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a b s t r a c t

The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated
as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with
compositions, Nd13.4Dy0.8Al0.7Nb0.3Fe78.5B6.3 and Nd12.5Dy1.8Al0.9Nb0.6Co5.0Fe72.8B6.4 (atomic%). It has
been shown that by increasing the processing temperature, an increase in the equilibrium pressure for
disproportionation and in the overall reaction time was observed. The magnetic properties of the lower
Dy content magnet were affected significantly by the change in processing temperature with a peak in
properties observed at 880 1C producing magnetic powder with a remanence of 1.08 (70.02) T, a
coercivity of 840 (717) kA m�1, and a maximum energy product of 175 (72.5) kJ m�3. Further work on
magnets with a significantly higher Dy content has shown that simultaneous processing of sintered
magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a
range of magnetic properties are produced depending on the initial compositions of the samples in the
input feed.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Neodymium-iron-boron (NdFeB) magnets have become an
integral part of many electrical components since their develop-
ment in 1984 [1,2]. NdFeB magnets are used in applications such
as hard-disk drives, permanent magnet motors (e.g. in hybrid
vehicles) and more recently in generators for large offshore wind
turbines.

China currently supplies over 95% of rare earth materials to the
world market including Nd, Pr and Dy which are used in NdFeB-
based magnets. However, in recent years, China imposed export
quotas for these materials and in 2010 this was cut by around 40%.
This resulted in dramatic price fluctuations for these materials in
world markets which has placed considerable strain on the
manufacturers and end users of NdFeB-based magnets.

Fortunately, there are alternative sources of rare earths world-
wide and mines are opening in, for instance, Australia, USA and
South Africa. However, the start-up time for a new mine can be
considerable and the extraction processes used to separate the
individual rare earths are complicated and energy intensive.
Recycling of magnets contained within redundant electrical equip-
ment could provide a secure and alternative supply of these
materials.

It has been reported [3,4] that hydrogen can be used as an
effective method of recycling NdFeB by utilising the hydrogen
decrepitation (HD) process to turn solid sintered magnets into a
demagnetised powder for further processing [3]. The HD process
has also been used as a way of separating used NdFeB magnets
from hard disk drive assemblies [3–8]. The present findings form
just a small part of an extensive research programme into the use
of hydrogen for recycling of NdFeB-type magnets at the University
of Birmingham.

It has been shown that the powder produced after HD treating
sintered NdFeB magnets can be re-sintered successfully to produce
high density magnets with magnetic properties comparable to
those of the starting material [3,9]. Alternatively, the HD powder
could be processed further by using the hydrogenation, dispro-
portionation, desorption, recombination, (HDDR) process [10,11].
This process utilises hydrogen at elevated temperatures to refine
the grain size to �0.3 mm [12–14], allowing more grains per particle
and hence an increased coercivity and corrosion resistance.

Most previous work undertaken on HDDR processing of sin-
tered NdFeB magnets has led to the production of magnetically
isotropic powder [15,16], which leads to a significant reduction in
the remanence of the powder. The production of anisotropic HDDR
powder from cast starting material has been reported from many
sources [13]. However, this has been achieved mostly by introdu-
cing additions of cobalt, gallium, zirconium or niobium to alter the
kinetics of the HDDR process. Alternatively, it has been shown
that anisotropic powder can be produced by careful control of the
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hydrogen pressure under certain conditions during the HDDR
process, without the requirement for kinetic-altering additions
[14,17]. Nakamura et al. [18] and Sugimoto et al. [19] showed that,
by heating cast NdFeB in vacuum prior to the introduction of
hydrogen (termed v-HD treatment), it is possible to prevent
disproportionation of the powder until the required processing
temperature is attained. Following the disproportionation stage,
the hydrogen pressure is reduced to encourage desorption of
hydrogen from the sample which results in the recombination
reaction. This recombination can either be induced by manually
lowering the hydrogen pressure using a rotary vacuum pump or by
flushing with argon as demonstrated in the s-DR process [18,19].

The present authors have shown previously [20] that it is
possible to produce anisotropic powder from sintered material
under a specific set of processing conditions, resulting in reason-
able permanent magnetic properties and other authors have
followed on from this to investigate different compositions [21].
In the present work, the HDDR process is initiated after the HD
process is complete. The HD powder is degassed by heating under
vacuum to the required processing temperature where hydrogen is
slowly introduced to encourage disproportionation at a slow rate.
The HDDR reaction equation can be described as

Disproportionation-

Nd2Fe14Bþ2xH222NdH2xþ12FeþFe2B
←Recombination

where x approaches 1.0 at elevated temperatures.
The work presented in this paper shows how these processes

can be applied in the reprocessing of scrap sintered magnets. This
paper is an extension of previous work [20,22] combining the use
of a higher processing pressure during disproportionation and
avoiding subsequent oxygen exposure by performing both the HD
and HDDR processes in the same furnace, thus avoiding inter-
mediate exposure to the atmosphere. The processing conditions
for mixed batches of materials are also investigated.

2. Materials and methods

Uncoated scrap sintered magnets were used throughout this
study. Ion coupled plasma (ICP) spectroscopy was used to deter-
mine the composition of the two types of magnets. Composition
1 was identified as Nd13.4Dy0.8Al0.7Nb0.3Fe78.5B6.3 (atomic%) with
an oxygen content of 4300 ppm. The magnetic properties were:
remanence, 1.36 (70.02) T, intrinsic coercivity, 860 (717) kA m�1

and a maximum energy product of 340 (72.5) kJ m�3.
Composition 2 was shown to be Nd12.5Dy1.8Al0.9Nb0.6Co5.0-

Fe72.8B6.4 (atomic%) with an oxygen content of 4130 ppm, the
magnetic properties of which were: remanence, 1.1 (70.02) T,
intrinsic coercivity, 41450 kA m�1 and a maximum energy pro-
duct of 4230 kJ m�3.

The magnetic properties of these starting magnets were deter-
mined using a permeameter, but it was not possible to fully
demagnetise the sample with composition 2, due to the limited
field of the current equipment. Hence only approximate values of
the coercivity and the maximum energy product are quoted here.

The sintered blocks of both magnet compositions were broken
into pieces and 20 g was loaded into a stainless steel tube, and
then placed inside an Inconel-tube furnace. The system was
evacuated using a rotary pump (to �10�2 mbar) and the sintered
magnet pieces were then hydrogen decrepitated using a pressure
of 2 bar of hydrogen at room temperature to produce a hydrided
powder. The system was subsequently evacuated and the sample
heated under vacuum at a rate of 800 1C h�1, to a temperature T,
which varied from 830 to 930 1C and the hydrogen desorption

trace was measured using a Lesker vacuum gauge with attached
data logger to monitor the pressure in the furnace tube and the
temperature of the sample. When the desired process temperature
(T) was attained, hydrogen was introduced at a rate 16 mbar min�1

to the processing pressure of 1500 mbar and then held for 30 min,
giving an overall processing time of roughly 2 h. The hydrogen
pressure was then reduced at a rate of 100 mbar min�1 until the
pressure reached that of the rotary pump vacuum and the sample
was then cooled quickly by rolling the furnace off the tube and
placing a water-cooled copper coil over the tube. By this means,
cooling of the powder to below 500 1C occurred in less than 5 min,
thus preventing excessive grain growth at elevated temperatures.
These conditions are shown in the schematic in Fig. 1.

For the mixed batch processing of samples with compositions
1 and 2, the processing temperature was set to 880 1C and the
disproportionation stage was altered by ramping at 16 mbar min�1

to 2000 mbar but not held, thus maintaining a disproportionation
time of 2 h. These amended processing conditions are shown
schematically in Fig. 2.

Once cooled, the samples were removed from the furnace,
lightly ground using a pestle and mortar to break up any
agglomerated powder and then prepared for testing.

Fig. 1. Schematic showing the HDDR processing conditions for sample with
composition 1.

Fig. 2. Schematic showing HDDR processing conditions for mixed batch processing
of samples with compositions 1 and 2.
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Powder samples of �100 mg were set in wax in cylindrical
sample holders and aligned using a constant 1.7T field from a
permeameter electromagnet in order to align the particles in the
preferential c-axis direction. Once set, the samples were pulse
magnetised in the c-axis direction, using a field of 4 T from a
capacitor discharge pulse magnetiser. The samples were subse-
quently measured magnetically using a Lakeshore 7300 Vibrating
Sample Magnetometer (VSM) in both the “easy” direction (parallel
to the c-axis) and the “hard” direction (perpendicular to the c-axis).
The specific magnetisation values of the VSM were converted to
polarisation values using a theoretical density of 7.5 g cm�3. There
was no attempt to predict a self-demagnetisation factor for the
measurements due to the wide variation in the particle shapes and
sizes, hence the magnetic properties remain uncorrected.

3. Results and discussion

Composition 1 was HDDR processed as described in the experi-
mental section. By performing the HD and HDDR reactions within
the same vessel this has reduced markedly the opportunity for
surface reactions with the atmosphere during the transfer of the
HD-treated powder samples into the HDDR rig. During heating of
the sample under vacuum in the initial stage of the HDDR process,
the hydrogen absorbed during the HD process is desorbed and the
change in pressure within the HDDR vessel, associated with this
desorption, is recorded and plotted against temperature (Fig. 3.)

The large initial peak, labelled A, is associated with a combina-
tion of the desorption of hydrogen from the Nd2Fe14B matrix
phase and the desorption that occurs during the transformation of
NdH2.7 to NdH2 in the Nd-rich material. The second peak, labelled
B, is due to the desorption of hydrogen from NdH2 which trans-
forms to Nd as demonstrated by Williams et al. (1991) [23] during
hydrogen desorption studies using mass spectrometry.

For composition 1, this desorption trace is reproducible as
demonstrated by the overlapping traces for the two samples
shown in Fig. 3.

During the disproportionation stage, hydrogen is again absorbed
by the sample as soon as the pressure reaches the equilibrium point,
at which time it drives the system to the right hand side of
Equation 1. The hydrogen absorption behaviour is monitored using
a mass flow controller until disproportionation is complete, as
shown in Fig. 4.

Fig. 4 shows that, as the processing temperature is increased,
the hydrogen pressure required to initiate disproportionation is
increased. Another trend is that, with increasing temperature, the

peak height is reduced but the overall peak width is broadened,
indicating that it takes longer for completion of the reaction. This
can be attributed to the decreased stability of NdH2 at elevated
temperatures. By using a processing pressure of 1500 mbar of
hydrogen, all of the samples were able to completely dispropor-
tionate during the pressure ramp stage, thus allowing a compar-
ison of the start and finish points, as observed in Fig. 5.

Fig. 5 shows that the disproportionation start points are
significantly lower with the present, improved processing condi-
tions when compared with those reported in the previous work
[20]. For example, in the previous work the disproportionation
start point for the sample processed at 880 1C was 585 mbar,
whereas using the improved conditions resulted in the dispropor-
tionation start point of 464 mbar. This represents a reduction of
�21%.

The significantly lower start pressures can be attributed to the
absence of reaction products at the grain boundaries and triple
points such as Nd2O3 and Nd(OH)3, formed on exposure to atmo-
spheric conditions [24] (which will contain water) during loading
of the sample into the HDDR rig. This has now been avoided by
performing the HD and HDDR processes in the same sealed
Inconel tube furnace. It can be deduced that these reaction
products impede the absorption of hydrogen by the Nd-rich grain
boundary phase, which has been shown to act as a path to the
subsequent disproportionation of the matrix Nd2Fe14B phase [25].

However, the reaction finish points are almost identical for
those that finish below 1000 mbar.

The effects of varying the processing temperature on the
magnetic properties of the samples are shown in Fig. 6.

Fig. 3. Desorption trace for two identical HD-treated samples of composition 1,
degassed during heating.

Fig. 4. Comparison of disproportionation absorption peaks of a sample of composi-
tion 1 with increasing processing temperature.

Fig. 5. Variation of disproportionation start and finish points with respect to
temperature for samples of composition 1.
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Fig. 6 shows that the coercivity of the samples follows a smooth
curve, peaking at 880 1C with a value of 840 (70.17) kA m�1, the
remanence also reaches a maximum at this temperature but
with a much sharper peak with a value of 1.08 (70.02) T. The
demagnetisation quadrant for this sample is shown in Fig. 7
together with the difference between the curve in the easy and
in the hard direction of magnetisation, indicating significant
anisotropy.

The relationship between magnetic properties and temperature
exhibited a sharp peak in remanence and maximum energy
product after treatment at 880 1C. These magnetic properties are
certainly acceptable for a powder for use in bonded magnets.
However, it should be noted that scaling-up the processing to
much larger batches could cause issues with temperature control
and with the kinetics of the HDDR reaction and would therefore
require further work in order to establish the precise processing
conditions and hence commercial viability of this process.

Further studies at 880 1C have shown that increasing the dis-
proportionation pressure to 2000 mbar for composition 1 reduced
the remanence to 0.72 (70.02) T but retained the coercivity at 840
(70.17) kA m�1 producing a maximum energy product of 85
(72.0) kJ m�3. This reduction in remanence and hence maximum
energy product can be attributed to over-processing which occurs by
taking the sample to a higher pressure than that required after the
sample has completed the disproportionation reaction. It has also
been shown that samples of composition 2 can be processed at
2000 mbar. Fig. 8 shows the comparison of the disproportionation
peak of this sample (labelled “Composition 2”) compared to that of
the material described in the earlier part of this paper (labelled
“Composition 1”).

Fig. 8 shows that the sample with composition 2 starts and
finishes its disproportionation reaction at a much higher pressure
than that of composition 1. However, they both achieved comple-
tion in the pressure ramp stage up to 2000 mbar. These studies
indicate that the increased presence of dysprosium and the
addition of cobalt, increases the equilibrium pressure required
for disproportionation, with a disproportionation start point, at
1110 mbar, and a finish point of 1750 mbar at 880 1C. This is
significantly higher than the values reported for composition
1 which contains a relatively small amount of Dy and no Co.

The demagnetisation curve of the sample with composition
2 processed at 2000 mbar is shown in Fig. 9. This sample exhibits
excellent anisotropy, with a coercivity of 740 kA m�1, a remanence
of 0.94 T and a maximum energy product of 117 kJ m�3. As
expected, these magnetic properties are lower than those of the
initial sintered starting material.

Furthermore, it has been shown that mixed batches of samples
with the two compositions could be co-processed successfully,
giving rise to the possibility of processing mixed input feeds.
Fig. 10 shows the disproportionation absorption peaks observed by
processing a 50:50 mix of samples with composition 1 and 2 in
one batch during the ramp stage to 2000 mbar at 880 1C.

Fig. 10 shows that the single mixed sample exhibited a
combination of the absorption peaks from both of the individual
compositions and the disproportionation reactions are complete
within the ramping-up stage. This demonstrates that it is possible
to process mixed batches of material using one set of processing
conditions. The disadvantage of processing in this way is that
some compositions will be subject to over-processing leading to
lower magnetic properties compared to those of pre-separated
compositions with individually designed processing conditions.

Fig. 6. Variation of coercivity, remanence and energy product of the samples of
composition 1 with temperature.

Fig. 7. Demagnetisation curves in “Easy” and “Hard” directions for sample of
composition 1 processed at 880 1C.

Fig. 8. Disproportionation peaks of two compositions of sintered NdFeB processed
at 2000 mbar hydrogen.

Fig. 9. Demagnetisation curve for HDDR processed sample of Composition 2 show-
ing easy and hard direction of magnetisation.
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4. Conclusions

Conducting the HD and HDDR processes in the same vessel
lowers, by around 21%, the hydrogen pressure required for the
initiation of disproportionation and gives improved magnetic
properties by inhibiting the formation of Nd2O3/Nd(OH)3 at the
grain boundaries of the HD powder. It also provides powder much
more suitable for subsequent hot compaction.

For samples with Composition 1, the best magnetic properties
were achieved after processing at 880 1C, producing a sample with
a magnetic remanence value of 1.08 (70.02) T and an intrinsic
coercivity of 840 (717) kA m�1. This represents an increase of
40 kA m�1 in the intrinsic coercivity compared to that reported
previously [20], whilst maintaining a good remanence value.
Disproportionation peaks are broadened with a lower peak height
as the processing temperature is increased, indicating the
increased stability of the Nd2Fe14B phase at higher temperatures.

Magnets of mixed composition can be processed simultaneously
by increasing the hydrogen pressure to allow full disproportionation.

Real scrap sources will contain magnets with a range of composi-
tions and could therefore require a generic set of processing condi-
tions. This paper has begun to address the processing conditions but
further work is required in this area in an attempt to define the
optimum processing conditions for particular mixtures.
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