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Computing unique input output (UIO) sequences is a fundamental and hard problem in
conformance testing of finite state machines (FSM). Previous experimental research has
shown that evolutionary algorithms (EAs) can be applied successfully to find UIOs for some
FSMs. However, before EAs can be recommended as a practical technique for computing
UIOs, it is necessary to better understand the potential and limitations of these algorithms
on this problem. In particular, more research is needed in determining for what instance
classes of the problem EAs are feasible, and for what instance classes EAs are provably bet-
ter than random search strategies.

This paper presents rigorous theoretical and numerical analyses of the runtime of the
(1 + 1) EA and random search on several selected instance classes of this problem. The the-
oretical analysis shows firstly, that there are instance classes where the EA is efficient,
while random testing fails completely. Secondly, an instance class that is difficult for both
random testing and the EA is presented. Finally, a parametrised instance class with tunable
difficulty is presented. The numerical study estimates the constants in the asymptotic
expressions obtained in the theoretical analysis, and the variability of the runtime. The
numerical results fit well with the theoretical results, even for small problem instance
sizes. Together, these results provide a first theoretical characterisation of the potential
and limitations of the (1 + 1) EA on the problem of computing UIOs.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

As modern software systems grow larger and more complex, there is an increasing need to support the software engineer
with tools for automating some of the software engineering tasks. The field of search based software engineering (SBSE) ap-
proaches this challenge in a novel way by reformulating software engineering problems into optimisation problems. Such a
reformulation has allowed the automation of a wide range of software engineering tasks using evolutionary algorithms and
other randomised search heuristics [2].

The increasing popularity of SBSE approaches is partly due to the relatively ease with which search heuristics can be
adapted to new problem domains. In principle, the only required ingredients in a search based approach is an encoding
of candidate solutions and a way of comparing the quality of two candidate solutions. In contrast, developing problem-spe-
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cific algorithms may require deep insight into the problem structure. The development of problem-specific algorithms is fur-
ther complicated by the fact that many software engineering problems are NP-hard [3].

However, before SBSE approaches can be widely adopted in the industry, some challenges must be addressed. In partic-
ular, it is hard to predict whether a search heuristics will be successful on a given optimisation problem. In some cases,
search heuristics fail to find any solution to a problem within acceptable time. Such failures can happen for several reasons.
Firstly, the search heuristic applied may not be the most appropriate search heuristic among the many search heuristics that
have been developed. From a general point of view, the No Free Lunch (NFL) theorem limits the comparative advantage a
given search heuristic can have on a wide problem classes [4]. Although the conditions of the NFL theorem do not always
hold for practical problems [5], it is reasonable to assume that the effectiveness of a search heuristic depends on how well
it is adapted to the problem. Hence, for a given SE problem, one search heuristic may fail, whereas another succeeds. Sec-
ondly, a search heuristic may fail if its parameters are not appropriately tuned to the problem. In the case of evolutionary
algorithms, it is known that minor changes in parameters like the use of crossover operator [6,7], population size [8,9], diver-
sity mechanisms [10,11], and the mutation-selection balance [12] can have dramatic impacts on the runtime. A third reason
for failure is related to the computational intractability of many software engineering problems. Any search heuristic applied
to an NP-hard optimisation problem will fail on at least on some instances of the problem, unless some widely held conjec-
tures in computational complexity do not hold.

Unless these causes of failure are not properly addressed, the SBSE techniques will be associated with some degree of
unreliability. We therefore argue that studies of search based approaches to a software engineering problem should consider
the questions: Which of the many available search heuristic is best suited for the problem? How should the parameter set-
tings be adjusted? Which instances of the problem are tractable for the search heuristic, and which instances are hard? We
claim that such questions would be most rigorously answered by a theoretical analysis. However, except for a few studies
[1,13–15], all previous research in SBSE has been experimental.

To answer the questions above rigorously, it is necessary to specify more clearly what it means that a search heuristic is
successful on a problem. For a given search heuristic and problem class, one can initially ask whether the heuristic will ever
find a solution, if it is allowed unlimited time. This type of questions falls within the realms of convergence analysis, which is
a well-developed area [16]. There exist simple conditions on the underlying Markov chain of a search heuristic that guaran-
tee convergence in finite time. These conditions often hold for the popular search heuristics [16]. However, convergence it-
self gives very little information about whether a search heuristic is successful in practice, because no limits are put on the
amount of resources the algorithm uses. If convergence can be guaranteed within unlimited time, the next question to ask is
how much time the search heuristic needs to find the solution. This type of questions falls within the realms of runtime anal-
ysis, where one tries to estimate the runtime as a function of the problem instance size. Similar to the case of classical algo-
rithms, one can make the broad distinction between efficient algorithms that find the solution in polynomial time, and
inefficient algorithms, that need exponential time to find the solution. Runtime analysis of search heuristics is very challeng-
ing, partly because of their randomised nature. Nevertheless, the techniques for analysing search heuristics have improved
rapidly over the last decade, to the point where the runtime of search heuristics can now be analysed on classical problems in
combinatorial optimisation [17]. We suggest that the theoretical methods that have been developed for analysing the run-
time of search heuristics can be applied in theoretical studies in search based software engineering. Some of the possible
avenues for this type of research have already been outlined in [18].

To initiate such a theoretical study, we therefore consider the domain of finite state machine (FSM) testing, which is an
area with a long history in software engineering [19]. Techniques for testing finite state machines have traditionally been
applied to test implementations of communication protocols [20]. However FSM testing techniques have also been applied
elsewhere, including traditional software testing domains [21]. Finite state machine testing has also been a popular research
area within search based software engineering [22–28,24,29]. All previous research on FSM testing in search based software
engineering has been empirical.

We will focus on the specific problem of computing unique input output (UIO) sequences for finite state machines [19].
Unique input output (UIO) sequences are related to conformance testing of finite state machines, which consists of checking
whether an implementation machine is equivalent with a specification machine. While one has full information about the
specification machine, the implementation machine is given as a black box. To check the implementation machine for faults,
one is restricted to input a sequence of symbols and observe the outputs the machine produces. A fundamental problem
which one will be faced with when trying to come up with such checking sequences is the state verification problem, which
is to assess whether the implementation machine starts in a given state [19]. One way of solving the state verification prob-
lem is by finding a unique input output sequence (UIO) for that state. A UIO for a state is an input sequence which, when
started in this state, causes the FSM to produce an output sequence which is unique for that state.

Computing UIOs is hard. All known algorithms for this problem have exponential runtime with respect to the number of
states. Lee and Yannakakis proved that the decision problem of determining whether a given state has a UIO or not is
PSPACE-complete, and hence also NP-hard [30]. In the general case, it is therefore unlikely that there will ever be an efficient
method for constructing UIOs and one cannot hope to do much better than random search or exhaustive enumeration. The
application of evolutionary algorithms or any other randomised search heuristic cannot change this situation. However, the
existence of hard instances does not rule out the possibility that there are many interesting instances that can be solved effi-
ciently with the right choice of algorithm. On such ‘‘easy’’ instances, EAs can potentially be more efficient than exhaustive
enumeration and random search.
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Guo et al. reformulated the problem of computing UIOs into an optimisation problem to which he applied an EA [24].
When comparing this approach with random search for UIOs, it was found that the two approaches have similar perfor-
mance on a small FSM, while the evolutionary approach outperforms random search on a larger FSM. Derderian et al. pre-
sented an alternative evolutionary approach which also allows the specification machine to be partially specified [22]. Their
approach was compared with random search on a set of real-world FSMs and on a set of randomly generated FSMs. Again, it
was found that the evolutionary approach outperformed random search on large FSMs. Furthermore, the difference in per-
formance increased with the size of the FSM. Although previous experimental research have show that there are instances of
the problem where the evolutionary approach is preferable over a simple random search strategy, more research is needed to
get a deeper understanding of the potential of EAs for computing UIOs. Such a deeper insight can only be obtained if the
experimental research is complemented with theoretical investigations.

Runtime analysis of EAs is difficult. When initiating the analysis in a new problem domain, it is an important first step to
analyse a simple algorithm like the (1 + 1) EA. Without understanding the behaviour of such a simple algorithm in the new
domain, it is difficult to understand the behaviour of more complex EAs, e.g. those EAs that use a population and crossover.
Although the (1 + 1) EA is relatively simple compared to other evolutionary algorithms, recent research has shown that this
algorithm is surprisingly efficient on a wide range of useful problems [17], including sorting [31], minimum spanning tree
[32] and Eulerian cycle [33].

Our objective with the theoretical investigation is not to propose a new evolutionary approach to computing UIOs, and we
do not claim that the evolutionary approach taken here is more efficient than previous approaches. Rather, we would like to
consider a sufficiently simple scenario that allows a theoretical characterisation to be undertaken. We would like to analyse
whether evolutionary algorithms can outperform random search in this problem domain, and we would also like to under-
stand what types of FSMs the EA can find UIOs efficiently, and for what types of FSMs the problem is hard for the EA.

This paper extends the preliminary conference version of the paper [1] in several ways. The theoretical study has been
complemented with an extensive numerical study. The runtime analysis now considers a generalised variant of the
(1 + 1) EA that operates on general input alphabets. Furthermore, the easy FSM problem instance class has been generalised
to modulo-n counters over general input alphabets, and the hard FSM problem instance class is generalised to the wider class
of sequence detection FSMs.

The rest of this paper is structured as follows. Section 2 recalls the basic definitions for FSMs and UIO sequences. Section 3
describes the evolutionary approach for computing UIO that will be considered in this paper. In particular, the section de-
scribes how candidate solutions are encoded, the definition of the fitness function and how the (1 + 1) Evolutionary Algo-
rithm has been adapted for the problem. In addition, Section 3 defines the expected runtime of an evolutionary
algorithm. Section 4 contains the main theoretical runtime results from the paper. Section 4 describes the experimental
methodology, and Section 5 presents the experimental results and compares these with the theoretical results obtained
in Section 4. The paper is concluded with a discussion and conclusion in Sections 7 and 8.

2. Preliminaries

2.1. Notation

Symbol � denotes the empty string. The length of a string x is denoted ‘ðxÞ. Concatenation of strings x and y is denoted
x � y, and xi denotes i concatenations of x. Standard notation (e. g., O, X and H) for asymptotic growth of functions (see, e.g.
[34]) is used in the analysis.

2.2. Finite state machines

Definition 1 (Finite state machine [19]). A finite state machine (FSM) M is a quintuple M ¼ ðI;O; S; d; kÞ, where I is the set of
input symbols, O is the set of output symbols, S is the set of states, d : S� I ! S is the state transition function and
k : S� I! O is the output function.

At any point in time, an FSM M is in exactly one state s in S. When receiving an input a from I, the machine outputs symbol
kðs; aÞ and goes to state dðs; aÞ. The domain of the state transition function d and the output function k is generalised to non-
empty strings over the input alphabet, i.e.
dðs; a1a2 � � � anÞ :¼ dðdðs; a1a2 � � � an�1Þ; anÞ and
kðs; a1a2 � � � anÞ :¼ kðs; a1Þ � kðdðs; a1Þ; a2 � � � anÞ:
Definition 2 (Unique input output sequence [19]). A unique input output sequence (UIO) for a state s in an FSM M is a string x
over the input alphabet of M such that kðs; xÞ–kðt; xÞ for all states t; t–s.

Definitions 1 and 2 are illustrated in Fig. 1. An edge ðsi; sjÞ labelled i=o defines the transition dðsi; iÞ ¼ sj and the output
kðsi; iÞ ¼ o. The input sequence acac is a UIO for state s1, because only starting from state s1 will the FSM output the sequence
0001. The single input symbol c is a UIO for state s2, because only state s2 has output 1 on input c. This FSM does not have any
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distinguishing sequence, because for every input symbol x in the FSM, there exists at least two states s and t such that
kðs; xÞ ¼ kðt; xÞ and dðs; xÞ ¼ dðt; xÞ.

3. UIO generation as an optimisation problem

3.1. Representation and fitness function

Previous research on computing UIOs with EAs have considered different types of representations and fitness functions
[22,24]. The purpose of this paper is not to propose a new evolutionary approach to computing UIOs, but to analyse the run-
time behaviour of an EA when using what we consider is the most straightforward and simple representation and fitness
function. We will therefore build on the existing approaches, and where we consider it natural, make some modifications.
The research question as to which representation and fitness function are the most appropriate when computing UIOs is left
open for future research.

Following [24], candidate solutions are represented as strings over the input alphabet I of the FSM. The length of the input
sequences among which the EA is searching for UIOs has to be bounded in some way. It is known that there exists FSMs
where the shortest UIOs have exponential length with respect to the number of states n [30]. However, in order to obtain
a fitness function that is computationally feasible, it is necessary to bound the length of input sequences LðnÞ to some small
polynomial in n. As all the FSM classes studied here have UIOs of length n, we therefore bound the input sequence length to
LðnÞ :¼ n.

The representation used here differs from previous representations in that we do not use ‘‘don’t care’’-symbols proposed
in Guo et al. [24]. Such symbols do not cause any state transition in the FSM, and can therefore be removed from the solu-
tions provided by the EA to obtain UIOs shorter than the representation length LðnÞ. We will not consider ‘‘don’t care’’-sym-
bols because shorter UIOs can still be obtained through a simple post-processing stage. For every UIO x of length LðnÞ that has
been obtained by the EA, it is easy to check in polynomial time whether any prefix x1 � � � xi of x, 1 < i < LðnÞ is also a UIO.

Similarly to Guo et al. [24], we will define the fitness of an input sequence as a function of the state partition tree induced
by the input sequence. Intuitively, the state partition tree of an input sequence represents how increasingly long prefixes of
the input sequence partitions the set of states according to the output they produce. Fig. 1(right) gives an example of a state
partition tree for input sequence acac on the FSM in Fig. 1(left). The root node is the set of all nodes. On input symbols ac,
state s1 and s4 output 00, while states s2 and s3 output symbol 01. The two partitions fs1; s4g and fs2; s3g, are divided con-
secutively on further inputs, and finally into three partitions fs1g; fs4g and fs2; s3g on the final input acac. Each singleton
fsig in a state partition tree indicates that the corresponding input sequence is a UIO for that state si.

In previous work [22,24] the EA was given the task to obtain UIOs for all states simultaneously. The fitness functions were
defined to reward input sequences that are close to be UIOs, regardless of for which state in the FSM. One could hope that
given a sufficiently diverse population, different individuals would encode UIOs for different states. However, as was found
in previous research [24], it was hard to maintain such a diverse population, and the input sequences tended to converge
towards a few similar input sequences. We would argue that the problem of computing UIOs for two states s and t is two
different objectives. In general, these objectives can be conflicting, as the UIO for state s can be significantly different from
the UIO for state t. As an example, consider the FSM in Fig. 1. The shortest UIO for state s4 is the sequence b, however none of
the other states in this FSM has a UIO beginning with symbol b, hence the objective of computing a UIO for state s4 conflicts
with the objective of computing UIOs for the other states. In the exceptional case that none of the objectives are conflicting,
the FSM is likely to contain a distinguishing sequence (DS) [19], and there is no need to apply an EA.

Here, we will therefore consider what we think is a more natural approach, to search for a UIO for one state at a time. UIOs
for all the states in the FSM can be obtained simply by re-running the EA, each time with a different fitness function corre-
sponding to a new state. The fitness of an input sequence with respect to a state s is hence defined with respect to the car-
dinality of the leaf containing state s in the state partition tree.
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Definition 3 (Fitness function). For an FSM M with n states, define the fitness function fM;s : In ! R for state s as
fM;sðxÞ :¼ n� cMðs; xÞ; where
cMðs; xÞ :¼ jft 2 Sjkðs; xÞ ¼ kðt; xÞgj:
The instance size of a fitness function fM;s is defined as the number of states n in FSM M. The value of cMðs; xÞ is the number
of states in the leaf node of the state partition tree containing node s, and is in the interval from 1 to n. If the shortest UIO for
state s in FSM M has length no more than n, then fM;s has an optimum of n� 1. As an example of Definition 3, consider the
FSM in Fig. 1, for which the fitness function takes the values fM;s1 ðacacÞ ¼ 3 and fM;s1 ðaaaaÞ ¼ 0. In all the instances presented
here, the objective is to find a UIO for state s1. To simplify notation, the notation fM will therefore be used instead of fM;s, and
the notation cðxÞ will be used instead of cMðs; xÞ, where the FSM M is given by the context.
3.2. Evolutionary algorithms

Runtime analysis of evolutionary algorithms in new problem domains are often initiated with a simple evolutionary algo-
rithm called (1 + 1) EA [35,17]. The (1 + 1) EA keeps a single individual represented as a bitstring of length n, and mutates this
individual by flipping each bit with probability 1=n. One way of directly apply the (1 + 1) EA to the UIO problem would be to
encode input symbols in binary. However, such binary encodings are inconvenient for input alphabet cardinalities other than
a power of two. Instead, we consider a generalised (1 + 1) EA which operates on any fixed input alphabet I. In this algorithm,
the individual is represented as a string of length n over the input alphabet I. In the mutation step, each string position i in a
bitstring x is mutated independently with probability 1=n by setting xi to a randomly chosen input symbol r different from
the original symbol xi. Clearly, with the binary input alphabet I ¼ f0;1g, the generalised (1 + 1) EA becomes identical to the
classical (1 + 1) EA.

Algorithm 1. (1 + 1) Evolutionary algorithm.

1: Sample x uniformly at random from In

2: repeat
3: x0  x
4: for i = 1 to n do
5: if with probability 1/n then
6: x0i  r, where r is sampled uniformly at random from I n fxig
7: end if
8: end for
9: if f ðx0ÞP f ðxÞ then

10: x x0

11: end if
12: until termination condition met

We say that one step of the (1 + 1) EA is one iteration of the Repeat-loop in the algorithm. In each step of (1 + 1) EA, the
fitness value f ðx0Þ must be evaluated. We can assume that the fitness value f ðxÞ of the current search point x is stored in a
local variable. Hence, after step t of the algorithm, the fitness function has been evaluated t times. In the black box scenario,
the runtime complexity of a randomised search heuristic is measured in terms of the number of evaluations of the fitness
function, and not in terms of the number of internal operations in the algorithm [36]. For a given function and randomised
search heuristic, the expected runtime is defined as the mean number of fitness function evaluations until the optimum is
evaluated for the first time. The runtime on a class of fitness functions is defined as the supremum of the expected runtimes
of the functions in the class [35,37].

A function is considered easy for the (1 + 1) EA if the expected runtime is bounded from above by a polynomial in n. Con-
versely, a function is considered hard for the (1 + 1) EA if the expected runtime is bounded from below by an exponential
function in n.

4. Runtime analysis

This section analyses the behaviour of the (1 + 1) EA on the problem of computing UIOs for different classes of FSMs. We
would like to emphasise that our primary concern here is not with these FSM classes themselves. Rather, the FSM classes are
studied to shed light on what distinguishes the tractable from the intractable classes of FSMs for the (1 + 1) EA on the UIO
problem. Given the NP-hardness of the UIO problem, it is clear that EAs will fail on certain FSM classes, and we would like to
distinguish those from the tractable FSM classes. For this reason, it is desirable to consider FSM classes that are not too intri-
cate or too closely tied to a particular application, such that the reasons for failure or success of the (1 + 1) EA can become
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more easily recognisable, and possibly be used as guidelines when studying the behaviour of evolutionary algorithms in
more application-near cases of the UIO problem.

Nevertheless, the two first FSM classes that are studied here turn out to play fundamental roles in practical applications of
FSMs. The tractable class is the modulo n-counter FSMs [38]. Such FSMs are used widely where there is a need to report
when a certain number of events of a given type has occurred. A simple example of such FSMs is the binary counter. The
second class of FSMs, which is intractable for the (1 + 1) EA, is the sequence detector FSMs [38]. These FSMs listen to a stream
of symbols, and emit a signal every time a specified sequence of symbols occurs in the stream. Sequence detector FSMs are
also widely used, for example in the lexical analysis component of compilers, in electronic key locks, or in communication
systems where one wants to recognise start and stop signals in a bitstream. Both of these FSM classes typically occur as com-
ponents within a larger system.

A runtime analysis of the (1 + 1) EA for a given FSM M requires a certain level of information about the fitness landscape of
the corresponding fitness function fM . The runtime analyses are therefore carried out in two steps. The first step is a char-
acterisation of the function values of the fitness function fM obtained via Definition 3. The second step is the runtime analysis
of the search heuristics on fitness function fM .

As described above, the fitness function is defined with respect to a single state. To obtain UIOs for all n states in an FSM,
the EA should be re-run n times, once for each state. The runtime analysis will only focus on the time to find a UIO for a single
state s1 for the following reason. If Ti is the runtime to obtain a UIO for state i, then the overall runtime T to find UIOs for all n
states will be T ¼

Pn
i¼1Ti. Hence, the asymptotic upper and lower bounds on runtime T are T ¼ Oðn � T�Þ and T ¼ XðT�Þ, where

T� :¼maxiTi. Hence, to characterise within a linear factor the asymptotic runtime to find the UIOs for all states, it suffices to
analyse the runtime on the hardest state.

4.1. Easy FSM instance class

Our first aim is to construct a class of problem instances which is hard for random search, while being easy for the (1 + 1)
EA. In order to be hard for random search, the length of the shortest UIO for state s1 must be at least linear in n, and there
must be few UIOs of this length. To keep the instance class easy for the (1 + 1) EA, the idea is to ensure that the resulting
fitness function has few interactions among the variables. It is well known that the (1 + 1) EA optimises all linear functions
efficiently [37,35].

Definition 4 (Modulo-n counter FSM class). For instance sizes n;n P 2, define an FSM E with input alphabet I of constant
cardinality m having a special input symbol 1 2 I, and output alphabet O :¼ fconst;incr;resetg, and n states
S :¼ fs1; s2; . . . ; sng. For all states si, define the output function k as
kðsi; xÞ :¼
reset if x ¼ 1; and i ¼ n;

incr if x ¼ 1; and i < n; and
const otherwise:

8><
>:
For all states si, define the state transition function d as
dðsi; xÞ :¼
s1 if x ¼ 1; and i ¼ n;

siþ1 if x ¼ 1; and i < n; and
si otherwise:

8><
>:
The objective is to find an UIO of length n for state s1.
The instances in Definition 4 are illustrated in Fig. 2. This FSM is a modulo-n counter, which counts the number of 1-sym-

bols received, and outputs the special symbol reset after n inputs of symbol 1. Note that ðsn; s1;1=resetÞ is the only state
transition with a distinguishing input/output behaviour. Furthermore, the states will never collapse, i. e. dðsi; xÞ–dðsj; xÞ for
any input sequence x and any pair of different states si and sj. It is easy to see that any sequence of length n where at most
one symbol is different from 1, is a UIO for state s1. We show that the easy instance class leads to a fitness function which is
very similar to the well-known fitness function ONEMAX [39]. The proof is in the appendix.

Proposition 1. Define the function j � j1 : I! f0;1g as j1j1 :¼ 1 and jpj1 :¼ 0 for all p–1. The fitness function fE corresponding to
the instance class in Definition 4 takes the following values
Fig. 2. Finding UIOs for state s1 is easy with the (1 + 1) EA.
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fEðxÞ ¼
n� 1 if x ¼ 1n; and
Pn
i¼1
jxij1 otherwise:

8<
:

Theorem 1. Using fitness function fE, the expected time until random search finds a UIO for state s1 is geometrically distributed
with parameter p ¼ ðnmþ 1Þ �m�n. Furthermore, the probability that random search finds a UIO for state s1 in less than ec�n iter-
ations is exponentially small e�XðnÞ, where c is a constant.
Proof. An optimal solution has at most one symbol different from 1. Hence, the probability that the uniformly sampled
sequence in any iteration of random search is optimal is p :¼ ðnmþ 1Þ �m�n.

For n > 5 and m P 2, we have p < e�n=4. The probability that random search finds an optimal solution within ecn;n P 6,
steps is thus no more than
Xexpðc�nÞ

i¼1

1� ðnmþ 1Þ �m�nð Þi � ðnmþ 1Þ �m�n
6

Xexpðc�nÞ

i¼1

ðnmþ 1Þ �m�n
6 ec�n � e�n=4 ¼ e�XðnÞ;
when c < 1=4. h

The runtime analysis of (1 + 1) EA on the problem of computing a UIO for state s1 is similar to the well-known analysis of
the (1 + 1) EA on the ONEMAX problem [39]. However, because we consider a generalised search space In, where jIj ¼ m, we
need to consider a more general case.

Theorem 2. Using fitness function fE, (1 + 1) EA will find a UIO for the state s1 in the modulo n counter FSM in expected time
Oðnm log nÞ, where m P 2 is the size of the input symbol alphabet of the FSM.
Proof. By the values of fitness function fE, in non-optimal search points x and y, fEðxÞP fEðyÞ if and only if search point x has
at least as many 1-symbols as search point y. So in a given step of (1 + 1) EA, the mutated search point x0 will only be accepted
if it has at least as many 1-symbols as search point x. If x0 has more 1-symbols than x, we say that the step is successful. When
x has i symbols different from 1, the probability of a successful step is at least i=ðnðm� 1ÞÞ � ð1� 1=nÞn�1 P i=enm.

Search points with at least n� 1 1-symbols are optimal, hence it suffices to wait for n� 1 successful steps to find the
optimum. The expected runtime of (1 + 1) EA is therefore bounded from above by

Pn
i¼2enm=i ¼ Oðnm log nÞ. h

The result in Theorem 1 means that random search is a highly inefficient strategy for computing UIOs for modulo-n coun-
ter FSMs. As such FSMs are quite common in applications, this result means that one cannot rely on random search as a gen-
eral strategy for computing UIOs. The problem with random search occurs when the shortest UIOs are at least linear in
length with respect to the number of states.

In contrast, the result in Theorem 2 implies that the (1 + 1) EA can compute UIOs efficiently for the modulo-n counter
FSMs. Although the time to find the UIO increases with the size of the input alphabet, the runtime remains polynomial as
long as the input alphabet is of polynomial size. The efficiency of the (1 + 1) EA can be attributed to the structure of the fit-
ness landscape induced by the FSM class. For every input sequence that is not a UIO for state s1, it suffices to increase the
number of 1-symbols in the input sequence to distinguish s1 from one more state. Hence, at any non-optimal point in the
search space, there is a better, neighbouring input sequence.

It has previously been asserted that evolutionary algorithms can outperform random search when computing UIOs. How-
ever, Theorems 1 and 2 provide the first formal proof that this assertion is indeed true. This result warrants further explo-
ration of search based approaches for computing UIOs.

4.2. Hard FSM instance class

As explained above, the problem of computing UIOs is NP-hard. Hence, one should expect that any search based approach
will fail to find UIOs in polynomial time for at least some classes of FSMs. In practical applications of search heuristics, it is
necessary to know about these intractable cases such that other techniques or problem reformulations can be considered to
avoid the unnecessary waste of resources. Here, we describe a broad class of FSMs that is hard for both random search and
the (1 + 1) EA.

Definition 5 (Sequence detector FSM class). Given an alphabet R of constant size m, and a word w of length n� 1 > 2 over R,
define an FSM Hw with input alphabet I :¼ R [ fEOLg and output alphabet O :¼ fack;foundg, and n states
S :¼ fs1; s2; . . . ; sng. For all states si, define the output function k as
kðsi; xÞ :¼
found if i ¼ n; and x ¼ EOL; and;
ack otherwise:

�

For all states si, define the state transition function d as



Fig. 3. Finding a UIO for state s1 is hard for (1 + 1) EA.
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dðsi; xÞ :¼
siþ1 if i < n; and x ¼ wi;

s1 otherwise:

�

The objective is to find an UIO of length n for state s1.
The instances in Definition 5 are illustrated in Fig. 3, and corresponds to a machine that recognises a fixed keyword w. In

every step, the FSM receives a new letter from a word. The FSMs acknowledges each input letter by outputting the symbol
ack. If the FSM is given all the input letters corresponding to the keyword w suffixed by a special input symbol EOL marking
the ‘‘end of line’’, then the FSM responds with the message found.

The difficulty of computing a UIO for state s1 in the different members of the Sequence Detector FSM class may vary
depending on the particular keyword w that the FSM detects. However, the runtime on a class of functions depends on
the hardest instance. In order to prove a lower bound on this class, it therefore suffices to show that there exists at least
one sub-class of sequence detector FSMs for which it is hard to compute UIOs. The particular class of FSMs that we will con-
sider have keyword alphabet R ¼ f1g and keyword w ¼ 1n�1.

Proposition 2 shows that this instance class leads to a fitness function that takes the same low value on all, except two
input sequences. Hence, the fitness landscape is essentially a ‘‘needle in the haystack’’ which is hard for all EAs [36]. The
proof is in the appendix.

Proposition 2. The fitness function fw corresponding to the instance class in Definition 5 with keyword alphabet R ¼ f1g and
keyword w ¼ 1n�1, takes the value fHðxÞ ¼ 1 for all input sequences x 2 In, except on input sequences 1n and 1n�1 � EOL on which it
takes the values fHð1nÞ ¼ 0 and fHð1n�1 � EOLÞ ¼ n� 1.

By noting that the shortest UIO for state s1 in the special type of keyword FSM instance considered above has length n, the
following theorem can be proved similarly to Theorem 1.

Theorem 3. The Sequence Detector FSM class contains instances such that the probability that random search will find a UIO for
state s1 in less than ec�n iterations is exponentially small e�XðnÞ, where c is a small constant.

To lower bound the expected runtime of the (1 + 1) EA, we apply drift analysis which is a general technique for proving
exponential lower bounds on first hitting-time in Markov processes [37]. The following variant of the drift theorem is taken
from [40].

Lemma 1 (Drift theorem). Let X0;X1;X2; . . . be a Markov process over a set of states S, and g : S! Rþ0 a function that assigns to
every state a non-negative real number. Pick two real numbers aðnÞ and bðnÞ which depend on a parameter n 2 Rþ such that
0 < aðnÞ < bðnÞ holds and let random variable T denote the earliest point in time t P 0 where gðXtÞ 6 aðnÞ holds. If there are
constants k > 0 and D P 1 and a polynomial pðnÞ taking only positive values, for which the following four conditions hold

1. gðX0ÞP bðnÞ,
2. bðnÞ � aðnÞ ¼ XðnÞ,
3. E½e�kðgðXtþ1Þ�gðXtÞÞjXt ; aðnÞ < gðXtÞ < bðnÞ� 6 1� 1

pðnÞ, for all t P 0,
4. E½e�kðgðXtþ1Þ�bðnÞÞjXt; bðnÞ 6 gðXtÞ� 6 D, for all t P 0,

then for all time bounds B P 0, the following upper bound on probability holds for random variable T
Pr½T 6 B� 6 ekðaðnÞ�bðnÞÞ � B � D � pðnÞ:
Theorem 4. The keyword recogniser FSM class contains instances where the probability that (1 + 1) EA will find a UIO for state s1

in this instance within ec�n steps is exponentially small e�XðnÞ, where c is a small constant.
Proof. For any n, we consider the Keyword recogniser FSM with keyword alphabet R ¼ f1g and keyword w ¼ 1n�1. We lower
bound the time it takes until the current search point of (1 + 1) EA contains at least n� 1 1-symbols for the first time. This
time is clearly shorter than the time the algorithm needs to find the optimal search point 1n�1 � EOL.

Let random variables Y0;Y1;Y2; . . . represent the stochastic behaviour of (1 + 1) EA on fitness function fH , where each
variable Yt denotes the number of EOL-symbols in the search point in step t. Then Y0;Y1;Y2; . . . is a Markov process.
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To simplify this Markov process, we introduce another Markov process X0;X1;X2; . . ., defined for all t P 0 as X0 :¼ Y0, and
Xtþ1 :¼
Xt þ 1 when Ytþ1 P Yt þ 2; and
Xt þ Ytþ1 � Yt otherwise:

�

Let random variable T denote the first point in time t where Xt 6 1. Intuitively, the simplified process corresponds to an
‘‘improved’’ algorithm which never looses more than one EOL-symbol in each step, but otherwise behaves as the (1 + 1) EA.
Clearly, the expected optimisation time E½T� of the modified process is no more than the expected optimisation time of the
original process.

The drift theorem is now applied to derive an exponential lower bound on random variable T. Define gðxÞ :¼ x and
parameters aðnÞ :¼ 1 and bðnÞ :¼ cn, where c is a constant that will be determined later. With this setting of aðnÞ and bðnÞ, the
second condition of the drift theorem is satisfied.

The following notation will be used
pj :¼ Pr½gðXtþ1Þ � gðXtÞ ¼ jjXt;1 < gðXtÞ < cn�;
rj :¼ Pr½gðXtþ1Þ � gðXtÞ ¼ jjXt ; cn 6 gðXtÞ�:
The terms in the equation
E½e�kðgðXtþ1Þ�gðXtÞÞjXt;1 < gðXtÞ < cn� ¼
Xn�cn

j¼�cn

pj � e�kj ð1Þ
can be divided into four parts according to the value of the index variable j. The term where j ¼ 1 simplifies to p1 � e�k
6 e�k,

the term where j ¼ 0 simplifies to p0 � e0 ¼ ð1� 1=nÞn 6 1=e, the term where j ¼ �1 simplifies to
p�1 � ek
6 ek 1� 1

n

� �n�1 1
n
� Xt 6 ekc
and the remaining terms where j 6 �2 can be simplified as follows:
Xcn

j¼2

ejk � p�j ¼
Xcn

j¼2

ejk 1
nj

1� 1
n

� �n�j Xt

j

� �
6

Xcn

j¼2

ejk 1
nj

ðcnÞj

j!
¼
Xcn

j¼2

ðekcÞj

j!
6 �1� ekc þ

X1
j¼0

ðekcÞj

j!
¼ �1� ekc þ expðekcÞ:
The sum in Eq. (1) can now be bounded from above as
E½e�kðgðXtþ1Þ�gðXtÞÞjXt;1 < gðXtÞ < cn� 6 e�k þ 1=eþ ekc � 1� ekc � expðekcÞ ¼ e�k þ 1=e� 1þ expðekcÞ:
For appropriate values of k and c (eg. k ¼ ln 2 and c ¼ 1=32), the value of this expression is less than 1� d for a constant d > 0.
Hence, the third condition in the drift theorem is satisfied. It is straightforward to see that the fourth condition holds now that
condition three holds
E½e�kðgðXtþ1Þ�cnÞjXt ; cn 6 gðXtÞ� 6 E½e�kðgðXtþ1Þ�gðXtÞÞjXt; cn 6 gðXtÞ� ¼ r1 � e�k þ
Xn

j¼0

r�j � ejk:
Using the same ideas as above, the expectation can be bounded from above by
E½e�kðgðXtþ1Þ�cnÞjXt ; cn 6 gðXtÞ� 6 e�k þ expðekÞ:
When parameter c ¼ 1=32, using Chernoff bounds [41], the probability that the first search point has less than cn EOL-sym-
bols is e�XðnÞ. Hence we can assume with high probability that the first condition is satisfied as well.

All four conditions of the Drift theorem now hold. By setting B ¼ ec0n for some small constant c0, one obtains the
exponential lower bound Pr½T 6 ec0n� ¼ e�XðnÞ. h

Theorems 3 and 4 mean that for some sequence detector FSMs, the probability that either random search or (1 + 1) EA
find a UIO is very small, even when the search heuristics are allowed an exponential number of iterations in the number
of states. Hence, these theorems imply that these search heuristics cannot be applied to find UIOs for such classes of FSMs
with the existing representation and fitness function.

For designers of new search based approaches to computing UIOs, Theorem 4 points out an important class of FSMs which
could serve as a benchmark for further studies. Given the reasons for failure described in the proofs above, one could seek
novel fitness functions or representations which do not suffer from the same problems.

4.3. k-Gap FSM instance class

The previous two subsections presented classes of FSMs for which it is either easy or hard to compute a UIO with the
(1 + 1) EA. It is desirable to also study FSM classes of intermediate difficulty. Trivially, one could consider the modulo-n coun-
ter as an FSM class of intermediate difficulty, because as Theorem 2 shows, the runtime on this class increases with the size
of the input alphabet I. However, we would like to understand cases where it is the structure of the FSM, rather than the size
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of the input alphabet that determines the difficulty. We therefore consider a third class of FSMs that has binary input alpha-
bet I ¼ f0;1g, and where the structure is parameterised by the value of some parameter k. It will be shown that the instance
class is easy when the value of parameter k is low, and the problem becomes harder when parameter k is increased.

Definition 6 (k-Gap FSM instance class). For instance sizes n P 7, let k be a constant integer, 2 6 k 6 ðn� 3Þ=2 and define
m :¼ n� k� 1. Define an FSM GðkÞ with input and output symbols I :¼ f0;1g and O :¼ fa; bg respectively, and n states
S :¼ fs1g [ fr1; r2; . . . ; rkg [ fq1; q2; . . . ; qmg. For all states t in S, define the output function k as
kðt;0Þ :¼ b and kðt;1Þ :¼
b if t ¼ qm; and
a otherwise:

�

For state s1, define the state transition function d as
dðs1;0Þ :¼ s1 and dðs1;1Þ :¼ r1:
For states ri;1 6 i 6 k, define the state transition function d as
dðri;1Þ :¼ s1 and dðri;0Þ :¼
qkþ2 if i ¼ k; and
riþ1 otherwise:

�

And finally, for states qi;1 6 i 6 m, define the state transition function d as
dðqi;0Þ :¼ s1 and dðqi;1Þ :¼
q1 if i ¼ m; and
qiþ1 otherwise:

�

The objective is to find an UIO of length n for state s1.
One way of creating a problem with tunable difficulty is to make sure that the fitness function contains a ‘‘trap’’ which

easily leads the EA into a local optimum at distance k from the global optimum. By increasing the distance k between the
local and global optimum, the problem gets harder [35]. The ‘‘trap’’ in the FSM defined in Definition 6 are the m states
q1; . . . ; qm. By producing an input sequence with many leading 1-bits, the (1 + 1) EA easily makes the output from these states
different from state s1. However, as can be seen from Fig. 4, the UIO for state s1 must contain k 0-bits somewhere in the
beginning of the input sequence. The proofs of the following two propositions are in the appendix.

Proposition 3. Let z be any string with length ‘ðzÞ ¼ kþ 1.
fGðkÞð10k1n�2k�2zÞ ¼ n� 1: ð2Þ
In other words, any search point on the form 10k1n�2k�2z is a UIO for state s1. Let i be any integer 0 6 i < n, and z any string of
length n� i� 1. If string z does not contain the substring 1n�2k�2, then
fGðkÞð1i0zÞ ¼minði; n� k� 1Þ; and ð3Þ
cð1iÞ ¼ cð1i0zÞ: ð4Þ
Proposition 4. Let i be any integer 0 6 i 6 2kþ 2, and z any sequence of length ‘ðzÞ ¼ n� i� 1 containing the sequence 1n�2k�2.
If the sequence 1i0z is not optimal, then fGðkÞð1i0zÞ 6 2kþ 2.

Analysing the (1 + 1) EA on the problem is easy if we can assume that the sequence 1n�2k�2 never occurs in the suffix.
Proposition 5 shows that this assumption holds in most cases. The proof of this proposition is in the appendix.

Definition 7 (Typical run). A typical run of (1 + 1) EA on fGðkÞ is a run where the current search point x is never on the form
1i0z, 0 6 i < 2kþ 2, where z is a sequence of length ‘ðzÞ ¼ n� i� 1 containing the sequence 1n�2k�2. A run of (1 + 1) EA on
fGðkÞ is divided into the following three phases.

Phase 1 is defined as the time interval in which the search point has less than 2kþ 2 leading 1-bits. If the current search
point during this phase has a suffix containing sequence 1n�2k�2, then we say that we have a failure. The event of failure will
be denoted F. Phase 2 is defined as the time interval when the search point has between 2kþ 2 and n� k� 1 leading 1-bits.
Phase 3 is defined as the time interval when the search point has at least n� k� 1 leading 1-bits, and this phase lasts until
the search point is optimal for the first time.
Fig. 4. Finding a UIO for state s1 with (1 + 1) EA becomes harder when increasing parameter k.
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Proposition 5. The probability of a failure during Phase 1 is bounded from above by e�XðnÞ.
Theorem 5. Let k be any constant integer k P 2. The expected runtime of (1 + 1) EA to find a UIO for state s1 using fGðkÞ is HðnkÞ.
Proof. Given the probability of the failure event F, the expected runtime of (1 + 1) EA can be calculated as
E½T� ¼ ð1� Pr½F�Þ � E½TjF� þ Pr½F� � E½TjF�: ð5Þ
To estimate an upper bound on the expected runtime, we use that E½T� 6 E½TjF� þ Pr½F� � E½TjF�:We will first find an upper
bound on the runtime conditional on a typical run E½TjF� and pessimistically assume that the optimal search point will not
be found during Phase 1 or 2 of the run. We first upper bound the duration of Phase 1 and 2. Let i;0 6 i 6 n� k� 1, be the
number of leading 1-bits in the current search point. A step of the algorithm is called successful if the mutated search point x0

has more leading 1-bits than the current search point x. In typical runs, Proposition 3 guarantees that x0 will be accepted in a
successful step. To reach the end of Phase 2, we have to wait at most for n� k� 1 successful steps. The probability of a suc-
cessful step is at least 1=n � ð1� 1=nÞn�1 P 1=en; so the expected duration of Phase 1 and Phase 2 is Oðn2Þ. By Proposition 3,
for Phase 3 to end, it is sufficient to flip k consecutive 1-bits starting at position 2. The probability that this will happen in any
step of Phase 3 is at least ð1=nÞk � ð1� 1=nÞn�k P 1=ðnkeÞ. Hence, the expected duration of Phase 3 is bounded from above by
OðnkÞ. An upper bound on the expected runtime conditional on the event that the run is typical is therefore E½TjF� ¼ OðnkÞ.

We now give an upper bound on the expected time E½TjF� conditional on a failure. To keep the analysis simple, we give a
pessimistic upper bound. At some time in such a run, the current search point has a suffix containing the sequence 1n�2k�2.
We assume that this search point is not the optimal search point, and furthermore, we assume that in this situation, we will
never accept an optimal search point during Phase 1. Clearly, this will only slow down the optimisation process. By
Proposition 4, this search point has fitness at most 2kþ 2. To end Phase 1, Proposition 3 shows that it is sufficient to wait for
a step in which all the 0-bits in the 2kþ 3 long prefix of the search point is flipped into 1-bits. The probability of such a
mutation is at least ð1=nÞ2kþ3ð1� 1=nÞn�2k�3 P 1=en2kþ3. So if a failure occurs, the duration of Phase 1 will be no longer than
Oðn2kþ3Þ. Failures do not occur in Phases 2 or 3, we therefore reuse the upper bounds of Oðn2Þ and OðnkÞ that were calculated
for the typical runs, yielding an upper bound of Oðn2kþ3Þ for the duration of runs with failures. Due to the exponentially small
failure probability, the unconditional expected runtime of (1 + 1) EA is therefore E½T� ¼ OðnkÞ.

A lower bound on the expected runtime is estimated using the inequality E½T�P ð1� Pr½F�Þ � E½TjF�. We need to estimate
the expected runtime conditional on a typical run. Optimal search points contain the suffix 1n�2k�2, hence the optimal search
point will not be found during Phase 1 of typical runs. By Propositions 3 and 4, only search points with at least 2kþ 2 leading
1-bits or an optimal search point will be accepted during Phase 2. Optimal search points must contain 10k1n�2k�2. Hence, in
order to find the optimum in the second phase, it is necessary to flip k consecutive 1-bits into 0-bits, starting somewhere in
the interval between position 2 and kþ 2. The probability of this event in any given step is no more than k=nk. Hence, the
expected duration of Phase 2 and Phase 3 is at least nk=k steps. The unconditional expected runtime can now be bounded
from below by E½T�P ð1� e�XðnÞÞ � nk=k ¼ XðnkÞ. h

Theorem 5 relates the runtime of the (1 + 1) EA to a structural parameter k in a class of FSMs. The theorem shows that
small modifications in the structure of an FSM can have a strong impact on the runtime of the algorithm. Hence, one cannot
generally infer that the runtime of (1 + 1) EA will be similar for similarly structured FSMs.

The reason why the runtime of the (1 + 1) EA increases with parameter k can be explained informally as follows. In order
for state s1 to reach the distinguishing transition from state qm to q1, it is necessary to include k consecutive 0-symbols early
in the input sequence. However, on most input sequences containing early 0-symbols, the output when starting in state s1

will be indistinguishable from the outputs when starting in most of the states labelled q. The majority of the states are q-
states. In contrast state s1 is distinguished from q-states on input sequences with many leading 1-bits. When the (1 + 1)
EA has found an input sequence with sufficiently many leading 1-bits, it is necessary to flip k 1-bits simultaneously to pro-
duce a better input sequence. The expected waiting time for such an event is nk.

5. Numerical studies

5.1. Objectives

The theoretical analysis in the previous section leaves some questions open. One open question is how the search heu-
ristics behave on particular, possibly small, instance sizes. The theoretical analysis of runtime considered asymptotic behav-
iour and the results were expressed using big-Oh notation. Hence, in principle, there is no guarantee that these theoretical
results are relevant for ‘‘interesting’’ values of n, i.e. for the number of states in ‘‘typical’’ applications of the FSMs considered.
A statement like f ðnÞ ¼ OðgðnÞÞ only means that there exists some constants c and n0 such that f ðnÞ < c � gðnÞ for all n > n0. If
either of these constants are very large, the inequality is either very weak, or only holds for very large values of n. Two ques-
tions to consider are therefore whether the sizes occurring in runtime expressions are very large, and whether the runtime
results seem to manifest themselves for small values of n.
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A second issue is that the theoretical analysis mainly focused on the expectation of the runtime distribution. To get a
clearer picture of the runtime distributions, it is necessary to investigate the variability of the distributions.

5.2. Strategy

To address these issues, the theoretical analysis is complemented with a numerical study. The modulo-n counter FSMs
include a wide range of different FSMs that depends both on the number of states n and the input alphabet I. Similarly,
the sequence detector FSMs contains a wide range of FSMs depending on the keyword alphabet R, the keyword w, and
the number of states n. To keep the number of experiments within a feasible range, we therefore only consider the mod-
ulo-n counter FSMs with the binary input alphabet I ¼ f0;1g, and we will refer to these FSMs as the Easy FSM instance class.
Furthermore, we only consider the sequence detector FSMs with keyword alphabet R ¼ f1g, and keyword w ¼ 1n�1. These
FSMs correspond exactly to those FSMs considered in the proof of Theorem 4. They will in the following be referred to as
the Hard FSM instance class. Additionally, the runtime of (1 + 1) EA will be investigated on the k-gap FSM instance class
for values of k between 2 and 4. Based on the theoretical results on the expected runtime of (1 + 1) EA on this instance, it
is deemed impractical to carry out experiments for values of k higher than 4.

For each experimental setting, the search heuristic under consideration is started, and run until an optimal solution has
been found. The runtime of one run is defined as the number of times the fitness function has been evaluated. Repeated runs
with different random seeds are made to allow statistical analysis. Table 1 summarises the experimental settings. The exper-
iments are numbered from 1 to 14, and divided into two groups.

The purpose of the first group of experiments numbered 1–7 is to study the relationship between instance size and run-
time for different instance classes, and in particular to provide estimates for the constants in the asymptotic runtime expres-
sions. The theoretical runtime analysis combined with estimates of the time to evaluate the fitness function were used to
choose sets of instance sizes which were deemed feasible to carry out within reasonable time constraints.

For each setting of algorithm, FSM instance and instance size n, 100 experiments were run. The bootstrap percentile meth-
od with 400 bootstrap samples were used to calculate 95% confidence intervals of the mean of the true runtime distribution.
These confidence intervals are reported as error bars. Following [42], for each setting of algorithm and problem instance size,
we fitted different models to the observed runtimes using non-linear regression with the Gauss-Newton algorithm. Each
model corresponds to a one term expression a � tðnÞ of the runtime, where the model parameter a corresponds to the constant
to be estimated. The residual sum of squares (RSS) of each fitted model was calculated to identify the model which corre-
sponds best with the observed runtimes. Additionally, for each instance size, a box-and-whisker plot is made, indicating
the smallest observed runtime, the lower quartile, the median, the upper quartile and the largest observed runtime. Together,
the box-and-whisker plots provide information on how the variability of runtime depends on the instance size.

The purpose of the second group of experiments, numbered 8–14, is to look closer at the variability of the runtime for a
fixed instance size. In these experiments, a larger number of repetitions were made. Again, the particular instance sizes were
chosen based on the theoretical analysis and estimates of the time to evaluate the fitness function. The results from these
experiments are plotted as histograms to visualise the variability of the observed runtime distributions.

6. Numerical results

6.1. Estimating constants

6.1.1. Easy FSM instance class
The easy FSM instance class was constructed to point out that there are instance classes where (1 + 1) EA is highly effi-

cient, whereas random search fails completely. The theoretical analysis shows that the expected runtime of (1 + 1) EA on this
Table 1
Summary of parameter settings in numerical experiments.

Algorithm Instance class Instance sizes n Repetitions

1 (1 + 1) EA Easy FSM n 2 f10;60;110; . . . ;710;760g 100
2 RS Easy FSM n 2 f4;5;6; . . . ;25;26g 100
3 (1 + 1) EA Hard FSM n 2 f4;5;6; . . . ;19;20g 100
4 RS Hard FSM n 2 f4;5;6; . . . ;19;20g 100
5 (1 + 1) EA k-gap FSM, k ¼ 2 n 2 f10;15;20; . . . ;45;50g 100
6 (1 + 1) EA k-gap FSM, k ¼ 3 n 2 f10;15;20; . . . ;45;50g 100
7 (1 + 1) EA k-gap FSM, k ¼ 4 n 2 f15;20; . . . ;45;50g 100
8 (1 + 1) EA Easy FSM n ¼ 200 2000
9 RS Easy FSM n ¼ 17 2000
10 (1 + 1) EA Hard FSM n ¼ 13 2000
11 RS Hard FSM n ¼ 13 2000
12 (1 + 1) EA k-gap FSM, k ¼ 2 n ¼ 20 2000
13 (1 + 1) EA k-gap FSM, k ¼ 3 n ¼ 20 2000
14 (1 + 1) EA k-gap FSM, k ¼ 4 n ¼ 20 2000
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instance class is Oðn log nÞ, and there is an exponentially small probability that random search will find the optimal solution
within ecn iterations, where c is some constant.

Three models were fitted to the observed runtimes of (1 + 1) EA on the Easy FSM instance class. The models were chosen
to be close to the theoretically obtained runtime bound on this instance. The results summarised in Table 2 indicate that the
model which fits the data best is a � n log n with estimated parameter a ¼ 1:967. This result corresponds well with the
asymptotic runtime Oðn log nÞ obtained in Theorem 2. The fitted models are plotted together with the mean of the observed
runtimes in Fig. 5.

As show in Fig. 6, the runtime of random search on the easy FSM instance class grows much faster than the runtime of
(1 + 1) EA. The log-plot indicates that the runtime grows exponentially with the number of states in the FSM.

6.1.2. Hard FSM instance class
The Hard FSM instance class was constructed to point out that (1 + 1) EA is not successful on all instance classes of this

problem. The theoretical analysis shows that on this instance class, there is an exponentially small probability that the algo-
Table 2
Residual sum of squares of three models fitted to the observed runtime of (1 + 1) EA on the Easy FSM instance.

Model Fit RSS

a � n 12.35 1.411e+09
a � n log n 1.967 1.254e+09
a � n2 0.0209 2.843e+09
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Fig. 5. Mean runtime of (1 + 1) EA on the Easy FSM instance class with 95% confidence intervals plotted with error bars. The fitted models, as given by the
legend, are plotted.
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scaled.
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rithm will find the optimal solution within ecn iterations, for some constant c. This result also implies that the expected run-
time of (1 + 1) EA on this instance class is exponential.

The plot in Fig. 7 shows the mean runtime of (1 + 1) EA on the Hard FSM instance class with error bars indicating 95%
confidence intervals. The log-plot indicates that the observed mean runtime grows exponentially with the number of states
in the FSM. The mean observed runtime of Random Search on the same instance class is plotted in Fig. 8, showing a similar
trend. These results correspond well with the theoretical results.

6.1.3. k-Gap FSM instance class
The k-gap FSM instance class was constructed to point out that the asymptotic runtime of (1 + 1) EA on the UIO problem is

not limited to being either very small or exponentially large, but can range over a large range of values depending on char-
acteristics of the FSMs. Even small changes to the FSM can have a big impact on the runtime. The theoretical analysis shows
that the expected runtime of (1 + 1) EA on the k-gap FSM instance class is HðnkÞ for any constant k P 2.

Three models were fitted to the observed runtimes of (1 + 1) EA on the k-gap FSM instance class with k ¼ 2; k ¼ 3 and
k ¼ 4, using non-linear regression. The results are summarised in Tables 3–5. For k ¼ 2, the model with best fit was a � n2

with estimated parameter a ¼ 2:518, for k ¼ 3, the model with best fit was a � n3 with estimated parameter a ¼ 1:722,
and for k ¼ 4, the model with best fit was a � n4 with estimated parameter a ¼ 1:605. These results correspond well with
the theoretical result. The fitted models are plotted with the mean observed runtime in Figs. 9–11. The asymptotic behaviour
predicted by the theoretical analysis seems evident in these plots even for small instance sizes. The results from bootstrap-
ping confidence intervals of the mean are shown using error bars in the plots. The error bars indicate larger confidence inter-
vals with increasing instance size.
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Fig. 7. Mean runtime of (1 + 1) EA on the Hard FSM instance class with error bars indicating 95% confidence intervals. The y-axis is logarithmically scaled.
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Table 3
Residual sum of squares for (1 + 1) EA on the k-gap FSM instance class ðk ¼ 2Þ.

Model Fit RSS

a � n2 2.518 4.7e+09

a � n3 0.05671 4.789e+09

a � n4 0.001207 5.18e+09

Table 4
Residual sum of squares for (1 + 1) EA on the k-gap FSM instance class ðk ¼ 3Þ.

Model Fit RSS

a � n2 74.67 9.085e+12

a � n3 1.722 8.762e+12

a � n4 0.03725 8.852e+12

Table 5
Residual sum of squares for (1 + 1) EA on the k-gap FSM instance class ðk ¼ 4Þ.

Model Fit RSS

a � n2 3153 1.862e+16

a � n3 73.56 1.758e+16

a � n4 1.605 1.739e+16
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Fig. 9. Mean runtime of (1 + 1) EA on the k-gap FSM instance class ðk ¼ 2Þ, with error bars indicating 95% confidence intervals. The fitted models, as given by
the legend, are plotted.
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6.2. Variability of runtime

Box-and-whisker plots are made to show how the variability of the runtime depends on the instance size. The plots in
Figs. 12 and 13 show that the interquartile range in the observed runtimes increases with increasing instance size. The
increasing interquartile range is most evident in Fig. 13, showing the runtime of Random Search on the Easy FSM instance
class.

The box-and-whisker plots for the Hard FSM instance class are not included here, but they show a similar tendency as the
box-and-whisker plots for Random Search on the Easy FSM instance class.

The box-and-whisker plots for the k-gap FSM instance class also show that the interquartile range increases with the in-
stance size. Here, we only include the plot for k ¼ 4. For larger instance sizes, one can observe that the distribution is pos-
itively skewed, with the median closer to the lower than the upper quartile.

To investigate closer the variability in runtime, the experiments numbered 8–14 in Table 1 were conducted with a larger
number of repetitions on a single experimental setting. Results from these experiments are summarised in histograms. The
histogram in Figs. 14 and 15 shows the observed runtimes from 2000 runs of the (1 + 1) EA on the Easy FSM instance class
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Fig. 12. Box-and-whisker-plots from observed runtimes of (1 + 1) EA on the Easy FSM instance class.
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Fig. 13. Box-and-whisker-plots from observed runtimes of random search on the Easy FSM instance ðn ¼ 17Þ.
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Fig. 14. Box-and-whisker plots of runtime distributions of (1 + 1) EA on the k-gap FSM instance class with k ¼ 4.
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Fig. 15. Histogram of observed runtimes of (1 + 1) EA on the Easy FSM instance class with instance sizes n ¼ 200.
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distribution with parameter p ¼ ðnþ 1Þ � 2�n.
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Fig. 17. Histogram of observed runtimes of (1 + 1) EA on the k-gap FSM instance class with instance size n ¼ 20 and k ¼ 4.
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ðn ¼ 200Þ. The histogram shows a slightly positively skewed distribution. The variance of this distribution is lower than the
variance of the distribution shown in the histogram in Fig. 16, which summarises the observed runtimes from 2000 runs of
Random Search on the same instance class ðn ¼ 17Þ. The distribution shown by this histogram is highly positively skewed.
Theorem 1 shows that the runtime distribution of random search on this instance class is exactly the geometric distribution
with parameter p ¼ ðnþ 1Þ � 2�n. The histogram corresponds well with the plot of the density function of this distribution.

The histograms for the Hard FSM instance class are not included here, but they show similarly shaped distributions as the
one of Random search on the Easy FSM instance class in Fig. 16.

The histograms for the runtime of (1 + 1) EA on the k-gap FSM instance class are similar, and we only include the one for
k ¼ 4 which is shown in Fig. 17. The distribution in this histogram has a similar shape as the distribution of Random Search
on the Easy FSM instance. The distribution is highly positively skewed, and has a large variance. In the proof of Theorem 5, it
is shown that the dominating phase of a typical run of (1 + 1) EA on this instance class is when the algorithm needs to flip k
consecutive bits in a single iteration. Hence, one can conjecture that for large k, the runtime distribution of (1 + 1) EA on the
k-gap FSM instance class will be close to geometrically distributed.
7. Discussion

Three classes of finite state machines have been constructed and studied in this paper. The first FSM class is the modulo-n
counting FSMs that are used widely in cases where it is necessary to detect when a certain number of events has happened. A
simple example is a binary counter. The second FSM class is the sequence detector FSMs, which is also occur frequently in
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applications, including in the lexical analysis component of compilers, in communication systems and in electronic key locks.
FSMs of these two types often occur as sub-modules within larger systems. The third FSM class, which is parametrised,
shares properties with both the easy and hard FSM class. Such FSMs have many applications in software engineering, includ-
ing modelling and testing of non-functional requirements. One example is security testing of automated teller machines
(ATMs). The lock FSM could model requirements related to authentication by personal identification number (PIN), while
the counter FSM could model requirements related to card retainment after a specified number of failed authentication
attempts.

The notions of easy and hard instances depend on both the EA used and on the way the problem of finding UIOs has been
defined. This paper uses the terms hard and easy relative to the (1 + 1) EA, as described in Section 3.2. These terms should not
be confused with the terms EA-hard and EA-easy which are sometimes used in evolutionary computation to mean problems
that are thought to be generally hard, respectively easy for all EAs. There are certainly functions that are hard in the sense of
Section 3.2 for (1 + 1) EA, but which are easy for other EAs. Furthermore, the hardness of finding UIOs is relative to the way
the fitness function for this problem has been defined. We believe the formulation in Definition 3 is quite natural, however
one could envisage other fitness function definitions which could potentially lead to different runtimes for the (1 + 1) EA.
8. Conclusion

Search based software engineering is a promising approach to automating software engineering tasks. Although a signif-
icant amount of research has been conducted in the area over recent years, there exists still very few theoretical results. The-
oretical research is needed to rigorously determine the potential and limitations of search heuristics in various software
engineering domains. In particular, for many software engineering problems that are NP-hard [3], it is necessary to charac-
terise the problem instances that are tractable for search heuristics. Only when the tractable class of problem instances have
been accurately characterised can search heuristics be applied with a predictable performance to a software engineering
problem.

Here, we have initiated such a theoretical study by analysing the runtime of the (1 + 1) Evolutionary Algorithm on the
problem of computing unique input output (UIO) sequences in finite state machines. The primary purpose of this theoretical
study has been to give an initial description as to which types of FSMs that are tractable for the (1 + 1) EA, and which classes
are intractable. As far as we know, this paper, along with a preliminary conference version [1], represents the first rigorously
obtained result on the runtime of an evolutionary algorithm in the field of search based software engineering.

It is shown that on the class of modulo-n counter FSMs, the (1 + 1) EA is highly efficient, whereas random search fails
completely. This result indicates that the (1 + 1) EA can be preferable over the sometimes proposed strategy of randomly
searching for UIOs. Furthermore, it is shown that the (1 + 1) EA fails on the class of sequence detecting FSMs. On this par-
ticular instance class, the state partition tree gives little information about the UIO. The existence of such hard instances
for the (1 + 1) EA is to be expected since the general problem of finding UIOs is NP-hard. This result implies that alternative
approaches should be considered when computing UIOs for such FSMs. Furthermore, the sequence detecting FSMs could be a
useful benchmark for new search based approaches to the UIO problem. Finally, an instance class with tunable difficulty for
the (1 + 1) EA is presented. This instance class highlights how specific, small changes to the structure of the FSM can make
the problem of computing UIOs increasingly hard. This result implies that structurally similar FSMs are not necessary equally
hard for the (1 + 1) EA.

The theoretical analysis was complemented with an extensive numerical study to investigate the constants that are hid-
den by the big Oh-expressions, and to gain insight into the variability of the runtime. Constants were estimated using non-
linear regression, and variability were investigated using histograms. The numerical and theoretical results agree well. In all
cases, the theoretically obtained asymptotic expression for runtime fitted the observed runtimes best among a selection of
similar models. The estimated constants in the asymptotic expressions were small. The asymptotic behaviour predicted by
the theoretical analysis appear evident, even for small instance sizes. The observed variability in runtime was in general large
on all instance classes. The (1 + 1) EA on the Easy FSM instance class showed the least variability. On the other instance clas-
ses, both Random Search and (1 + 1) EA showed a much larger variability in runtime. The observed runtimes formed a highly
positively skewed distribution.

The stochastic behaviour of evolutionary algorithms and other search heuristics is often highly complex and therefore
hard to predict. Only recently have results about the runtime of EAs started to appear for artificial functions and some com-
binatorial optimisation problems. It is a highly non-trivial task to estimate the success probability of an EA on an arbitrary
problem instance. More theoretical research is still needed before such predictions can be made for any given class of FSMs
on the UIO problem. However, we think that this and other theoretical studies will contribute to building the strong foun-
dation that is needed for search based approaches to be reliably applied in the software engineering industry.
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Appendix A. Proofs

Proof of Proposition 1. The case where
Pn

i¼1jxij1 P n� 1 is easy. State s1 is the only state which outputs a on each of the
first n� 1 inputs of symbol 1. Hence, for such input sequences, cðxÞ ¼ 1.

Before showing that the proposition also holds for the remaining input sequences, we first show that for any input
sequence x with cðxÞ > 1, we have
cðxÞ ¼ cðx � pÞ þ jpj1: ðA:1Þ
Eq. (A.1) obviously holds when symbol p is different from 1, because all states output symbol const on input symbols dif-
ferent from 1, so it remains to show that cðx � 1Þ ¼ cðxÞ � 1 for all x.

By the definition of the transition function, there must be a state t such that dðt; xÞ ¼ sn. Furthermore, we can show that
state s1 and state t produce the same output on input sequence x. Suppose not, that kðs1; xÞ – kðt; xÞ. This would imply that on
input x, state t must have reached the only distinguishing transition from state sn to state s1, i. e. sequence x can be expressed
on the form x ¼ y1z with dðt; yÞ ¼ sn. Since both dðt; yÞ and dðt; y1zÞ equal state sn, we must have

P‘ðzÞ
i¼1jzij1 P n� 1. However,

this is a contradiction, because the assumption cðxÞ > 1 implies that
Pn

i¼1jxij1 < n� 1. It is thus clear that kðs1; xÞ ¼ kðt; xÞ,
and furthermore kðs1; x � 1Þ–kðt; x � 1Þ. For all other states si different than state t, kðdðsi; xÞ;1Þ ¼ kðdðs1; xÞ;1Þ ¼ a. So to
conclude, if cðxÞ > 1 then cðxÞ ¼ cðx � 1Þ þ 1.

We can now show that the proposition also holds for input sequences where
Pn

i¼1jxij1 < n� 1. On such input sequences,
state s2 cannot reach the distinguishing state transition from sn to s1. So state s1 and s2 are indistinguishable and cðxÞ > 1.
Obviously, the same also holds for all prefixes of input sequence x. Eq. (A.1) can now be applied recursively, and by noting the
special case of cð�Þ ¼ n on the empty string, we obtain the desired result.
cðx1 � � � xnÞ ¼ cðx1 � � � xn�2xn�1Þ � jxnj1
¼ cðx1 � � � xn�2Þ � jxn�1j1 � jxnj1

..

.

¼ n�
Xn

i¼1

jxij1: �
Proof of Proposition 2. The two special cases 1n and 1n�1 � EOL are simple. By the definition of the output function,
kðsi;1

nÞ ¼ ack n for any state si. Hence, cð1nÞ ¼ n so the value of the fitness function on the first special case is fHð1nÞ ¼ 0.
On input sequence 1n�1 � EOL, the output function gives kðs1;1

n�1 � EOLÞ ¼ ack n�1 � found, and for states si different than
s1, the output function gives kðsi;1

n�1 � EOLÞ ¼ ack n. Hence, the value of the fitness function on the second special case is
fHð1n�1 � EOLÞ ¼ n� 1.

The remaining input sequences to consider are those that contain at least one EOL-symbol, but which are different from
the sequence 1n�1 � EOL. Such strings are of the form 1k � EOL � z where k is an integer, 0 6 k < n� 1, and z can be any
sequence of length ‘ðzÞ ¼ n� k� 1.

We claim that for any state si and such sequences z, if kðs1;1
k � EOLÞ ¼ kðsi;1

k � EOLÞ, then kðs1;1
k � EOL � zÞ ¼

kðsi;1
k � EOL � zÞ. Suppose otherwise, that kðs1;1

k � EOLÞ ¼ kðsi;1
k � EOLÞ but kðs1;1

k � EOL � zÞ–kðsi;1
k � EOL � zÞ. But then we

must have kðdðs1;1
k � EOLÞ; zÞ–kðdðsi;1

k � EOLÞ; zÞ, which implies the contradiction that kðs1; zÞ–kðs1; zÞ.
We now show that for the sequences on the form 1k � EOL � z, there is exactly one state si for which

kðs1;1
k � EOL � zÞ–kðsi;1

k � EOL � zÞ. We have just proved that this inequality requires that kðs1;1
k � EOLÞ–kðsi;1

k � EOLÞ.
Because all states have the same output on input 1, it is necessary that kðdðs1;1

kÞ;EOLÞ–kðdðsi;1
kÞ;EOLÞ, which implies that

kðs1þk;EOLÞ–kðsiþk;EOLÞ. The only way to satisfy this inequality is to let iþ k ¼ n. Hence, state sn�k is the only state that
produces different output than state s1 on input sequences containing at least one EOL-symbol, and that are different from
1n�1 � EOL. h
Proof of Proposition 3. We first prove Eq. (2). On input sequence 10k, only dðs1;10kÞ ¼ qkþ2 and for all other states t,
dðt;10kÞ ¼ s1. Hence, state s1 goes through the distinguishing transition on input 10k1n�2k�2 while all other states are in tran-
sition between states s1 and r1, showing that state s1 has a unique output. Therefore, search points on the form 10k1n�2k�2z
are optimal. (There are other optimal search points, but knowing the structure of a few optimal search points will be suffi-
cient in the analysis.)

We now show that cð1i0Þ ¼ n�minði;mÞ. Note that ðqm; q1;1=bÞ is the only distinguishing state transition. For i no larger
than m, the i states qm�iþ1; . . . ; qm reach this transition on input sequence 1i and therefore produce different outputs than
state s1. For i at least m, all m states q1; . . . ; qm reach the distinguishing transition. State s1 and the k states r1; . . . ; rk do not
reach the distinguishing transition on input sequence 1i0. Therefore, the number of states that produce different outputs
than state s1 on input sequence 1i0 is minði;mÞ.
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Finally, we prove Eqs. (3) and (4) under the assumption that z does not contain the substring 1n�2k�2. For all states s, either
dðs;1i0Þ ¼ s1 or dðs;1i0Þ ¼ r2. All state transition paths from either state s1 or state r2 to the distinguishing state transition
from state qm must go through the n� 2k� 2 state transitions between qkþ2 and qm. Transitions along this path require an
input sequence with n� 2k� 2 consecutive 1-bits, which is not possible with sequence z. Therefore, we have
cð1i0zÞ ¼ cð1i0Þ ¼ n�minði;mÞ. This also proves Eq. (4) because cð1iÞ ¼ cð1i0Þ ¼ n�minði;mÞ. h
Proof of Proposition 4. Assume first that i ¼ 0, i. e. the search point begins with a 0-bit. In this case, all states q1; . . . ; qm

collapse with state s1, and the suffix z can at most distinguish s1 from the k states r1; . . . ; rk. Hence, in this case cð0zÞP n� k.
Assume now that 1 6 i 6 kþ 2. After input 1i0, all states have moved to either state s1 or state r2. If i is even, then state s1

has collapsed with states q1; . . . ; qm. Hence, the suffix z can at most distinguish the k states r1; . . . ; rk from state s1, i. e.
cð1i0zÞP n� i� k P n� ðkþ 2Þ � k. If i is odd, then states r1; . . . ; rk have collapsed with states q1; . . . ; qm. So if x is not
optimal, then cð1i0zÞ ¼ n� i P n� k� 2.

Finally, assume that kþ 2 < i 6 2kþ 2. After input 1i0, no more states can reach the distinguishing transition because
moving from state s1 or state r2 to the distinguishing transition requires at least the subsequence 0k�11n�2k�2 which is longer
than subsequence z. So in this case, we have cð1i0zÞ ¼ n� i P n� ð2k� 2Þ. h
Proof of Proposition 5. The current search point x of (1 + 1) EA in Phase 1 is on the form x ¼ 1i0z for some i, 0 6 i < 2kþ 2
and z a string of length ‘ðzÞ ¼ n� i� 1. We call this substring z occurring after the first 0-bit the suffix of the current search
point.

We first show that as long as the run for the first t steps has been typical, then the suffix z in step t þ 1 is a random string.
The initial search point is a random string, so the suffix is also a random string. Assume that the run has been typical until
step t and the suffix z is a random string. By Eq. (4) in Proposition 3, any bitflip of the suffix will be accepted. Randomly
mutating a random string, will clearly produce a new random string. The suffix in step t þ 1 will therefore be a random
string. The suffix z of the new search point in step t þ 1 can contain 1n�2k�2, i. e. we may have a failure in step t þ 1. However,
we show that this is unlikely. The probability that the string 1n�2k�2 occurs in a random string shorter than n is no more than
ð2kþ 2Þ � 2�nþ2kþ2, which for large n is less than e�n=16. One way of increasing the number of leading 1-bits without having a
failure is by flipping the first 0-bit and flip no other bits. So the probability of increasing the number of leading 1-bits without
having a failure in the following step is at least ð1=nÞ � ð1� 1=nÞn�1 P 1=en.

Hence, for large n, the probability that the number of leading 1-bits increases before we have a failure is at least
1=en
1=enþ 1=en=16 P 1� ne � e�n=16 P 1� e�n=32:
A failure must occur before the number of leading 1-bits has been increased more than 2kþ 2 times. So the failure proba-
bility Pr½F� is no more than
X2kþ2

i¼0

ð1� e�n=32Þi � e�n=32
6 ð2kþ 2Þ � e�n=32 ¼ e�XðnÞ: �
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