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Inflammation and Brain Structure in Schizophrenia
and Other Neuropsychiatric Disorders
A Mendelian Randomization Study
John A. Williams, PhD; Stephen Burgess, PhD; John Suckling, PhD; Paris Alexandros Lalousis, MSc;
Fatima Batool, PhD; Sian Lowri Griffiths, PhD; Edward Palmer, MBBS; Andreas Karwath, PhD;
Andrey Barsky, PhD; Georgios V. Gkoutos, PhD; Stephen Wood, PhD; Nicholas M. Barnes, PhD;
Anthony S. David, MD; Gary Donohoe, PhD; Joanna C. Neill, PhD; Bill Deakin, PhD;
Golam M. Khandaker, PhD; Rachel Upthegrove, PhD; for the PIMS Collaboration

IMPORTANCE Previous in vitro and postmortem research suggests that inflammation may
lead to structural brain changes via activation of microglia and/or astrocytic dysfunction
in a range of neuropsychiatric disorders.

OBJECTIVE To investigate the relationship between inflammation and changes in brain
structures in vivo and to explore a transcriptome-driven functional basis with relevance
to mental illness.

DESIGN, SETTING, AND PARTICIPANTS This study used multistage linked analyses, including
mendelian randomization (MR), gene expression correlation, and connectivity analyses.
A total of 20 688 participants in the UK Biobank, which includes clinical, genomic, and
neuroimaging data, and 6 postmortem brains from neurotypical individuals in the Allen
Human Brain Atlas (AHBA), including RNA microarray data. Data were extracted in
February 2021 and analyzed between March and October 2021.

EXPOSURES Genetic variants regulating levels and activity of circulating interleukin 1 (IL-1),
IL-2, IL-6, C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF) were
used as exposures in MR analyses.

MAIN OUTCOMES AND MEASURES Brain imaging measures, including gray matter volume
(GMV) and cortical thickness (CT), were used as outcomes. Associations were considered
significant at a multiple testing–corrected threshold of P < 1.1 × 10−4. Differential gene
expression in AHBA data was modeled in brain regions mapped to areas significant in MR
analyses; genes were tested for biological and disease overrepresentation in annotation
databases and for connectivity in protein-protein interaction networks.

RESULTS Of 20 688 participants in the UK Biobank sample, 10 828 (52.3%) were female,
and the mean (SD) age was 55.5 (7.5) years. In the UK Biobank sample, genetically predicted
levels of IL-6 were associated with GMV in the middle temporal cortex (z score, 5.76;
P = 8.39 × 10−9), inferior temporal (z score, 3.38; P = 7.20 × 10−5), fusiform (z score, 4.70;
P = 2.60 × 10−7), and frontal (z score, −3.59; P = 3.30 × 10−5) cortex together with CT in the
superior frontal region (z score, −5.11; P = 3.22 × 10−7). No significant associations were found
for IL-1, IL-2, CRP, or BDNF after correction for multiple comparison. In the AHBA sample,
5 of 6 participants (83%) were male, and the mean (SD) age was 42.5 (13.4) years. Brain-wide
coexpression analysis showed a highly interconnected network of genes preferentially
expressed in the middle temporal gyrus (MTG), which further formed a highly connected
protein-protein interaction network with IL-6 (enrichment test of expected vs observed
network given the prevalence and degree of interactions in the STRING database: 43
nodes/30 edges observed vs 8 edges expected; mean node degree, 1.4; genome-wide
significance, P = 4.54 × 10−9). MTG differentially expressed genes that were functionally
enriched for biological processes in schizophrenia, autism spectrum disorder, and epilepsy.

CONCLUSIONS AND RELEVANCE In this study, genetically determined IL-6 was associated with
brain structure and potentially affects areas implicated in developmental neuropsychiatric
disorders, including schizophrenia and autism.

JAMA Psychiatry. doi:10.1001/jamapsychiatry.2022.0407
Published online March 30, 2022.
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N umerous avenues of inquiry suggest a relationship
between immune dysfunction and psychiatric disor-
ders, including schizophrenia, autism spectrum dis-

orders, and depression.1 There is robust evidence for in-
creased circulating concentrations of proinflammatory
cytokines before the onset of illness,2 and epidemiological
studies have shown that exposure to a variety of infections dur-
ing prenatal life and childhood are associated with increased
risk of schizophrenia and autism spectrum disorder.3-5 Re-
cent analyses using mendelian randomization (MR) suggest
potential causality between inflammatory cytokines and
schizophrenia and depression.6 This background supports
theories of maternal immune activation of early inflamma-
tory processes and a 2-hit model with subsequent environ-
mental factors triggering nonresolving inflammation and the
precipitation of psychiatric disorders.7-10

Patients with mental disorders show a range of differ-
ences in structural brain measures compared with healthy con-
trols, but the cause of these differences remains ncertain.2

Interleukin 6 (IL-6) and its receptor IL-6R could be of particu-
lar interest as it is able to cross the blood-brain barrier and
increase its permeability, drawing in further local inflamma-
tory actors,11 and may be related to treatment resistance and
poor functional outcomes.12,13 Inflammation is implicated in
structural brain changes underlying neuropsychiatric disor-
ders via microglia and astrocytic function with disordered syn-
aptic pruning and subsequent effect on gray matter volume
(GMV).14 Immune glial dysfunction may differentially influ-
ence risk of mental health disorders; for example, radioli-
gands for translocator protein, a marker of microglial activa-
tion, is reduced in medication-naive patients with psychosis
but increased in patients with depression.2 Mental health dis-
orders are highly comorbid, suggesting a potentially com-
mon inflammatory mediated mechanistic pathway for a sub-
group of patients.15-18

There are relatively few studies exploring the association
between IL-6 and related markers and structural brain changes
in patient samples in vivo. In patients with depression and
inflammation, GMV alterations have been reported in the
temporal, orbitofrontal and inferiofrontal, and cingulate
regions.19,20 In psychosis, GMV loss and cortical thinning have
been related to elevation of immune-proteomic markers in tem-
poral, prefrontal, and cingulate areas.21 Studies to date are
often based on relatively small samples, patient populations
with long-term disease, are cross-sectional in nature, or con-
founded by medication and environmental factors. To our
knowledge, MR, which is able to control for environmental
confounds, has not previously been used to investigate this
association.22 Transcriptomic profiling of brain regions neu-
ropsychiatric populations have attempted to link inflamma-
tory and neuropsychiatric gene function, with mixed results
also potentially related to confounds.23,24

A clearer understanding of the association between
immune dysfunction and brain structure, with evidence of
potential causal inference and relevance to mental health dis-
orders, would be a significant advance and allow a deeper un-
derstanding of early causal pathways, offering the potential
for more refined targeting of novel treatments.25 We aimed to

test for evidence of potential causality in the association
between inflammatory cytokines and brain structure using
MR, with genetically predicted levels of cytokine activity as
proxies for exposure. Subsequently, we interrogated gene
expression in immune-related brain regions and tested the
relevance of gene expression patterns in neuropsychiatric
disorders.

We hypothesized that genetically predicted increased IL-6
and IL-6R activity would be associated with reduced gray mat-
ter volume and cortical thickness (CT) in areas highly rel-
evant to neuropsychiatric disorders, including schizophre-
nia, autism spectrum disorder, and depression. We further
expected genes overexpressed in identified regions to partici-
pate in biological processes relevant to neuropsychiatric
disorders as explored in human biomedical databases and
rodent models.

Methods
Methods are summarized in Figure 1 and the eMethods in
Supplement 1, which include the Strengthening the Report-
ing of Observational Studies in Epidemiology Using Mende-
lian Randomization (STROBE-MR) checklist. Briefly, first, we
used MR to test associations of genetic predictors of levels of
a range of cytokines and acute phase proteins with variation
in GMV and CT. We then investigated which genes were dif-
ferentially expressed in brain regions significantly indicated
in MR analyses. Region-specific gene sets were functionally in-
vestigated to assess how transcriptional activity in these brain
regions may manifest as neuropsychiatric function, and genes
functionally interacting with the IL-6 or IL-6R pathway char-
acterized in relation to neuropsychiatric disorders. All partici-
pants provided written informed consent. UK Biobank re-
ceived ethical approval from the North West Multi-centre
Research Ethics Committee. The present analyses were con-
ducted under UK Biobank application number 26999.

Genetic data and neuroimaging-derived phenotypes (out-
comes) were taken from the UK Biobank.26 We investigated ge-
netic predictors of 5 available exposures associated with risk

Key Points
Question Is there evidence for a potential relationship between
inflammation and brain structure, and is this relevant for
schizophrenia and other neuropsychiatric disorders?

Findings In this mendelian randomization study including 20 688
participants in the UK Biobank, genetically predicted levels of
interleukin 6 were associated with gray matter volume and cortical
thickness primarily in the middle temporal gyrus and superior
frontal region. The middle temporal gyrus overexpressed a
number of genes relevant to interleukin 6 pathway proteins and
neuropsychiatric disorder ontologies, including schizophrenia
and autism spectrum disorder.

Meaning This study found that inflammation may be associated
with brain structure and may be an early predeterminant of
neuropsychiatric conditions, which has important implications
for identification of risk and novel treatments.
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of neuropsychiatric disorders in MR analyses6 (IL-1,27 IL-228,
IL-6,29 C-reactive protein [CRP30], and brain-derived neuro-
trophic factor [BDNF31]) to examine specificity of findings for
the IL-6 and IL-6R pathway. For each inflammatory bio-
marker, we selected genetic variants in a relevant coding gene
region previously shown to be conditionally associated with
the inflammatory biomarker and moderately correlated
(r2 < 0.6) (eMethods in Supplement 1). We considered 1436 out-
comes derived from T1-weighted magnetic resonance imaging
(MRI) from 20 688 individuals in the imaging subset of the
UK Biobank study, described previously.32,33

We performed 2-sample MR analyses using the inverse-
variance weighted method, including estimated genetic cor-
relations from a reference population, using genetic associa-
tions with the inflammatory biomarkers obtained from the
literature (eMethods and eTable 2 in Supplement 1), and ge-
netic associations with the outcomes from UK Biobank cor-
recting for physical, genetic, and technical covariates. To pre-
sent results for diverse traits on a common scale, estimates are
divided by their standard errors and reported as z scores, where
a positive z score represents genetically predicted levels of
the biomarker that were positively associated with the brain
imaging measure. The number of independent hypotheses
tested was estimated by principal component analysis,
which indicated that 95% of the variation in the outcome data
was explained by 442 principal components. Associations
were therefore considered significant at a multiple testing–
corrected threshold of P < 1.1 × 10−4 (.05/442) from 2-tailed
inverse variance–weighted MR (eMethods in Supplement 1).

From the UK Biobank, the regional imaging measures were
CT and brain volume extracted from available parcellation at-
lases. Brain imaging results from MR analysis were imported
into the MarsBaR toolbox29 to aid visualization and identify
those brain regions of interest (ROIs) in SPM (Wellcome Cen-
tre for Human Neuroimaging) that were statistically signifi-
cantly associated with genetically predicted levels of biomark-
ers (eMethods in Supplement 1).

We analyzed gene expression from data in the Allen Hu-
man Brain Atlas (AHBA),34 which annotates 1839 segmented
regions in its atlas, and a combination of measurements seg-
mented in the mammalian Allen Brain Atlas (ABA). Where avail-
able, we conducted experiments to compare whole-brain ex-
pression to gene expression in brain ROIs indicated in MR
results, as not all brain regions have corresponding probes
in the microarray experiments. In a data-driven approach,
differential expression analysis was performed between
expression in each indicated brain region and whole-brain
expression levels. Overexpressed genes were examined for en-
richment in the Gene Ontology’s biological process domain,35

disease ontology,36 and mammalian phenotype ontology.37

Genes differentially expressed in significant regions were
tested for protein interactions with IL-6 in STRING version 11
(STRING Consortium).38

Results
Of 20 688 participants in the UK Biobank sample, 10 828
(52.3%) were female, and the mean (SD) age was 55.5 (7.5) years.
In the AHBA sample, 5 of 6 participants (83%) were male, and
the mean (SD) age was 42.5 (13.4) years. A full sample descrip-
tion can be found in eTable 1 in Supplement 1.

Association of Biomarkers With Brain Structure
Associations of genetically predicted values of the 5 investi-
gated biomarkers with the brain imaging measures are dis-
played as a heat map in Figure 2. In total, genetically pre-
dicted IL-6 levels were associated with 33 brain imaging
measures of GMV or CT after correction for multiple testing
(P < 1.1 × 10−4). No genetically predicted levels of other expo-
sures (IL1, IL2, CRP, or BDNF) were associated with brain
imaging measures after correction for multiple testing; at an
association of interest (uncorrected P < .001), 65, 1, 1, 2, and
2 brain imaging measures were associated with genetically

Figure 1. Study Workflow
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predicted IL-6, IL-1, IL-2, CRP, and BDNF, respectively. A list
of traits associated with genetically predicted IL-6 at an un-
corrected significance threshold is provided in eTables 3 and
5 in Supplement 1. Additional heat map visualizations of as-
sociations between brain imaging measures and inflamma-
tory biomarkers are provided in eTables 4 and 6 and eFigures
1 to 9 in Supplement 1. Results remained unchanged when
excluding 216 participants who reported a neuropsychiatric di-
agnosis and on adjustment for whole-brain volume (eTables 1,
5, and 6 in Supplement 1).

Mapping of Brain Structure Associated With IL-6
Genetically predicted IL-6 activity was associated with 33
spatially overlapping MRI measures. When mapped into SPM
space,39 these generated brain ROIs of GMV in the middle
temporal gyrus, temporooccipital part (right: z score, 5.76;
P = 8.39 × 10−9), and the temporal fusiform cortex, posterior
division (right: z score, 4.70; P = 2.60 × 10−7; left: z score, 4.20;
P = 2.67 × 10−6), as well as of CT in the frontal superior (left:
z score, −5.11; P = 3.22 × 10−7) were significant. The middle tem-
poral gyrus (MTG), fusiform gyrus (FuG), and superior fron-
tal gyrus demonstrated the strongest associations with geneti-
cally predicted IL-6 (eMethods and eTable 16 in Supplement 1;
Figure 3).

Differential Gene Expression in Brain Regions
Associated With IL-6
We conducted experiments to compare whole-brain expres-
sion to the brain ROIs: MTG, ITG, fusiform gyrus, and a com-
bination of measurements segmented in the mammalian ABA
(cerebellar vermis [Vel_IV] lobules I-II, III, and IV). The z score–
normalized expression of probes uniquely mapped to each ROI
indicated relatively stable expression in the MTG and ITG com-
pared with cerebellar regions (VeI I to V) and the putamen
(Figure 4A). Differentially expressed genes in the MTG (false
discovery rate–corrected P < .05; log-fold change >2) are shown
in Figure 4B. While many genes were overexpressed in the MTG

compared with the whole brain (mean [SD] log-fold change,
2.47 [0.40]; max log-fold change, 3.59; mean [SD] β, 13.41
[4.37]), none were significantly underexpressed. Differential
expression analyses are further described in eTables 7 to 14 and
eFigures 10 to 16 in Supplement 1.

Interaction Between IL-6 and Proteins Differentially
Expressed in the MTG
Subsequent enrichment with the STRING protein-protein in-
teraction database (Figure 4C) revealed a highly intercon-
nected network of genes preferentially expressed in the MTG,
suggesting these genes act in concert on the protein as well as
transcript level (43 nodes/30 edges observed vs 8 edges ex-
pected; mean node degree, 1.4; genome-wide significance,
P = 4.54 × 10−9). IL-6 itself was not found to be differentially
expressed in the MTG. However, several differentially ex-
pressed genes form an interaction network with IL-6. Among
these are neuropeptide Y (NPY), met proto-oncogene (MET),
cholecystokinin (CCK), muscular LMNA–interacting protein
(MLIP), and heat shock protein family B (small) member 3
(HSPB3).

Associations Between MTG-Enriched Genes
and Neuropsychiatric Disorders
Genes differentially expressed in each identified ROI were
enriched for overrepresentation in the disease ontology
(Figure 5A) and the biological process domain of the gene
ontology (Figure 5B; eTable 15 in Supplement 1). The MTG
contained a highly enriched set of genes involved in neuro-
psychiatric disorders, specifically schizophrenia (OR, 2.44; 95%
CI, 1.87-3.16; z score, 7.10; P = 5.7 × 10−7), psychotic disorder
(OR, 2.43; 95% CI, 1.86-3.15; z score, 7.06; P = 6.5 × 10−7), au-
tism spectrum disorder (OR, 3.70; 95% CI, 2.42-5.50; z score,
7.01; P = 1.1 × 10−5), cognitive disorder (OR, 2.37; 95% CI, 1.86-
2.99; z score, 7.56; P = 2.8 × 10−8), and epilepsy (OR, 4.66; 95%
CI, 3.17-6.71; z score, 9.27; P = 3.2 × 10−10). Enriched biologi-
cal processes in the AHBA results relate to nervous system

Figure 2. Heat Map of Associations Between Genetically Predicted Inflammatory Biomarkers
and Brain Imaging Measures
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development and synaptic transmission, while phenotypes
from orthologous mouse models (Figure 5C) exhibit abnor-
mal brain, cognition, anxiety, and affective traits.

Discussion
Using mendelian randomization in a large population data set,
we explored potential causal associations between inflamma-
tion and brain structure. In keeping with our hypothesis, this
study found that genetically predicted IL-6, but not other in-
flammatory markers, was significantly associated with GMV
and CT. We found the strongest associations with GMV in the
MTG and fusiform gyrus and with CT in the superior frontal
gyrus. Using the AHBA, we also demonstrated that the MTG
significantly overexpressed a highly interconnected number
of genes in an interaction network with IL-6 together with a
set of overexpressed genes for epilepsy, cognitive disorder,
schizophrenia, psychotic disorder, and autism spectrum dis-
order. These results suggest that function within the innate
immune system, and particularly IL-6–related pathways, are
essential for normal brain development and that elevation of
IL-6 may affect development of brain structure in areas highly
implicated in mental health disorders, particularly those with
a neurodevelopmental pathway.

It should be noted that IL-6 genetic variants used as in-
struments in MR are associated with increased circulating IL-6
levels but decreased IL-6 classic signaling owing to reduced

expression of membrane-bound IL-6R.40 Thus, caution is
needed when considering the directionality of association
between IL-6 levels and change in brain volumes. However,
dysregulation of the inflammatory response can trigger a cas-
cade that affects neuronal development and subsequent down-
stream behavioral phenotypes.41 Our results are suggestive
of elevation of IL-6 levels and reduction in GMV, with the larg-
est associations within the MTG, a key area of language,
semantic memory processing, and sensory integration impli-
cated in a number of neuropsychiatric disorders.42,43 These
findings extend recent evidence of association between
inflammation and brain structure in schizophrenia and
depression22,44-46 and address uncertainties of smaller samples
and confounding.

As a whole, genes differentially expressed in the MTG
share unexpectedly frequent occurrences in schizophrenia
(Figure 5A) as well as autism spectrum disorder, cognitive dys-
function, and epilepsy, suggesting a role for these genes across
comorbid and highly heritable illnesses. Suggested mecha-
nisms from our results include neuropeptide and chemical syn-
aptic transmission disruption (Figure 5B) and neurogenesis/
developmental processes. The homologs of differentially
expressed genes preferentially affect abnormal synaptic trans-
mission and predicate anxiety, emotion, learning, condition-
ing, and memory behavior—all hallmarks of phenotypically
related neuropsychiatric disorders (Figure 5C).

Recently, evidence has emerged for a reduction in GMV,
particularly in the temporal lobe in those at risk of poor out-

Figure 3. Brain Imaging Measures Associated With Genetically Predicted Levels of Interleukin 6 and Interleukin 6 Receptor
Through Mendelian Randomization
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A, Genetic association of interleukin 6 and its receptor with gray matter volume
(GMV) (Harvard-Oxford cortical and subcortical atlas and probabilistic
mendelian randomization atlas of the human cerebellum): middle temporal
gyrus, temporooccipital part (right: z score, 5.76; P = 8.40 × 10−9), and
temporal fusiform cortex, posterior division (right: z score, 4.70;
P = 2.60 × 10−7; left: z score, 4.20; P = 2.67 × 10−6), at a multiple
testing–corrected threshold of P < 1.1 × 10−4. Additional measures with P < .001
include the inferior temporal gyrus, posterior divisions (right: z score, 3.38;
P = 7.20 × 10−5; left: z score, 3.73; P = 1.90 × 10−5), frontal operculum cortex
(right: z score, −3.59; P = 3.30 × 10−5), putamen (right: z score, −3.78;
P = 1.60 × 10−5), and regions I to IV of the cerebellum vermus (right: z score,

−3.64; P = 2.70 × 10−5). B, Cortical thickness (Destrieux cortical atlas): frontal
superior (left: z score, −5.11; P = 3.22 × 10−7). Additional measures with P < .001
include the G-precuneus (left: z score, −3.59; P = 3.30 × 10−5), pole-occipital
(left: z score, −3.61; P = 3.10 × 10−5), S-parieto-occipital (left: z score, −3.34;
P = 8.40 × 10−5), and S-pericallosal (right: z score, 3.32; P = 9.00 × 10−5).
Estimates are reported as z scores, where a positive z score represents that
genetically predicted levels of the biomarker were positively associated with
the brain imaging measure. Red color denotes a positive association and blue
color denotes a negative association. See the eDiscussion in Supplement 1 for
further details.
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Figure 4. Genes Differentially Overexpressed in the Middle Temporal Gyrus (MTG) and Interleukin 6
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come in psychosis.42 Our results are in keeping with findings
from large cohort analysis; for example, Boedhoe et al47 iden-
tified increased CT in frontal regions in autism spectrum dis-
order and Jalbrzikowski et al48 found reduced GMV in the
fusiform, temporal, and paracentral regions in patients who
converted from clinical high-risk status to psychosis.

Genome-wide association studies in schizophrenia and au-
tism spectrum disorder have implicated the major histocom-
patibility complex on chromosome 6, with key loci that code
for specific cell-surface proteins essential within the immune

system.49 Additional variants on genes coding for inflamma-
tory cytokines have also been implicated in schizophrenia
risk.23 Results presented in our analysis support the potential
role of IL-6 with brain structure and potentially related neu-
ropsychiatric disorders.

However, we found no significant associations with CRP,
BDNF, IL-1, or IL-2 that survived testing for multiple compari-
son. Higher levels of CRP have been shown to be associated
with risk of psychosis and depression,50 although depression
has a varied relationship with individual inflammatory mark-

Figure 5. Association of Genes Overexpressed in the Middle Temporal Gyrus (MTG) and Brain Disorders
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A and B, Genes significantly overexpressed in the MTG were enriched for
psychiatric diseases and neurological biological processes in annotations to
the disease ontology and biological process domain of the gene ontology,
respectively. C, Their mammalian orthologs were enriched for neurological and
behavioral phenotypes present in the Mouse Genome Database. For each

database, hypergeometric tests were performed comparing the frequency of
ontology entity annotations for MTG-expressed genes vs genes available in the
Allen Human Brain Atlas datasets. All P values are false discovery rate–adjusted.
The top 20 most highly enriched results for each ontology are shown.
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ers, while more unified evidence exists in schizophrenia.6 It
is possible that IL-6 has a specific pathway to increased effect
on brain structure and poor functional outcome in subgroups
transdiagnostically.51,52 A plausible effect of IL-6 in inducing
changes in brain structure may be maternal immune activa-
tion during development, although it is possible that the
exposure continues and may indeed affect brain structure
throughout adulthood.53,54

In the adult human brain, we found that IL-6 may form an
interacting community with other proteins differentially over-
expressed in the MTG, including CCK and NPY, which are also
implicated in schizophrenia and other mental illnesses
(Figure 4C). CCK is one of the most abundantly expressed neu-
rotransmitters in the brain.51 In humans, GWAS has found an
association of CCK in pathways with increased neurofibril-
lary tangles and TREM2 protein levels, both previously asso-
ciated with Alzheimer disease and related tauopathies.55,56 De-
spite mixed success as a direct therapeutic aid to ameliorate
anxiety and symptoms of schizophrenia via CCK receptor
antagonists,57 CCK knockout mice have increased prepulse
inhibition,58 a key biomarker of the sensory overload charac-
teristic of psychosis,59 and NPY mouse models of schizophre-
nia show increased anxiety traits60 and abnormal susceptibil-
ity to induced seizures.61,62

MET and HSPB3 are also differentially overexpressed in the
MTG. Mouse models reveal developmental neurological roles
for MET, including impaired learning and cued conditioning
behavior,63,64 potentially relevant for models of perceptual
prior beliefs in psychosis.65 These proteins potentially inter-
act with IL-6 directly and join IL-6 to a highly connected func-
tional hub of coexpressed genes in the MTG implicated to-
gether in neuropsychiatric disorders. MLIP, which interacts
with MET is implicated in 13 schizophrenia trios in a 5.59-
kilobase deletion.66 In mice, there have been no reported stud-
ies investigating MLIP and mental health inflammation-
mediated mechanisms58; thus, our findings may support future
MET/MLIP knockout behavioral assays.

Strengths and Limitations
Strengths include a novel multistage investigation, well-
characterized single-nucleotide variants, large data set, strin-
gent corrections for multiple comparisons, and detailed un-
restricted gene expression analysis from postmortem human
data with homologues from mice, allowing potential for
back translation. This study also has limitations that need to
be acknowledged. First, our sample was of neurotypical par-
ticipants in both UK Biobank and AHBA. Other potential data,
eg, the Stanley Medical Research Institute database,67 from in-
dividuals with mental illness did not have transcriptomics data

from the brain subregions significant in our MR analysis. The
UK Biobank includes patients with a schizophrenia diagnosis;
however, only 15 had relevant brain imaging data. Excluding in-
dividuals with psychiatric conditions did not alter our results
(eTables 5 and 6 in Supplement 1). Second, our MR analysis used
hemisphere-specific (left or right) MRI-derived phenotypes,
whereas the AHBA is largely of the left hemisphere only. This
creates the assumption that the gene expression in each hemi-
sphere is correlated and ignores functional and structural asym-
metry. The degree to which hemispheric differences and the
quality of the AHBA data vary between individuals may miti-
gate this limitation. Third, it is possible that the genetic vari-
ants in our MR analysis could be associated with other path-
ways that influence brain structure directly (ie, environmentally
via infection-induced effect on brain structure or otherwise not
via the associated biomarker); however, given the known ge-
netic architecture of the inflammatory biomarkers, this may be
unlikely. This study used a conservative approach to inferring
causal gene-mediated phenotype-phenotype relationships, en-
suring robust findings for further investigation. In the MR analy-
sis, we used characterized single-nucleotide variants with
known cis-regulatory effects on levels of each inflammatory
cytokine studied. However, as with any MR analysis, we have
made several assumptions: in these analyses, we have tested
the assumption that our instrumental variables are associated
with inflammation directly, with the example of circulating CRP,
which is available in the UK Biobank. We assume that instru-
mental variables are independent of potential confounders
and that horizontal pleiotropy is not present. Fourth, the AHBA
used only 6 participants, a small sample size in transcrip-
tomics. Fifth, the available data in UK Biobank and AHBA are
limited to people of European ancestry, and significant repli-
cation when diverse samples become available is essential.

Conclusions
This mendelian randomization study found that IL-6 was
associated with changes in brain structure, with associations
strongest in the MTG where several genes are differentially
overexpressed compared with the whole brain. These genes
form a highly connected network at the protein level and func-
tionally contribute to diseases and phenotypes related to
schizophrenia, autism spectrum disorder, and epilepsy. This
suggests a genetically mediated, tissue-specific neuroinflam-
matory cascade relevant to brain structure in neuropsychiat-
ric disorders. These findings can be modeled computation-
ally and should be tested further for mechanistic insights in
further preclinical models.
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