
 
 

University of Birmingham

FIB serial milling and lifting out of fine inclusions in
an intensively melt sheared aluminum alloy
Kim, Keehyun

DOI:
10.1016/j.matlet.2013.11.083

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Kim, K 2014, 'FIB serial milling and lifting out of fine inclusions in an intensively melt sheared aluminum alloy',
Materials Letters, vol. 117, pp. 74-77. https://doi.org/10.1016/j.matlet.2013.11.083

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository : checked 04/06/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1016/j.matlet.2013.11.083
https://doi.org/10.1016/j.matlet.2013.11.083
https://birmingham.elsevierpure.com/en/publications/c92ff574-1067-4ab5-8183-e795db483f41


FIB serial milling and lifting out of fine inclusions in an intensively melt
sheared aluminum alloy$

KeeHyun Kim n

The EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineering, School of Metallurgy and Materials, University of Birmingham,
Birmingham, United Kingdom

a r t i c l e i n f o

Article history:
Received 14 September 2013
Accepted 20 November 2013
Available online 28 November 2013

Keywords:
Heterogeneous nucleation
Aluminum
Intensive shearing
Focused ion beam

a b s t r a c t

An intensively melt sheared aluminum alloy was cast to verify the possibility of heterogeneous nucleation of
aluminum grains from fine oxide particles. A novel combined technique of serial milling and lifting out using
the focused ion beam has detected fine particles at the grain center of aluminum. High resolution analytical
electron microscopy shows that oxides can act as substrates for the nucleation of aluminum grains. Based on
the observations, the possibility of survival and nucleation potency of the oxide is discussed.

& 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Surface of molten aluminum–magnesium alloys is continuously
oxidized due to their high oxygen affinities at high temperature. In
casting, the turbulence of melt stirring and pouring easily fractures
and entrains the oxides into a melt, which affects the mechanical
properties and corrosion resistance of cast metal alloys by the
formation of porosity and hot tearing [1]. Recently, it was suggested
that grain refinement of cast aluminum alloys might be induced by
the enhanced heterogeneous nucleation of aluminum grains from
fine and well dispersed oxides in the melt which was intensively
sheared before solidification [2,3]. However, there is little agreement
on the heterogeneous nucleation on oxides due to, generally, poor
wettability and high contact angles of liquid aluminum and oxides
[4]. Furthermore, since the oxide size and its volume fraction in an
intensively sheared melt are too small to detect and analyze with
scanning electron microscopy (SEM), it has been considered impos-
sible to detect directly and prove the effect of oxides on the
heterogeneous nucleation during solidification. An alternative tech-
nique using the pressurized melt filtration was used to collect and
concentrate the oxide particles for high resolution analyses [3,5].
However, this filtration technique might not reflect all solidification
related phenomena of the intensively sheared melt occurring in a
real mould due to the different cooling rate and its effect on the grain
size and non-equilibrium phase(s) [4]. Therefore, it is imperative to

detect and observe the oxides existing in an actual cast sample which
was intensively sheared and simultaneously showed a uniform
microstructure as well as fine grains.

2. Experimental

An aluminum alloy (AA 5754 alloy with the composition of
Al-3.12Mg-0.05Si-0.5Fe-0.43Mn-0.001Cu-0.02Ti, wt%), which showed
the possibility of enhanced heterogeneous nucleation of aluminum
grains from fine particles after intensive shearing [2], was used and
melted in a clay graphite crucible at 1028 K. For the intensive
shearing, the melt was poured into the melt conditioning unit at
953 K, and melt conditioned at 500 rev/min at 928 K for 60 s by twin
screws. Then, the intensively sheared sample was cast using a
laboratory scale horizontal twin roll caster, which has been described
in detail elsewhere [2].

Metallographic sections for SEM were prepared using standard
grinding and polishing procedures, and etched by a solution (100 ml
distilled water, 4 g potassium permanganate, 1 g sodium hydroxide).
Microstructural observations were then carried out with the focused
ion beam (FIB) SEM (FIB-SEM, FEI Quanta 3Ddual beam) equippedwith
an electron dispersive X-ray spectrometer (EDX), and high resolution
transmission electron microscopes (TEM, FEI Tecnai F20 with a scan-
ningmode (STEM) and an EDX, and JEOL JEM-2100FCSwith a spherical
aberration (Cs) corrector as well as a STEM mode and an EDX).

3. Results and discussion

Several studies showed that the particle which acted as a
substrate for heterogeneous nucleation of a primary grain should

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/matlet

Materials Letters

0167-577X/$ - see front matter & 2013 The Authors. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.matlet.2013.11.083

$This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-No Derivative Works License, which per-
mits non-commercial use, distribution, and reproduction in any medium, provided
the original author and source are credited.

n Tel.: þ44 78 0525 8343.
E-mail address: k.kim.2@bham.ac.uk

Materials Letters 117 (2014) 74–77

www.sciencedirect.com/science/journal/0167577X
www.elsevier.com/locate/matlet
http://dx.doi.org/10.1016/j.matlet.2013.11.083
http://dx.doi.org/10.1016/j.matlet.2013.11.083
http://dx.doi.org/10.1016/j.matlet.2013.11.083
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matlet.2013.11.083&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matlet.2013.11.083&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matlet.2013.11.083&domain=pdf
mailto:k.kim.2@bham.ac.uk
http://dx.doi.org/10.1016/j.matlet.2013.11.083


exist at/near the grain center [6,7]. Therefore, FIB serial sectioning
combined with a lift-out technique was designed to detect the
inclusion and to remove any artifacts during cutting, grinding
and polishing. Fig. 1 shows the procedure to find and make a
TEM sample from an inclusion. A grain between two ‘X’s inten-
tionally marked by FIB was selected and a thin tungsten layer of
about 2 μmwas deposited on the area of about 20�15 μm2 at the
grain center to protect the surface from strong ion beam during
serial sectioning (Fig. 1a). The region surrounding the tungsten
deposited area was milled away as shown in Fig. 1b. Then, the
cross section was serial-milled with a milling step of about
200 nm until finding a fine particle. After each milling step, the

milled region was observed meticulously by secondary electron
beam (Fig. 1c). After additional milling of about 3 μm, finally,
different contrast became visible in the ion beam milled region
(see the arrow in Fig. 1d). On observing the fine particle, the
serial milling stopped and an additional protective tungsten layer
was deposited on the surface (Fig. 1e). A lamella including
the particle was put on a copper grid (Fig. 1f). Then, a thin foil
for TEM study was exquisitely fabricated using a FIB lift-out
technique [8,9].

Fig. 2 shows STEM images and element mappings of the
particle detected in Fig. 1. Even though the quality of STEM bright
field (BF) images is a bit poor due to the thickness of the lamella

Fig. 1. Procedure of serial sectioning and TEM sampling to find a fine inclusion.

Fig. 2. STEM BF images ((a) and (b)) and corresponding element mappings of aluminum (c), magnesium (d), and oxygen (e) of the particle detected in Fig. 1.
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and some remaining gallium on the surface, the particle indicated
by an arrow in Fig. 2a is clearly composed of magnesium
and oxygen. A point chemical analysis of STEM-EDX using a
Cs-corrected probe with the size of 1 nm confirmed the magne-
sium oxide (see also Fig. 4). It is interesting to find magnesium
oxide (MgO) not spinel (MgAl2O4), which might act as a substrate
for heterogeneous nucleation of an aluminum grain.

In order to detect another particle at/near the center of other
aluminum grains, the surface of the intensively sheared sample
was carefully polished and etched by the solution, and then
observed by a field emission SEM with an EDX system. Fig. 3
shows another particle detected at the center of an aluminum
grain. At the center, different contrast is visible (Fig. 3a and b). A
backscattered electron (BSE) image (Fig. 3c) and a SEM-EDX
element mapping of magnesium (see the arrow in Fig. 3d) clearly
show high amounts of magnesium at a particle located on the
grain center as well as at grain boundaries. Since the solubility of
alloying elements or impurities with a negative slope of the
liquidus line and a partition coefficient of below 1, such as
magnesium, iron, and silicon in this study, is larger in liquid
aluminum than in solid, solute elements are rejected from the
growing grains and enriched ahead of them [10]. Thereby, iron
(Fig. 3e) and silicon (Fig. 3f) as well as magnesium are enriched
where the liquid completes solidification, and finally precipitate at
cell and grain boundaries, as shown clearly in Fig. 3.

For TEM analysis of the particle showing the high amount of
magnesium, the FIB lift-out technique was used to make a TEM
sample. Fig. 4 shows STEM images and EDX point analyses of the
particle in Fig. 3. The STEM-EDX spectra acquired by a fine probe of
1 nm confirm that the particle indicated by an arrow in Fig. 4a is
composed of only magnesium and oxygen. Therefore, although
several studies suggested that the stable oxide might be MgAl2O4

[3,5], the particle which acted as the substrate for heterogeneous
nucleation of aluminum grains is magnesium oxide.

Based on classical nucleation theory, it is important to achieve
good lattice match by small disregistry (δ¼Δa0=ao), where Δa0 is
the difference between lattice parameters of a nucleant and a
nucleating metal with the same crystal structure along a specific
direction, and similar crystallography for a low interfacial energy
between them [7,11]. According to this criterion, MgO as well as
MgAl2O4 have high nucleation potency for aluminum grains
(a0 ¼ 0:4121) because both have low lattice mismatches of MgO
(a0 ¼ 0:4213, δ¼ 2:2%) and MgAl2O4 (0.5a0 ¼ 0:4375, δ¼ 4:1%) and
the same face-centered cubic structure [12]. Compared to MgAl2O4,
however, MgO forms more easily due to the higher reactivity of
magnesium than aluminum [13]. A recent study using Al-4%Mg
showed that a porous MgO layer with the thickness of about 5 μm
forms at a short oxidation time of 5 min and the thickness gradually
increases to about 7 μm for 1 h [14]. Thereafter, MgAl2O4 may be
formed by the reaction of 2MgOðsÞ þ4AlðlÞ þ3O2ðgÞ ¼ 2MgAl2O4ðsÞ.
However, it is interesting that X-ray diffraction (XRD) patterns of
an Al-10%Mg alloy oxidized for 3 h show peaks corresponding to
MgO [15]. McLeod and Gabryel also presented a thermodynamic
stability diagram of Al–Mg oxides showing that MgO is more stable
than MgAl2O4 for high magnesium concentrations of above 1.5% at
1028 K [15]. In addition, as MgAl2O4 exists in the alloy melt as
discrete particles due to low Pilling–Bedworth ratio [3], the melt
containing aluminum and magnesium can rise into capillary
MgAl2O4 tubes and reoxidize to form MgO, repeatedly. It was
accordingly concluded that MgO can survive during melting and
intensive shearing, and may act as a substrate for heterogeneous
nucleation of aluminum grains during solidification.

The potency of nucleants for the heterogeneous nucleation has
been evaluated by the interfacial free energy. However, the inter-
face energy is influenced by the chemical nature, electrostatic
potential, and misfit dislocations in the interface of a nucleant and
a nucleated metal [11,16]. Therefore, the change in the density of
bonds across the interface as well as the crystallographic

Fig. 3. SEM analysis of a fine particle at the center of an aluminum grain. The arrows in panel (a), respectively, indicate a fine particle at the center of each grain.
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relationship of a nucleant and a nucleated metal should be
considered to evaluate the potency. In this criterion, MgO has
high potency because the interface of oxygen-terminated MgO and
aluminum has strong bonds induced by the ionic component and
covalent/metallic contribution, which are primarily determined by
the electron density of oxygen atoms at the top-layer of MgO [17].
The potency as well as the survival of MgO will be further
discussed elsewhere.

4. Summary

Heterogeneous nucleation of aluminum grains on fine oxide
particles has been suggested to explain the grain refinement
observed in an intensive shearing process. A FIB technique using
lifting-out and serial-sectioning successfully detected fine oxide
particles at/near aluminum grains. The oxide has high potency of
the heterogeneous nucleation due to strong ionic and covalent/
metallic bonds at the interface as well as the good crystallographic
match of MgO and aluminum.
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