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The development of new infrastructure is often a consideration in the introduction of new

innovations. Currently there is some confusion around how to develop a hydrogen infra-

structure to support the introduction of FCVs. Lessons can be learned from similar tech-

nology introduction in the past and therefore this paper investigates how mobile phone

infrastructure was developed allowing the mass-market penetration of mobile phones.

Based on this successful infrastructural development suggestions can be made on the

development of a hydrogen infrastructure. It is suggested that a hydrogen infrastructure

needs to be pre-developed 3e5 years before the market introduction of FCVs can suc-

cessfully occur. A lack of infrastructural pre-development will cause to the market intro-

duction of FCVs to fail.

Copyright ª 2014, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy

Publications, LLC. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Introduction

The development of infrastructure to support new technolo-

gies and products is an integral aspect in the introduction of

innovations.Many innovationswould be uselesswithout their

associated infrastructure. A clear example of this is Fuel Cell

Vehicles (FCVs). There is great interest in the development of

hydrogen infrastructure to support FCV market entry [1e4].

Many case studies aim at solving some of the current issues of

infrastructural development by investigating historical cases.

Previous studies use the example of how internal combustion

engine (ICE) vehicle infrastructure was developed in the late

1800s and early 1900s [5,6]. However, these examples are less

helpful to the current situation. One reason for the success of

the ICE was due to there being an existing petroleum supply

network. This network supplied petroleum for lighting and for
5283.
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stationary petrol generators, as well as the farming industry

[5]. This meant that ICE outcompeted BEVs and steam engine

vehicles precisely because infrastructure was already present.

The availability of infrastructure was a compelling reason to

purchase an ICE vehicle over competitive vehicles. This

example can be useful to some new automotive technologies;

for example, BEVs can make use of existing domestic elec-

tricity supplies, albeit with lower charge rates. FCVs require a

totally new refuelling infrastructure. Furthermore, hydrogen

is a commodity that is not supplied by the current transport

fuel industry but by specialised companies. These might see

new business opportunities and become new players within

the automotive fuel industry. This means that the example of

the development of petroleum supply networks is less helpful.

What is needed is an example of a new infrastructure being

developed to support an innovation that had no prior infra-

structure available. Fortunately, a very instructive example
Hydrogen Energy Publications, LLC. This is an open access article under the
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Fig. 1 e Global Mobile Phone Subscriptions per 100 people [13].
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exists, this being the mobile phone and its network infra-

structure. The mobile phone was a disruptive innovation

heavily reliant upon infrastructure for it to gain success. FCVs

share this characteristic as they are a potentially disruptive

innovation [7] and are heavily reliant upon infrastructure.

Understanding how mobile communication networks

were developed will allow us to learn exactly how new infra-

structure is implemented and how the decision to heavily

invest can be made; the hope is that these lessons can be

applied to any disruptive or innovative infrastructure. The

results here can be used to convince stakeholders to invest in

hydrogen infrastructure. This paper will show that pre-

development of infrastructure is vital to the successful intro-

duction of any innovations requiring totally new infrastruc-

ture. This is highlighted by the fact that network development

began 5 years before the first mobile phone was sold to the

public.

Disruptive innovation

The mobile phone was a disruptive innovation; this can be

confirmed using the 3-point disruptive technology criteria.

The criteria states that innovations are disruptive innovations

if they require new infrastructure, are produced by new

market entrants and not incumbents, and provide a greater

level of service to the end users [7]. The mobile phone is

aligned well to the three criteria. Clayton Christensen, the

founder of disruptive innovation theory, also states that

mobile phones are a disruptive innovation to land line tele-

phones [8]. Mobile phones had clear added functionality over
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Fig. 2 e UK Mobile Phone Subscriptions per 100 people; note tha

This is because many people have more than one phone, or SI
landline phones; this functionality did however come at a

high price. But with economies of scale and technological

improvements handset unit costs were continually reduced

and in around 30 years the mobile phone went from high cost

low volume series in niche markets to occupying the whole

landscape and achieving an enormous mass-market share

(see section 1.2).

When the team at Motorola headed by Martin Cooper

invented the mobile phone [9], it created a newmarket sector.

The mobile phone had clear added value. The mobile phone

met an existing need: it became possible to instantly

communicate regardless of location, and be able to contact

people in the event of an emergency situation. The mobile

phone provided convenience greater than any other commu-

nication technology did before. Land lines, phone booths and

pagers could not meet these needs. The cost of using a mobile

phone far exceeded the costs of communication via landline,

but people were willing to pay due to the added convenience.

One further reason the mobile developed added value was

thanks to it becoming a status symbol [10].

Mobile phones generate revenue at the point of sale, and

provide continuous revenue in the form of service charges

throughout their use. By 2015 the globalmobile phone handset

market is expected to reach $340 billion [11]. The extent of

market penetration of mobile phones is vast. Globally there

are 85 phone subscriptions per 100 people. In developed

countries like the UK 39% of people own a smart phone and

there are more phone subscriptions than inhabitants. 52% of

voice communications are nowmade via a mobile phone [12].

Figs. 1 and 2 show the global and UK increases in phone
94 1996 1998 2000 2002 2004 2006 2008 2010

t there are more subscriptions than inhabitants in the UK.

M card [13].
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subscriptions in the telecommunications sector as a measure

of the mobile phone market. In the UK it can be seen that

growth has begun to slow and the market may have almost

reached saturation. The recent global growth trend in mobile

phone subscriptions is being maintained by emerging

economies.

Rapid product development

The first mobile phone calls weremade from cars in the 1940s,

these calls were made from a devices weighing around 35 kgs.

The first trulymobile phone call wasmade in 1973, it was done

using a hand held device invented by Motorola. In 1983

Motorola launched its DynaTac mobile phone to the market,

this was the first commercial mobile phone. The device cost

around $4000 [14]. These phones worked off the first-

generation (1G) network. It was not until the arrival of

second-generation GSM technology and thanks to lower

priced handsets that mobile phones really began penetrating

mass markets. The development of the mobile phone

occurred at a rapid pace; mobile handset weight was contin-

ually reduced from close to 800 g to less than 160 g in only 20

years (Fig. 3). At the same time the price of handsets fell from

over £2500 to less than £250 (Fig. 4). Costs have in recent years

begun to rise due to increasing functionality through added

capabilities. It is remarkable that handsets were continually

improved and at the same time cost reductions were

achieved.
1000000
Infrastructural investment

Mobile phone use would not be possible without the devel-

opment of infrastructure. Consumers would not purchase a

device that could not be used. As with FCVs there was a need

to make a decision to invest in infrastructure before the

market entry of the product could begin. The decision to

invest is not an easy one, as the economic incentives to

develop an infrastructure that currently has no customers are

hard to identify. Nevertheless, without the development of

infrastructure any technology reliant upon it will surely fail.

Mobile phone infrastructure has been continually developed

over the past 4 decades. An overview of the increase in

network capabilities can be seen in Fig. 5 as measured by

download rates, also know as band rates.
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Fig. 3 e Phone handset weight from 1983-Present [15e37].
Early introduction (0G)

0G networks predated mobile phone networks and were

designed to support car/truck phones and mobile radio tele-

phones. The most successful 0G network was ARP (Auto-

radiopuhelin) which operated in Finland between 1971 and

2000. The network managed to reach 100% population

coverage by 1978 with only 140 base stations. The network

quickly became congested with high demand and so Nordic

Mobile Telephone (NMT) was introduced in 1981, this was a 1G

network. Congestion of 0G networks was an issue in many

areas including North American and most of Europe. Even-

tually the networks could no longer supply the high call vol-

umes. Nevertheless these networks highlighted the potential

success that a truly mobile phone and appropriate infra-

structure could achieve.

First generation (1G)

Prior to the introduction of the mobile phone there existed no

infrastructure that could properly support mobile communi-

cations and without this infrastructure the mobile phone

would have been useless. The only comparable system was

the 0G network mentioned above, but mobile phones did not

use these networks. For the mobile phone a pre-development

phase was needed in order to develop the necessary
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Fig. 5 e Mobile phone download band rates in Kbit/s from

1983 to 2012 [38e40].
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infrastructure to support their use. A mobile phone network

needed to be developed before mobile phones could be suc-

cessfully marketed to the public. The first network was the

first generation (1G) network; this was an analogue system

and was introduced on a wide scale in the 1980s. 1G networks

allowed for widespread voice communication within country

borders. The first networks became operational in 1979 in

Tokyo, Japan; European networks became operational in 1980

and America in Chicago, in 1977 (Kumar et al., 2010). This was

4e7 years after Motorola demonstrated the first mobile phone

in 1973; this first phone call was made using just one phone

mast and a short call was made locally. In 1984, 11 years after

the first mobile phone call and 7 years after investments into

infrastructure began, the first commercially available mobile

phone was released into the market, this was the Motorola

Dynatac. Astonishingly, this meant that infrastructure de-

velopers had to wait up to 7 years before they would see any

return on the substantial investments that went into estab-

lishing the infrastructure at this time. Even after the launch of

the Dynatac, mobile phone market penetration was still low

until the 1990s (Figs. 1 and 2). It was only when prices fell

below $1000 per unit (Fig. 4) that the number of subscriptions

began to increase. Many of the original 1G networks were

located in urban areas. Urban areas are centres of population,

trade and economy, so they are perfect areas for the imple-

mentation of innovations. By initially concentrating in-

vestments in high population density areas, a relatively large

proportion of the population could be covered with a limited

amount of investment. Examples of this were the US mobile

networks. In the US, Advanced Mobile Phone Systems (AMPS)

was first launched in Chicago. This first network covered an

area of 2100 square miles and comprised of only 10 base sta-

tions. Networks were then expanded from high population

density areas to more remote locations as consumer uptake

began to increase and were continually expanded so that they

would keep up with demand (Figs. 5 and 6).

These original networks were developed within individual

nations, thereby limiting usage to within the country’s
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[13,47,48].
boundaries. Although small in comparison with todays net-

works, these original networks were still expensive due to not

benefiting from economies of scale with large numbers of

users [41]. Early networks included Advanced Mobile Phone

System (AMPS), Nordic Mobile Telephone (NMT) and Total

Access Communication System (TACS). AMPS became oper-

ational across most of the US in 1982.

In the US and Canada, 1G networks were launched by a

system of companies headed by Bell Telephone Company [42].

This was an advantage as it lowered the amount of invest-

ment and risk each firm was required to take in order to

implement the mobile network. Many of the companies

investing in these networks were providers of landline tele-

phones and radio communication companies. Crucially, mo-

bile phone companies, such as Motorola, were involved due to

their vested interest in increasing mobile phone uptake.

Motorola invested both time and money into network devel-

opment, inventing some of the technologies that networks

used and investing in network expansions. The original

network technologies were invented and patented by Motor-

ola [43].

Second generation (2G)

The second generation (2G) network was digital rather than

analogue; development began towards the end of the 1980s.

The original 2G networks were known as GSM, this still being

the most widespread network in the world in terms of area

coverage. GSM was established to allow for pan European

communication on a single digital cellular network. GSM

became operational in 1991, but GSM compatible handsets did

not really become available until 1992 [41]. Worldwide, 90% of

mobile phone users use GSM in their voice communications

[44]. GSM supported data services for the first time. It was

hoped that by the end of the 20th century 20 million users

would be signed up to GSM, the actual number exceeded 250

million. This was a remarkable achievement, since the GSM

standard had to overcome commercial, technical and cultural
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barriers. GSM allowed for international roaming and cross

border communications via mobile phones [45]. The standard

was originally developed for European use, but is now used

worldwide.

2G networks have been continually upgraded to cope with

increased demand. The first upgrade was to 2.5G also known

as GPRS and then to 2.75G also known as EDGE (Enhanced

Data rate for Global Evolution). The upgrade to EDGE began in

the US first in 2002 [41]. These evolutions took the mobile

phone network closer to the 3G networks that are widely used

today. GPRS and EDGE allowed for faster data communication

and enhanced Internet access. GSM was originally only

designed for voice communication. However, demand began

to shift frommainly voice and text communications to data as

well. GPRS and EDGE already made moves for the 3G network

to arrive [45].

Third generation (3G)

In 2002 demand began to shift from mainly voice and SMS

communication to increased data communication; network

operators responded to the demand and began looking into

increasing network capabilities, GPRS and EDGE being stop

gaps until this development could be completed. The 3rd

generation network became to be known as only 3G. The first

commercial network became available in Japan in 2001,

closely followed by South Korea in 2002 [45]. 3G allowed for a

substantial increase in data and voice communication ca-

pacities over previous networks [46]. 3G is far less well

distributed than the GSM network only covering around 11%

[41] of global distribution compared to 80% for GSM [44]. The

majority of 3G network users are in developed countries. In

the UK, 99.1% of mobile phone users have access to 3G from at

least one network provider [12].

Fourth generation (4G)

More than £2 billion is currently being spent by network EE to

roll out the new 4G networks across the UK. 4G is also known

as IMT-Advanced [40]. The 4G networks are all being launched

in urban and high population areas. In the UK, 4G is available

in London and surrounding areas, Cardiff, The Midlands,

urban areas in the North of England, Edinburgh, Glasgow and

Belfast. Only urban areas are being covered at present.
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Predevelopment of infrastructure

The findings from the case study of the mobile phone have

been used to develop a scenario model for the introduction of

hydrogen infrastructure. Real data from the introduction of

the mobile phone and the development of its infrastructure is

shown Fig. 6. This data is partly taken from GSMA data, which

measures the Global Coverage of GSM networks [47]. For some

years before 1999 no data from GSMA is available, for these

years Nokia Siemens data was used [48]. This Nokia Siemens

data counts the number of networks in operation from 1991 to

present. The data was converted so that it would show pop-

ulation coverage. The Nokia Siemens data was cross-

referenced with the GSMA data for years where both data
sets were available. This data was then extrapolated back

from 1999 to 1991 so that the level of population coverage

could be understood. Both sets of data only account for GSM

networks and not more advanced 3G or 4G networks. GSM

networks are by far the most wide spread globally accounting

for 90% population coverage.

From the mobile phone data it is clear that infrastructure

development predatedmobile phonemarket penetration. The

lag in time is between 3 and 5 years according to the data in

Fig. 6.

Predevelopment of hydrogen infrastructure

Based on the findings discussed throughout section 2 and data

shown in Fig. 6 implications can be drawn for the develop-

ment of a hydrogen infrastructure. The main conclusion is

that pre-development of infrastructure will be vital to the

market introduction of FCVs. The above data have been

applied to existing projections of FCV market share up until

2050. Two projections have been used. The first (Fig. 7) is based

on California’s Advanced Clean Car Program (CACCP) pre-

dictions [49]. These predictions represent a high level of

market penetration compared to other predictions. The sec-

ond scenario (Fig. 8) is based on the Department of Energy and

Climate Change’s (DECC) 2050 Pathways Report [50], this data

set represents more conservative predictions for FCV market

entry based on percentage of miles travelled by FCVs. The

secondary y-axis on Figs. 7 and 8 represents the percentage of

vehicle users who would need to have access to hydrogen

refuelling infrastructure so that the market predictions from

DECC and CACCP can be met. It is important that percentage

of vehicle users is used rather than percentage of the total

population. This is done so that the infrastructure numbers

relate properly to the FCV market share data, which also does

not measure FCVs in the entire population; the datameasures

the percentage of FCVs specifically within the automotive

sector. Access to refuelling infrastructure is defined as a

maximum travelling distance of 5 miles to a filling station.

The most outstanding message of the infrastructural

development scenarios is that hydrogen infrastructure

http://dx.doi.org/10.1016/j.ijhydene.2014.03.156
http://dx.doi.org/10.1016/j.ijhydene.2014.03.156
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developmentmust occur 3e5 years beforemarket penetration

of FCVs can be expected to occur. This 3e5 year lead-time is

instrumental in creating a market demand for FCVs, and is in

line with Melaina’s finding [51]. Both scenarios indicate FCV

market entry occurring in 2020 and reaching high market

shares by 2025, this wouldmean thatmeaningful investments

into a hydrogen infrastructure would need to begin by

2015e2017 and larger investments would be needed by

2020e2022. Without these investments the market uptake of

FCVs could be lower than is the UK DECC and CACCP

predictions.

If by 2050, according to California’s Advanced Clean Car

program predictions (Fig. 7), there will be 59% FCVsmaking up

the number of light duty vehicle on Californian roads we

would require 59% of the vehicle users to have access to

hydrogen infrastructure by 2045 and by 2047 at the latest.

Based on the DECC predictions of 20% FCV market share by

2050, 20% of the vehicle users would need access to hydrogen

infrastructure by the year 2045e2047 at the latest. Prior to

reaching these figures, continuous investments into hydrogen

infrastructure will be needed. In the first 3e5 years it is

probable that FCV market penetration would be at near 0%

with the only vehicles being in demonstration projects or a

small numbers of early adopters. The lack of existing markets

for FCVs is unavoidable and a market will not be able to grow

until some baseline hydrogen infrastructure has been con-

structed. The recommendation made here is that a 5-year

lead-time is the best strategy for hydrogen infrastructure

since this will lead to smoother market entry for FCVs. The

scenarios below are all based on this 5-year lead-time. If this 5

year lead time is not in place the level ofmarket penetration of

FCVs will lag behind the predictions from the DECC and

CACCP.

Now that the amount of infrastructure needed has been

defined it is important to consider what is meant by access to

infrastructure. FCV owners cannot be expected to travel 10s of

miles in order to reach a filling station. It is assumed that the

maximum theoretical distance travelled to reach a hydrogen

filling station would be 5 miles. This distance is based on a
study by Melaina and wouldmean that in the US it would take

a maximum 17min to a reach station (travelling at an average

of 25mph) [51,52]. Based on these figures a quick calculation

revels that to cover 100% of the UK we would need only 1198

hydrogen filling stations as an absolute minimum. This is

remarkably close to the 1150 stations suggested by UK H2

Mobility [53].

For California 100% coverage could be reached with 2085

filling stations as an absolute minimum. Figs. 9 and 10 show

the number of filling stations that would be required in the

California and the UK respectively. These numbers are based

on the DECC and CACCP scenarios. For California 21 filling

stations are needed by 2015, there are currently 9 accessible to

the public. For the UK where the number of vehicles is pre-

dicted to be lower 24 filling stations are needed by 2020. These

figures represent the absolute minimum number of filling

stations required to allow the numbers of vehicle users access

to a hydrogen filling station within 5 miles. It would be more

beneficial to have a greater number of filling stations to pre-

vent congestion and to give FCV usersmore filling options. It is

also clear that these stations would be located in strategic

locations so that they are accessible by a large proportion of

potential FCV users. Additionally is it important that the sta-

tions connect different areas of the country allowing for

intercity as well as intra city travel.

These absoluteminimumhydrogen filling station numbers

mean that for the UK there would be 14,000 FCVs per 1 filling

station. This would clearly be too high. The current ratio for

ICE vehicles to petrol stations is 4011 vehicles per 1 station

based on 34.5million vehicles on the roads [54] and 8600 filling

stations in the UK [55]. In California there is a ratio 3831 ve-

hicles per filling station, based on 31.8 million vehicles [56]

and 8300 filling stations [57]. Therefore it would be sensible

to increase the number of hydrogen filling stations by a factor

of at least 2 or 3 so that each filling station serves a similar

number of vehicles as petrol stations serve currently. This will

ensure demand for hydrogen is met. More appropriate

numbers of filling stations can be seen in Figs. 11 and 12.

Fig. 11 shows low, medium and high scenarios for the number

of hydrogen filling stations required to meet the FCV market
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entry predictions based on California’s Advanced Clean Car

programme predictions of on-road light duty vehicle fleet [49].

Fig. 12 shows low, medium and high scenarios for the number

of hydrogen filling stations in the UK in order to support the

UK DECC 2050 Pathways Report [50] predictions for FCV mar-

ket entry. Careful selection of the locations of these stations

would obviously be crucial. Areas with a large number of po-

tential early adopters of FCVs would need to be targeted first

as well as areas with high proportion of vehicle users. This

paper does not look at specific locations of such filling stations

and there is clearly room for potential future work.

What these scenarios clearly illustrate is that there is an

urgent need to invest in hydrogen infrastructure in California

by 2015 and in the UK by 2020. Without this infrastructural

investment uptake of FCVs will be lower than what the cur-

rent scenarios are predicting. This would clearly be detri-

mental to the market uptake of FCVs. The 3e5 year lead-time

of infrastructural development resulted in the successful

introduction of the mobile phone. A 3e5 year lead-time of

could also be crucial to a successful market uptake FCVs.
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of filling stations required in California to support FCV
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Conclusion

Many developers of FCVs and hydrogen infrastructure are

experiencing a predicament. There is currently no market

demand for FCVs because there is no hydrogen infrastructure.

Further to this, infrastructure providers will not invest into a

hydrogen infrastructure because there is no demand from

FCVs. The only solution to this is to pre-develop a hydrogen

infrastructure in order to create a basis on which consumers

can use FCVs. Major investments into infrastructure can occur

in sync with market penetration, but initial infrastructural

investment must pre-datemarket entry of a new product. The

situation that exists today for FCVs existed 30 years ago for the

mobile phone. But mobile phone developers, telecom infra-

structure developers and telecom network providers eventu-

ally came together and jointly invested in the pre-

development of mobile telecom infrastructure to support the

mobile phone. The mobile phone would not have been as

successful as it is today without these early investments. The

organisations making the initial investments into mobile

networks were both communication providers and handset

OEMs. Today it is easy to see the rationale of OEMs investing

into infrastructure as handset market share is more than

double that of infrastructure providers market share within

the mobile phone industry (15% compared to 7% of revenue)

[58]. In this way investment into FC infrastructure should be

done in part by incumbent oil companies, existing hydrogen

producers but it is also important that automotive firms and

FCV developers, invest into the infrastructure that will sup-

port their products. Automotive OEMs are often reluctant to

invest into infrastructure, but they should learn lessons from

Motorola and realise that investments into networks can

result in increased revenue generation through increased

sales of their products. With a larger number of investors

involved in the introduction of a hydrogen infrastructure,

costs will be lowered and risks shared. Governments are keen

to see hydrogen infrastructure developed for environmental

reason, energy security and social reasons. Some projects

involving a large number of stakeholders are underway. The

UK H2 Mobility project brings in some of the stakeholders

mentioned above but does not include oil companies. The
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recommendations made in this paper align with those made

by the UK H2mobility project. The project outlines a roadmap

to 1150 hydrogen filling stations covering the entire UK by

2030 [53]. These figures are in excess of the number of filling

stations suggested here, so would be sufficient to support the

market entry figures suggested by the UK DECC. If the H2

mobility project is a success it could result in the smooth

market uptake of FCVs in the UK.

The California Energy Commission in the USA awarded

funds for the construction of filling stations [59]. It is also

important that all of these stakeholders understand that a

return on their investment will not come quickly. It therefore

will seem counter intuitive for them to invest, in an economic

sense at least. Early investments may also serve to create a

positive brand image and companies may choose to market

themselves as ‘green’, which can lead to them generating

strategic advantages over competitors. The greatest danger, if

companies decide not to invest, is that they will suffer lost

revenue in the future due to not succeeding in market entry

with their innovations [60]. The suggestion of having auto-

motive OEMs invest into infrastructure is a divergence from

their current business models. This may not be appealing to

them, but if they want to see their FCVs enter markets it may

be the only sensible option.

One automotive firm, Tesla Motors, is already investing

into BEV recharging infrastructure to support the market

introduction of its own vehicles [61]. Supercharger stations

cost between $150,000 and $300,000 and there are currently 42

in the US and 13 in Europe [61]. This means that the networks

have cost between $8.25 and $16.5 million to date. FCV de-

velopers should learn from this and not be coy when consid-

ering investments into a hydrogen infrastructure.

An alternative method, although not the main recom-

mendation being made here, is infrastructure development

alongside centralised vehicle fleets. Fuel Cells are now seeing

widespread applications in a number of niche markets; in

both stationary and mobile power applications. One such

mobile power niche is material handling equipment. Large

fleets of forklift trucks are now in use [62]. These fleets are

used alongside an onsite filling station that provides

hydrogen. It may be possible for hydrogen infrastructure to

firstly develop in these niches. FCV fleets that operate from a

central hub could be operated using these centralised filling

stations. This type of operation would be most useful to

transport authorities and delivery companies, but could also

be used to support the introduction of FCVs to the general

public. This method would be less risky in terms of economic

investment as there would be a guaranteed customer base;

however, it is unlikely to facilitate a rapid increase in the

consumer uptake of FCVs. What could be more useful is if

these types of schemes were used as pilot and demonstration

projects. These could indicate the success of a seed hydrogen

infrastructure and convince FCV stakeholders to invest in a

predevelopment of infrastructure.
Summary

There is currently a lack of commitment to the development

of a hydrogen infrastructure to support FCV market entry. In
order to understand how to develop a hydrogen infrastructure

a historical case study of mobile telecommunication infra-

structural development was done. Mobile telecommunication

networks were successfully developed from scratch by a

consortium of companies beforemobile phoneswere released

to market. This predevelopment of the infrastructure was key

to the successful market uptake. The predevelopment lead-

time for the mobile phone networks to be built was between

3 and 5 years.

In order to allow smooth market entry of FCVs predevel-

opment of infrastructure will be critical. By investing into

hydrogen filling stations before FCVs are expected to enter

markets no delay should occur and market entry should pro-

ceed as it has been foreseen. It is suggested that a 5-year lead-

time is appropriate with a minimum lead-time of 3 years. The

issue still remains that pre-development will be an expensive,

time consuming and high-risk process. Individual companies

would not be willing to undertake such an exercise. This is the

reason that it is suggested that a hydrogen infrastructure is

developed by vehicle manufactures, hydrogen-producing

companies, existing oil companies and governments. This

will allow costs and risks to be shared by all stakeholders in a

hydrogen economy.
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