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Abstract—Microwave diplexers are often designed iteratively 

via manual channel-by-channel or resonator-by-resonator local 

optimization procedures due to high dimensionality in design 

variables and the complexity of structures. A one-off automated 

diplexer optimization method is yet to be developed. To achieve 

this, other than improved optimizers, an effective objective 

function is critical to allow optimizers to find desired designs. This 

paper realizes automated diplexer design by proposing key 

performance indicator (KPI)-based objectives. The KPIs are 

extracted from S-parameter responses. An all-resonator diplexer 

with 22 variables and a Tee-junction diplexer with 23 variables 

are designed using the proposed method via one-off optimization, 

showing 100% and 80% success rates, respectively. 

 
Index Terms—Microwave diplexers, key performance 

indicators, optimization, objective function. 

I. INTRODUCTION 

ICROWAVE diplexers are three-port filtering 

components widely used in satellite and front-end of base 

stations [1]. Given a topology and an initial design, diplexer 

design aims to obtain optimal geometric parameters satisfying 

predefined design specifications [2]. Although analytical 

design methods are available, they are limited to specific types 

of channel filters or junctions [3]-[6]. Electromagnetic (EM) 

simulation-based optimization methods have more generality. 

However, with a large number of design variables, diplexers are 

often optimized iteratively via manual channel-by-channel or 

resonator-by-resonator process using local optimizers [7]-[8]. 

Designers’ experience is essential for dividing the diplexer, 

formulating each sub-optimization task, as well as guiding each 

optimization task when the optimizer sticks in local optima. 

Automated diplexer design, in contrast, has the following 

characteristics: (1) only requires an initial design and can obtain 

the successful final design by pressing one button, and (2) is 

general to most kinds of structures. Such a diplexer design 

method is promising due to replacing designers’ time with 
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computing resources. Many diplexers can be automatically 

designed in parallel, using a short time on average and almost 

zero designer’s effort. 

For automated diplexer design, a global optimizer is 

essential considering the highly multimodal design landscape 

[9] and the number of design variables. A recent surrogate 

model-assisted evolutionary algorithm for filter optimization 

(SMEAFO) [8] is employed to carry out global optimization in 

this work. Another essential element is the objective function 

(OF), which is what this research focuses on.  

The magnitude of S-parameters (e.g., max(|S11|)) within a 

frequency range is arguably the most widely used OF, but it 

leads to a complex design landscape [9], posting challenges to 

optimizers. Another OF using the difference between the 

extracted coupling matrix (CM) of a candidate design and the 

ideal CM shows effectiveness in some diplexer cases [10]. 

However, the main problem of the CM extraction is its low 

success rate for candidate designs with poor responses, and it is 

unable to deal with all-resonator diplexers [11]. Another similar 

OF employs the group delay of the extracted CM to match with 

the theoretical group delay. This OF requires multiple ad-hoc 

procedures which depend on designers’ experience [12]. A new 

cognition-driven filter EM optimization method [13]-[15] uses 

feature zeros to construct OF. The weights to filter poles and 

return loss are adjusted at different optimization stages, 

showing clear advantages in smoothing the design landscape. 

The feature-based OFs have been also widely applied in 

antenna and other microwave components [16]-[20]. 

The above OFs are successful but mainly focus on 

procedure-based diplexer design. For one-off automated 

design, on the other hand, correctly identifying high potential 

designs in the optimization process (e.g., responses with good 

bandwidths and return losses but center frequencies are shifted) 

is a new requirement. Hence, an OF focusing on this aspect is 

proposed, called key performance indicator (KPI)-based OF. 

Automated diplexer design is therefore realized.  

II. PERFORMANCE EXTRACTION AND OBJECTIVE FUNCTION 

Microwave diplexer design can be formulated as an 

optimization problem:  

 argmin ( ( ))opt U=
x

x R x  (1) 

where R(x) shows the KPIs of a candidate design x = [x1,…xn]T. 

U(R(x)) represents the OF using the KPIs. xopt denotes the 

optimal design. The OF construction process is shown in Fig. 1. 

In our proposed OF, the KPIs include (1) the return loss, PR, the 

center frequency PC, and the bandwidth PB of each channel, 
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which are extracted from the S11 response, (2) the stopband 

rejection PS (or isolation between channels PI), which are 

described by the magnitudes of S21 and S31 response, and (3) the 

frequency locations of transmission zeros PT, if any.  

1) Extraction of frequency locations of reflection zeros (RZs)  

Before OF construction, all the RZ frequency locations of the 

two channels are extracted from S11 response. To accurately 

identify them, a vector fitting technique [21] is employed. It 

adopts a rational polynomial to fit the S11 curve. When the 

rational polynomial is perfectly fitted with the S11 curve, the 

poles and zeros of the fitted polynomial would accurately 

approximate those of S11. This method has been successfully 

used for microwave filter design [22]-[23]. Fig. 2(b) shows a 

diplexer with all the 10 RZs correctly identified. 

2) Extraction of bandwidths (BWs): PB 

To define BW, there are two different situations: (1) When 

S11 values of all RZs in a channel approach or are lower than the 

desired level (i.e., −20 dB), BW can be directly identified. (2) If 

any RZs do not reach the specified level, the BW will be 

defined based on the extracted RZs, namely PB =|frz.N – frz.1|+ΔB, 

where frz.N and frz.1 are the highest and lowest RZ frequency 

locations in one channel as shown in Fig. 2(a). ΔB = |B − BZ|, 

defined by the ideal response of the optimal CM.  

3) Extraction of return loss: PR 

The RL has different definitions based on the RZ locations:  

( )( )  

 ( )( )  

,11 ,1

11 ,
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( )
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  =  
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  = 
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x
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where [frz,1, frz,n] is the frequency range between the lowest and 

highest RZs. [fL, fU] is the specified frequency range of the 

passband of one channel. The first equation in (2) means that all 

RZs of one channel are within the passband while the other 

means that at least one RZ exists outside the specified 

passband. 

4) Extraction of the center frequency (PC) of each channel 

The center frequency is defined as PC(x) = (frz.1+frz.N)/2, 

where frz.N and frz.1 are the highest and lowest RZ frequency 

locations in one channel as shown in Fig. 2(a).  

Advantages of the above KPIs are: (1) When the order of the 

diplexer is high, the S11 response is very steep at the passband 

edges (e.g., Fig. 2(a)) and a minor frequency shift could make a 

good quality candidate design shows bad max(|S11|) value. Such 

good potential designs can still be identified to support correct 

convergence with the KPI-based OF due to the return loss PR 

definition. (2) A kind of wrong design, which often appears in 

diplexer optimization, is the one with RZs outside of the 

passband (e.g., Fig. 2(b)). In contrast with the OF based on 

S-parameter magnitude that is powerless to them, such design 

is penalized by the PB. In this case, PR in (2) does not have to 

consider the steep S11 passband edges. 

The KPI-based OF is formulated as 

( )
1

( ) min ( ) ( ),0
n

S LB
d j j j j

j

F P P
=

= − − 
x x  

                                   ( )max ( ) ( ),0S UB
j j jP P + − + 


x  (3) 

where Pj(x) ∈{PB(x), PR(x), PC(x), PT(x), …} represents the jth 

extracted KPI value at design x, and P
S 
j  is the corresponding 

requirement from the design specifications. Δ
UB

j  and Δ
LB

j  are the 

upper and lower acceptable tolerances (e.g., a slight frequency 

or bandwidth deviation, which may be handled in tuning) for jth 

KPI. The weighting factors (β1, …, βn) are set such that the 

KPIs’ values are comparable.  

III. APPLICATION EXAMPLES 

The first example is a 10th order all-resonator waveguide 

diplexer shown in Fig. 3. The diplexer contains 22 variables: x 

= [l1, …, l10, k1, …, k9, q1, …, q3]. The passbands of the diplexer 

are 9.5-9.85 GHz and 10.15-10.5 GHz and return losses for two 

channels are 20dB. Then, the diplexer’s target KPIs with 

tolerances are defined as: P
S 

R ∈ [20 − 1, 20 + 2] (dB); P
S 

B ∈ 

[0.35 − 0.02, 0.35 + 0.02] (GHz); P
S 

C

  

1
 ∈ [9.675 – 0.035, 9.675 + 

0.035] (GHz), P
S 

C

  

2 ∈ [10.325 – 0.035, 10.325 + 0.035] (GHz). 

The initial design for the diplexer is x0 = [14.39, 16.12, 17.3, 

17.45, 17.22, 15.46, 18.95, 19.41, 19.18, 17.2, 10.47, 10.76, 6.8, 

9.76, 7.51, 11.19, 7.30, 10.11, 8.06, 12.77, 11.08, 11.73], which 

is obtained from the CM using the classical design curve 

method [24]-[25]. Our setting for weighting factor is β1 = 1, β2 = 

500, and β3 = 100 corresponding to PR, PB, and PC. The 

simulated responses of the initial design are shown in Fig. 3 

(dash lines), and the OF value is 36.8. 

The second example is an 8th order Ku-band Tee-junction 

diplexer shown in Fig. 4. The diplexer has 23 variables: xT 

=[l1, …, l8, d1, …, d8, w1, …, w4, l01, l02, lins]T. The design KPIs 

with tolerances are defined as: P
S 

R ∈ [20 − 1, 20 + 2] (dB); P
S 

B∈ 

[0.25 − 0.01, 0.25 + 0.01] (GHz); P
S 

C

  

1
 ∈ [12.625 − 0.025, 

12.625 + 0.025] (GHz), P
S 

C

  

2 ∈ [13.125 − 0.025, 13.125 + 0.025] 

(GHz); PI> 55 (dB). The initial design is obtained from CM are 

x0= [15.19, 16.65, 16.6, 15.0, 13.75, 15.57, 15.68, 14.32, 5.77, 

7.04, 5.65, 7.46, 5.37, 6.75, 0.0487, 7.15, 8.42, 8.41, 8.21, 8.03, 

16.69, 16.76, 7.64]. The simulated S-parameter responses for 

the initial design are shown in Fig. 4 (dash lines) and the OF 

value is 100.79. Our setting for weighting factor in this example 

 
Fig. 2 (a) The S-parameter response of the optimal CM for example 1 in 
Section III. (b) A typical response in the optimization of the same diplexer.  

 
Fig. 1.  The OF construction process. 
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is β1 = 1, β2 = 500, β3 = 100, and β4 = 1 corresponding to PR, PB, 

PC, and PI. 

Five runs are carried out for each diplexer, where SMEAFO 

[9] is used as the optimizer. The design parameters x and KPIs 

are involved in the surrogate modeling. On average, example 1 

takes 100 hours (1210 EM simulations), and example 2 takes 

125 hours (1418 EM simulation) using a laptop computer with 

an Intel i7-7700HQ 1.8 GHz CPU and 16 GB RAM. No 

parallel computing is used. The results are shown in Table I. 

The responses of typical solutions are shown in Fig. 3 and 4. 

Both OF values achieve 0 (i.e., specifications are met) finally.  

The proposed OF are compared with max(|S11|)-based OF 

using the same optimizer, SMEAFO. Also, some commercial 

tools in CST studio suite [26], filter designer 3D with 

CM-difference-based OF, and trust-region framework (TRF) 

with max(|S11|)-based OF are compared with the same initial 

design. Success rate means the percentage of successful runs 

(i.e., meet the specifications) out of total 5 runs. From Table II, 

only for the proposed OF, 100% and 80% success rates are 

obtained for the two diplexers, respectively, while for other 

OFs, the results are far from satisfactory using the same 

computing budget. The max(|S11|)-based OF with SMEAFO 

can still succeed but often costs 2 times EM simulations than 

the performance-based OF. CM difference-based OF does not 

succeed because it fails to extract CM from poor candidate 

designs in the optimization. Also, the local optimizer, TRF in 

CST, is not able to achieve automated diplexer optimization.  

IV. CONCLUSION 

To the best of our knowledge, this paper firstly realizes 

automated diplexer design, with the characteristics of fully 

automated, general to different structures, and high success rate. 

KPI objectives play an important role to identify high potential 

solutions that are beyond the capabilities of existing OFs. The 

effectiveness is demonstrated by the design of two diplexer 

design examples with 22 and 23 variables, respectively.  
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