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• Nanomaterials from simulated cloud
processing of dustswere interactedwith
seawater.

• Aggregation is more polydisperse and
unstable in seawater than in MQ water.

• Microalgal exopolymeric substances
(EPSs) stabilises dust derived NP aggre-
gates.

• EPS enhances Fe dissolution from NPs,
and this is enhanced in the absence of
light.
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Laboratory studies were conducted to investigate the interactions of nanoparticles (NPs) formed via simu-
lated cloud processing of mineral dust with seawater under environmentally relevant conditions. The effect
of sunlight and the presence of exopolymeric substances (EPS) were assessed on the: (1) colloidal stability
of the nanoparticle aggregates (i.e. size distribution, zeta potential, polydispersity); (2) micromorphology
and (3) Fe dissolution from particles. We have demonstrated that: (i) synthetic nano-ferrihydrite has dis-
tinct aggregation behaviour from NPs formed from mineral dusts in that the average hydrodynamic diam-
eter remained unaltered upon dispersion in seawater (~1500 nm), whilst all dust derived NPs increased
about three fold in aggregate size; (ii) relatively stable and monodisperse aggregates of NPs formed during
simulated cloud processing of mineral dust become more polydisperse and unstable in contact with seawa-
ter; (iii) EPS forms stable aggregates with both the ferrihydrite and the dust derived NPs whose hydrody-
namic diameter remains unchanged in seawater over 24 h; (iv) dissolved Fe concentration from NPs,
measured here as b3 kDa filter-fraction, is consistently N30% higher in seawater in the presence of EPS
and the effect is even more pronounced in the absence of light; (v) micromorphology of nanoparticles
from mineral dusts closely resemble that of synthetic ferrihydrite in MQ water, but in seawater with EPS
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they form less compact aggregates, highly variable in size, possibly due to EPS-mediated steric and electro-
static interactions. The larger scale implications on real systems of the EPS solubilising effect on Fe and
other metals with the additional enhancement of colloidal stability of the resulting aggregates are
discussed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Atmospheric chemical processes that occur in clouds generate iron
rich nanoparticles (NPs) from mineral dusts (Kadar et al., 2013).
Nano-iron has been suggested to be a major portion of the bioavailable
fraction of the metal (Raiswell et al., 2008). However, before becoming
available for biological uptake bymarine phytoplankton, NPs originated
from cloud mediated processes undergo rapid transformations (such as
aggregation, photo-reduction, dissolution and interaction with natural
organic matter) immediately in contact with seawater. These reactions
are too fast to be easily monitored in the field and therefore require real
time analyses and experimentation under carefully controlled laborato-
ry conditions (Shi et al., 2010). Thus we have conducted laboratory
studies to investigate how the simulated cloud-derived Fe-rich nano-
particles interact with natural oceanic seawater and how their composi-
tion, size, surface topology and chemical reactivity change under a range
of environmental conditions.

Exo-polymeric substances (EPSs) secreted by phytoplankton consti-
tute a large and dynamic pool of oceanic dissolved organic carbon
(DOC) (Engel et al., 2004; Fogg, 1983) with key roles in the formation
of marine biofilms and in colloid and trace element scavenging (Fogg,
1983;Myklestad, 1995). About half of the global photosynthetic activity
is performed by phytoplankton (Chisholm, 2000) and ~40–60% of the
resulting biomass is released as EPS suggesting its crucial importance
in the global carbon cycling and potential driving force in sequestration
of atmospheric CO2. In addition, changes in the EPS assembly kinetics
were recently reported to be induced by engineered NPs (Chen et al.,
2011) suggesting a potential disturbance to the marine carbon cycle.
This ecological impact of synthetic NPs draws attention to the impor-
tance of interactions between EPS–nanoparticles. Furthermore, our
recent study (Kadar et al., 2012) revealed improved metabolic para-
meters in some marine microalgae cultured on synthetic nano-iron
enriched media and the uptake mechanisms involved secretion of EPS.
The same study showed that synthetic nano-iron was preferred over
EDTA–Fe used in laboratory cultures in generic growth media
suggesting that the nanoparticulate form of themetalmay bemore bio-
available tomicroalgae.Whilst originally the termEPS stands for “extra-
cellular polysaccharides”, it is now acknowledged that these matrixes
are more complex, including lipopolysaccharides, glycolipids, lipids,
proteins or peptides and nucleic acids. Interaction of the atmospheric
dust-derived “natural nanoparticles”with EPS could therefore be a com-
plex key factor influencing bioavailability of iron, and althoughwe have
started to understand how marine algae might take up nano forms of
the metal (Kadar et al., 2012) we do not fully understand the influence
of seawater EPS on the environmental fate of (nano)particles.

Hereweused an EPS extract froma commonphytoplankton species –
Nannochloropsis salina – and added to natural oceanic seawater in order
to investigate the physicochemical transformations of atmospheric dust-
derived “natural Fe-rich nanoparticles” in contact with seawater so that
we can better understand their environmental fate and behaviour.

This is a follow up study (part I focused on NP formation via simu-
lated cloud processing of mineral dusts with distinct Fe-content),
which investigates the possible transformations that take place when
dust-derived particles come in contact with seawater. Specifically,
herewehave studied the composition, Fe dissolution/Fe lability, particle
aggregation/size distribution, surface topology and zeta potential, i.e.
colloidal stability of the dust derived NPs, both immediately and 24 h
after coming in contact with seawater under a range of environmentally
realistic conditions (i.e. typical in oceanic waters, in the presence of EPS
particles and under distinct photo-oxidative conditions). To the best of
our knowledge, this is the first research attempting to systematically in-
vestigate the changes in physico chemical properties of Fe-rich environ-
mental NPs upon dispersion in seawater with and without EPS, which
shed new light on the environmental fate and behaviour of natural
NPs derived from atmospheric aerosols.

2. Experimental

2.1. Dust samples

Three dust models including (a) Sahara desert, Morocco (30°16′
N-4°55′W); (b) Libya (25°35′N-16°31′E) and (c) volcanic ash (un-
weathered lapilli collected after eruption of Etna in July 2011;
37°44′N-14°59′E) were exposed to simulated cloud processing fol-
lowing previously reported protocol (Kadar et al., 2013).

2.2. EPS extraction from phytoplankton culture and quantification

Exopolymer particles were extracted by cross-flow ultrafiltration
according to the method reported by Zhang and Santschi (2009), from
a 20 L stationary culture of N. salina (CCAP 849/3) grown in a 450 L
photo bioreactor to a density of 16 × 106 cells mL−1. Culture conditions
were: 20 °C; 16/8 light/dark regime; f/2 medium dissolved in Instant
Ocean®. The phytoplankton culture was centrifuged at 4000 rpm for
30 min and the supernatantwas collected for free dissolved EPS follow-
ing the previously reportedmethod (Zhang and Santschi, 2009). Briefly,
20 L supernatant fraction was filtered (b0.45 μm) and ultra-filtered on
a 1 kDa cartridge (GE Healthcare UK) to ~300 mL retentate. The car-
tridge was rinsed with 200 mL MQ water, and then soaked for 6 h fol-
lowing washing with 200 mL MQ twice. The first retentate, the rinse
and the two washing solutions were combined resulting in 1 L EPS ex-
tract which was used in subsequent experimentations as described
below. The transparent exopolymeric substance (TEP) fraction of the
EPS, operationally defined as Alcian Blue staining particles greater
than 0.2, was quantified (Cunliffe et al., 2009) as the xantham gum
equivalents and was 4.66 mg·L−1 ± 0.81, which converted to carbon
gives 2.94 mg C L−1 ± 0.51. These are typical concentrations in very
productive waters, such as estuaries and thus a 1:20 (v/v) addition of
this stock EPS to oceanic, 30 kDa-filtered seawater is an environmen-
tally realistic dose.

2.3. Nanoparticle–seawater interactions

Nanoparticleswere obtained via the previously described cloud sim-
ulation protocol (Kadar et al., 2013) using 30 mg dust powder in
500 mL of 0.1 N H2SO4 solution (pH 1) stirred (120 rot. min−1) for
96 h followed by a drop-wise neutralisation (to pH ~ 6) using concen-
trated NaOH solution (Sigma). Samples and standards were prepared
in HDPE tubes. All equipment had been carefully acid washed prior to
use. All reagents were from Sigma Aldrich and at least p.a. grade. All so-
lutionswere prepared inMQwater (Millipore). The dust suspensions at
pH ~ 6 (which contain Fe-rich NPs) were then pre-filtered on 0.45 μ
pore size membranes to remove insoluble material before addition to
natural seawater (1:10) from the L4 station of theWestern Channel Ob-
servatory of PML (50°15′N-4°13′W) with well characterised physico-
chemistry (http://www.westernchannelobservatory.org.uk/data.php).

http://www.westernchannelobservatory.org.uk/data.php
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Triplicate suspensions of each dust type were continuously stirred for
24 h and kept at 20 °C, under the following environmentally relevant
conditions (total number of 48 suspensions): i) absence of EPS in
dark; ii) presence of EPS in artificial sunlight (2200 Lux with Aquaglow
20 W lamp;λ 380–780 nm) equivalent to photic oceanic conditions; iii)
presence of EPS in dark; and iv) absence of EPS in artificial sunlight. After
12 h the seawater reacted dust suspensions were processed for nano-
particle characterisation, i.e. total Fe content (4.5 mL subsample acidi-
fied by addition of 0.5 mL concentrated HNO3); Fe dissolution (10 mL
for centrifugal ultrafiltration using 3 kDa pore size vivaspin); colloidal
stability using DLS (2 mL for particle size distribution and 2 mL for
zeta potential); particle micromorphology using TEM (10 mL ultra-
centrifuged onto Cu grids); and particle elemental composition using
SEM–EDX (50 mL subsample filtered on 0.05 μ polycarbonate mem-
brane) as described in details below.

2.4. Fe dissolution from (nano)particles and total Fe content

Samples (10 mL) were taken at different times and centrifuged
(Beckman) for 30 min (5000 rpmand21 °C) using vivaspin 3 kDa centri-
fuge tubes (Amicon Ultracel, Millipore, USA). Two aliquots of 4.5 mL of
the filtrate were collected and acidified with 0.5 mL of 67% HNO3 until
analysis on Inductively Coupled Plasma Mass Spectrometry (ICP-MS,
Agilent 7500cx, 3 USA) to determine the iron ion concentration. Total Fe
was also determined in separate subsamples processed similarly, but
without the filtration step. Operating conditions were: power =1.4 kW;
coolant gas flow = 13 L min−1; auxiliary gas flow =0.7 L min−1;
nebuliser gas flow = 0.80 L min−1; dwell time = 10 ms; sweeps =
50; nebuliser type = concentric glass; spray chamber type = PC3; colli-
sion cell gas = 7% hydrogen in helium at a flow rate of 3.5 mL min−1.

The samples were diluted by a factor of 10 (with 2% nitric acid) to
overcome problems with salt clogging, the injector of the ICP torch or
the sampler and skimmer cones. Matrix-matched standards were pre-
pared using a 10-fold dilution of the certified reference material NASS 5
(National Research Council Canada). Internal standards of 10 μg L−1 In
and Irwere also used for the ICP–MSanalyses to compensate for any tem-
poral instrumental drift. Detection limits for Fe = 3 nM.

Samples and standards were prepared in HDPE tubes. All equipment
had been carefully acid washed prior to use. All reagents were from
Sigma Aldrich and at least p.a. grade. All solutions were prepared in
MQ water (Millipore).

2.5. (Nano)particle colloidal stability

Zeta potential and DLS were used to investigate the changes of zeta
potential and size distribution of nanoparticles formed via cloud pro-
cessing of four types of dusts subsequently dispersed in seawater
under four conditions (i-iv). Samples were taken 24 h after dispersion
in seawater and Zeta potential and size distribution/ poly dispersity
index (PDI) were measured using Zetasizer Nano ZS (Nano series,
Malvern Instruments, UK).

2.6. (Nano)particle micromorphology and elemental composition

Particle size distribution, shape, micro-morphology and surface to-
pology were studied by transmission electron microscopy (TEM) and
SEM. TEM samples were prepared by ultracentrifugation (80,000 rpm)
of 10 mL suspension onto conventional Cu grids that were coated
with Holey Formvar to improve particle visualisation. At least fifteen
micrographs were acquired on randomly selected grids taken from var-
ious locations of the grids, ensuring representativeness and statistical
rigour. Electron micrographs were taken using a TEM at 80 keV (JEOL
1200EX), and particle size and shape parameters were evaluated using
image analysis computer software (Digital Micrograph, Gatan Inc.).
High-resolution micrographs of selected particle-types were thereafter
acquired on a TEM operating at 200 keV (Philips Tecnai F20).
Scanning electronmicrographswere also taken on the same Cu grids
as those used for TEM. At least 25 typical particles along a random tran-
sect and particleswere scanned for elemental composition using a Scan-
ning ElectronMicroscopewith Energy Dispersive X-Ray (EDX) detector.

2.7. Statistical analyses

Statistical analyseswere performedusingMinitab v16. All results are
presented as means ± SEM. Significant differences between groups
were determined using one way ANOVA followed by Tukey's compari-
sons. In addition, two way ANOVA was used to determine the signifi-
cance of the main effects (dust type, presence/absence of EPS, light vs.
dark, fresh vs. aged). All statistical analysis used the default p b 0.05.

3. Results and discussion

3.1. Colloidal stability of the model dusts in seawater and in the presence of
microalgal EPS

Freshly synthesised ferrihydrite formed aggregates with hydrody-
namic diameters of ~800 nmbut increased three-fold in diameterwith-
in 24 h in MQ water (Fig. 1a). However, when added to seawater
(30 kDa-filtered) this “ageing-associated” aggregation of ferrihydrite
aggregates was less evident, i.e. the average hydrodynamic diameter
did not increase significantly after 24 h, which is probably explained
by the suppression of the electrical double layer and thus smaller hydro-
dynamic diameter in a higher conductivity media rather than a real size
difference (Malvern Instruments technical book). The size match of NP
aggregates in the different carrying solutions was confirmed by the
TEM analysis (Fig. 1a and b). The EPS particles self-assemble into aggre-
gates in natural seawater (Chin et al., 1998), indeed showing significant
increase in their hydrodynamic diameter within 24 h of being added to
seawater (Fig. 1). Curiously, synthetic ferrihydrite nanoparticle addition
seemed to suppress the formation of the EPS assembly, which is
contrary to previous findings on the effect of engineered polystyrene
nanoparticles (Chen et al., 2011). Previous studies found that
nanoparticles tend to increase EPS particle size via co-aggregation and
spontaneous assembly into large flocks (Chin et al., 1998). However,
in our study EPS extracted from cultured marine microalgae (N. salina)
co-aggregated with ferrihydrite into particles with average hydrody-
namic diameter of about 1000 nm, which did not increase in size
over 24 h, whilst the same EPS suspension without the addition of
ferrihydrite formed about 4 times larger particles (Fig. 1 and inset c).
Typical TEM micrographs showed the presence of electron dense and
more compact aggregates interlaced with loose aggregates when
ferrihydrite was allowed to react with seawater in the presence of EPS
(Fig. 1 and inset d), unlike the loose aggregates forming in the absence
of EPS (Fig. 1b). It is likely that as a result of the polyanionic quality of
the microalgal EPS conveyed by its functional groups that remain to
be identified, the EPS–NP co-aggregation resulted in more compact ag-
gregates in equilibrium when in suspension in seawater compared to
those in the absence of EPS.

The effect of seawater and EPS on the natural nanoparticles resulted
from cloud processed mineral dusts was somewhat more ambiguous
and quite different from that seen with synthetic ferrihydrite, possibly
due to the more heterogeneous elemental composition of the former.
However, the following common trends could be distinguished for all
dust types: average hydrodynamic diameter of particles decreased con-
siderably (by over 50%) when pH was increased from 1 to 6, and this
was consistent for all dust types (Fig. 2). Nevertheless, when these par-
ticles are suspended in seawater, they increase in size by approximately
50% for all NPs from dust types (as indicated by the average hydrody-
namic diameters shown in Fig. 2), unlike synthetic ferrihydrite. This
was corroborated by the TEM micrographs (picture insets in Fig. 2),
showing that individual particles making up the aggregates have less
defined edges and tend to be bigger when suspended in seawater or
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Fig. 1. Hydrodynamic diameter of ferrihydrite and EPS dispersed in experimental media with distinct composition, e.g. ultrapure water (MQ), natural seawater (SW) with and without
exopolymeric substances (EPS); columns represent average hydrodynamic diameter (nm) ± SEM, N = 5; Error bars that do not share a letter are significantly different according to
one-way ANOVA followed by Tukey's comparison; The picture insets are TEMmicrographs on typical aggregates in various media.
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Fig. 2.Hydrodynamic diameter of nanoparticles in suspension in the alkaline phases of the simulated cloud processing of threemineral dusts (volcanic ash fromEtna, dust from Sahara and
from Libya and the control model ferrihydrite) followed by contact with natural seawater (SW) with and without exopolymeric substances (EPS) under artificial sunlight vs in the dark;
Measurementswere conductedduring both the low- and the alkaline-pH steps of the cloud processing. Vertical bars represent average hydrodynamic diameters (nm) ± SEM,N = 5. The
picture insets are TEM micrographs on typical aggregates forming when nanoparticles were suspended in various experimental media.
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in seawater with EPS as compared to those inMQ (i.e. the pH 6 phase of
the cloud processing). Direct size comparison of data obtained fromDLS
and TEM however, have to be interpreted with caution as: 1) aggregate
size/morphology is affected by TEM sample processing (i.e. vacuum ex-
posure of grids under observation); 2) particle diameter calculated from
DLS refers to how a particle diffuses within a fluid, and it depends not
only on the particle “core” but also on any surface structure, as well as
the concentration and the types of ions in themedium. Further rheolog-
ical studies are required to better understand the colloidal transforma-
tions taking place when nanoparticles interact with seawater and EPS.
Our results however indicate that in irradiated samples EPS addition
has a “stabilising” effect in that the average hydrodynamic diameter of
the aggregates in suspension decreases whilst zeta potential shifts
slightly towards but without reaching the stability value of −30 eV
(Malvern Instruments technical note on Zeta Potential theory). How-
ever, this “stabilising effect” was only observed in the absence of light
for synthetic ferrihydrite.

In general, with few exceptions the aggregates formed in the ab-
sence of light are slightly larger than those illuminated, but the high
size variability prevented detection of statistical significance at 95%
level. Aggregate size inhomogeneity was also corroborated by the high
polydispersity index (N0.8) indicating the presence of particles with
large size variations in all samples except those at the alkaline phase
of cloud processing (Fig. S1). Similarly, zeta potentials were highly
variable (Fig. S2); the lowest values were about −10 eV that indicate
colloidal instability. The main factor that statistically significantly
influenced colloidal stability of dust derived nanoparticles was media of
dispersion (i.e. MQ water, seawater and seawater with EPS) (Table S1).

3.2. Particle dissolution in seawater — the effect of EPS and light

Soluble Fe release form cloud processed particles, measured as the
b3 kDa filter fraction, in seawater was quite similar for all dust-types,
but therewere both light- and EPS-related differences (Fig. 3). Fe dissolu-
tion increased considerably in the presence of EPS and the relative in-
crease was more prominent in the dark. This EPS-mediated increased
dissolutionwas consistent for all three dust types (Fig. 3) andwas also re-
ported previously in the presence of a bacterial EPS extract (Hassler et al.,
2011a, 2011b). A possible reason is that EPS acted as a chelator via surface
complexation and solution coordination, sustaining dissolution (Chang
and Matijevic, 1983). Surface complexation by chelate binding to the
Fig. 3. Dissolution of Fe measured as b3 kDa filter fraction from nanoparticles formed via simul
Sahara and from Libya and the control model ferrihydrite) following suspension in natural seaw
the dark; Vertical bars represent average concentrations ± SEM, N = 3.
metal ions on the NP surface weakens the lattice bond between the
metal ion and the other components of the particle, and then the metal
complexes dissociate from the particle. Solution coordination is liberation
of themetal ion from the particle surface, which then reactswith the che-
late or the hydroxide in solution causing a further metal ion release from
particles. The strongly metal-binding sulfhydryl group of EPS could have
accelerated dissolution Miao et al., 2010) at the concentrations applied
here. However, a more detailed examination of the exact composition of
the Nannochloropsis EPS extract is needed to elucidate which interaction
mechanisms between NPs and the biopolymer functional group may be
responsible for induction of Fe dissolution. Our present understanding
of dissolution is that rates are controlled by the diffusion coefficient of
the solutemolecule, particle surface area, anddiffusive sublayer thickness,
when solution volume and other environmental conditions such as pH
and temperature are fixed. High dissolution rates could therefore be
expected for NPs as a result of their extremely high specific surface area,
even when they are aggregated. It has been previously shown with
other metal oxide NPs (Miao et al., 2010) that despite rapid aggregation
intomicrometre size particles the dissolution rate of free ions fromaggre-
gates remains at a similar level with that of primary NPs until they be-
come more compact with time and thus their specific surface area is
reduced concurrently with the dissolution rate. It is possible that in our
study the EPS–NP co-aggregation in seawater resulted in more loosely
bound aggregates than those in the absence of EPS, which were inferred
from both the TEMmicrographs (inserts in Figs. 1 and 2) and the polydis-
persity index values.

Another possible reason for more Fe dissolution in the presence of
EPS could be the photo reactive formation ofH2O2 via the superoxide in-
termediate which is capable of reducing Fe(III), thus aiding dissolution,
as suggested by other laboratory experiments (Steigenberger et al.,
2010) focussed on the redox cycling of Fe in the presence of both artifi-
cial and natural polysaccharide extracts from diatoms detecting light-
produced superoxide that reduced Fe(III) maintaining elevated Fe(II)
concentrations and thus positively affecting Fe bioavailability. However,
such photo reductive processes cannot explain our results on augment-
ed Fe dissolution in the absence of light. It is thereforemore likely that Fe
is stabilisedwithin the b3 kDa fraction as a result of the polyanionic qual-
ity of themicroalgal EPS conveyed by its functional groups that remain to
be identified. Themechanisms involvedmay include environmentally im-
portant processes like the photolysis, reduction and thermal reduction of
Fe(III) complexes in all of which EPS can act as electron donor. The
ated cloud processing of the three model mineral dusts (volcanic ash from Etna, dust from
ater (SW)with andwithout exopolymeric substances (EPS), under artificial sunlight vs in
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ecological significance and scale of EPS–nanoparticle interactions in real
aquatic environments are consequent of its ubiquitous nature, i.e. about
~40–60% of the planktonic photosynthetic product is released as EPS,
and its key role in biofilm formation, colloid and trace element scaveng-
ing, and ultimately in the global carbon cycling.

3.3. Typical (nano)particles in seawater from geochemically distinctminer-
al dusts

Elemental composition of the nanoparticles formed via SCPMD was
analysed using EDX–SEM performed on the TEM grids allowing for ad-
ditional higher resolution micromorphology observations (Fig. 4). The
Cu peaks are due to background from the grid and need to be
disregarded here. SEM micrographs of the dust derived material (Fig. 4
A, D, G, J and M) showed the presence of large aggregates of nano-sized
particles loosely held together. Freshly synthesised ferrihydrite, mainly
composed by Fe and O (Fig. 4B), when suspended in seawater containing
EPS aggregated into more compact heterogeneous particles (Fig. 4C). The
EPS extract contained assemblages in which individual particles had di-
ameter below 50 nm (Fig. 4D), and showed large peaks for C, O, S and
Si (Fig. 4E), which is consistent with the polysaccharide composition.
When added to seawater EPS assembles in large particles with filamen-
tous texture (Fig. 4F). Nanoparticles formed from Libyan dust (Fig. 4 G–
A

D

J

M

G

Fig. 4. Micromorphology and elemental composition of nanoparticles from simulated cloud pr
particles before and after interaction with seawater and EPS; (A–C); Ferrihydrite; (D–F); EPS; (
crographs of particles prior to suspension in seawater (A, D, G, J and M; Scale bars denote 250
24 hour interaction of nanoparticles with seawater and EPS (C, F, I, L, and O; Scale bars denote
I), although showing a very similar morphology with ferrihydrite, are
more heterogeneous in composition, i.e. show large peaks for Al, Si, Ca
and Fe. Following the 24 h in contact with seawater containing EPS,
some of the resulting large aggregates seemed to interweave closely
with the EPS (Fig. 4I), which needs further investigations.

Volcanic ash derived particles seem to amass in slightly smaller ag-
gregates than those from Libyan dust (Fig. 4J), show large peaks for Al,
Ti, Si, S, Cl, Ca and Fe (Fig. 4K), and when suspended in seawater, the
resulting aggregates tend to become less compact (Fig. 4L). SEMmicro-
graphs of the cloud processed Saharan dust particles were very similar
to those from Libyan dust and EDX spectra similarly showed high Al,
Si and Fe peaks (Fig. 4MandN) and the TEMmicrographs showed slack-
ened aggregates when suspended in seawater with EPS. These EDX-
spectra (Fig. 4B, E, H, K and N), although not able to exactly quantify the
amount of iron in individual nanoparticles (this method only gives
semi-quantitative information about element composition when the ele-
ment makes more than about 0.1–1.0% of the total mass of specific parti-
cles on the selected area) (Utsunomiya and Ewing, 2003), and the
presence of Fe peaks confirm that typical nanoparticles that form when
mineral dusts are cloud processed are Fe-rich. This has also been shown
in previous studies (Kadar et al., 2013).

The TEMmicrographs taken after reactionwith seawater do not have
the resolution to show individual particles and thus no clear distinction in
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ocessing of three geochemically distinct mineral dusts including control nano-ferrihydrite
G–I) Libyan dust; (J–L) volcanic ash from Etna and (M–O) Saharan dust. Selected SEMmi-
nm) and corresponding EDX spectra (B, E, H, K and N) with TEM micrographs taken after
100 nm).
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micromorphology of particles making up the aggregates of different
dusts was possible. However, many of the NP aggregates have less dis-
tinct boundaries, which might suggest some dissolution in seawater. A
common trend was the loosening in aggregate compactness, which was
also confirmed by augmented hydrodynamic diameters when particles
were dispersed in seawater. To conclude, nanoparticles derived from
cloud processing of mineral dusts are Fe rich and release free Fe when
in contact with seawater. EPS that is produced by most marine micro-
organisms seems to enhance dissolution and colloidal stability of the
resulting aggregates and thus may significantly improve Fe bioavailabili-
ty and play a significant role in Fe biogeochemistry in the ocean.
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