiotics in river sediments. The presence of clinically
vant resistance genes in the environment has pre-

usly been reported (Forsberg et al., 2012), however this
dy illustrates a potential dissemination route via

TPs. Although sequence based studies have suggested
t area’s impacted by WWTP effluent contain elevated

bers of sequences of resistance genes (Port et al.,
2), this is the first comparative study of the functional
r resistome before and after the addition of effluent.

The number of unique resistance clones in DS libraries
 US libraries were recorded, and the most prevalent
notype was ampicillin resistance. We can estimate a
valence of �2 � 105 ampicillin resistance genes in

resistance genes in the upstream sediment which indicates
the widespread resistance to this antibiotic. This is not
unexpected as a number of studies have illustrated the
abundance of resistance to semisynthetic b-lactams (Allen
et al., 2009). The amikacin resistance population showed
the largest amplification in numbers for downstream
samples, with an estimated sevenfold increase of resis-
tance genes at 2 � 104 DS and 3 � 103 US. This level of
amplification was closely followed by ciprofloxacin and
neomycin. Prevalence data here suggests an input of
resistance determinants or selective agents through the
WWTP effluent.

Aminoglycoside resistance genes recovered were extre-
mely diverse, however some encoded for acetyltrans-
ferases, the same family of genes conferring resistance in
clinical bacteria (Chevereau et al., 1974). All these genes
recovered when expressed in the current study gave
clinically relevant MICs to at least one aminoglycoside
antibiotic. A number of environmental studies concerned
with reservoirs of resistance genes have recovered
similarly diverse genes (McGarvey et al., 2012) however
none have done estimates of prevalence or investigated
potential routes of dissemination. In addition our study
revealed a novel gentamicin resistance gene which
appeared to have an independent phylogeny to other
acetyltransferases. This study supports previous research
which indicated resistance gene diversity in uncultured
environmental bacteria is much higher than that studied

 Kan8  un cultured  ba cterium AOKan 8

 aminog lycoside  6-N-acetyltran sferase un cultured  soil  ba cterium 1

 aminog lycoside  N(6)- acetyltran sferase Paen iba cill us alvei

 aminog lycoside  6-N-acetyltran sferase Ktedonoba cter racemifer

 aminog lycoside  6-N-acetyltran sferase Arthrospira platen sis

 aminog lycoside  6-N-acetyltran sferase Microcoleu s vag ina tus

 aminog lycoside  6-N-acetyltran sferase Acaryochloris sp.

 aminog lycoside  N(6)- acetyltran sferase Acaryochloris marina

 AMIKA CIN Clone  1 (DS)

 aminog lycoside  6-N-acetyltran sferase un cultured  soil  ba cterium

 aminog lycoside  6-N-acetyltran sferase

 aminog lycoside  6-N-acetyltran sferase un cultured  soil  ba cterium 2

 aminog lycoside  6-N-acetyltran sferase un cultured  soil  ba cterium 3

 Aminog lycoside  N(6)- acetyltran sferase Sphae roba cter the rmophil us

 Aminog lycoside  N(6)- acetyltran sferase Sphae roba cter the rmophil us 1

 aminog lycoside  N(6)- acetyltran sferase Herpe tosiphon  au ran tiacus

 acetyltran sferase GNAT famil y Clostridium sp.

 AA C(6)- Iai Pseudo mona s ae rug ino sa

 aminog lycoside  acetyltran sferase Coryneba cterium resisten s

 aminog lycoside  6-N-acetyltran sferase Esche richia coli

 aminog lycoside  6-N-acetyltran sferase Pseudo mona s ae rug ino sa

 6-N-aminog lycoside  acetyltran sferase Salmonell a en terica

 aminog lycoside  acetyltran sferase Esche richia coli

 aminog lycoside  6-N-acetyltran sferase Kleb siell a pneu mon iae

 aminog lycoside  6-N-acetyltran sferase Pseudo mona s ae rug ino sa 1

 Aminog lycoside  6-N-acetyltran sferase Acine toba cter bau mann ii

 Outgroup  aden ylyltran sferase

100

100

100

93
100

100

89

61

70

100

100

82

57

55

62

C

Fig. 1. (Continued ).
clinically relevant bacteria (Forsberg et al., 2012).
 downstream sediment and 1.65 � 105 ampicillin in 
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Significant increases in the number of aminoglycoside
resistant clones observed DS compared to US combined
with the sequence data is the first evidence that
anthropogenic pollution such as WWTP effluent increases
the abundance of environmentally diverse resistance
genes.

Sequence analysis of some resistance genes showed
similarity to genes assigned to housekeeping functions.
This may be evidence for evolutionary origins of resistance
genes (Aminov and Mackie, 2007). One mechanism for
ciprofloxacin resistance involved the recombination sys-
tem RecA and RecX, RecX facilitates recombination repair
by modulating RecA, thus could be a possible mechanism
to repair the damage done by ciprofloxacin inhibition of
the DNA gyrase (Cardenas et al., 2012). Amongst the other
genes recovered, transporters were evident, but more
obscure mechanisms of resistance attributed to enzymes
such as glycosyltransferase and pyruvate dehydrogenase
were also recovered, for both of which the resistance
function is unknown. Our data demonstrates the diversity
of genes recovered by expression analysis which can confer
antibiotic resistance and indicates that there is a sig-
nificant environmental reservoir of diverse mechanisms
encoding protection against antibiotics (Martiny et al.,
2011).

The impact of effluent discharge on the number of
clones conferring resistance to clinically important anti-
biotics such as ciprofloxacin and amikacin is a cause for
concern. Rivers are a vital part of the ecosystem
and provide an essential source of drinking water for wild
animals as well as being used for crop irrigation and
recreational activities. High levels of antibiotic resistance
in rivers resulting from WWTP pollution may explain why
an increasing number of studies are reporting resistance
genes in both wild and domestic animals. Several studies
have demonstrated resistance genes in livestock such as
the clinical blaCTX-M-15 in UK cattle (Watson et al., 2012),
chickens, turkeys (Randall et al., 2011) and dogs (Timofte
et al., 2011). Increasing levels of antibiotic resistant genes
in wild animals such as wolves (Goncalves et al., 2013) and
birds (Dolejska et al., 2011; Ewers et al., 2010) could be
through drinking contaminated water, particularly for
seagulls which often feed and drink near sewage treatment
plants (Fricker, 1984).

In conclusion, functional metagenomics provides a
valuable resource when analysing resistance mechanisms
in bacteria often revealing genes which sequenced-based
analysis would not detect. WWTPs create a large reservoir of
resistance genes which potentially can contribute to clinical
cases of resistant bacteria in animals and humans through

Table 3

Identities of resistance genes and predicted proteins from clones analysed by transposon mutagenesis.

Antibiotic resistance conferred

(library)

Predicted size

of protein

(amino acids)

Predicted domains Nearest sequence identity (bacteria identity)

Gentamicin clone 1 (US library) 420 Potassium transporter superfamily 77% Potassium transport protein

(Janthinobacterium sp.)

Gentamicin clone 2 (US library) 58 None 75% Hypothetical protein

(Escherichia coli)

Gentamicin clone 3 (US library) 264 Aminoglycoside 3-N-acetyltransferase 59% Aminoglycoside-(3)-N-acetyltransferase

(Escherichia coli)

Gentamicin clone 4 (US library) 329 Thiamine pyrophosphate family 88% Pyruvate dehydrogenase subunit E1

(Janthinobacterium sp.)

Gentamicin clone 5 (DS library) 178 Aminoglycoside 3-N-acetyltransferase 36% Acetyltransferase (GNAT) family protein

(Providencia rettgeri)

Gentamicin clone 6 (DS library 77 DUF4111 90% Aminoglycoside 30-adenylytransferase

(Yersinia pestis)

Gentamicin clone 7 (DS library) 88 Aminoglycoside 30-phosphotransferase (APH) 100% Aminoglycoside 30-phosphotransferase

(Pseudomonas putida)

Amikacin clone 1 (DS library 185 Aminoglycoside 3-N-acetyltransferase 58% Aminoglycoside N(60)-acetyltransferase

(Gloeocapsa sp.)

Amikacin 2 (DS library) 119 Nucleotidyl transferase superfamily 62% Methionyl-tRNA synthetase

(Haliscomenobacter hydrossis)

Ampicillin clone 1 (US library 289 Beta-lactamase2 superfamily 99% Beta-lactamase TEM

(Bacillus subtilis)

Ampicillin clone 2 (DS library) 289 Beta-lactamase2 superfamily 99% Beta-lactamase TEM

(Bacillus subtilis)

Ampicillin clone 3 (DS library) 289 Beta-lactamase2 superfamily 99% Beta-lactamase TEM

(Bacillus subtilis)

Neomycin clone 1 (DS library) 107 TroA like superfamily

FepB BC-type Fe3+ -hydroxamate transport

system, periplasmic component

48% Hypothetical protein

(Streptomyces sp.)

Neomycin clone 2 (DS library) 162 Glycosyltransferase family 25 36% Glycosyltransferase 25 family member 1

(Agrobacterium sp.)

Ciprofloxacin clone 1 (DS library) 145

154

RecX (recombination regulator)

RecA (bacterial DNA recombination protein)

33% Regulatory protein RecX

(Listeria seeligeri)

74% Recombinase A

(Geobacter lovleyi)

Identities of resistance genes and predicted proteins from clones analysed by transposon mutagenesis. Predicted size of proteins were generated using ORF

finder by NCBI. Translated nucleotide identities were used to generate protein sequence from which predicted domains and sequence identity were

obtained using NCBI BLASTP.
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