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Abstract 8 

The present study investigates the potential of the implementation of machine learning techniques in 9 

analysing the buckling phenomena of ballasted railway tracks induced by extreme temperature. In this 10 

study, Artificial Neural Networks (ANNs) have been established to determine the design relationship 11 

between various ballasted track conditions and outputs namely safe temperature and buckling temperature. 12 

The variables that are taken into account in the objective function of the optimisation problem are the lateral 13 

resistance of ballasted track provided by ballast-sleeper, torsional resistance provided by fastening systems, 14 

and dimensioning of the cross sections. Due to its complexity in parameter combinations, the objective of 15 

the study is to create predictive models with the aim of minimising the usage of scarce resources. 16 

Comprehensively, all three hundred and fifty-three datasets of the safe and buckling temperatures derived 17 

from previous FE results have been collected and trained. The optimal ANN architecture with a very high 18 

rate of accuracy has been determined. Note that the performance of the optimal ANN architecture has been 19 

assessed by employing the mean squared error (MSE) and the coefficient of determination (R2). Thus, the 20 

neural network model can be applied to help estimate buckling temperature for the complex track models 21 

in order to detect track buckling in summer.  22 

Keywords: ballasted railway track, track buckling, extreme temperature, structural stability, artificial 23 

neural network, machine learning. 24 

1 Introduction 25 

At present, railway track buckling is one of the serious issues in the railway system [1-3]. Hence, railway 26 

infrastructure developments related to adaptation to future heatwave are expected. This is because the 27 

summer heat can significantly increase the rail temperature and cause the rail to expand, leading to a build-28 

up of axial compression force in continuous welded rail (CWR). Although CWR provides a smooth ride 29 

and has a lower maintenance cost in comparison to a jointed rail, it still suffers from the drawbacks as the 30 

track can lose its lateral alignment and get buckled when the rail temperature reaches a certain limit [4-7]. 31 

Based on the evidence [8-10], track buckling can cause derailment and cause a huge loss of assets and can 32 

also result in the loss of passenger lives. It is important to note that track buckling around the world usually 33 

occurs in conventional railway ballasted tracks due to the poor track conditions and track lateral 34 

misalignment. Buckling analysis has been widely performed to obtain the significant parameters and track 35 

conditions influencing track buckling and corresponding safe and buckling temperatures [11-14].  36 

Previous studies showed that lateral resistance provided by ballast and sleeper is the major factor 37 

influencing the buckling strength and buckling phenomena [15]. The lateral resistance can be evaluated by 38 

performing a Single Sleeper (Tie) Push Test (STPT) [16-19]. This method provides the ballast-sleeper 39 

contact force encountering sleeper movement which can be represented as a track lateral resistance. While 40 

mailto:chayut.ngam@gmail.com
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the minor factors include torsional resistance between sleepers and rails provided by fasteners. It is 41 

important to note that different factors can significantly create different phenomena of railway tracks 42 

exposed to extreme temperature. It is noted that the traditional beam theory is very limited in proposing a 43 

number of parameters into the calculation of the buckling temperature [20, 21]. Hence, FE model can help 44 

achieve more complex structures with more parameters. However, FE analysis uses high computational 45 

time and needs a large memory consumption. As a result, to further expand the previous results from FE 46 

model, machine learning can be used to save time and increase efficiency in predicting buckling phenomena 47 

of railway tracks. It is important to note that these parameters are compounded and create realistic results 48 

from the complicated valuables that cannot be predicted analytically.  49 

An artificial neural network (ANN), a type of machine learning, is a simplified mathematical model that 50 

can simulate the function of natural biological neural networks to learn from the experience for solving new 51 

problems. Unlike traditional model-driven methods, machine learning is a novel data-driven method to 52 

explore and build algorithms that learn from known data and predict unknown data. Most traditional 53 

statistical models have certain requirements or assumptions for the specific distribution of data. However, 54 

in reality, data may not meet those assumptions or requirements. In this case, the machine learning method 55 

is more reasonable. The machine learning method does not need to make any assumptions about the data 56 

distribution, and the results produced can also be evaluated by a cross-validation method [22]. Machine 57 

learning technique has been widely used in civil and railway applications especially for predicting the 58 

properties of materials of track components based on the proportion of the ingredients e.g. recycled concrete 59 

[23], rubberised concrete [24] etc. More examples on railway track applications includes track response 60 

quantification [25], train weight prediction [26], fault detection [27-30], railway safety and  accident 61 

identification [31, 32]. Hence, this paper is the first to use machine learning in predicting buckling 62 

phenomena of ballasted railway tracks.  63 

The aim of this paper is to establish a machine learning approach capable of predicting the safe and buckling 64 

temperatures considering various compositions of parameters. This paper presents the optimal architecture 65 

for estimating the safe and buckling temperatures of ballasted railway tracks. The datasets have been 66 

collected from the previous numerical studies based and are input into different ANN models to quantify 67 

the performances and obtain the best model [33, 34]. The optimal ANN models are found to be capable of 68 

managing the complicated relationships between the inputs and outputs and of designing track components 69 

to encounter the extreme temperature. The ANN models are then compared with the traditional multiple 70 

linear regression models and show a higher accuracy in comparison to the multiple linear regression models. 71 

The suggested ANN architecture can be used further in order to accurately predict the buckling phenomena 72 

and help improve track conditions to encounter extreme heat in summer.  73 

2 Railway Track Buckling 74 

According to previous studies, the major parameters affecting buckling strength of ballasted railway tracks 75 

is the lateral resistance provided by ballast and sleeper components. The torsional resistance by fastening 76 

systems is also considered. In general, track lateral misalignment can be a significant factor that undermines 77 

the buckling strength. This study also includes the effect of unconstrained length that can help increase the 78 

lateral restraint. This method can be either a spot replacement method or improving ballast-sleeper constrain 79 

at particular spans. Note that only a few studies have considered an unconstrained length in buckling 80 

analysis. Figure 1 shows the arrangement of typical ballasted track with the idealised tensionless spring 81 

representing the lateral stiffness of ballasted track. It also presents the lateral resistance curve that can be 82 

represented by the tensionless lateral spring connected to the sleeper ends. Note that the lateral resistance 83 

curve is usually derived by the sleeper push test. The elastoplastic curve generally presents the resistance 84 
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curve considering the lateral resistance force (Fp) and the sleeper displacement. Note that the lateral stiffness 85 

is the lateral resistance force over the displacement limit of sleeper (Fp/Wp). 86 

 87 

Figure 1 Ballasted railway track. 88 

In buckling mechanism, if the rail temperature is over the neutral temperature or stress-free temperature, 89 

the compression axial force in the rails builds up. The rail can be buckled when the compression force 90 

reaches its limit or buckling resistance. It should be noted that buckling resistance is affected by track and 91 

element types and track conditions. The relationship between rail temperature and lateral displacement is 92 

typically plotted as seen in Figure 2. It can be seen that there are two types of buckling depending on the 93 

post-buckling path: sudden buckling and progressive buckling. In the pre-buckling stage, the rails are 94 

exposed to the temperature over neutral temperature and the axial force is linearly increased. As for the 95 

sudden buckling (also called “Snap-through”), the track buckles explosively with no external energy after 96 

reaching its maximum temperature (upper critical temperature, TBmax) and becomes unstable in its post-97 

buckling stages. This temperature can be defined as a “buckling temperature”. Besides, TBmin represents the 98 

lower bound which can buckle the track if sufficient energy is supplied. It can also be defined as a “safe 99 

temperature” since the track cannot buckle if it experiences a temperature below this temperature. 100 

Moreover, progressive buckling can occur when the TBmin cannot be differentiated from TBmax. In this case, 101 

track lateral displacement is gradually increased after buckling and the critical temperature is defined as TP. 102 

In this study, both minimum and maximum temperatures will be predicted using ANN. Note that the snap-103 

through buckling mode can be obtained when the minimum and maximum temperatures are obtained while 104 

the progressive buckling failure modes can be obtained when temperatures are crossed over meaning that 105 

the only one output is predicted.  106 

 107 

Figure 2 Buckling path. 108 

3 Methodology 109 

An artificial neural network (ANN) is a data prediction framework based on existing features created from 110 

the human mind structure. It simulates the processing mechanism of the human brain’s nervous system to 111 

complex information. A neural network is a computational model consisting of a large number of nodes (or 112 

neurons) connected to each other. This network is made of some functional blocks, which are named 113 

neurons. Neurons are connected by weights, which are usually randomly selected at first. Weights in a 114 

learning process are increased or decreased by some epochs to eventually achieve the desired network 115 

which can predict it by reasonable accuracy [22].  116 
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Therefore, in a trained neural network, the desired output can be achieved by receiving the inputs 117 

considering the updated weights as shown in Figure 3. The network improves over time by comparing the 118 

desired input and output calculating the error. The improvement of the machine learning model from time 119 

to time indicates the accuracy if the prediction model can be improved and the predicted results are reliable. 120 

Usually, nonlinear activation functions like sigmoid (tansig and logsig) are used because of its better 121 

response than others.  122 

 123 

Figure 3 Artificial neural model. 124 

The general ANN architecture includes three main layers: input layer, hidden layer and output layer, as 125 

shown in Figure 4. This figure shows the multilayer feed forward network that is considered in this study. 126 

The input layer receives various forms of information from the outside. This is the information that the 127 

neural network is designed to process or learn. Data from the input layer passes through the hidden layers 128 

that consist of the number of hidden neurons. Role of the hidden layers is to convert the input information 129 

into content that the output layer can use.  130 

 131 

Figure 4 ANN architecture. 132 

3.1 Data collection 133 

The datasets have been collected from the previous numerical studies [33, 34]. Table 1 presents the input 134 

parameters considered in this study. The input includes major parameters affecting track buckling strength: 135 

lateral stiffness, displacement limit of sleeper, fastening torsional system, track lateral misalignment. Track 136 

unconstrained length is also considered to help strengthen the buckling strength by restraining the track 137 

laterally to encounter the lateral movement of sleeper that can be achieved by spot replacement method [14, 138 

34, 35]. Due to the limited studies on the influences of track unconstrained length, 350 datasets are 139 

introduced to the ANN models for predicting the output parameters. Note that the output variables are the 140 

safe and buckling temperatures. These two values can also help predict the buckling failure modes. Snap-141 

through buckling mode occurs If the buckling temperature is higher than safe temperature.  However, when 142 

the two parameters are crossed over (safe temperature > buckling temperature) meaning that only one output 143 

is presented while another is a trivial solution. This represents the progressive buckling mode since only 144 

one temperature is obtained. 145 

Table 1 Input parameters. 146 

Input parameters Range Unit 

Lateral stiffness, Fp/Wp (x1) 200-2600 N/mm 

Displacement limit of sleeper, Wp (x2) 0.5-2  mm 

Fastening torsional resistance (x3) 75-225 kNm/rad 

Track lateral misalignment (x4) 8-32 mm 

Track unconstrained length (x5) 6-30 m 

 147 

3.2 ANN architecture  148 

All imported datasets are randomly divided into three parts for training, validation and testing, respectively. 149 

The fixed allocation ratios of datasets between training, validation and testing aspects are 70%, 15% and 150 
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15%, respectively. The datasets for training are utilised for training models by modifying weights. The 151 

validation sets are used to adapt the model selection, that is, to do the final optimisation and determination 152 

of models, such as choosing the number of hidden neurons and hidden layers, while the testing set is purely 153 

to prove the generalisation of the trained models. In this study, the number of neurons is varied from 1 to 154 

15. The model description is written in the form of “input parameters – hidden layer – output parameters”. 155 

Table 2 presents ANN models with different architectures (hidden neurons). 156 

Table 2 ANN architecture models used in this study. 157 

Model ANN Architecture 

1 5 1 2 

2 5 5 2 

3 5 10 2 

4 5 15 2 

 158 

This paper uses Levenberg–Marquardt (LM) as an algorithm to predict the output parameters. LM is an 159 

algorithm that provides a solution of the numerical nonlinear minimisation. The significance of LM 160 

algorithm is that it can simultaneously achieve the advantages of the Gauss–Newton method and the 161 

gradient descent algorithm by changing parameters. Furthermore, LM algorithm can improve the 162 

shortcomings of other algorithms. The LM algorithm is a type of upgraded Newton method shown in Eq. 163 

(1) 164 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝑢𝐼]−1𝐽𝑇𝑒     (1) 165 

where, I indicates the identity matrix, e represents a vector, J is a Jacobian matrix, xk denotes the weight at 166 

epoch K, and u is a damping factor. In order to improve the accuracy, u can be increased or dropped 167 

according to the success or failure of steps, and then the performance function can be enhanced. 168 

3.3 Performance Evaluation of ANN Architecture 169 

In order to investigate the performance of the trained models in this study, two statistical analyses named 170 

Mean Squared Error (MSE) and the coefficient of determination (R2 value) are employed. MSE is the 171 

average value of the cost function for minimising the sum of squared errors (SSE) during the linear 172 

regression model fitting process. This represents the mean square error between the predicted and the actual 173 

value. MSE value is calculated according to Eq. (2) [36]. The lower MSE value indicates a model with 174 

higher accuracy. 175 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦′

𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                               (2) 176 

where n is the number of samples, and (𝑦′
𝑖 − 𝑦𝑖) is the result of the input value minus the predicted value 177 

on the testing sets being processed. Moreover, R2 value is employed as an assistance method to determine 178 

the performance of trained models defined in Eq. (3). R2 value exhibits the percentage of real value changes, 179 

which can be influenced by the variation of the predicted value. The range of R2 value is from zero to one. 180 

Considering Eq. (3), the numerator part represents the sum of the squared difference between the real value 181 

and the predicted value, similar to MSE. The denominator part represents the sum of the squared difference 182 

between the real value and the mean [37]. If the result is close to 0, it means that the model fits poorly. If 183 

the result is close to 1, it means that the model is error-free. Generally, the larger the R2 value is, the better 184 

the model fitting effect is. 185 
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𝑅2 = 1 −
∑ (𝑦′

𝑖−𝑦𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

                      (3) 186 

4 Results and Discussions 187 

4.1 Optimal ANN architecture  188 

In this study, four models of ANN architecture are firstly considered and compared to potentially create the 189 

best ANN model for predicting the safe and buckling temperatures of ballasted railway tracks. It is found 190 

that only one hidden layer can appropriately provide high accuracy of the prediction values compared to 191 

the target values. The number of neurons is varied from 1 to 15. The model description is written in the 192 

form of “input parameters – hidden layer – output parameters”. Figure 5 presents the predicted values 193 

employed by the first ANN architecture 5-1-2 against the actual or target values. The R2 values for safe and 194 

buckling temperatures are presented separately. It is shown that this architecture should not be used to as a 195 

predictive model since it cannot not perform well as shown by the low R2 value especially for the safe 196 

temperature. Furthermore, the number of neurons must be increased to improve the performance of ANN 197 

model.  198 

 

(a) 

 (b) 

 

(c) 

Figure 5 Predicted value vs actual value analysed by model 1 (5-1-2): a) safe temperature 199 

b) buckling temperature and c) Both safe and buckling temperatures. 200 

After increasing the number of neurons until the performance is accepted, Figure 6 presents the predicted 201 

temperatures based on Model 4 against the actual temperatures of buckling phenomena of ballasted railway 202 

tracks. This model includes 15 neurons in the hidden layer. It is clear that the R2 values are significantly 203 

higher than those obtain in Model 1 with lesser neurons. The R2 value of safe temperature prediction model 204 

is much higher than that in Model 1 and the curve shows a significant better trend in comparison to Model 205 

1. Table 3 compares the performance of each model for both output predictions. The prediction 206 

performances of both outputs show the similar trends. It is clear that increasing a number of neurons can 207 

significantly reduce MSE and increase R2. It should be noted that Model 4 has R2 value of 0.9921 which is 208 

fairly high leading to the fact that increasing a number of neurons to over 15 will not improve the 209 

performance of the model. On this ground, it can be concluded that, based on the provided datasets, 1 hidden 210 

layer with 15 neurons can give a high accuracy for predicting safe and buckling temperatures of ballasted 211 

railway tracks considering different track conditions.  212 

 

(a) 

 

(b) 

 

(c) 

Figure 6 Predicted value vs actual value analysed by model 1 (5-15-2): a) safe temperature 213 

b) buckling temperature and c) Both safe and buckling temperatures. 214 

Table 3 Mean square error and R-square values of each model architecture. 215 
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Model Architecture 
MSE R2 

Tmin Tmax Total Tmin Tmax Total 

1 5-1-2 185.46 134.46 159.96 0.4091 0.8797 0.8111 

2 5-5-2 26.63 53.29 39.96 0.9139 0.9501 0.9517 

3 5-10-2 12.96 62.30 37.63 0.9584 0.9432 0.9554 

4 5-15-2 7.75 5.40 6.57 0.9753 0.9949 0.9921 

 216 

4.2 Comparative analysis 217 

As shown previously, Model 4 represents the best ANN architecture for predicting the safe and buckling 218 

temperatures of railway tracks. This model is chosen to be used from now on to compare with another 219 

prediction method and perform parametric study. It is noted that linear regression is commonly used to 220 

obtain the relationship between the dependent and independent variables. In this section, linear regression 221 

with multiple variables (also called Multi Linear Regression (MLR)) is used to compare the results with the 222 

ANN model. Note that MLR is a simple and well-known technique that can help to establish a relationship 223 

between the factors and predicted output values. The general equation of MLR is presented in Eq. 4. 224 

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2+ . . . + 𝑎𝑚𝑥𝑚       (4) 225 

where, y is the predicted value, xm is the independent variables, a0 is the y-intercept, and am indicates the 226 

regression coefficients. It is noted that MLR is conducted using data analysis tools in Microsoft Excel. The 227 

regression coefficients are obtained while x1, x2, x3, x4, and x5 represent the lateral resistance, lateral 228 

displacement limit, torsional resistance, unconstrained length, and lateral misalignment, respectively. After 229 

obtaining the coefficients, the equations for predicting safe and buckling temperatures can be drawn 230 

separately as shown in Eqs. 5-6. 231 

𝑦1 = 50.731 + 0.00878𝑥1 + 7. 265𝑥2 +  0.080𝑥3 −  1.624𝑥4 −  0.032𝑥5                     (5) 232 

𝑦2 = 77.458 + 0.0294𝑥1 + 15. 609𝑥2 +  0.034𝑥3 −  1.335𝑥4 −  2.096𝑥5                     (6) 233 

Where y1 and y2 represent the safe temperature and buckling temperature, respectively.  234 

The prediction accuracy of both models can be defined by the MSE and R2 as presented in Table 4. It is 235 

evident that the R2 values of MLR are relatively low while the MSE values are significantly high compared 236 

to those obtained by the optimal ANN model. These phenomena are observed when predicting both output 237 

values. On this ground, it can be concluded that ANN model gives a higher accuracy for predicting buckling 238 

phenomena than the traditional MLR method. This is because of the ability of MLR that can only describe 239 

the linear relationship between input and output parameters only while, in fact, the relationship between 240 

track conditions and buckling phenomena is more complex than linear relationship.    241 

Table 4 Comparison between MLR and ANN (5-15-2). 242 

Predicted values 
MSE R2 

MLR ANN (5-15-2) MLR ANN (5-15-2) 

Tmin 56.57 7.75 0.8182 0.9753 

Tmax 191.03 5.40 0.8204 0.9949 

 243 



8 

 

4.3 Parametric study 244 

After obtaining the optimal ANN architecture, the approximate general functions can be employed 245 

considering the weighted inputs and the transfer function to create the outputs. For multiple-layer networks, 246 

the layer number determines the superscript on the weight matrix, as shown in Figure 7. In the two-layer 247 

tansig/purelin network, the appropriate notation is used. This network can be used as to approximate general 248 

functions. It can approximate any function with a finite number of discontinuities arbitrarily well, given 249 

sufficient neurons in the hidden layer.  250 

 251 

Figure 7 Multilayer networks with weight matrix. 252 

In this section, the final weights of each parameter have been calculated in order to study the effects of each 253 

parameter on both safe and buckling temperatures. Note that the results can be calculated directly from 254 

MATLAB without knowing weight matrix. However, it can be calculated only one by one. A weight matrix 255 

can be obtained and used to create the function to help calculate the results automatically for parametric 256 

studies. Figure 8 shows the contour of safe and buckling temperatures considering the lateral stiffness from 257 

ballast and sleeper and torsional resistance provided by fastening system. It is found that increasing 258 

torsional resistance provided by the fastening system can help increase the safe temperature but there is no 259 

influence on the buckling temperature. As for the lateral stiffness, increasing the displacement limit from 260 

1mm to 2mm can significantly increase the buckling temperature since the lateral resistance with higher 261 

displacement limit yields at higher lateral resistance force. 262 

 (a)  

(b) 

 

(c) 

 

(d) 

Figure 8 Safe (Tmin) and buckling (Tmax) temperatures. 263 

Figure 9 presents the effects of track lateral misalignment on the safe and buckling temperatures. It is 264 

notable that, overall, buckling temperatures decrease as the misalignment amplitude increases. On the other 265 

hand, the lateral misalignment has a very slight effect on safe temperature in comparison to buckling 266 

temperature. Considering the unconstrained length and initial misalignment, the safe and buckling 267 

temperatures are compared in Figure 10. The overall results show that railway tracks are generally buckled 268 

within the same ranges when the unconstrained length is larger than 18 m whereas railway tracks with 6 m 269 

and 12 m buckled with much higher temperature. It is clear from this figure that increasing misalignment 270 

tends to shift the buckling mode from snap-through buckling to progressive buckling for all cases of 271 

unconstrained length since the buckling temperatures are quite close to the safe temperatures. These results 272 

agree well with the previous FE results [33, 34].  273 

 274 

Figure 9 Effects of track lateral misalignment on the safe and buckling temperatures. 275 

 276 

Figure 10 Effects of track unconstrained length on the safe and buckling temperatures. 277 

https://www.mathworks.com/help/deeplearning/ref/tansig.html
https://www.mathworks.com/help/deeplearning/ref/purelin.html
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5 Conclusions 278 

This paper is the first to establish a machine learning aided design for predicting buckling phenomena of 279 

ballasted railway tracks. It is well known that the buckling strength of ballasted track is affected by many 280 

factors that are not combined linearly. This shows that track buckling capacity calculation is complex and 281 

it may take large memory storage and time consumption to evaluate the buckling strength via the computer 282 

simulation. This paper considers four different ANN architectures with five input parameters and two output 283 

values while the number of hidden layers is set as 1. It is found that the accuracy of the model increases 284 

significantly when the number of hidden neurons is increased from 1 to 15. It is notably that only one hidden 285 

layer is sufficient to create a proper neural network as the R2 values are already high. The best ANN model 286 

consists of a hidden layer with 15 hidden neurons and is used to compare with the multilinear regression. 287 

The optimal ANN presents the R2 values of about 0.975 and 0.995 for safe temperature and buckling 288 

temperature, respectively, which are much higher than those obtained by the traditional regression method. 289 

The predicted outputs can be used to estimate the buckling failure modes by calculating the difference 290 

between the buckling and safe temperatures. This paper will provide a pathway for improving the predictive 291 

model of buckling phenomena of ballasted railway tracks. Therefore, the neural network model can be 292 

applied to help predict buckling failure mode for the complex track models in order to detect track buckling 293 

in summer.  294 
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