

University of Birmingham

Machine learning to identify dynamic properties of
railway track components
Kaewunruen, Sakdirat; Sresakoolchai, Jessada; Stittle, Henry

DOI:
10.1142/S0219455422501097

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kaewunruen, S, Sresakoolchai, J & Stittle, H 2022, 'Machine learning to identify dynamic properties of railway
track components', International Journal of Structural Stability and Dynamics, vol. 22, no. 11, 2250109.
https://doi.org/10.1142/S0219455422501097

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Electronic version of an article published as Machine learning to identify dynamic properties of railway track components, Sakdirat
Kaewunruen, Jessada Sresakoolchai and Henry Stittle, International Journal of Structural Stability and Dynamics, 2022.
https://doi.org/10.1142/S0219455422501097 © copyright World Scientific Publishing Company
https://www.worldscientific.com/worldscinet/ijssd

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 24. Apr. 2024

https://doi.org/10.1142/S0219455422501097
https://doi.org/10.1142/S0219455422501097
https://birmingham.elsevierpure.com/en/publications/7dedf242-6259-4088-82da-fe9f619a48f7

1

Machine learning to identify dynamic properties of railway track components

Sakdirat Kaewunruen
*
, Jessada Sresakoolchai,

and Henry Stittle

School of Engineering, University of Birmingham, Birmingham B15 2TT, UK.

Corresponding author e-mail: s.kaewunruen@bham.ac.uk

Abstract

Investigating the condition of rail track components is important for track maintenance and

developing a greater understanding of track design. Railway inspection can be destructive and

non-destructive approaches. In the railway industry, the non-destructive approaches are preferred

because they retain the track in operation thus significantly reducing the cost of fault testing. One

of the non-destructive approaches is using machine learning which applied in this study. Field

measurements and advanced analysis of results are used to extract track properties. This study

creates, tunes and examines the validity of different machine learning techniques. The aim is to

extract the dynamic track properties from the in-field measurements without needing the

intermediary steps, saving both time and effort. Contributions of this study are demonstrating

that machine learning techniques have the potential to save cost and time for railway inspection.

Moreover, the accuracy is satisfied. The following models are produced: Linear Regression, K-

Nearest Neighbours, Gradient Boosting and a Convolutional Neural Network. We observe the

limitations of linear regression and tune the remainder, producing three models with low errors.

Keywords: Machine Learning, Dynamic Properties, Track Components, Non-Destructive

Approach

mailto:s.kaewunruen@bham.ac.uk

2

Declarations

Funding: The project has received the financial support from the European Commission, Grant

No 691135.

Conflicts of interest/Competing interests: The authors declare that they have no conflict of

interest.

Availability of data and material: Not applicable

Code availability: The authors generate the code themselves.

1. Introduction

Everyday use of rail track combined with greater engine speeds, the need for heavier axle

loads and more frequent transportation leads to the deterioration of many current track

infrastructures. As such, efficient monitoring of track conditions is essential to reduce the cost of

maintenance in addition to ensuring the highest levels of safety. Damaged tracks are known to

cause train derailment [1], hence the need for easy yet precise in situ testing is imperative. There

are two kinds of testing available; destructive and non-destructive. Non-destructive is favoured

as this significantly reduces the cost of testing, particularly in the case when no fault is found.

Currently, there are a number of these non-destructive techniques which include ultrasound [2],

modal testing [3], eddy current inspection [4], Magnetic Particle Inspection [5] and many more.

These methods all incur their respective costs, such as the equipment needed to perform an

ultrasound or time spent to analyse results.

Modal testing [3] is the basis of our machine learning methods. Our models will utilise the

same field measurements with the goal of predicting the results instead of calculating them

3

through experimental modal analysis, and finite element modelling. To improve the efficiency of

rail track testing in terms of cost and time, we propose a method using machine learning

algorithms which will once be created and optimised, only incur the costs of obtaining the

frequency response function (FRF) from the section of rail to be inspected via an instrumented

impact hammer. This gives the potential for a mobile phone application, which could for

example receive the FRF and input to the model, incurring minimal costs. The basis of these

models are from the following equation where m1 and m2 represent the mass of the rail and

sleeper (kg), k1 and c1 represent stiffness (N/m) and damping (Ns/m) coefficients of the rail and

k2 and c2 represent stiffness (N/m) and damping (Ns/m) coefficients of ballast supporting system.

2 22 2

1 2 1 1 2

11 2 2
2 2 2 2 2 2 2 2 2 2

1 1 2 2 1 1 1 2 1 2 2 1 1 1 2 1 2

4 2
()

4 4 4 4 4

k k f m f c c
H f

k m f k m f f k m c c f k c k c m c c c m f

 (1)

The FRF will plot frequency on the x-axis and the y axis:

 2 1

11() ()* *0.02H f H f f (2)

This equation is derived from the Fast Fourier Transform (FFT) method using a 2DOF model

where H11 represents FRF, f represents the frequency of samples, and H(f) represents the

function of samples when processed using FFT. This may be used to estimate the FRF with a

curve fitting error of just 3% [3]. As such it is reasonable to attempt the application of machine

learning to extract the dynamic properties of the track from an FRF.

4

The aims of this study will therefore be to develop machine learning models to predict the

dynamic track properties. Models will be tuned to ensure the accuracy. Different models will be

compared to evaluate and find the best model.

2. Literature Review

Artificial intelligence is one of the most in-demand aspects of computer science, with

applications widespread amongst all fields. Artificial intelligence has replaced many human jobs

in a society already and has proved to be more effective and efficient in many cases [6]. It has

surpassed humans in very detailed tasks for example Google’s DeepMind has conquered many

different games, including some which are not solvable such as poker [7]. Whilst machine

learning, in particular, may not always be possible, it typically works very well for problems

with well-defined inputs and outputs where large datasets are available to train our models on

[8]; this fits well for our problem.

Machine learning has previously been used in track defect detection. However, this has been

performed on visual inspection classification tasks with varied success. Wu, Yunpeng et.al.

produced a groundbreaking UAV-Based visual inspection method which correctly classified

surface defects with a 93.75%-94.26% accuracy [9]. Another application of machine learning is

real-time visual detection of hexagonal bolts or lack of. This model used two neural networks

and cross validates their outputs to avoid false positives. As such this model has an accuracy of

99.6% in the detection of visible bolts and 95% of missing bolts [10]. This model was able to

apply visual inspection to a high precision however, the scope of their problem was limited to

bolt detection only. Due to the nature of our proposed problem, we will aim to predict with a

high degree of accuracy and to detect faults which visual inspection may not be able to see. The

research gap is machine learning techniques that popularly used are visual inspection that has the

5

limitation of light and speed of data collection. In this study, we aim to use FRF to detect track

properties which is more cost-efficient and faster.

The first machine learning technique to be explored is linear regression and whether this

provides us with reliable predictions. If so then our problem will be solved and further algorithm

creation would not be necessary. Linear regression however is one of the simplest techniques and

as such comes with many limitations. One main limitation is the assumption of linearity between

the dependent and independent variables [11]. It is fair to assume in our case this assumption

would be too simple and therefore fail. Our data will not be linearly separable. We realise this

model will most likely not be successful is important to start here. Creating this model will be

low cost, it may take 10% of the time but provide up to 90% of the results [12]. The baseline

model here will provide trivially attainable results quickly; this will provide a useful benchmark

for more complex models to surpass.

The next algorithm we will consider is the k-nearest neighbours (KNN) algorithm. Unlike

linear regression, KNN does not make the linearity assumption [13]. This supervised algorithm

works based on the principle that similar data points will be close to each other in the output

space [14]. In the context of our problem, this would mean that similar-looking FRFs would

typically have similar dynamic properties. We could conjecture that the reverse case would also

be true (similar dynamic properties would produce similar FRF) due to our equation (1). We may

have some instances where the dynamic properties are vastly different; however, the FRFs may

not be. As such we may suspect the KNN algorithm is a suitable step up from linear regression.

Our KNN model therefore should produce some good results but it also has limitations for

certain data such as data with low variation. The next algorithm to be explored is gradient

boosting. The aim of gradient boosting is to make an ensemble model of weak learning methods,

6

where each method focuses on examples which the previous weak learners incurred high errors

in predicting [15]. This model therefore can easily obtain very high accuracy in making

predictions. We expect this model to perform better and improve on the KNN in multi-output

regression, in fact, it is possible gradient boosting will be the best performing model. With

supervised learning on a tabular-dataset gradient boosting will often outperform even deep

learning models [16].

The final model is a convolutional neural network (CNN), this is a deep learning approach

which will hopefully be a contender for the best model. Typically a CNN is used for complex

inputs, for example, speech or image recognition, usually to great effect, even outperforming

humans at these tasks [17]. Specifically, due to the nature of our data, we will use a 1D CNN, as

the input data here has only one dimension. We wish to use a CNN due to the ability of the

convolutional layer to perform feature extraction. Data can be input from FRFs in the range of 0-

1000 Hz and typically these graphs will have two distinct local maxima, see Figure 1. These

features are perfect candidates to be highlighted by CNN.

Figure 1. Example Frequency Response Function

CNN is used for complex inputs, for example, speech or image recognition, usually to great

effect, even outperforming humans at these tasks [17]. Specifically, due to the nature of our data,

we will use a 1D CNN, as the input data here has only one dimension. We wish to use a CNN

7

due to the ability of the convolutional layer to perform feature extraction. Data can be input from

FRFs in the range of 0-1000 Hz and typically these graphs will have two distinct local maxima,

see Figure 1. These features are perfect candidates to be highlighted by CNN.

As we obtain these graphs from equation (1), the nature of these peaks and troughs, or lack of

in some cases, is due to the dynamic properties of the track so using a CNN may produce

satisfying results in predicting these.

Once these models are created we will need to evaluate them. If our models were non-

stochastic this would be a simple process. We could obtain the error or accuracy of the tests and

compare. However, with many machine learning algorithms, we find the training of them is

stochastic, meaning the results are not always consistent due to randomness in the models. For a

neural network, this would be the starting weight of the network [18]. We will need to produce

these results multiple times if we wish to compare different models. These models may take a

long time to run however we require an acceptable sample size of results. We choose to do 50

calibrations for our tests [19].

Once this data is obtained for each model, we will need to perform statistical hypothesis tests

to compare our results. A typical way to compare the mean of two distributions would be a t-test

[20]. A standard t-test comes with assumptions. It assumes that the probability distribution

follows a normal distribution and the equality of the variance of the distributions [20]. Another

consideration is whether to use a paired or unpaired t-test [21], we find our data is unpaired and

as such must use an appropriate test. We will therefore use an unpaired, non-parametric t-test.

Therefore a Wilcoxon-Mann-Whitney test is proposed. This suits our criteria and performs better

for smaller datasets as is the situation here [22]. A final consideration to be taken into account is

8

how the tuning of the models affects our comparisons; this will be discussed further in their

creation.

Machine learning can be performed in many languages such as Python, Java, R, JavaScript, or

Scala [23]. We choose to conduct ours in Python, as it is considered the most ideal language for

general machine learning, this is due to the large set of libraries that can be applied to conduct

machine learning [24]. As well as the presence of these libraries their ease of use is unmatched in

other languages [24]. We use R to perform statistical analysis. R has a plethora of statistical

analysis techniques, easy-to-use methods and great customisation [25].

3. Data generation and processing

Dynamic track properties are a simple yet effective parameter for determining if the rail track

is defected. The dynamic track properties can be simulated using the 2DOF system [26] which is

a widely-used technique. This was confirmed by Kaewunruen and Remennikov [26] who found

that FRF could be represented by a 2DOF system. They compared field trial data, finite element

model, and 2DOF model using equation (1). They found that the 2DOF mass-spring model was

good enough and practical to represent field testing data. We will define acceptable ranges for

our k1 as 850-1050 MN/m, k2 as 140 to 270 MN/m, c1 as 1 to 23 kNs/m and c2 as 140 to 270

kNs/m as these are in the acceptable range of industry standards [3]. Extraction of these

properties would therefore lead to an effective method for inspections of the current track

quality. We must generate data within this range that accounts for working data and also data

with variables that fall below. Another consideration is the track with a broken fastening system,

this would give a k2 and c2 of zero.

To obtain these properties we use equation (2) to generate our own frequency response

function graphs to be an input of models. This is achieved through the use of the random()

9

function within Python; we multiply this random value from zero inclusive to one exclusive by

the range needed, then add the minimum value required. Using this technique on all our variables

and incrementing f (frequency) from 0 to 1000 we can generate our own graph.

Inputting two-dimensional data into our models would add unnecessary complexity. Since our

frequency range is between 0 to 1000 in all the data, it is possible to omit this information from

the models. We accomplish this by inputting our H(f) values, from equation (2), in order. This

way we can input two-dimensional data in a one-dimensional form. After these values, we can

add on our important variables k1, c1, k2 and c2.

This means each data has 1000 features, this may be fine for some algorithms however, it may

make others needlessly complex. As such we can also produce a simplified version of this data

where H(f) is only stored for every 10th frequency. This is particularly important for our tuning

process which can be very time-consuming. In the same vein, we will explore using an even

larger amount of data once the models are tuned. Using the large dataset before tuning would be

ideal although, it would add complexity to the problem; switching to the large dataset after

tuning should still give a noticeable improvement to the already tuned results.

We will also add artificial noise to our data. In practice frequency response functions will have

noise, so for the models to work in-field, it will be important to include. The addition of noise

has been shown to help reduce overfitting [27]. It has even been shown in some cases that noise

injection can reduce overfitting to a greater extent than early stopping [28].

Finally, we will use normalization techniques on our output variables. This can be important in

preventing problems with your model specifically when the variables are magnitudes different

[29]. In our data this is the case; we find our k1 and k2 values are rough of the magnitude 108 to

10

109 whereas c1 and c2 are around 105. We can use a min-max scaler on these to transform each

output variable to be between 0 and 1.

4. Algorithm Creation

We have decided on our four models, linear regression, k-nearest neighbours, gradient

boosting, and a convolutional neural network. To develop an understanding of how each of these

could perform for our data we choose to create simplified models for each of these. We ignore

many potential hyperparameters at first before deciding if we wish to explore and tune them.

4.1. Simplified models

4.1.1. Linear Regression

We will be using the linear regression model from the scikit-learn Python library. Our linear

regression model will use the default parameters given by scikit-learn. This model would need

four output variables and although linear regression does not naturally support this it can be

simply altered to create four different linear regression models, with one model for each output.

We split our data into 70% training data and reserve 30% for testing, running this model 50

times to obtain the results with the assignment of training and test data at random. This prevents

us from basing our results on a rare split of data where our predictions would be better than

average. This random split of test to training data is repeated across all our models. We find that

after 50 trials the average mean squared error is 0.0943, with a standard deviation of 0.0046.

These results are not terrible and as such the more complex models have the potential to be

extremely accurate.

4.1.2. K-Nearest Neighbours

11

Next, we have the KNN model. For this, we choose only two of the parameters. For the

number of k neighbours, the model uses to make predictions we choose three and the weights

metric to be distance, instead of uniform. Uniform weights give each neighbour an equal

weighting whereas distance increases influence for closer neighbours. After 50 trials the average

mean squared error is 0.0142, with a standard deviation of 0.0008. This is a considerable

improvement over the linear regression model.

4.1.3. Gradient Boosting

With our gradient boosting model the default parameters given by scikit-learn were retained.

As with linear regression, this algorithm was designed for one output, so we adapt it as a multi-

output regressor, fitting one model per output. The default parameters here are a learning rate of

0.01, a subsampling of 1, 100 estimators and a max depth of 3. This produced an average mean

squared error of 0.0142 and a standard deviation of 0.0007, from over 50 samples. To more

decimal places, gradient boosting has a lower error than the KNN model.

We perform a Wilcoxon rank-sum test to compare the distributions of KNN and gradient

boosting here. This test is unpaired, two-sided, and using a confidence level of 95%. Our null

hypothesis is that the location shift in the distributions is equal to 0, with the alternative

hypothesis being that is not equal to 0. Our p-value for this test comes out to be 0.743, meaning

the null hypothesis is retained. That is to say, the difference of error in these models is not

statistically significant and it would be unfair for us to tune one of these models without also

tuning the other.

12

Figure 2. Simple Convolutional Neural Network Architecture

4.1.4. Convolutional Neural Network

Finally, CNN is created, for this, we must choose filter size, pool size, number of hidden

layers and neurons. We do not look into optimal values for these to be fair to the other models

and choose some small values for these hyperparameters, which results in the architecture shown

in Figure 2.

This architecture results in an average mean squared error of 0.0112, with a standard deviation

of 0.0039. This is a lower mean squared error however, the variance is significant than our

gradient boosting and the KNN models. Applying the Wilcoxon rank-sum test gives p-values of

3.242 ×10
−8

 and 3.012 ×10
−8

when compared with KNN and gradient boosting respectively. With

a confidence level of 95%, our p-value falls below 0.05, in both cases and we should reject the

null hypothesis meaning there has been a statistically significant shift in the distributions.

13

Figure 3. Simplified Models’ Mean Squared Errors

4.1.5. Summary

In conclusion and as expected our simplified models demonstrated that the linear regression

model performed much worse than the others. Our KNN and gradient boosting methods were

very similar to the CNN performing better than the rest; however, the variance was high. From

these results, we shall discard our linear regression model and use hyperparameter tuning on the

remainders, with the goal of producing three highly accurate models for further comparisons.

4.2. Model Tuning

A hyperparameter is a set parameter that we choose for our models, for example, the number

of hidden layers in a neural network, or the learning rate of a model. We wish to find a tuple of

hyperparameters which produce optimal accuracy for each model; this process is called

hyperparameter tuning. Due to constraints on time and computing power, we do not conduct a

fully exhaustive search on all hyperparameters. For each model, we choose certain important

hyperparameters to optimize and reasonable ranges to test them across. We choose to conduct

grid searches on our hyperparameters for KNN and gradient boosting. A grid search enumerates

all combinations of the chosen subspace of hyperparameters [30], the downside of this method is

that with numerous parameters tuning can be very time-consuming. Due to a large number of

hyperparameters and long training time, for the CNN, we make use of a hyperband search.

Hyperband is an optimised version of random search; it will randomly select models to tune for

only a small amount of epochs, using the results it will select candidates to be trained for more

epochs. This method can provide over an order of magnitude speedup over competitor

algorithms.

14

4.2.1. K-Nearest Neighbours

For the KNN model, we choose to look at four parameters in particular. Namely the leaf size,

the number of neighbours used, the weights metric and the power parametric. We use the default

algorithm parameter in scikit-learn which means the model will try to choose the best algorithm

itself for selecting the neighbours. The number of neighbours we use in the algorithm is very

important and can have a drastic impact on the overall error of the model [31]. The weights

metric references either the weight of the nearest neighbours based on how far away they are

from the target or the weighting of each of the nearest neighbours equally. Finally, our power

metric which is responsible for how the distance to the neighbours is calculated. We choose

either l1, the Manhattan distance or l2, the Euclidean distance. The Manhattan distance between

two points a and b in n-dimensional space can be defined as:

 1

1

(,) ()
n

i

i

d a b b a

 (3)

The Euclidean distance between two points a and b in n-dimensional space can be defined as:

 2 2 2

1 1 2 2(,) () () ()n nd a b b a b a b a (4)

The average mean squared error of this tuned model is calculated as 0.0142, with a standard

deviation of 0.0007. This average mean squared error is the same as our simple model. We

perform a Wilcoxon rank-sum test between the simple and tuned KNN models. This gives a p-

value of 0.6884, meaning the location shift in the distributions was not statistically significant.

Although our mean has not improved the variance of the model was, giving more consistent

results.

15

Figure 4. K-Nearest Neighbours Tuning Mean Squared Errors

4.2.2. Gradient Boosting

For the gradient boosting model we tune four parameters; the number of estimators, the

learning rate, the maximum depth, and the subsample size. The number of estimators determines

the number of boosting stages performed. We choose to investigate 100 to 1000 estimators in

steps of 100 in our hyperparameter space. With more time or computing power we could

investigate numbers between this range or much larger numbers. For the learning rate, we choose

either 0.01 or 0.001. Given enough data and trees, a lower learning rate would be better.

However, since we are limited, this is an important feature to tune. The maximum depth can be

altered to change the depth of the trees. A deeper tree can be useful for making accurate

predictions, however, a high depth may lead to overfitting so this is an important balance to

optimise. We select from a maximum depth of 1 to 4. Lastly, the subsampling is tuned; this

determines the fraction of samples that are used to fit each weak learner. We choose from either

0.5, 0.75 or 1. Values less than one indicate an increase in the bias of each weak learner

however, the overall variance of the model is reduced.

We find the optimal values from the hyperparameter space to be 1000 estimators, a maximum

depth of 4, a learning rate of 0.01, and a subsampling of 0.5. Using these parameters we find a

16

tuned average mean squared error of 0.0093 with a standard deviation of 0.0005, over 50 fittings

of the model. This is a clear improvement over the simplified model detailed in Figure 5.

Figure 5. Gradient Boosting Tuning Mean Squared Errors

4.2.3. Convolutional Neural Network

The CNN has a large number of hyperparameters that could be tuned so it will be required to

limit these to a select few, especially as the CNN can take a considerable amount of time to train.

Firstly we choose the learning rate of our Adam optimiser to be either 0.01 or 0.001. If too low

our loss function will not improve fast enough, if too high the loss function will diverge and not

settle at an optimum. Next, we look at the convolutional layer and determine the kernel size of

our filters in addition to how many filters to use. We look at a range of 5 to 50 filters in steps of

5, also searching over the same range for our kernel size. Due to time constraints, we choose to

examine only hidden layers that have the same number of neurons as each other. We search over

1 to 5 hidden layers of 10 to 50 neurons each in steps of 5.

We must also consider two other important hyperparameters however, these will not be

adjusted in the training; The number of epochs we train the model on and batch size. Before

tuning we will look at our simplified model in order to estimate when overfitting occurs, this will

be different for every model, and as such a general rule is required. From Figure 6 we can see the

overfitting of the model starts between the 200th and 250th epoch when the error of the training

17

data starts to decrease as the test error increases. The epochs we tune the models on therefore

will be 250. The model uses a batch size of 32, this is a common batch size to use and although

on the lower side, potentially hindering accuracy, it will drastically help the computational

complexity of the tuning [32].

The tuned CNN deployed the following hyperparameters: a training rate of 0.01, 35 filters, a

kernel size of 30, and 4 hidden layers with 50 neurons. This gives the architecture shown in

Figure 7. This tuned CNN results in an average mean squared error of 0.0134 with a standard

deviation of 0.0265 over 50 samples. The average mean squared error of the simple model is

0.0112, which is actually less than the tuned model. Figure 8 explains how this is possible; the

tuned model had outliers. The tuned CNN had a maximum mean squared error of 0.0922,

however, the median value was just 0.0046; less than half of the median of the simple model

(0.0109). Figure 9 clearly shows that without the outliers, the tuned model performed much

better. During training these outlier models stop improving almost instantly, Figure 7 shows this

process. The non-outlier tuned CNNs follow a similar pattern to Figure 6. The cause of the

outliers may well be a local minima reached in the mean squared error, this is a well-documented

problem that can occur in neural networks [33]. In the next stage, we will experiment with large

datasets, this extra data may reduce the presence or severity of outliers.

18

Figure 6. Fitting of Simplified CNN

Figure 7. Fitting of an Outlier of the Tuned CNNs

19

Figure 8. Tuned CNN Architecture

Figure 9. Convolutional Neural Network Tuning Mean Squared Errors

5. Results

When analysing the results, it important to maintain the unseen data as the validation data.

This is because the model will show bias towards the training data and also to the test data we

used in tuning the models. The parameters of models, for example, network weights, will be

biased towards the training data and the hyperparameters may show bias towards the test data. In

addition to this, with now tuned models, we may experiment with much larger datasets.

Satisfying the need for new unseen data, we propose a new dataset. Previously the models were

tuned with 2000 data; now we will generate a dataset with 9000 sets of data. All three of our

models will be assumed to perform better with more data. In the case of gradient boosting and

the CNN, the training time will be increased however, prediction time will stay the same. The

20

KNN model will take both longers to train and longer to make a prediction, this is a trade-off we

must consider when adding more data.

Table 1. Average mean squared error of model using a small and large dataset

Small Dataset Average

MSE

SD

Large Dataset Average

MSE

SD

KNN 0.1420 0.0007 0.0078 0.0003

Gradient

Boosting

0.0093 0.0005 0.0077 0.0002

CNN 0.0134 0.0265 0.0037 0.0021

The large dataset models’ mean squared errors come from 30 trains of the models, compared

to the 50 of the smaller dataset, due to the greatly increased training time.

Table 2. Wilcoxon rank-sum Test between small and large dataset

 Test Statistic w P-Value Location Shift Present

KNN 1,500 8.78E-14 Yes

Gradient Boosting 1,500 8.69E-14 Yes

CNN 1,451 3.45E-12 Yes

21

Table 2 shows the results of the Wilcoxon rank-sum test between the small and large dataset

versions of the tuned models. This is useful to have as these results will show whether the large

dataset has a statistically significant impact on our models.

Figure 10. Large Dataset Models’ Mean Squared Errors

Table 3. Time taken to make a single prediction

 Prediction Time (s)

KNN 0.0112

Gradient Boosting 0.0049

CNN 0.0156

Table 3 shows the average time taken to make a singular prediction of an unknown input, this

is an average value from 30 trains of the model. This was all completed on one computer and

results should therefore not be used as a rule for all systems.

6. Discussion

6.1. Explanation of Results

22

The larger dataset leads to a significant improvement in results. The models showed a decrease

in the average and standard deviation of the mean squared error. A Wilcoxon rank-sum test was

performed on these distributions for the mean squared error of each model, comparing the

training on the small and large datasets. In all cases, the test showed a statistically significant

location shift for these distributions. As such, it is clear the larger dataset models are superior in

terms of accuracy.

The larger dataset results show a clear best model, the CNN has less than half the average

mean squared error of the other models when predicting the test data, at just 0.0037. The main

downside of the model is the comparatively high value of the standard deviation. Considering

this we calculate the maximum value of the mean squared error of the CNN from our tests is

0.0108, compared with the minimum values of KNN and gradient boosting of 0.0072 and 0.0073

respectively. The larger dataset CNN outliers’ errors have seen a significant reduction in

magnitude. Although there is some overlap in terms of error, the CNN is clearly a better

performing model. A Wilcoxon rank-sum test between our KNN and gradient boosting models

results in a p-value of 0.135. Statistically, we cannot say one is better than the other in terms of

their respectively incurred mean squared errors.

Some outliers are present in the CNN results, this is something that should be considered

carefully if this model is used in practice. The outliers, in this case, are not as drastic as with the

smaller dataset however, they still have a large impact on the mean; the median mean squared

error of the larger dataset CNN is 0.0028. If this model is applied in the future the particular train

of the model should be picked cautiously, to avoid selecting an outlier model. A solution could

be to experiment with larger batch sizes in the CNN model. This may reduce the chance of

outliers appearing and increase the consistency of the model.

23

Another consideration was the time taken in generating a prediction. This was a concern,

particularly for the KNN model due to the large number of computations required to find the

nearest neighbours [34]. We find that although the KNN has the largest time taken to produce a

prediction with the large dataset, this time is still minimal and acceptable. All of the models took

only a fraction of a second to make predictions with the CNN taking the most time.

6.2. Achievements

This study proposed machine learning techniques as a fast and inexpensive method to perform

non-destructive track testing. As proof of concept simple models were generated encompassing

different types of machine learning. The linear regression model was ruled out as a sufficient

solution with a much higher error than the other models.

Subsequent hyperparameter tuning of the models resulted in varying levels of success. The

KNN model improved invariance but did not show a significant change in error. The gradient

boosting and CNN models did however show an improvement in their respective errors.

With the models now tuned it is feasible to use the larger dataset and retrain. This results in a

significant improvement across our three tuned models. The CNN model has the least error.

Unlike the KNN model, the memory usage and prediction time of the CNN model does not

increase with the amount of data used in training.

Considering the other models, we propose the tuned CNN, using the large dataset to train on,

as a solution to the original problem. This model is capable of identifying dynamic track

properties with a very small error and without incurring the cost of expensive equipment or time

spent analysing results. This has considerable potential for in-situ testing of track properties and

defects, which can easily be equated to the condition of the track; a necessary task performed by

members of the rail industry and researchers alike.

24

6.3. Limitations and Further Research

The data used in the training and validation of the models were produced by the fast fourier

transform equation, equation (1), and (2). This method’s error is approximately 3%, compared to

field data. The models’ errors in prediction are therefore amplified. Although these errors are

small it is something that could be refined. This would require the collection of large datasets

from the field via an instrumented impact hammer. In addition, data with a large range of

stiffness and damping would be needed to create a model capable of future predictions.

The models were not tuned on the larger datasets, indeed the tuning of the models took a

significant amount of processor time with the smaller dataset. With much greater computing

power, it is possible to tune the models with the larger dataset. This process might give even

better hyperparameters leading to further reduced error. In the same vein, the hyperparameters

could have been searched without steps within their ranges or over a larger range; in addition to

the possibility of a search for some unused hyperparameters. A recommendation to reduce the

time spent tuning on larger datasets would be to perform hyperparameter tuning using a different

method; for example the parameter-setting-free harmony search algorithm [35] or a random

search.

Machine learning concepts are not completely unheard of in rail track maintenance. However,

many are classifying algorithms that are based on surface-level defects [36]. The proposed

models can detect unseen faults through the identification of the dynamic track properties that

these image-based classifiers may miss. One limitation is that some faults may cause issues for

trains but have little impact on the specific properties of the track we are interested in; an

example of this could be deformed track geometry [37].

25

An unexplored option that could produce improved results is an ensemble model. For our

problem, a possible ensemble would be a set of individually trained regressors with predictions

taken in combination. Ensemble models are often more accurate than any one component of the

ensemble [38]. As we have produced three tuned models this study could lay a solid groundwork

for the creation of such an ensemble model.

7. Conclusion

The main aim of this study is to produce accurate machine learning models for the predictions

of the dynamic properties of track components from a frequency response function.

After ruling out linear regression, three algorithms were produced to solve this problem with

varying levels of success. Various techniques were used to reduce the error in the models and the

final models perform much better than our simplified versions. Whilst all algorithms have a

reasonable level of error, as detailed in Section 5 the CNN was superior to the rest with an

average mean squared error of just 0.0037. As such, the aims of this study outlined in Section 1

have been met and this study can be considered successful.

The CNN model has the highest potential utilization for in situ testing with a very low

monetary cost and the ability to receive information about the track properties almost instantly.

The model could now be adopted into a simple application that could be used on a phone or

similar device capable of receiving vibrations from the track. The monetary cost of this would be

minimal in comparison to many current techniques.

If the engineering feat of receiving the frequency response function on board a moving train is

accomplished, there would be further potential applications of these models. Facilitating access

to remote or hard-to-reach tracks also. This would open a path for track testing to be performed

effortlessly and constantly across the globe in a way that would revolutionise track maintenance.

26

Moreover, the railway inspection can be done quickly as the speed of the operation with little

cost. Therefore, the inspection can be done regularly to allow the sign of defect can be detected

in advanced.

Acknowledgment

The authors also wish to thank the European Commission for the financial sponsorship of the

H2020-RISE Project no.691135 “RISEN: Rail Infrastructure Systems Engineering Network”, which

enables a global research network that addresses the grand challenge of railway infrastructure

resilience and advanced sensing in extreme environments (www.risen2rail.eu) [39].

References

1. Liu, X., M.R. Saat, and C.P. Barkan, Analysis of causes of major train derailment and

their effect on accident rates. Transp. Res. Rec., 2012. 2289(1): p. 154-163.

2. Vipparthy, S.T., Inspection of Defects in Rails using Ultrasonic Probe. 2013.

3. Kaewunruen, S. and A. Remennikov, Integrated field measurements and track

simulations for condition assessment of railway track. 2005.

4. Song, Z., et al., Detection of damage and crack in railhead by using eddy current testing.

J Electromagn Anal Appl., 2011. 2011.

5. Lee, G.B., Applications of Non-Destructive Testing in Rail Tracks. 2015.

6. Khanam, S., S. Tanweer, and S. Khalid, Artificial Intelligence Surpassing Human

Intelligence: Factual or Hoax. Comput J, 2020.

7. Ray, T. Machine learning goes beyond theory to beat human poker champs. 2019.

8. Brynjolfsson, E. and T. Mitchell, What can machine learning do? Workforce

implications. Sci., 2017. 358(6370): p. 1530-1534.

27

9. Wu, Y., et al., A UAV-based visual inspection method for rail surface defects. Appl. Sci.,

2018. 8(7): p. 1028.

10. Marino, F., et al., A real-time visual inspection system for railway maintenance:

automatic hexagonal-headed bolts detection. IEEE T SYST MAN CY C., 2007. 37(3): p.

418-428.

11. Kumar, N. Advantages and Disadvantages of Linear Regression in Machine Learning.

2019.

12. Ameisen, E., Always start with a stupid model, no exceptions. 2018.

13. Yang, J., Z. Sun, and Y. Chen, Fault detection using the clustering-kNN rule for gas

sensor arrays. J. Sens., 2016. 16(12): p. 2069.

14. Harrison, O., Machine learning basics with the k-nearest neighbors algorithm. Towards

Data Science. September, 2018. 10.

15. Valiant, L., Probably Approximately Correct: NatureÕs Algorithms for Learning and

Prospering in a Complex World. 2013: Basic Books (AZ).

16. Shavitt, I. and E. Segal. Regularization learning networks: deep learning for tabular

datasets. in Advances in Neural Information Processing Systems. 2018.

17. Xiong, W., et al. The Microsoft 2017 conversational speech recognition system. in 2018

IEEE international conference on acoustics, speech and signal processing (ICASSP).

2018. IEEE.

18. Hardesty, L. Explained: Neural networks. 2017; Available from:

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414.

19. Arsenault, R., et al., Comparison of stochastic optimization algorithms in hydrological

model calibration. J. Hydrol. Eng., 2014. 19(7): p. 1374-1384.

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414

28

20. Kim, T.K., T test as a parametric statistic. Korean J. Anesthesiol., 2015. 68(6): p. 540.

21. Hill, S.A., Chapter Statistics. Foundations of Anesthesia: Basic Sciences for Clinical

Practice, 2006: p. 207.

22. Fagerland, M.W., t-tests, non-parametric tests, and large studies—a paradox of

statistical practice? BMC Med. Res. Methodol., 2012. 12(1): p. 78.

23. Bansal, H. Best languages for machine learning in 2020! 2019; Available from:

https://becominghuman.ai/best-languages-for-machine-learning-in-2020-6034732dd242.

24. Ratan, V. Why Python is Ideal for Machine Learning. 2018 [cited 2020 May]; Available

from: https://www.opensourceforu.com/2018/10/why-python-is-ideal-for-machine-

learning/.

25. Dalgaard, P., Introductory statistics with R. 2008: Springer.

26. Kaewunruen, S. and A.M. Remennikov, Field trials for dynamic characteristics of

railway track and its components using impact excitation technique. NDT & E

International, 2007. 40(7): p. 510-519.

27. Piotrowski, A.P. and J.J. Napiorkowski, A comparison of methods to avoid overfitting in

neural networks training in the case of catchment runoff modelling. J. Hydrol., 2013.

476: p. 97-111.

28. Zur, R.M., et al., Noise injection for training artificial neural networks: A comparison

with weight decay and early stopping. Med Phys, 2009. 36(10): p. 4810-4818.

29. Microsoft. Normalize Data. 2019; Available from: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/normalize-data.

https://becominghuman.ai/best-languages-for-machine-learning-in-2020-6034732dd242
https://www.opensourceforu.com/2018/10/why-python-is-ideal-for-machine-learning/
https://www.opensourceforu.com/2018/10/why-python-is-ideal-for-machine-learning/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data

29

30. Ghawi, R. and J. Pfeffer, Efficient Hyperparameter Tuning with Grid Search for Text

Categorization using kNN Approach with BM25 Similarity. Open Comput. Sci., 2019.

9(1): p. 160-180.

31. Mabayoje, M.A., et al., Parameter tuning in KNN for software defect prediction: an

empirical analysis. JTSISKOM, 2019. 7(4): p. 121-126.

32. Radiuk, P.M., Impact of training set batch size on the performance of convolutional

neural networks for diverse datasets. Information Technology and Management Science,

2017. 20(1): p. 20-24.

33. Lo, J.T.-H., Y. Gui, and Y. Peng, The normalized risk-averting error criterion for

avoiding nonglobal local minima in training neural networks. Neurocomputing, 2015.

149: p. 3-12.

34. Arefin, A.S., et al., Gpu-fs-k nn: A software tool for fast and scalable k nn computation

using gpus. PloS one, 2012. 7(8): p. e44000.

35. Lee, W.-Y., S.-M. Park, and K.-B. Sim, Optimal hyperparameter tuning of convolutional

neural networks based on the parameter-setting-free harmony search algorithm. Optik,

2018. 172: p. 359-367.

36. Nakhaee, M.C., et al. The recent applications of machine learning in rail track

maintenance: A survey. in International Conference on Reliability, Safety, and Security of

Railway Systems. 2019. Springer.

37. Westgeest, F., R. Dekker, and R. Fischer, Predicting rail geometry deterioration by

regression models. Adv Saf Reliab Risk Manag ESREL, 2011. 146: p. 926-933.

38. Opitz, D. and R. Maclin, Popular ensemble methods: An empirical study. J Artif Intell

Res, 1999. 11: p. 169-198.

30

39. Kaewunruen, S., J.M. Sussman, and A. Matsumoto, Grand Challenges in Transportation

and Transit Systems. 2016. 2(4).

