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Abstract 

Investigating the condition of rail track components is important for track maintenance and 

developing a greater understanding of track design. Railway inspection can be destructive and 

non-destructive approaches. In the railway industry, the non-destructive approaches are preferred 

because they retain the track in operation thus significantly reducing the cost of fault testing. One 

of the non-destructive approaches is using machine learning which applied in this study. Field 

measurements and advanced analysis of results are used to extract track properties. This study 

creates, tunes and examines the validity of different machine learning techniques. The aim is to 

extract the dynamic track properties from the in-field measurements without needing the 

intermediary steps, saving both time and effort. Contributions of this study are demonstrating 

that machine learning techniques have the potential to save cost and time for railway inspection. 

Moreover, the accuracy is satisfied. The following models are produced: Linear Regression, K-

Nearest Neighbours, Gradient Boosting and a Convolutional Neural Network. We observe the 

limitations of linear regression and tune the remainder, producing three models with low errors. 

Keywords: Machine Learning, Dynamic Properties, Track Components, Non-Destructive 

Approach 
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1. Introduction 

Everyday use of rail track combined with greater engine speeds, the need for heavier axle 

loads and more frequent transportation leads to the deterioration of many current track 

infrastructures. As such, efficient monitoring of track conditions is essential to reduce the cost of 

maintenance in addition to ensuring the highest levels of safety. Damaged tracks are known to 

cause train derailment [1], hence the need for easy yet precise in situ testing is imperative. There 

are two kinds of testing available; destructive and non-destructive. Non-destructive is favoured 

as this significantly reduces the cost of testing, particularly in the case when no fault is found. 

Currently, there are a number of these non-destructive techniques which include ultrasound [2], 

modal testing [3], eddy current inspection [4], Magnetic Particle Inspection [5] and many more. 

These methods all incur their respective costs, such as the equipment needed to perform an 

ultrasound or time spent to analyse results. 

Modal testing [3] is the basis of our machine learning methods. Our models will utilise the 

same field measurements with the goal of predicting the results instead of calculating them 
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through experimental modal analysis, and finite element modelling. To improve the efficiency of 

rail track testing in terms of cost and time, we propose a method using machine learning 

algorithms which will once be created and optimised, only incur the costs of obtaining the 

frequency response function (FRF) from the section of rail to be inspected via an instrumented 

impact hammer. This gives the potential for a mobile phone application, which could for 

example receive the FRF and input to the model, incurring minimal costs. The basis of these 

models are from the following equation where m1 and m2 represent the mass of the rail and 

sleeper (kg), k1 and c1 represent stiffness (N/m) and damping (Ns/m) coefficients of the rail and 

k2 and c2 represent stiffness (N/m) and damping (Ns/m) coefficients of ballast supporting system.  
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The FRF will plot frequency on the x-axis and the y axis: 

 2 1

11( ) ( )* *0.02H f H f f    (2) 

This equation is derived from the Fast Fourier Transform (FFT) method using a 2DOF model 

where H11 represents FRF, f represents the frequency of samples, and H(f) represents the 

function of samples when processed using FFT. This may be used to estimate the FRF with a 

curve fitting error of just 3% [3]. As such it is reasonable to attempt the application of machine 

learning to extract the dynamic properties of the track from an FRF. 
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The aims of this study will therefore be to develop machine learning models to predict the 

dynamic track properties. Models will be tuned to ensure the accuracy. Different models will be 

compared to evaluate and find the best model.  

2. Literature Review 

Artificial intelligence is one of the most in-demand aspects of computer science, with 

applications widespread amongst all fields. Artificial intelligence has replaced many human jobs 

in a society already and has proved to be more effective and efficient in many cases [6]. It has 

surpassed humans in very detailed tasks for example Google’s DeepMind has conquered many 

different games, including some which are not solvable such as poker [7]. Whilst machine 

learning, in particular, may not always be possible, it typically works very well for problems 

with well-defined inputs and outputs where large datasets are available to train our models on 

[8]; this fits well for our problem. 

Machine learning has previously been used in track defect detection. However, this has been 

performed on visual inspection classification tasks with varied success. Wu, Yunpeng et.al. 

produced a groundbreaking UAV-Based visual inspection method which correctly classified 

surface defects with a 93.75%-94.26% accuracy [9]. Another application of machine learning is 

real-time visual detection of hexagonal bolts or lack of. This model used two neural networks 

and cross validates their outputs to avoid false positives. As such this model has an accuracy of 

99.6% in the detection of visible bolts and 95% of missing bolts [10]. This model was able to 

apply visual inspection to a high precision however, the scope of their problem was limited to 

bolt detection only. Due to the nature of our proposed problem, we will aim to predict with a 

high degree of accuracy and to detect faults which visual inspection may not be able to see. The 

research gap is machine learning techniques that popularly used are visual inspection that has the 
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limitation of light and speed of data collection. In this study, we aim to use FRF to detect track 

properties which is more cost-efficient and faster. 

The first machine learning technique to be explored is linear regression and whether this 

provides us with reliable predictions. If so then our problem will be solved and further algorithm 

creation would not be necessary. Linear regression however is one of the simplest techniques and 

as such comes with many limitations. One main limitation is the assumption of linearity between 

the dependent and independent variables [11]. It is fair to assume in our case this assumption 

would be too simple and therefore fail. Our data will not be linearly separable. We realise this 

model will most likely not be successful is important to start here. Creating this model will be 

low cost, it may take 10% of the time but provide up to 90% of the results [12]. The baseline 

model here will provide trivially attainable results quickly; this will provide a useful benchmark 

for more complex models to surpass. 

The next algorithm we will consider is the k-nearest neighbours (KNN) algorithm. Unlike 

linear regression, KNN does not make the linearity assumption [13]. This supervised algorithm 

works based on the principle that similar data points will be close to each other in the output 

space [14]. In the context of our problem, this would mean that similar-looking FRFs would 

typically have similar dynamic properties. We could conjecture that the reverse case would also 

be true (similar dynamic properties would produce similar FRF) due to our equation (1). We may 

have some instances where the dynamic properties are vastly different; however, the FRFs may 

not be. As such we may suspect the KNN algorithm is a suitable step up from linear regression. 

Our KNN model therefore should produce some good results but it also has limitations for 

certain data such as data with low variation. The next algorithm to be explored is gradient 

boosting. The aim of gradient boosting is to make an ensemble model of weak learning methods, 
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where each method focuses on examples which the previous weak learners incurred high errors 

in predicting [15]. This model therefore can easily obtain very high accuracy in making 

predictions. We expect this model to perform better and improve on the KNN in multi-output 

regression, in fact, it is possible gradient boosting will be the best performing model. With 

supervised learning on a tabular-dataset gradient boosting will often outperform even deep 

learning models [16]. 

The final model is a convolutional neural network (CNN), this is a deep learning approach 

which will hopefully be a contender for the best model. Typically a CNN is used for complex 

inputs, for example, speech or image recognition, usually to great effect, even outperforming 

humans at these tasks [17]. Specifically, due to the nature of our data, we will use a 1D CNN, as 

the input data here has only one dimension. We wish to use a CNN due to the ability of the 

convolutional layer to perform feature extraction. Data can be input from FRFs in the range of 0-

1000 Hz and typically these graphs will have two distinct local maxima, see Figure 1. These 

features are perfect candidates to be highlighted by CNN. 

 

Figure 1. Example Frequency Response Function 

CNN is used for complex inputs, for example, speech or image recognition, usually to great 

effect, even outperforming humans at these tasks [17]. Specifically, due to the nature of our data, 

we will use a 1D CNN, as the input data here has only one dimension. We wish to use a CNN 
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due to the ability of the convolutional layer to perform feature extraction. Data can be input from 

FRFs in the range of 0-1000 Hz and typically these graphs will have two distinct local maxima, 

see Figure 1. These features are perfect candidates to be highlighted by CNN. 

As we obtain these graphs from equation (1), the nature of these peaks and troughs, or lack of 

in some cases, is due to the dynamic properties of the track so using a CNN may produce 

satisfying results in predicting these. 

Once these models are created we will need to evaluate them. If our models were non-

stochastic this would be a simple process. We could obtain the error or accuracy of the tests and 

compare. However, with many machine learning algorithms, we find the training of them is 

stochastic, meaning the results are not always consistent due to randomness in the models. For a 

neural network, this would be the starting weight of the network [18]. We will need to produce 

these results multiple times if we wish to compare different models. These models may take a 

long time to run however we require an acceptable sample size of results. We choose to do 50 

calibrations for our tests [19]. 

Once this data is obtained for each model, we will need to perform statistical hypothesis tests 

to compare our results. A typical way to compare the mean of two distributions would be a t-test 

[20]. A standard t-test comes with assumptions. It assumes that the probability distribution 

follows a normal distribution and the equality of the variance of the distributions [20]. Another 

consideration is whether to use a paired or unpaired t-test [21], we find our data is unpaired and 

as such must use an appropriate test. We will therefore use an unpaired, non-parametric t-test. 

Therefore a Wilcoxon-Mann-Whitney test is proposed. This suits our criteria and performs better 

for smaller datasets as is the situation here [22]. A final consideration to be taken into account is 
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how the tuning of the models affects our comparisons; this will be discussed further in their 

creation. 

Machine learning can be performed in many languages such as Python, Java, R, JavaScript, or 

Scala [23]. We choose to conduct ours in Python, as it is considered the most ideal language for 

general machine learning, this is due to the large set of libraries that can be applied to conduct 

machine learning [24]. As well as the presence of these libraries their ease of use is unmatched in 

other languages [24]. We use R to perform statistical analysis. R has a plethora of statistical 

analysis techniques, easy-to-use methods and great customisation [25]. 

3. Data generation and processing 

Dynamic track properties are a simple yet effective parameter for determining if the rail track 

is defected. The dynamic track properties can be simulated using the 2DOF system [26] which is 

a widely-used technique. This was confirmed by Kaewunruen and Remennikov [26] who found 

that FRF could be represented by a 2DOF system. They compared field trial data, finite element 

model, and 2DOF model using equation (1). They found that the 2DOF mass-spring model was 

good enough and practical to represent field testing data. We will define acceptable ranges for 

our k1 as 850-1050 MN/m, k2 as 140 to 270 MN/m, c1 as 1 to 23 kNs/m and c2 as 140 to 270 

kNs/m as these are in the acceptable range of industry standards [3]. Extraction of these 

properties would therefore lead to an effective method for inspections of the current track 

quality. We must generate data within this range that accounts for working data and also data 

with variables that fall below. Another consideration is the track with a broken fastening system, 

this would give a k2 and c2 of zero. 

To obtain these properties we use equation (2) to generate our own frequency response 

function graphs to be an input of models. This is achieved through the use of the random() 



9 
 

function within Python; we multiply this random value from zero inclusive to one exclusive by 

the range needed, then add the minimum value required. Using this technique on all our variables 

and incrementing f (frequency) from 0 to 1000 we can generate our own graph. 

Inputting two-dimensional data into our models would add unnecessary complexity. Since our 

frequency range is between 0 to 1000 in all the data, it is possible to omit this information from 

the models. We accomplish this by inputting our H(f) values, from equation (2), in order. This 

way we can input two-dimensional data in a one-dimensional form. After these values, we can 

add on our important variables k1, c1, k2 and c2. 

This means each data has 1000 features, this may be fine for some algorithms however, it may 

make others needlessly complex. As such we can also produce a simplified version of this data 

where H(f) is only stored for every 10th frequency. This is particularly important for our tuning 

process which can be very time-consuming. In the same vein, we will explore using an even 

larger amount of data once the models are tuned. Using the large dataset before tuning would be 

ideal although, it would add complexity to the problem; switching to the large dataset after 

tuning should still give a noticeable improvement to the already tuned results. 

We will also add artificial noise to our data. In practice frequency response functions will have 

noise, so for the models to work in-field, it will be important to include. The addition of noise 

has been shown to help reduce overfitting [27]. It has even been shown in some cases that noise 

injection can reduce overfitting to a greater extent than early stopping [28]. 

Finally, we will use normalization techniques on our output variables. This can be important in 

preventing problems with your model specifically when the variables are magnitudes different 

[29]. In our data this is the case; we find our k1 and k2 values are rough of the magnitude 108 to 
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109 whereas c1 and c2 are around 105. We can use a min-max scaler on these to transform each 

output variable to be between 0 and 1. 

4. Algorithm Creation 

We have decided on our four models, linear regression, k-nearest neighbours, gradient 

boosting, and a convolutional neural network. To develop an understanding of how each of these 

could perform for our data we choose to create simplified models for each of these. We ignore 

many potential hyperparameters at first before deciding if we wish to explore and tune them. 

4.1. Simplified models 

4.1.1.  Linear Regression  

We will be using the linear regression model from the scikit-learn Python library. Our linear 

regression model will use the default parameters given by scikit-learn. This model would need 

four output variables and although linear regression does not naturally support this it can be 

simply altered to create four different linear regression models, with one model for each output. 

We split our data into 70% training data and reserve 30% for testing, running this model 50 

times to obtain the results with the assignment of training and test data at random. This prevents 

us from basing our results on a rare split of data where our predictions would be better than 

average. This random split of test to training data is repeated across all our models. We find that 

after 50 trials the average mean squared error is 0.0943, with a standard deviation of 0.0046. 

These results are not terrible and as such the more complex models have the potential to be 

extremely accurate. 

4.1.2.  K-Nearest Neighbours  
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Next, we have the KNN model. For this, we choose only two of the parameters. For the 

number of k neighbours, the model uses to make predictions we choose three and the weights 

metric to be distance, instead of uniform. Uniform weights give each neighbour an equal 

weighting whereas distance increases influence for closer neighbours. After 50 trials the average 

mean squared error is 0.0142, with a standard deviation of 0.0008. This is a considerable 

improvement over the linear regression model. 

4.1.3.  Gradient Boosting  

With our gradient boosting model the default parameters given by scikit-learn were retained. 

As with linear regression, this algorithm was designed for one output, so we adapt it as a multi-

output regressor, fitting one model per output. The default parameters here are a learning rate of 

0.01, a subsampling of 1, 100 estimators and a max depth of 3. This produced an average mean 

squared error of 0.0142 and a standard deviation of 0.0007, from over 50 samples. To more 

decimal places, gradient boosting has a lower error than the KNN model. 

We perform a Wilcoxon rank-sum test to compare the distributions of KNN and gradient 

boosting here. This test is unpaired, two-sided, and using a confidence level of 95%. Our null 

hypothesis is that the location shift in the distributions is equal to 0, with the alternative 

hypothesis being that is not equal to 0. Our p-value for this test comes out to be 0.743, meaning 

the null hypothesis is retained. That is to say, the difference of error in these models is not 

statistically significant and it would be unfair for us to tune one of these models without also 

tuning the other. 



12 
 

 

Figure 2. Simple Convolutional Neural Network Architecture 

4.1.4.  Convolutional Neural Network  

Finally, CNN is created, for this, we must choose filter size, pool size, number of hidden 

layers and neurons. We do not look into optimal values for these to be fair to the other models 

and choose some small values for these hyperparameters, which results in the architecture shown 

in Figure 2. 

This architecture results in an average mean squared error of 0.0112, with a standard deviation 

of 0.0039. This is a lower mean squared error however, the variance is significant than our 

gradient boosting and the KNN models. Applying the Wilcoxon rank-sum test gives p-values of 

3.242 ×10
−8

 and 3.012 ×10
−8 

when compared with KNN and gradient boosting respectively. With 

a confidence level of 95%, our p-value falls below 0.05, in both cases and we should reject the 

null hypothesis meaning there has been a statistically significant shift in the distributions. 
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Figure 3. Simplified Models’ Mean Squared Errors 

4.1.5.  Summary 

In conclusion and as expected our simplified models demonstrated that the linear regression 

model performed much worse than the others. Our KNN and gradient boosting methods were 

very similar to the CNN performing better than the rest; however, the variance was high. From 

these results, we shall discard our linear regression model and use hyperparameter tuning on the 

remainders, with the goal of producing three highly accurate models for further comparisons. 

4.2. Model Tuning 

A hyperparameter is a set parameter that we choose for our models, for example, the number 

of hidden layers in a neural network, or the learning rate of a model. We wish to find a tuple of 

hyperparameters which produce optimal accuracy for each model; this process is called 

hyperparameter tuning. Due to constraints on time and computing power, we do not conduct a 

fully exhaustive search on all hyperparameters. For each model, we choose certain important 

hyperparameters to optimize and reasonable ranges to test them across. We choose to conduct 

grid searches on our hyperparameters for KNN and gradient boosting. A grid search enumerates 

all combinations of the chosen subspace of hyperparameters [30], the downside of this method is 

that with numerous parameters tuning can be very time-consuming. Due to a large number of 

hyperparameters and long training time, for the CNN, we make use of a hyperband search. 

Hyperband is an optimised version of random search; it will randomly select models to tune for 

only a small amount of epochs, using the results it will select candidates to be trained for more 

epochs. This method can provide over an order of magnitude speedup over competitor 

algorithms. 
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4.2.1.  K-Nearest Neighbours  

For the KNN model, we choose to look at four parameters in particular. Namely the leaf size, 

the number of neighbours used, the weights metric and the power parametric. We use the default 

algorithm parameter in scikit-learn which means the model will try to choose the best algorithm 

itself for selecting the neighbours. The number of neighbours we use in the algorithm is very 

important and can have a drastic impact on the overall error of the model [31]. The weights 

metric references either the weight of the nearest neighbours based on how far away they are 

from the target or the weighting of each of the nearest neighbours equally. Finally, our power 

metric which is responsible for how the distance to the neighbours is calculated. We choose 

either l1, the Manhattan distance or l2, the Euclidean distance. The Manhattan distance between 

two points a and b in n-dimensional space can be defined as: 

 1

1

( , ) ( )
n

i

i

d a b b a


    (3) 

 

The Euclidean distance between two points a and b in n-dimensional space can be defined as: 

 2 2 2

1 1 2 2( , ) ( ) ( ) ( )n nd a b b a b a b a         (4) 

The average mean squared error of this tuned model is calculated as 0.0142, with a standard 

deviation of 0.0007. This average mean squared error is the same as our simple model. We 

perform a Wilcoxon rank-sum test between the simple and tuned KNN models. This gives a p-

value of 0.6884, meaning the location shift in the distributions was not statistically significant. 

Although our mean has not improved the variance of the model was, giving more consistent 

results. 
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Figure 4. K-Nearest Neighbours Tuning Mean Squared Errors 

4.2.2.  Gradient Boosting  

For the gradient boosting model we tune four parameters; the number of estimators, the 

learning rate, the maximum depth, and the subsample size. The number of estimators determines 

the number of boosting stages performed. We choose to investigate 100 to 1000 estimators in 

steps of 100 in our hyperparameter space. With more time or computing power we could 

investigate numbers between this range or much larger numbers. For the learning rate, we choose 

either 0.01 or 0.001. Given enough data and trees, a lower learning rate would be better. 

However, since we are limited, this is an important feature to tune. The maximum depth can be 

altered to change the depth of the trees. A deeper tree can be useful for making accurate 

predictions, however, a high depth may lead to overfitting so this is an important balance to 

optimise. We select from a maximum depth of 1 to 4. Lastly, the subsampling is tuned; this 

determines the fraction of samples that are used to fit each weak learner. We choose from either 

0.5, 0.75 or 1. Values less than one indicate an increase in the bias of each weak learner 

however, the overall variance of the model is reduced. 

We find the optimal values from the hyperparameter space to be 1000 estimators, a maximum 

depth of 4, a learning rate of 0.01, and a subsampling of 0.5. Using these parameters we find a 
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tuned average mean squared error of 0.0093 with a standard deviation of 0.0005, over 50 fittings 

of the model. This is a clear improvement over the simplified model detailed in Figure 5. 

 

Figure 5. Gradient Boosting Tuning Mean Squared Errors 

4.2.3.  Convolutional Neural Network  

The CNN has a large number of hyperparameters that could be tuned so it will be required to 

limit these to a select few, especially as the CNN can take a considerable amount of time to train. 

Firstly we choose the learning rate of our Adam optimiser to be either 0.01 or 0.001. If too low 

our loss function will not improve fast enough, if too high the loss function will diverge and not 

settle at an optimum. Next, we look at the convolutional layer and determine the kernel size of 

our filters in addition to how many filters to use. We look at a range of 5 to 50 filters in steps of 

5, also searching over the same range for our kernel size. Due to time constraints, we choose to 

examine only hidden layers that have the same number of neurons as each other. We search over 

1 to 5 hidden layers of 10 to 50 neurons each in steps of 5. 

We must also consider two other important hyperparameters however, these will not be 

adjusted in the training; The number of epochs we train the model on and batch size. Before 

tuning we will look at our simplified model in order to estimate when overfitting occurs, this will 

be different for every model, and as such a general rule is required. From Figure 6 we can see the 

overfitting of the model starts between the 200th and 250th epoch when the error of the training 
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data starts to decrease as the test error increases. The epochs we tune the models on therefore 

will be 250. The model uses a batch size of 32, this is a common batch size to use and although 

on the lower side, potentially hindering accuracy, it will drastically help the computational 

complexity of the tuning [32]. 

The tuned CNN deployed the following hyperparameters: a training rate of 0.01, 35 filters, a 

kernel size of 30, and 4 hidden layers with 50 neurons. This gives the architecture shown in 

Figure 7. This tuned CNN results in an average mean squared error of 0.0134 with a standard 

deviation of 0.0265 over 50 samples. The average mean squared error of the simple model is 

0.0112, which is actually less than the tuned model. Figure 8 explains how this is possible; the 

tuned model had outliers. The tuned CNN had a maximum mean squared error of 0.0922, 

however, the median value was just 0.0046; less than half of the median of the simple model 

(0.0109). Figure 9 clearly shows that without the outliers, the tuned model performed much 

better. During training these outlier models stop improving almost instantly, Figure 7 shows this 

process. The non-outlier tuned CNNs follow a similar pattern to Figure 6. The cause of the 

outliers may well be a local minima reached in the mean squared error, this is a well-documented 

problem that can occur in neural networks [33]. In the next stage, we will experiment with large 

datasets, this extra data may reduce the presence or severity of outliers. 
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Figure 6. Fitting of Simplified CNN 

 

Figure 7. Fitting of an Outlier of the Tuned CNNs 
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Figure 8. Tuned CNN Architecture 

 

Figure 9. Convolutional Neural Network Tuning Mean Squared Errors 

5. Results 

When analysing the results, it important to maintain the unseen data as the validation data. 

This is because the model will show bias towards the training data and also to the test data we 

used in tuning the models. The parameters of models, for example, network weights, will be 

biased towards the training data and the hyperparameters may show bias towards the test data. In 

addition to this, with now tuned models, we may experiment with much larger datasets. 

Satisfying the need for new unseen data, we propose a new dataset. Previously the models were 

tuned with 2000 data; now we will generate a dataset with 9000 sets of data. All three of our 

models will be assumed to perform better with more data. In the case of gradient boosting and 

the CNN, the training time will be increased however, prediction time will stay the same. The 
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KNN model will take both longers to train and longer to make a prediction, this is a trade-off we 

must consider when adding more data. 

 

Table 1. Average mean squared error of model using a small and large dataset 

 

Small Dataset Average 

MSE 

SD 

Large Dataset Average 

MSE 

SD 

KNN 0.1420 0.0007 0.0078 0.0003 

Gradient 

Boosting 

0.0093 0.0005 0.0077 0.0002 

CNN 0.0134 0.0265 0.0037 0.0021 

 

The large dataset models’ mean squared errors come from 30 trains of the models, compared 

to the 50 of the smaller dataset, due to the greatly increased training time. 

 

Table 2. Wilcoxon rank-sum Test between small and large dataset 

 Test Statistic w P-Value Location Shift Present 

KNN 1,500 8.78E-14 Yes 

Gradient Boosting 1,500 8.69E-14 Yes 

CNN 1,451 3.45E-12 Yes 

 



21 
 

Table 2 shows the results of the Wilcoxon rank-sum test between the small and large dataset 

versions of the tuned models. This is useful to have as these results will show whether the large 

dataset has a statistically significant impact on our models. 

 

Figure 10. Large Dataset Models’ Mean Squared Errors 

Table 3. Time taken to make a single prediction 

 Prediction Time (s) 

KNN 0.0112 

Gradient Boosting 0.0049 

CNN 0.0156 

 

Table 3 shows the average time taken to make a singular prediction of an unknown input, this 

is an average value from 30 trains of the model. This was all completed on one computer and 

results should therefore not be used as a rule for all systems. 

6. Discussion 

6.1. Explanation of Results 
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The larger dataset leads to a significant improvement in results. The models showed a decrease 

in the average and standard deviation of the mean squared error. A Wilcoxon rank-sum test was 

performed on these distributions for the mean squared error of each model, comparing the 

training on the small and large datasets. In all cases, the test showed a statistically significant 

location shift for these distributions. As such, it is clear the larger dataset models are superior in 

terms of accuracy. 

The larger dataset results show a clear best model, the CNN has less than half the average 

mean squared error of the other models when predicting the test data, at just 0.0037. The main 

downside of the model is the comparatively high value of the standard deviation. Considering 

this we calculate the maximum value of the mean squared error of the CNN from our tests is 

0.0108, compared with the minimum values of KNN and gradient boosting of 0.0072 and 0.0073 

respectively. The larger dataset CNN outliers’ errors have seen a significant reduction in 

magnitude. Although there is some overlap in terms of error, the CNN is clearly a better 

performing model. A Wilcoxon rank-sum test between our KNN and gradient boosting models 

results in a p-value of 0.135. Statistically, we cannot say one is better than the other in terms of 

their respectively incurred mean squared errors. 

Some outliers are present in the CNN results, this is something that should be considered 

carefully if this model is used in practice. The outliers, in this case, are not as drastic as with the 

smaller dataset however, they still have a large impact on the mean; the median mean squared 

error of the larger dataset CNN is 0.0028. If this model is applied in the future the particular train 

of the model should be picked cautiously, to avoid selecting an outlier model. A solution could 

be to experiment with larger batch sizes in the CNN model. This may reduce the chance of 

outliers appearing and increase the consistency of the model.  
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Another consideration was the time taken in generating a prediction. This was a concern, 

particularly for the KNN model due to the large number of computations required to find the 

nearest neighbours [34]. We find that although the KNN has the largest time taken to produce a 

prediction with the large dataset, this time is still minimal and acceptable. All of the models took 

only a fraction of a second to make predictions with the CNN taking the most time. 

6.2. Achievements 

This study proposed machine learning techniques as a fast and inexpensive method to perform 

non-destructive track testing. As proof of concept simple models were generated encompassing 

different types of machine learning. The linear regression model was ruled out as a sufficient 

solution with a much higher error than the other models. 

Subsequent hyperparameter tuning of the models resulted in varying levels of success. The 

KNN model improved invariance but did not show a significant change in error. The gradient 

boosting and CNN models did however show an improvement in their respective errors. 

With the models now tuned it is feasible to use the larger dataset and retrain. This results in a 

significant improvement across our three tuned models. The CNN model has the least error. 

Unlike the KNN model, the memory usage and prediction time of the CNN model does not 

increase with the amount of data used in training. 

Considering the other models, we propose the tuned CNN, using the large dataset to train on, 

as a solution to the original problem. This model is capable of identifying dynamic track 

properties with a very small error and without incurring the cost of expensive equipment or time 

spent analysing results. This has considerable potential for in-situ testing of track properties and 

defects, which can easily be equated to the condition of the track; a necessary task performed by 

members of the rail industry and researchers alike. 
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6.3. Limitations and Further Research 

The data used in the training and validation of the models were produced by the fast fourier 

transform equation, equation (1), and (2). This method’s error is approximately 3%, compared to 

field data. The models’ errors in prediction are therefore amplified. Although these errors are 

small it is something that could be refined. This would require the collection of large datasets 

from the field via an instrumented impact hammer. In addition, data with a large range of 

stiffness and damping would be needed to create a model capable of future predictions. 

The models were not tuned on the larger datasets, indeed the tuning of the models took a 

significant amount of processor time with the smaller dataset. With much greater computing 

power, it is possible to tune the models with the larger dataset. This process might give even 

better hyperparameters leading to further reduced error. In the same vein, the hyperparameters 

could have been searched without steps within their ranges or over a larger range; in addition to 

the possibility of a search for some unused hyperparameters. A recommendation to reduce the 

time spent tuning on larger datasets would be to perform hyperparameter tuning using a different 

method; for example the parameter-setting-free harmony search algorithm [35] or a random 

search. 

Machine learning concepts are not completely unheard of in rail track maintenance. However, 

many are classifying algorithms that are based on surface-level defects [36]. The proposed 

models can detect unseen faults through the identification of the dynamic track properties that 

these image-based classifiers may miss. One limitation is that some faults may cause issues for 

trains but have little impact on the specific properties of the track we are interested in; an 

example of this could be deformed track geometry [37]. 
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An unexplored option that could produce improved results is an ensemble model. For our 

problem, a possible ensemble would be a set of individually trained regressors with predictions 

taken in combination. Ensemble models are often more accurate than any one component of the 

ensemble [38]. As we have produced three tuned models this study could lay a solid groundwork 

for the creation of such an ensemble model. 

7. Conclusion 

The main aim of this study is to produce accurate machine learning models for the predictions 

of the dynamic properties of track components from a frequency response function. 

After ruling out linear regression, three algorithms were produced to solve this problem with 

varying levels of success. Various techniques were used to reduce the error in the models and the 

final models perform much better than our simplified versions. Whilst all algorithms have a 

reasonable level of error, as detailed in Section 5 the CNN was superior to the rest with an 

average mean squared error of just 0.0037. As such, the aims of this study outlined in Section 1 

have been met and this study can be considered successful. 

The CNN model has the highest potential utilization for in situ testing with a very low 

monetary cost and the ability to receive information about the track properties almost instantly. 

The model could now be adopted into a simple application that could be used on a phone or 

similar device capable of receiving vibrations from the track. The monetary cost of this would be 

minimal in comparison to many current techniques. 

If the engineering feat of receiving the frequency response function on board a moving train is 

accomplished, there would be further potential applications of these models. Facilitating access 

to remote or hard-to-reach tracks also. This would open a path for track testing to be performed 

effortlessly and constantly across the globe in a way that would revolutionise track maintenance. 



26 
 

Moreover, the railway inspection can be done quickly as the speed of the operation with little 

cost. Therefore, the inspection can be done regularly to allow the sign of defect can be detected 

in advanced.  

Acknowledgment 

The authors also wish to thank the European Commission for the financial sponsorship of the 

H2020-RISE Project no.691135 “RISEN: Rail Infrastructure Systems Engineering Network”, which 

enables a global research network that addresses the grand challenge of railway infrastructure 

resilience and advanced sensing in extreme environments (www.risen2rail.eu) [39].  

References 

1. Liu, X., M.R. Saat, and C.P. Barkan, Analysis of causes of major train derailment and 

their effect on accident rates. Transp. Res. Rec., 2012. 2289(1): p. 154-163. 

2. Vipparthy, S.T., Inspection of Defects in Rails using Ultrasonic Probe. 2013. 

3. Kaewunruen, S. and A. Remennikov, Integrated field measurements and track 

simulations for condition assessment of railway track. 2005. 

4. Song, Z., et al., Detection of damage and crack in railhead by using eddy current testing. 

J Electromagn Anal Appl., 2011. 2011. 

5. Lee, G.B., Applications of Non-Destructive Testing in Rail Tracks. 2015. 

6. Khanam, S., S. Tanweer, and S. Khalid, Artificial Intelligence Surpassing Human 

Intelligence: Factual or Hoax. Comput J, 2020. 

7. Ray, T. Machine learning goes beyond theory to beat human poker champs. 2019. 

8. Brynjolfsson, E. and T. Mitchell, What can machine learning do? Workforce 

implications. Sci., 2017. 358(6370): p. 1530-1534. 



27 
 

9. Wu, Y., et al., A UAV-based visual inspection method for rail surface defects. Appl. Sci., 

2018. 8(7): p. 1028. 

10. Marino, F., et al., A real-time visual inspection system for railway maintenance: 

automatic hexagonal-headed bolts detection. IEEE T SYST MAN CY C., 2007. 37(3): p. 

418-428. 

11. Kumar, N. Advantages and Disadvantages of Linear Regression in Machine Learning. 

2019. 

12. Ameisen, E., Always start with a stupid model, no exceptions. 2018. 

13. Yang, J., Z. Sun, and Y. Chen, Fault detection using the clustering-kNN rule for gas 

sensor arrays. J. Sens., 2016. 16(12): p. 2069. 

14. Harrison, O., Machine learning basics with the k-nearest neighbors algorithm. Towards 

Data Science. September, 2018. 10. 

15. Valiant, L., Probably Approximately Correct: NatureÕs Algorithms for Learning and 

Prospering in a Complex World. 2013: Basic Books (AZ). 

16. Shavitt, I. and E. Segal. Regularization learning networks: deep learning for tabular 

datasets. in Advances in Neural Information Processing Systems. 2018. 

17. Xiong, W., et al. The Microsoft 2017 conversational speech recognition system. in 2018 

IEEE international conference on acoustics, speech and signal processing (ICASSP). 

2018. IEEE. 

18. Hardesty, L. Explained: Neural networks. 2017; Available from: 

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414. 

19. Arsenault, R., et al., Comparison of stochastic optimization algorithms in hydrological 

model calibration. J. Hydrol. Eng., 2014. 19(7): p. 1374-1384. 

https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414


28 
 

20. Kim, T.K., T test as a parametric statistic. Korean J. Anesthesiol., 2015. 68(6): p. 540. 

21. Hill, S.A., Chapter Statistics. Foundations of Anesthesia: Basic Sciences for Clinical 

Practice, 2006: p. 207. 

22. Fagerland, M.W., t-tests, non-parametric tests, and large studies—a paradox of 

statistical practice? BMC Med. Res. Methodol., 2012. 12(1): p. 78. 

23. Bansal, H. Best languages for machine learning in 2020! 2019; Available from: 

https://becominghuman.ai/best-languages-for-machine-learning-in-2020-6034732dd242. 

24. Ratan, V. Why Python is Ideal for Machine Learning. 2018  [cited 2020 May]; Available 

from: https://www.opensourceforu.com/2018/10/why-python-is-ideal-for-machine-

learning/. 

25. Dalgaard, P., Introductory statistics with R. 2008: Springer. 

26. Kaewunruen, S. and A.M. Remennikov, Field trials for dynamic characteristics of 

railway track and its components using impact excitation technique. NDT & E 

International, 2007. 40(7): p. 510-519. 

27. Piotrowski, A.P. and J.J. Napiorkowski, A comparison of methods to avoid overfitting in 

neural networks training in the case of catchment runoff modelling. J. Hydrol., 2013. 

476: p. 97-111. 

28. Zur, R.M., et al., Noise injection for training artificial neural networks: A comparison 

with weight decay and early stopping. Med Phys, 2009. 36(10): p. 4810-4818. 

29. Microsoft. Normalize Data. 2019; Available from: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/normalize-data. 

https://becominghuman.ai/best-languages-for-machine-learning-in-2020-6034732dd242
https://www.opensourceforu.com/2018/10/why-python-is-ideal-for-machine-learning/
https://www.opensourceforu.com/2018/10/why-python-is-ideal-for-machine-learning/
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/normalize-data


29 
 

30. Ghawi, R. and J. Pfeffer, Efficient Hyperparameter Tuning with Grid Search for Text 

Categorization using kNN Approach with BM25 Similarity. Open Comput. Sci., 2019. 

9(1): p. 160-180. 

31. Mabayoje, M.A., et al., Parameter tuning in KNN for software defect prediction: an 

empirical analysis. JTSISKOM, 2019. 7(4): p. 121-126. 

32. Radiuk, P.M., Impact of training set batch size on the performance of convolutional 

neural networks for diverse datasets. Information Technology and Management Science, 

2017. 20(1): p. 20-24. 

33. Lo, J.T.-H., Y. Gui, and Y. Peng, The normalized risk-averting error criterion for 

avoiding nonglobal local minima in training neural networks. Neurocomputing, 2015. 

149: p. 3-12. 

34. Arefin, A.S., et al., Gpu-fs-k nn: A software tool for fast and scalable k nn computation 

using gpus. PloS one, 2012. 7(8): p. e44000. 

35. Lee, W.-Y., S.-M. Park, and K.-B. Sim, Optimal hyperparameter tuning of convolutional 

neural networks based on the parameter-setting-free harmony search algorithm. Optik, 

2018. 172: p. 359-367. 

36. Nakhaee, M.C., et al. The recent applications of machine learning in rail track 

maintenance: A survey. in International Conference on Reliability, Safety, and Security of 

Railway Systems. 2019. Springer. 

37. Westgeest, F., R. Dekker, and R. Fischer, Predicting rail geometry deterioration by 

regression models. Adv Saf Reliab Risk Manag ESREL, 2011. 146: p. 926-933. 

38. Opitz, D. and R. Maclin, Popular ensemble methods: An empirical study. J Artif Intell 

Res, 1999. 11: p. 169-198. 



30 
 

39. Kaewunruen, S., J.M. Sussman, and A. Matsumoto, Grand Challenges in Transportation 

and Transit Systems. 2016. 2(4). 

 


