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(i.e., the requirements), and it should be automatically generated by the computer without
the help of any programmer. Unfortunately, this task is much harder than expected.
Although transformation methods are usually employed to address this problem, they can-
not be employed if the gap between the specification and the actual implementation is too
wide. In this paper we introduce a novel conceptual framework for evolving programs from
their specification. We use genetic programming to evolve the programs, and at the same

Keywords:
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Automatic refinement

Co-evolution time we exploit the specification to co-evolve sets of unit tests. Programs are rewarded by
Software testing how many tests they do not fail, whereas the unit tests are rewarded by how many pro-
Genetic programming grams they make to fail. We present and analyse seven different problems on which this

novel technique is successfully applied.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Writing a formal specification (e.g., in Z [48] or JML [31]) before implementing a program helps to identify problems with
the system requirements. The requirements might be, for example, incomplete and ambiguous. Fixing these types of errors is
very difficult and expensive during the implementation phase of the software development cycle. However, writing a formal
specification might be more difficult than implementing the actual code, and that might be one of the reasons why formal
specifications are not widely employed in industry [40].

However, if a formal specification is provided, then exploiting the specification for automatic generation of code would be
better than employing software developers, because it would have a much lower cost. Since the 1970s the goal of generating
programs in an automatic way has been sought [26]. A user would just define what he expects from the program (i.e., the
requirements), and it should be automatically generated by the computer without the help of any programmer.

This goal has opened a field of research called Automatic Programming (also called Automatic Refinement) [43]. Unfortu-
nately, this task is much harder than it was expected. Transformation methods are usually employed to address this problem
(e.g. [26,11,47,39,51,37]). The requirements need to be written in a formal specification, and sequences of transformations
are used to transform these high-level constructs into low-level implementations. Unfortunately, this process can rarely be
automated completely, because the gap between the high-level specification and the target implementation language might
be too wide.

“ A preliminary version of this paper was presented in the IEEE International Conference on Automated Software Engineering 2007 [7].
* Corresponding author. Tel.: +44 47 678 28 244.
E-mail addresses: arcuri@simula.no (A. Arcuri), x.yao@cs.bham.ac.uk (X. Yao).
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In this paper we present a novel conceptual framework for evolving programs from their specification. A population of
candidate programs co-evolves with a population of unit tests. We employ genetic programming to evolve the candidate
programs, whereas search based software testing techniques are employed to evolve the unit tests. The fitness value of
the candidate programs depends on how many tests they pass, whereas the unit tests are rewarded based on how many pro-
grams they make to fail. We call this approach Co-evolutionary Automatic Programming [7].

This type of co-evolution is similar to what happens in nature between predators and preys. For example, faster preys es-
cape predators more easily, and hence they have a higher probability of generating offspring. This influences the predators,
because they need to evolve as well to get faster if they want to feed and survive. In our context, the evolutionary programs
can be considered as preys, whereas the unit tests are predators. The programs need to evolve to fix their faults, and this will
make them “escape” from the unit tests. In our analogy, a program with few faults is a “fast” program. If a program manages
to escape from the unit tests, it will have a higher probability of reproducing. On the other hand, if it has many faults, then it
would be “slow”, hence it is likely to be “killed” by the unit tests.

Once the programs evolve to be “fast” enough to escape from the unit tests, new mutations that make them “faster” will
not spread, because all the programs will have the same fitness, and the chance of survival will be the same for each of them.
Unfortunately for the programs, they cannot rest for long. In fact, the unit tests are evolving as well (i.e., the “slow” ones die,
whereas the ones with new good mutations reproduce), and sooner or later they will get “faster”. When this event happens,
the programs do not have all the same chance of survival, and only the “fastest” among them will survive. Hopefully, this co-
evolution will produce an arms race in which each of the two populations continually improve its performance, and that
would lead to the evolution of a program that satisfies the given formal specification.

The idea of co-evolving programs and test cases is not entirely new [23]. The novelty of this paper lies in its original appli-
cation in software engineering, i.e. automatic refinement, and in all the related problems that require to be addressed (e.g.,
how to automatically generate the fitness function and how to sample proper test cases for non-trivial software).

Although there is a wide range of successful techniques that are inspired by nature (especially in optimisation and ma-
chine learning), the aim of this paper is not to mimic a natural process. If we can improve the performance of a nature in-
spired system by using something that is not directly related to its inspiring natural process, we should use it. For example,
to improve the performance of our framework, in this paper we also investigate the role of Automated N-version Programming
[19]. Furthermore, we exploit the formal specification to divide the set of unit tests into sub-sets, each of them specialised in
trying to find faults related to different reasons of program failure. To evolve complex software composed of several func-
tions, if there are relations among the functions (e.g., an hierarchy of dependencies), then we exploit these relations. For
example, we can use them to choose the order in which the specifications of the single functions are automatically refined,
and then we use the programs evolved so far to help the refinement of other functions.
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Fig. 1. High level view of the proposed framework for co-evolutionary automatic programming. S means “sub-population”, whereas V means “version”.
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We have implemented a prototype of our conceptual framework in order to evaluate and analyse it. Seven different prob-
lems are used in our empirical study. Fig. 1 shows a high-level view of the framework. A formal specification is taken as in-
put. A set of test cases is automatically generated based on the formal specification. A population of programs is evolved for a
fixed number of generations to pass these test cases. At each generation, new test cases are co-evolved to find new faults in
the evolving programs. The best individual in the last generation is chosen as an implementation of the formal specification.
Because this individual could be faulty, more than one version of the program is evolved with different runs of the co-evo-
lution, and these versions are then used together in an ensemble. The details of each component of the framework and their
interactions will be discussed throughout the paper.

The use of the formal specifications to automatically create fitness functions makes it possible to apply the framework to
any problem that can be defined with a formal specification (as long as an oracle can be automatically derived). However,
evolving correct programs for solving, for example, the halting problem [15] is not possible.

The main contribution of this paper is a novel approach to Automatic Programming, in particular the automatic refine-
ment of formal specifications. This approach has a wider range of applications than previous techniques reported in litera-
ture, because it makes no particular assumption on the gap between the formal specification and the target implementation.

The paper is organised as follows. Section 2 reviews related work. Section 3 gives short background information on soft-
ware testing, genetic programming and co-evolution. A description of how programs can evolve to satisfy a formal specifi-
cation follows in Section 4, whereas how to optimise the training set is explained in Section 5. Section 6 briefly describes
what N-version Programming is and how it can be exploited to improve the performance of our framework. A discussion
on how complex software might be evolved follows in Section 7. The case study used for validating our novel framework
is presented in Section 8. Finally, Section 9 concludes the paper.

2. Related work

The problem we address in this paper, and the way we try to solve it, is similar to Evolvable Hardware [22]. The design of
electronic circuits is an important and expensive task in industry. Hence, search based techniques have been used to tackle
this problem in which, given a specification of a function (for hardware that can be for example a truth table), a solution that
implements the function is sought.

Our framework also shares some similarities with the system for evolving secure protocols from a formal specification
[13]. A protocol is a sequence of messages, and a genetic algorithm was used to evolve it. The fitness function depends
on how well the protocol satisfies its specification. Although neither genetic programming nor co-evolution was used, our
work shares the same idea of formally specifying the expected behaviour (what it should be done, but without stating
how to do it) of a system (e.g., programs and protocols), and then using natural computation techniques to find a solution
that implements that system.

Another related field of research is Software Cloning, in which evolutionary techniques have been used for automatically
cloning programs by considering only their external behaviours [42]. The external behaviour of a program can be partially
represented by a set of unit tests. In other words, programs are evolved till they are able to pass all the used unit tests. It has
been argued that this technique might be helpful for Complexity Evaluation, Software Mutants Generation, Test Fault Tol-
erance and Software Development in Extreme Programming [42]. Besides the different goals, the main differences from
our approach are that no formal specification was employed and the test case sets were fixed (i.e., they did not co-evolve
with the programs).

The work of Adamopoulos et al. on Mutation Testing [2] has some similarities to our framework. Its goal is to find test
cases that can recognise faulty mutants of the tested software, because such a test suite would be good for asserting the reli-
ability of the software. Mutants (generated with a precise set of rules) co-evolve with the test cases, and they are rewarded
on how many tests they pass, whereas the test cases are rewarded on how many mutants they identify as semantically dif-
ferent from the original program.

In our previous work, we used genetic programming and co-evolution to also address other software engineering prob-
lems. We investigated the task of automatically repairing faulty software [4,5,8] and automatically improving non-functional
properties [6].

3. Background
3.1. Software testing

Software testing is used to find the presence of faults in computer programs [36]. Even if no fault is found, testing cannot
guarantee that the software is fault-free. However, testing can be used to increase our confidence in the software reliability.

Different types of testing approaches exist. For example, in black box testing [36] the tester has no access to the internal
structure of the tested software. Only a specification that describes its functionality is provided. The aim of the tester is to
find an input that satisfies the pre-condition of the program specification but fails the post-condition. In that case, it would
mean that the program has a fault. In white box testing [36] the tester has access to the source code of the function/class
under test. A formal specification is not needed, although it can be useful to automate the phase in which the results are
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checked against an oracle. Given a coverage criterion (e.g., branch coverage), the aim is to find a test set that has as high a
coverage as possible. Maximising the coverage of a test suite is important because faults could be present in portions of the
software that are rarely executed.

Automating the testing phase is an important goal that is keenly sought. Search based techniques have been applied to
tackle this task with promising results [33].

3.2. Genetic programming

Genetic programming (GP) [16,29] is a paradigm to evolve programs. Although it was first introduced by Cramer [16],
only since Koza [29] GP has been widely known with many successful applications. A genetic program can often be seen
as a tree, in which each node is a function whose inputs are the children of that node. A population of programs is held
at each generation, where individuals are chosen to fill the next population accordingly to a problem specific fitness function.
Crossover and mutation operators are applied on the programs to generate new offspring.

The basic components of a genetic program are called primitives [12]. The choice of primitives is very important for the
correct evolution of the desired program. Often, the choice of the primitives is optimised for the particular task that is ad-
dressed. A set of primitives can represent for example either a complete programming language or, in the case for example of
controlling a robot, it can represent operations such as “move forward” and “turn left”.

GP has been principally applied to solve real-world learning problems.

3.3. Co-evolution

In co-evolutionary algorithms, one or more populations co-evolve influencing each other. There are two types of influ-
ences: cooperative co-evolution in which the populations work together to accomplish the same task, and competitive co-evo-
lution as predators and preys in nature. In this paper we use competitive co-evolution.

Co-evolutionary algorithms are affected by the Red Queen effect [41], because the fitness value of an individual depends
on the interactions with other individuals. Because other individuals evolve as well, the fitness function is not static. For
example, exactly the same individual can obtain different fitness values in different generations. One consequence is that
it is difficult to keep trace of whether a population is actually “improving” or not [14,34].

One of the first applications of competitive co-evolutionary algorithms was the work of Hillis on generating sorting net-
works [23]. He modelled the task as an optimisation problem, in which the goal is to find a correct sorting network that does
as few comparisons of the elements as possible. He used evolutionary techniques to search the space of sorting networks,
where the fitness function was based on a finite set of tests (i.e., sequences of elements to sort): the more tests a network
was able to correctly pass, the higher fitness value it got. For the first time, Hillis investigated the idea of co-evolving such
tests with the networks. The reason for doing so was that random test cases might be too easy, and the networks can learn
how to sort a particular set of elements without being able of generalising. The experiments of Hillis showed that shorter
networks were found when co-evolution was used.

Ronge and Nordahl used co-evolution of genetic programs and test cases to evolve controllers for a simple “robot-like”
simulated vehicle [44]. Similar work has been done by Ashlock et al. [9]. In that work, the test cases are instances of the envi-
ronment in which the robot moves.

Note that the application area of such work was restricted (i.e., sorting networks and robot controllers), whereas we use
co-evolution for a more general and complex task (i.e., automatic refinement).

4. Evolution of the programs
4.1. Basic concepts

Given the specification of a program P, the goal is to evolve a program that satisfies it (i.e., we want to evolve a program
that is semantically equivalent to P). To achieve this result, GP is employed. At each step of GP, the fitness of each program is
evaluated on a finite set T of unit tests that depends on the specification. The more unit tests a program is able to pass, the
better the fitness value it will get rewarded. This set T should be relatively small, otherwise the computational cost of the
fitness evaluation would be too high. In fact, for calculating the fitness of a program we need to run it on each unit test
in T. What can be defined as “small” or as “big” depends on the available computational resources.

4.2. Training set

The set T is different from a normal training set in machine learning. Let X be the set of all possible inputs for P, and Y be
the set of all possible outputs. A program might take as input more than one variable, hence X is a set of all those possible
combinations. The element x € X is a vector of the input variables for P. By g(x) = g(x[0], ..., x[n]) we mean the execution of
the program g with input vector x. The elements in x can be of different types (e.g., integer, double and pointer). If P has an
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internal state, then we should generalise x in a way in which how to put the state in the right configuration (e.g., by previous
function invocations) is considered.

The output elements y € Y can be composed of a single value, or of a vector of values with potentially different types. Each
of these values would represent a different assert statement in the unit test. For example, in checking whether an array is
correctly sorted, there could be an assert statement to check whether the length of the array has been changed. There could
be an assert statement for each element of the array to see whether they are equal or not to the elements of the expected
sorted array. Fig. 2 shows a simple Java-like example of a unit test that is mapped into input x and output y. Note that in
many languages the length of an array cannot be changed, and we check the length instead of another property only for
simplicity.

Given any input x € X, we do not have the expected value y* = g*(x), with g* being the optimal program that we want to
evolve and y* € Y being the expected result for the input x. Hence, in our case a unit test t € T instead of being seen as a pair
(x,y*) (as a typical element of a training set would be), is a pair (x,c), where c is a function c(x,y) : X, Y — R. The function ¢
gives as output a value of 0 if y is equal to y*, otherwise a real positive value that expresses how different the two results are.
A higher value means a bigger difference between the two results. Because the function c is the same for each t € T, we can
simplify the notation by considering only the input x for a unit test. In other words, t € X and T C X. A program g € G, where G
is the set of all possible programs, is said to pass a test t € T iff c(t,g(t)) = 0. How to automatically derive the function ¢ will
be explained later in this section.

The scenario described in this paper is very different from the normal applications of GP:

o The training set T can be automatically generated with any cardinality. There is no need for any external entity that, for a
given set of x, says which should be the corresponding y*.

e Usually, because there are only a limited number of pairs (x,y*), all of them are used for training. In our case we have the
additional problem of choosing a subset T, because using the entire X is generally not feasible.

e The training set T does not contain any noise.

e We are not looking for a program that on average performs well, but we want a program that always gives the expected
results, e.g. Vx € X e g(x) = g*(x). Hence, a program does not need to worry about over-fitting the training set. Even if only
one test in T is failed, that means that the specification is not satisfied.

o To prevent GP from learning some wrong patterns in the data, it would be better not to have a fixed T. In other words, it
would be better to have different test cases at each generation. Fig. 3 shows a non-trivial example in which an undesired
pattern is learnt: it represents a training set for the Triangle Classification problem [36] and an incorrect simple program
that is able to pass all these test cases.

4.3. Heuristic based on the specification

The function c(x,y) : X,Y — QR is an heuristic that calculates how far the result y = g(t) is from satisfying the post-condi-
tion of the specification for the input x = t when the pre-condition is satisfied. If the pre-condition is not satisfied, ¢ should
return 0. Note that c does not calculate the distance between x = t and y = g(t). It calculates the distance from y = g(t) to the
expected result y* = g*(t).

int[] a = new int[1{7,9,1};
sort (a) ;
assert (a.length==3) ;
assert (al[0]==1);
assert (all]l==7);
assert (a[2]==9);
/*

x {7,9,1}

y = {3,1,7,9}

*/

Fig. 2. Example of a unit test mapped into a pair (x,y).

<(5,-2,3), 0> // 0 represents ’'not triangle’
<(4,3,6) , 1> // 1 represents ’'scalene’
<(9,9,16), 2> // 2 represents ’'isosceles’
<(3,3,3) , 3> // 3 represents ’'equilateral’

function classifyTriangle(a, b, c)
return a + b - c;

Fig. 3. An example where an undesired pattern is learnt.
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It is important to note that the function c is not required to be able to compute the expected result y* for an input x. Being
able to state whether a particular result k is correct for an input x (i.e., k = y*) is enough. This can be done without knowing
the value of y*. We introduce here an example to clarify this concept. Assume that P is a sorting algorithm that takes as input
an array of integers and sorts it. Given as input an arbitrary array x = (4,3,2,1), if the output of gis y = (1,4, 2, 3), we do not
need to know g*(x) to conclude that g(x)#g*(x), because y is not sorted. We can conclude that an array is not sorted by look-
ing at the specification of the sorting algorithm. In this particular case, we have a 4 before a 2, which is enough to conclude
that the array is not sorted. Although a specification can state whether an array is sorted or not, it cannot say how to sort it.

Because the expected results y* are not known even though a formal specification is employed, the function c cannot cal-
culate any geometric distance between y and y* in the space Y. However, because it heuristically states how far y is from
satisfying the specification, a 0 as a result means that y = y*. Furthermore, if yy*, then c necessarily returns a value strictly
bigger than 0. Therefore, c indirectly calculates a particular type of distance between y and y*, although y* is not known.

Such a function is inspired by the one employed in Tracey’s work on black box testing [50]. In that work, the goal is to find
a test case that breaks the specification. This happens in the case of pre-condition Pr that is satisfied but the post-condition
Po is not. In searching for such a test case, the pre-condition of the function is conjugated with the negated post-condition,
i.e. Q = Pr A "Po. A test case that satisfies Q does break the specification. The distance function c is hence applied on that
predicate Q for guiding the search. A distance value 0 is given if Q is satisfied, and this means that a fault that breaks the
specification is present for the input t.

The main difference with our work is on what c is applied to. In this paper we seek a program that is correct. For guiding
the search, we use this distance directly on the post-condition when the pre-condition is true (i.e, "Pr v Po). A distance value
0 means that the post-condition is satisfied, so the program is correct for that particular input t. Programs closer to be correct
are rewarded with a lower fitness value. On the other hand, in Tracey’s work, the fitness is calculated on
Pr A 7Po = ("Pr v Po) to reward test cases that expose faults in the tested software.

To calculate c(t,g(t)) the program g is executed with the input data contained in the unit test ¢, and then, if the pre-con-
dition is satisfied, the result y = g(t) is compared against the post-condition of the function to see whether the result is cor-
rect or not for that particular input x = t.

How to calculate the function c? Table 1 is inspired by Tracey’s work [50]| and shows how to calculate a support function
dy, which is used to calculate how far a particular predicate 0 is from being evaluated as true. In Table 1, K can be any arbi-
trary positive constant value. A and B can be any arbitrary expression, whereas a and b are the actual values of these expres-
sions based on the values in the input set I. W can be any arbitrary expression.

The function d, takes as input a set of values I, and it evaluates the expressions in the predicate 0 based on the actual
values in I. The function c is recursively built on dy, in which 0 is the disjunction of the negated pre-condition with the
post-condition of the employed specification (i.e, "Pr v Po). In other words, c is equivalent to d-p,p,. Of course, for different
specifications there will be built different functions c. The set I is hence composed of the constants in the specification and of
variables that depend on the input of c (i.e., x and y).

This function d, works fine for expressions involving numbers (e.g., integer, float and double) and boolean values. For
other types of expressions, such as an equality comparison of pointers/objects, we need to define the semantics of the sub-

Table 1
Example of how to apply the function d, on some types of predicates.

Predicate 0 Function dy(I)

A if a is TRUE then O else K

A=B if abs(a — b) = 0 then 0
else abs(a — b) + K

A#B if abs(a — b) # 0 then 0 else K

A<B ifa—b<0then0
else (a—b) +K

A<B ifa—b<0thenO
else (a—b) +K

A>B dsa(l)

A>B dpa(l)

-A negation is moved inward and
propagated over A

AAB da(l) + dg(I)

AVB min(d, ( ) ds(l))

A=B min(d., B(I))

A<B min((d ( )+d5(1))
(d-a(l) + d_5(1)))

Axor B min((da(l) + d-(I))),
(d-a(l) + dg(I))

VxeXeW if X is empty then O else
S oexdw (10/x)

IeXeW if X is empty then K else

min(dw (I[v/x])) where v € X
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traction operator —. For example, it can return 1 if the two values are different and 0 otherwise. This type of distance d, is
similar to the branch distance used in white box testing [33].

Unfortunately, the predicates involving ¥V and 3 can be computationally expensive if the set of values on which they de-
pend on is large. In our case study, these sets were arrays of relatively small length, hence the computational cost was not so
high. However, the case of expressions such as Vx ¢ R ¢ W (where W is a predicate) cannot be handled in this way. We will
address this problem in the future. One way could be to calculate the predicate on a restricted set of values, and then evolve
it at regular intervals for finding at least a value for which the predicate is false (if such a value exists). Unfortunately, a re-
stricted set could lead to the situation in which a predicate is evaluated as true when it is actually false.

4.4. Fitness function for the programs

At each generation i of the evolution, the current population of genetic programs G; is executed on the current test set T;.
The fitness of each g € G; is based on its ability to pass the unit tests in T;. It is a minimisation problem, in which the heuristic
function c is to be minimised over all the test cases in T;. If the specification is satisfied, the contribution of c to the fitness
function is equal to 0.

In evolved programs, it is easy to have code that generates exceptions, such as divisions by zero or accessing arrays out of
their bounds. In such cases, no exception is thrown by our framework. If the GP node that generated that error is supposed to
return a numerical value, then it just returns a O (and hence it operates as a protected operation). However, the framework is
informed of each exception, and their number E(g, T;) is used in the fitness function with the aim of penalising programs that
do operations that should be forbidden. The function E(g, T;) is calculated by counting each generated error when the pro-
gram is applied on each test case in T;.

In GP, there is the problem of bloat [30], i.e., the increasing size of the programs with redundant or non useful code. Par-
simony controls [32] might be used to deal with this problem (e.g., including in the fitness function a penalty term based on
the size of the program). In our particular case, parsimony can be deceptive. g may be lost if parsimony is imposed. For
example, if a g, is not optimal, smaller than g* and able to pass all the tests in the current population of tests, then g, will
be preferred to g* although it is not optimal. It is noteworthy that such a behaviour would not happen in a conventional co-
evolutionary algorithm, in which the fitness value of an individual is solely based on interactions with other individuals.
Nevertheless, we still have to employ a parsimony control in order to achieve computational efficiency. We penalise the
number of nodes N(g) in the program.

The employed fitness function f for each program g is:

F8) = gt * E o Sctegio) 1)

5. Optimisation of the training set

Choosing a good training set T is not easy. An ideal set T* would be one that, if a program g € G passes all the unit tests
t € T", then it is guaranteed that it will pass all the tests in X. This means that if g completely fits the data in the training set,
then it is guaranteed that g is correct. A trivial set that satisfies such a constraint is T = X. However, the set should be rel-
atively small, otherwise the computational cost of fitness evaluation would be too high.

Finding the optimal T*#X is impossible, because in the set G of all possible programs there is always at least one program
that fits all the data in this hypothetical T*, and can have, for example, a special “if’ statement based on the value of a
t € X\ T" that makes the program fail on that test t. Although the use of a limited set of primitives (e.g., without “if”) might
not lead to this problem, this is not true in the general case. Even if an optimal T existed, there is no guarantee that GP will
be able to evolve a program that fits all the data in T". A good strategy for choosing an appropriate training set T is needed,
because the performance of GP depends on it. In the following, we describe the use of co-evolution to find T.

Because an element t of a training set can be automatically generated, we can use a different training set T; at each dif-
ferent generation i of GP, and that would also help to prevent misleading cases such as the one in Fig. 3. However, care needs
to be taken for assuring that the overhead of generating new unit tests is not too high.

To simplify the following discussions, we assume that GP maintains a population with only one program g; during gen-
eration i. A unit test on which g; fails gives more information to assist the evolution of g; than a passed unit test. In fact, if a
test t is failed, then the program g is evolved until it passes t (or until GP has been stopped). In the case that all the unit tests
are passed, g; is not able to evolve any further. If T#T", the program is not necessarily correct and there is no more guidance
to its evolution. Hence, the idea is to let the test set T; co-evolve with the program g;, with the aim of giving to g; at each
generation a set of tests that it is not able to pass yet. Let N; be the set of all the possible unit tests at generation i for which
g; passes, and F; be the set of tests for which it fails. We have N; C X, F; C X and N; U F; = X. A strategy p is used to choose the
next Ti,; from T; and g;. A reasonable strategy would be one that generates new unit tests that the current g; will fail. Given:

. 0 iffGN,‘,h
1,t) =
0(7 ) {1 iftEth
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we can formulate the choice of the strategy as an optimisation problem, in which the fitness to maximise is:

i=H
flpy=>_> wiit), (2)

i=0 teU;

where H is the number of allowed generations for GP, and U; C T; is the largest subset of T; in which all the elements are
unique. For the sake of clarity, the cardinality of the training sets T; does not change during the search, and there can be
redundant unit tests in a T; (although this latter case should be avoided if possible because it would not be of any help).
We employ the co-evolution of programs and their unit tests to solve this optimisation problem. However, it is important
to remember that the goal is to evolve a program g*, and finding the best sequence of T; is a secondary task that is addressed
because it will help to solve the principal problem.

Even if the best strategy p* is used, none of the T; will be the optimal T* (that usually does not exist). Using p* does not
imply that g* will be evolved, and g* might be evolved even with a sub-optimal strategy, because GP is a randomised algo-
rithm. It can even happen that p* actually makes the evolution of g* more difficult. An example will help to clarify this state-
ment: consider a boolean function that takes as input one integer and says whether it is positive or not. The program g*
always returns true, whereas g/ always returns false. For simplicity we consider a training set of size 2. If all elements in
T; are positive, GP might evolve gt (i.e., g; = g*), and that completely fits the data. At the next generation, the set T;,; in which
all the elements are negative values makes g; fail all the tests, hence it optimises function (2). Then, GP might evolve g/ (i.e.,
8.1 = &), and that, again, completely fits the data. The system can go on in this way, switching the training set from all po-
sitive to all negative, with GP that always evolves either g or g’. This strategy is optimal regarding Function (2), but it is
obviously not a good strategy. A strategy that at each generation would generate T; with both positive and negative values
is likely to give much better results, because it would not fall in that cyclic behaviour (although other types of cycles may
potentially arise).

The choice of a strategy depends on the particular solution concept [20] that we want to optimise. However, usually we do
not know the underlying objectives of a problem. Moreover, although a g; can pass all the unit tests in T;, usually there is no
guarantee that any g; with j > i will be able to do the same. Hence, Function (2) captures some desired properties that we
want from a strategy, but it is not sufficient.

This problem of continuous changing of the fitness landscape and memory loss is named mediocre stable states [21]. Ar-
chive methods (e.g., [45]) have been proposed to handle it, with a lot of effort spent on designing algorithms that guarantee a
monotonic improvement of the results [27]. When archives are employed, at each generation some individuals are stored in
a separated archive (which often is implemented as a queue of finite size). The fitness of current generation individuals is
also based on the interaction with those old individuals. It is important to note that these archives are conceptually similar
to regression test [36] suites.

When co-evolution is employed, each t € T; has a fitness value as well. A fitness function is used to reward unit tests that
the programs in the current population G; have difficulties in passing. In contrast to Eq. (1), this is a maximisation problem. A
value of 0 means that all the programs in G; pass the test t. The fitness function is:

fley="2"c(t.g(t). 3)

8¢G;

It is important to outline that the employed c(t, g(t)) values are the same as those used for Eq. (1). Hence, they are calculated
only once, and then they are used for both fitness functions. Fig. 4 shows the relations between the programs and the unit
tests with respect to how their fitness values are calculated. G is the population of programs, whereas T is the population of
unit tests. For simplicity, sets of cardinality 3 are displayed. In Fig. 4a it is shown on which unit tests the fitness of the first
program g, is calculated. On the other hand, Fig. 4b shows on which programs the fitness for the first unit test ¢, is calcu-
lated. Note that the arc between the first program and the first unit test is used in both fitness calculations. Finally, Fig. 4c
presents all the possible |G| - |T| connections.

Once the fitness function is calculated for each test in T;, we use search algorithms to sample the new test cases [33]. In
particular, we employ genetic algorithms [24] to evolve the next test set T;, ;.

G T G T
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ONG|  |e®
o & & \@

() (b)

Fig. 4. Relations between the programs and the unit tests regarding their fitness values.



420 A. Arcuri, X. Yao/ Information Sciences 259 (2014) 412-432

(1) Evolve the GP population for one generation.
(2) Calculate the fitness value for each test case ¢ € T; based on the GP programs.
(3) Based on these fitness values, use a search algorithm to generate new test cases
for T}, 4.
(4) If current generation 4 is chosen for intensive evolution, then:
(a) Calculate the fitness value for each test case ¢t € 7}, based only on the
best (i.e., highest fitness value) GP program in the current GP population.
(b) Use a search algorithm to generate new test cases and replace the old ones
inTq.
(c) If the termination criterion for the intensive evolution is not satisfied, go
back to Step 4>a
(5) If the termination criterion is not satisfied, go back to Step 1.

Fig. 5. Pseudo-code of the algorithm used to choose test cases at each GP generation.

However, we cannot expect to have good (in the sense of being able of finding faults) unit tests already in the first gen-
erations of a genetic algorithm. In that case, trying to evolve programs on simple unit tests for many generations would not
be very appropriate. Moreover, when the programs are able to pass all the unit tests in the current generation, time would be
needed to evolve more challenging test cases.

One solution is to allow more generations for the evolution of the unit tests. For example, every k generations of the co-evo-
lution, a special intensive evolution of the unit tests can be done. During such intensive evolution phases, no program evolves
(and that helps to reduce the computational overhead of the intensive evolution). Moreover, for fitness evaluation of the unit
tests, we can just use the best current program (and that helps as well in reducing the overhead). In fact, because we do not
need to evolve all programs, there is no need to execute all of them on the unit test population (that would have been done
if we needed to calculate their fitness values), because the best program is already an appropriate candidate for evaluating
the quality of the unit tests. Fig. 5 shows the pseudo-code of the algorithm used to choose test cases at each GP generation.

5.1. Specialised sub-populations

In this section we describe a co-evolutionary algorithm that is built on Tracey’s work on black box testing [49]. We call
this algorithm Specialised Sub-Populations (SSP). The aims of this algorithm are to provide more challenging test cases and to
increase diversity among them.

The pre-condition of the function is conjugated with the negated post-condition. Then, this predicate is transformed into
a disjunctive normal form. For each disjunction element, an independent sub-population S;; in T; is used, where
US;i CT; = T;. In other words, the test set T; is partitioned into non-overlapping sets S;;. Each subset uses a different heuristic
function for evaluating its test cases, and the resulted fitness function to minimise depends on the disjunction element re-
lated to the subset. For example, if the pre-condition Pr of the program is true and the post-condition Po is A A B, then it will
be Pr A "Po = "A v "B. Hence, T; will be divided into two independent sub-populations, one that exploits d-4(I) for its fitness
function, and the other that uses d-(I).

The original idea [49] was to evolve a different unit test for each possible reason for which the program can break the
specification. It is a minimisation problem, where a value of 0 is the optimum and it means that the considered program
failed that particular test. However, this is insufficient for our problem. We want not only to evolve a test population that
the current population of programs is not able to pass, but we also want it as hard as possible. Hence, we need to exploit
the function d, to reward the unit tests that make the post-condition as far as possible from being evaluated as true. Thus,
we have to transform the minimisation problem (that does not give any more information once a test is failed) to a maxi-
misation one.

Given W a component of the disjunction we want to satisfy, the goal is to get a test case t that maximises:

k+dw(I) if W is true,
o (£,8(8)) —{ .

Tr® otherwise,

(4)

where k is any arbitrary constant (e.g., k = 1), and the set value I is based on the variables in t, g(t) and the constants in W.
The function hy (t,g(t)) is never less than 0, and, for each different sub-population, it can replace c(t,g(t)) in Eq. (3).

The use of hy (t,g(t)) also solves another important problem. If a test is passed by all the programs, by using only ¢ we will
get a fitness value of 0, that gives no gradient information until at least one program that fails the test case is evolved. On the
other hand, h could give gradient information even when a test is passed.

The next sub-populations for T;,; are still generated with a search algorithm (i.e., genetic algorithms). However, there is
no communication among the sub-populations.

6. N-version programming

After applying our framework, we get as output a program that hopefully satisfies the wanted formal specification. How-
ever, testing cannot prove the correctness of a program, hence our output program might contain faults. Therefore, in this
section we discuss how we can further improve the reliability of the programs.



A. Arcuri, X. Yao/Information Sciences 259 (2014) 412-432 421

Fault tolerance is the ability of software to be able to behave correctly even in the cases in which faults occur. One tech-
nique to achieve this goal is N-version Programming [10]. Briefly, the idea is to implement the same software as several inde-
pendent versions (at least 2), and then use all of them in parallel for the computation. The result will be chosen by a simple
voting criterion among the different versions.

If the software versions are independent (e.g, implemented by different software developers without any communication
between them), it is possible that an error in one version would not appear in the other versions. However, true indepen-
dence can be hard to achieve in practise. There might be other ideas in hardware fault tolerance [46] that we could borrow
in our future work.

One problem with N-version programming is that it is expensive. The same software needs to be implemented many
times in independent ways. Hence, work on how to automate N-version programming with GP has been proposed [19].

It is useful to note that N-version programming is conceptually the same idea as ensembles in machine learning. An exam-
ple of GP ensemble is the work of Imamura et al. [25]. N-version programming can be used in our framework to improve its
performance. For the same software specification, different runs of the framework can be done (e.g., with different random
seeds and/or different parameter setting). Hence, the final output programs of each run can be put together in an ensemble,
although different versions in this case would not be independent from each other.

Let ¢ be a system that can generate a correct program p* from a formal specification with probability C(¢) = 4. The pro-
gram p* will always give the right answer for all the inputs with probability é. The programs generated with probability 1 — 6
give a wrong output at least for one input (but no assumption on the input is made, e.g., whether for each different incorrect
program these inputs are either dependent or not). Let E}. be an ensemble of n programs generated with ¢. It follows that:

C(6) >0.5= limC(E}) =1, (5)

n—oo

assuming that these n programs are independent of each other.

If 6 < 0.5, then it is still possible that the probability of having a correct ensemble increases. What happens in these other
cases is directly dependent on whether the faults in the programs generated by ¢ are independent or not. If they are inde-
pendent, the faults can be covered. In fact, even if with a low C(¢), a high C(E},) might still be obtained.

7. Evolving complex software

The framework described so far can be used to evolve single functions. However, unless software is developed in a mono-
lithic way, there are several functions that interact and depend on each other. In this section we describe a possible way to
enable our framework to deal with these cases. Although software architectures can be very complex, we describe a simple
approach here to illustrate how our conceptual framework can cope with complex software.

Let us call Z the set of function specifications of the software we want to automatically implement. We could use our
framework directly on each z € Z, but that would not take into account the dependencies among the functions. For example,
let’s say that a method A needs to call a method B. If we first evolve B, then we can use it when we try to evolve A. However, if
we try to evolve directly A that would be more difficult, because for each position in which B needs to be called inside A we
need to evolve a separate copy of B. Moreover, B can be seen as a sub-problem of A, and the specification of B is very useful for
the fitness function of A. If we do not exploit this specification, the fitness function generated by A might give no direct indi-
cation on how to solve this sub-problem.

We can use the following simple strategy to tackle this problem:

(1) Choose a function specification z from Z.

(2) Use our framework to evolve an implementation of z. If that is successful, then remove z from Z, and add its imple-
mentation to the set of used primitives. Otherwise, keep z in Z to try to evolve it again later.

(3) If Z#{}, then go to Step 1, otherwise the algorithm terminates.

The choice of z from Z might be guided from architectural information of the system we want to implement. For example,
simple functions would be preferred to functions that depend on other functions. Hence, we would start to consider these
more complex functions only when the functions they rely on have already been evolved by the system. The component of
the framework that is responsible for doing this choice is called Function Specification Manager (see Fig. 1).

If a function is “considered” correctly evolved, it will be added to the set of GP primitives. Hence, the other functions that
will be evolved afterwards will be able to use it.

If the framework is not able to evolve a particular function, it will try do it again later on (i.e., it is not removed from Z). In
fact, that function might need some other functions that have not been evolved yet. One possible implementation of Z could
be a queue that has been ordered by exploiting the function dependencies. Therefore, if a specification z is not correctly
implemented, then it will be pushed back at the end of the queue.

Another optimisation could be that, instead of adding an evolved function to the general set of GP primitives, only the
functions that could need that evolved function would have it added to their set of used primitives. However, this type of
dependence is not always known.
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Once all the functions have been evolved, the final complete implementation of the software is given as output of our
framework (see Fig. 1).

8. Case study

In this section a set of GP primitives that defines a simple programming language is presented. Then, seven different prob-
lems that use this set are described: MaxValue, AllEqual, TriangleClassification, Swap, Order, Sorting and Median. Different types
of experiments are discussed and their results are shown. Finally, the results are discussed.

8.1. Primitives

In the following, we give details of a set of primitives that defines a non-trivial programming language. It is important to
note that the set was chosen without any particular bias towards the programs in our case study. The set used in this paper is
more general and complex than the one we used in our preliminary work [7]. This is the reason why the results of the exper-
iments are different. Extending our prototype to support an entire real-world language (e.g., C and Java) is an interesting and
important goal that we are currently pursuing.

Each node in our GP engine has a type, and constraints exist on which types of children a node can have. Our language
considers three types: statement, integer and boolean. The root node of a tree should be of statement type. To guarantee that
no evolutionary operator breaks any constraint, we use Strongly Typed Genetic Programming [35].

The name of the primitives is consistent with their semantics: x and y represent sub-trees of integer type; a and b are
boolean type sub-trees; and w and z are statement sub-trees. Based on the context, we use the same symbol for representing
either a sub-tree or its output. The primitives are:

Constants: Five integer constants with value from 0 to 4. Two boolean constants: true and false.

Arithmetic functions: (add x y), (sub x y), (mul x y) and (div x y).

Boolean functions: (bigger x y), (bigger_or_equal x y), (equal x y), (and a b), (or a b) and (neg a).

Base statements: (skip) is the empty statement, that does nothing when executed. The concatenation of statement execu-
tions is done with (seq w z), whereas conditional statements are done with (if a w z). In that case, w is executed only if a is
true, otherwise z will be executed. Finally, for loops we use (loop x y w), in which w is executed y — x times, and index is an
integer terminal (i.e., a leaf node) that gives either the value of the iterator variable of the closest loop or zero if it is used
outside a loop.

Variable: For simplicity, only one variable called result is supported in the language, with a statement (write_result x) and
an integer terminal read_result to manipulate it. If the program that is tried to be evolved should return an integer value,
then the value inside result at the end of the computation will be given as output. Otherwise, result can be just used as a
variable for temporally storing computed data.

Integer inputs: For any integer variable as input to the program, a terminal input_i is included to the set of primitives,
where i is a constant that is different for each input variable.

Array input: If the program takes as input an array, then the primitives to handle it will be added to the used set. We use
(array x) to get the value in position x, whereas (write_array x y) writes y in position x. Finally, the terminal length returns the
length of the array. Note that only one array as input is supported.

8.2. Programs to evolve

To evaluate our novel framework, seven different problems have been chosen. Some of them take as input an array A of
integers. The array is passed by reference. The length of A is represented by . The state of the array A after a function is exe-
cuted is represented by A". Comparisons between arrays (e.g., A’ = A) are not made on the pointers, but on the status of those
arrays (i.e., the internal elements).

Each program has a global variable named result. All the problems described in the following use the same set of prim-
itives that were described in the previous section, with some differences based on the type of input. For each problem a spec-
ification is presented. Instead of using a specific language such as Z [48] or JML [31], we prefer to use a simple first order logic
specification for the short examples that we present. In fact, our conceptual framework could be applied to any formal spec-
ification. Hence, the choice of a specification language is not essential. We believe that a first order logic could be more easily
understood by readers not familiar with real-world specification languages (e.g., Z [48]). Nevertheless, although the follow-
ing specifications could be re-written in another language, the derived fitness functions would be the same. Therefore, the
final results would not change.

Extending our framework to support a specific language would just require to implement the tool to derive the fitness
function. A good fitness function would be able to provide gradient even in the cases in which the specification is not sat-
isfied. Possible problems related only to a particular language are not addressed in this paper.

In the following, Pr and Po are the abbreviations for pre-condition and post-condition respectively.
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public static int getDistanceForMaxValue (int[] a, int[] al, int r, int K)

{

int sum = 0;
int min = Integer.MAX_ VALUE;

for(int i=0; i<a.length; i++)

if(r < alil])
sum += (al[i]-r)+K;

for (int i=0; i<a.length; i++)
{

int tmp = 0;

if (r t= alil)
tmp = Math.abs(r-ali])+K;

if (tmp<min)
min = tmp;
}
sum += min;
for (int i=0; i<a.length; i++)
if(ali] != alli]

sum += Math.abs(al[i]l-all[il) + K;

return sum;

Fig. 6. Example of fitness function for MaxValue.

The first program we consider is to find the maximum value inside A. Such a value has to be stored in result. The spec-
ification of this problem MaxValue is:
int MaxValue(int[] A)
Pr:l>1
Po : Vi€ [0,1— 1] e result > Ali] A
Jie[0,l-1]eresult =A[i] NA'=A

(6)

In Fig. 6 there is an example of a distance function that can be automatically derived from this specification of MaxValue. That
distance function can be automatically derived based on the rules in Table 1. Once a test case is executed, the array a rep-
resents the state of the input array before executing MaxValue, whereas al represents its state after the execution. The var-
iable r is the result we obtain from executing MaxValue, whereas K is a constant as defined in Table 1.

In the AllEqual problem, given A as input, we want to evolve a program that is able to say whether all the elements in A are
equal to each other or not. If they are not all equal, the variable result should store the value 0. Otherwise, it should store any
value different from 0. The specification is:

int AllEqual(int[] A)

Pr:l>1

Po: ((result =0 A Jie[0,l-2]eAli]#Ali+1]) Vv
(result0 A Vie [0, -2]eAli] =Ali+1])) AA' =A

(7)

A very famous program in software testing is TriangleClassification [36]. Given three integers as input, the program should
classify whether they represent the edges of an incorrect triangle (in that case the program should return for example a
1), a scalene triangle (return value 2), an isosceles one (return value 3) or an equilateral triangle (return value 4). The spec-
ification is:

int TriangleClassification(int a, int b, int c)

Pr: true

Po:NT v (V ASC) v (V AIS) v (V A EQ)

NT:(@azb+c Vv bza+c Vv cza+b)Aresult=1

Via<b+c Ab<a+c Ac<a+b

SC:a#b A b#c AN a#c A result =2

IS: ((a=b A b#c) v (a=c A b#a) v (b=c A a#b)) A result =3

EQ:a=b A b=c A result =4

The program Swap takes as input an array and two indexes. The values at those positions are then swapped
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int Swap(int[] A, int i, int j)

ProA#null Ni=0 ANi<AITANj=0Aj<A-I

Po: (Vx € [0,1—1] e (x#i A x#j) = A'[X] = Ax]) A
A-T1=A-1 n ATij=A]j] A ATj] = A[l]

9)

Similarly to Swap, the program Order swaps the two indexed values, but only if the value in position i is bigger than the value
in position j.
int Order(int[] A, int i, int j)
ProA#null Ni=20 ANi<A-ITANj=20Aj<A-I
Po: (Vx € [0,l—1]e (x#i A x#j) = Al[x] = A[X]) A (10)
A-T=A-T A (Al >A[j] A AT =A[j] A Aj) =A[l]) v
(All] < A[] A AT = Ali] A ATj] = A[j])
The Sorting problem has been widely studied in computer science [15]. Given an array as input, the program should order the
elements in the array such that the values in each position should be equal to or smaller than the following elements.
Although the evolution of a Sorting algorithm has already been attempted in the past (e.g. [28,3]), those works were spec-
ialised in this task. In their cases, they used biased primitives and ad hoc fitness functions. In contrast, our framework is gen-
eral, and does not make any particular assumption on the program to be evolved. Moreover, in the case of sorting algorithms
the problem of automatically choosing the most appropriate training set has not been addressed in literature
int Sorting(int[] A)
Pr: true
Po:Vic[0,l-2)e Al <ATi+1] ANA I=A-1A (11)
Vie[0,A-1-1]e3tc[0,A-1—1]e (Ai] = Alt] A
[{j € [0,A-1-1]|Ai] = A[jl}| = [{j € [0,A"- T - 1]JAT[j] = A[t]}])

Finally, we consider the problem of evolving a Median program:

int Median(int[] A)

Pr:l>1
Po:(VxecAe(L(x) = [(A-1/2)] A G(X) = [(A-1/2)]) = result < x) A
L(result) > [(A-1/2)] A G(result) > [(A-1/2)] A (12)

Ix c Aeresult =x
L(x) : |{t € Alt < x}|
G(x) : |[{t e Alt = x}|

Modifying the array given as input does not break the above specification. We could have added A’ = A to that specification,
but this would have significantly increased the complexity of the possible solutions.

By using our set of primitives, possible implementations for the different specifications are shown in Figs. 7-13. To our
best knowledge, the specifications for Sorting and Median algorithms we provide cannot be refined at the moment using
transformation techniques.

8.3. Experiments

We first describe how the conceptual framework has been implemented, then we discuss its parameters and how we set
them. Experiments in which we compare random testing versus co-evolution and versus co-evolution with SSP follow. The
performance of the testing engine is also shown. We then used the best configuration to carry out experiments with N-ver-
sion programming.

For implementing the framework we used the Java language, and for the GP engine we used the open source library ECJ
[1]. However, using faster languages as C and compiling the evolutionary programs in native code, instead of executing them

(seq (write result (array 0 ))
(loop 0 length
(if (bigger or equal read result (array index))
skip
(write_result (array index )))))

Fig. 7. Implementation of MaxValue defined in (6).
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(seq (write result 1 )
(loop 0 length
(if (equal (array 0 ) (array index ))
skip
(write result 0 ))))

Fig. 8. Implementation of AllEqual defined in (7).

(if (bigger or_equal input 0 (add input_ 1 input_ 2))
(write result 1)
(if (bigger or_equal input_1 (add input_0 input_2))
(write_result 1)
(if (bigger or equal input 2
(add input_0 input_1))
(write_result 1)
(if (and (equal input 0 input 1)
(equal input 1 input 2))
(write_result 4)
(if (or (or (equal input_ O input 1)
(equal input 1 input 2))
(equal input_0 input_2))
(write_result 3)
(write_result 2))))))

Fig. 9. Implementation of TriangleClassification defined in (8).

(seq (seq (write_result (array input_0))
(write_array input_ 0 (array input_1))
(write array input 1 read result))

Fig. 10. Implementation of Swap defined in (9).

(if (bigger (array input_0) (array input_1))
(seq (seq (write_result (array input_0))
(write_array input 0 (array input_1)))
(write array input 1 read result)) skip )

Fig. 11. Implementation of Order defined in (10).

(loop 0 length
(loop 0 (sub length 1)
(if (bigger (array input 0) (array input 1))
(seq (seqg (write_result (array input_0))
(write_array input 0 (array input_1)))
(write_array input_1 read result))
skip )))

Fig. 12. Implementation of Sorting defined in (11).

(seq (loop 0 length
(loop 0 (sub length 1)
(if (bigger (array input 0) (array input 1))
(seq (seq (write_result (array input_0))
(write_array input_0
(array input_1)))
(write_array input_1
read_result))
skip )))
(write_result (array (div (sub length 1 )2 ))))

Fig. 13. Implementation of Median defined in (12).
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by interpretation, would dramatically speed up the framework [38]. The reason for using Java was that it is a very easy and
powerful language to use, that made possible to implement the framework in less time.

In our framework there is a very large number of parameters that need to be set. Trying to optimise all of them was not
possible. Hence, we chose settings that are common in the literature, and then we did several experiments (not presented in
this paper for reason of space) to tune the ones that we think are the most important. The following settings are what we
finally chose. However, no guarantee on their optimality can be given. All the settings are the same for all experiments. Note
that we only show the most important settings, because a detailed description of all parameters would take several pages.

We used a population size of 5000 individuals that are evolved for 200 generations. The maximum depth allowed for a
tree is 12. For generating the next population, pairs of parents are chosen for reproduction. A tournament selection with size
7 is employed. In other words, for choosing each parent, seven individuals are randomly taken from the population, and the
best among them is chosen as the parent.

For each pair of parents, one of the following actions is taken for generating two new offspring:

e With probability 0.1, the selected individuals are directly copied into the next generation without any modification.
e Crossover is done with probability 0.3.
e Mutation is done with probability 0.6.

Crossover takes as input two parents, and it randomly chooses one node in each of them. The offspring are copies of the
parents with the sub-trees rooted at those two nodes swapped.

Mutation is used to copy the parents with a little change in their trees for generating slightly different offspring. In case of
a mutation event, one of the following different mutations provided by ECJ is randomly chosen with a uniform probability,
where n is a randomly chosen node in the program tree. If a particular mutation cannot be applied to n, then a new n is ran-
domly chosen, and that is done at most 100 times. If after 100 times no mutable n is found, no mutation is done, and the new
offspring will be just a copy of its parent.

Note that in our case neither crossover nor mutation generates syntactically incorrect offspring.

Point mutation: the sub-tree rooted at n is replaced with a new random sub-tree with depth 5.

OneNode mutation: n is replaced by a random node with the same constraints and arity.

AllNodes mutation: each node of the sub-tree of n is randomly replaced with a new node, but with the same type con-
straints and arity.

Demote mutation: a new node m is inserted between n and the parent of n. Hence, n becomes a child of m. The other chil-
dren of m will be random terminals.

Promote mutation: the sub-tree rooted at the parent of n will be replaced by the sub-tree rooted in n.

Swap mutation: two children of n are randomly chosen. The sub-trees rooted at these two nodes are swapped.

At each generation, the best individual is copied to the next generation without any modification, i.e., elitism rate is set to
1 individual. All the other settings that are not listed here are used with their default values in ECJ.

To prevent the execution of very expensive programs, each program is stopped after executing at most 20 loop iterations.
However, if the program takes as input an array, then the allowed loop iterations will be increased to I* + 1, where [ is the
length of the array given as input. A more appropriate automatic way to choose that limit will be studied in our future work.

For choosing the test cases for T;, we report experiments with three different techniques: random sampling, co-evolution
and co-evolution with SSP. Note that in all of these algorithms we enforce the constraint that all the test cases in T; should be
unique. This is done because there would be no particular benefit in testing a program on the same input more than once at
each generation.

When random sampling is employed, for each T; we sample random test cases until we get 100 that are different. Sam-
pling random test cases is not straightforward. We need to put constraints on the size and range of the input variables. For
example, sampling extremely long input arrays would make the testing phase too long. Hence, we decided that the length of
the arrays is randomly chosen with 16 as the maximum length. Values inside an array A are randomly constrained in either
[-128,127] or in [-1, ], and integer inputs take values in [—128,127]. Although constraining the variables is a common tech-
nique in software testing, the choice of these constraints is fairly arbitrary, and it might happen that faults could be discov-
ered only with values outside those fixed ranges. More detailed analysis is needed in future work.

When co-evolution is employed, the size of each T; is 60, and the archive has size 40. To evolve T;,; from T; a simple ge-
netic algorithm is used. The chromosome is represented by a list of the integer inputs (if any) of the program, and the input
array (if any).

A single point crossover is applied with probability 0.75. It is used separately on the list on integer inputs and on the input
array. In other words, two different crossovers are employed, one that combines the lists of integer inputs, the other that
combines the arrays. In the case of the input array, if the two parent arrays have different lengths, then the offspring will
have a length that is the average of them.

The integer inputs are mutated with probability 1/n, where n is the number of integer inputs. In the same way, each ele-
ment in the array has probability 1/ of being mutated, where [ is the length of the array. A mutation consists of adding a
discretised Gaussian noise (mean 0 and variance 1).
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Rank selection [52] is used with a bias of 1.5. Elitism rate is set to 1 individual for generation. At each new generation, a
completely new individual is added to the population to prevent that the length of the arrays degenerates to a particular low
value (e.g., 0). Doing that was easier than defining a new mutation operator that increases/decreases the length of arrays.
Moreover, in this way we do not need to handle the problem of a computationally expensive growth of those lengths.

When random sampling is not employed, we also use a special intensive evolution of the training set for every five steps
of the co-evolution. In such cases, the best program g? in G; is chosen and used to evolve the unit tests in T;. In other words,
the tests in T; evolve using gb to calculate their fitness values, but no program evolves at this time. The next test set T;,; for
the programs is evolved in such a way after 1024 generations are allowed to evolve T;. It is important to note that the number
of these generations is lower than the size of the population G;. Hence, because only one program (g’ in particular) is used for
the fitness function calculations, the computational cost of this special evolution should be cheaper than the cost of one step
of the co-evolution (given the reasonable assumption that the cost of evaluating the fitness function is what contributes
most to the total computational cost). However, if no speciation [17] is used, then the test case population can easily con-
verge to very similar individuals. Although they might be high fitness individuals, the loss of diversity in the test case pop-
ulation might decrease the performance of the evolution of the programs.

Based on the idea presented in Section 7, for different specifications we also considered variants of the primitive set. In
other words, we add to it some of the already evolved programs. We use numbers for identifying the different versions, e.g.,
foo_i means that specification of the program foo is evolved with a new enlarged set of primitives of index i. Number 1 uses
the basic primitive set. Table 2 shows these configurations.

For each program specification and GP primitive configuration (i.e., a total of 13 program versions), we ran our framework
with three different ways of selecting the test cases: random sampling (RS), co-evolution (COE), and co-evolution with SSP
(SSP). Each of these 39 configurations has been run 100 times with different random seeds. All the following data presented
in the different tables were collected from these 3900 experiments.

Table 3 shows how many times, out of 100, it was possible to evolve a correct implementation. To see whether there is
any statistically significant difference between the performance of random sampling, co-evolution and SSP, we also carried
out statistical tests to compare these three algorithms on each program version. The performance of such algorithms can be
described as a binomial random variable, representing whether a correct program can be evolved (value 1) or not (value 0).
To calculate whether there is any difference among the three random variables, we used a two-tailed Fisher’s Exact Test with
a 0.05 significance level on the results for each of the 13 program versions. A p-value lower than 0.05 means that the two
random variables are statistically different (for that significance level).

To assess whether a program is correct, for each specification we have manually designed and tailored large sets T* of
10,000 test cases each. Because no test can prove the correctness of a program, we also manually inspected the code of

Table 2
Configurations in which extra functions were added to the base set of GP primitives. These functions are correct
implementations of the specifications we address in our case study.

Configurations Added primitives
Order_2 Swap

Sorting_2 Swap

Sorting_3 Order

Median_2 Swap

Median_3 Order

Median_4 Sorting

Table 3

Number of correct evolved programs out of 100 independent runs for each program version. When a p-value is lower than 0.05, its cell is colored in grey.
Programs RS COE SSP Fisher’s exact test p-values

RS vs. COE RS vs. SSP COE vs. SSP

MaxValue 8 12 15 0.480 0.182 0.679
AllEqual 0 3 3 0.246 1.000 1.000
TriangleClassification 0 0 13 1.000 0.000 0.000
Swap 0 12 18 0.000 0.000 0.322
Order_1 0 0 0 1.000 1.000 1.000
Order_2 0 18 91 0.000 0.000 0.000
Sorting_1 0 0 0 1.000 1.000 1.000
Sorting_2 2 0 0 0.497 0.497 1.000
Sorting_3 97 97 86 1.000 0.009 0.009
Median_1 0 0 0 1.000 1.000 1.000
Median_2 0 0 0 1.000 1.000 1.000
Median_3 17 8 16 0.085 1.000 0.084
Median_4 99 96 99 0.368 0.368 1.000




428 A. Arcuri, X. Yao/ Information Sciences 259 (2014) 412-432

the programs that are able to pass all the tests in T¥. Although these two combined actions (intensive testing and inspection)
give strong support to state whether a program might be correct, they do not constitute a proof. However, for the sake of
simplicity, we will use the term correct although we do it inappropriately.

The population of test cases at the last generation can give feedback on the quality of the testing engine. If the best pro-
gram in the last generation z is able to pass all the tests in T,, we call it valid. If a program is correct, then it is necessarily also
valid. The opposite is of course not necessarily true. If a valid program is incorrect, this would show a poor quality of the
testing component of our framework. Table 4 shows the number of times in which an incorrect program was not recognised
by our framework (i.e., the number of valid programs that are not correct out of 100 runs for each program version).

Finally, we investigated the use of N-version programming. For each program version, we built ensembles of size up to 10.
We did it by randomly picking up the best programs in the final generation from the 100 runs. For each program version and
ensemble size, we repeat this ensemble creation 100 times with different random seeds, and we check whether the ensem-
bles are valid and correct. Results are presented in Table 5, whereas Table 6 presents the same type of experiment, but with
the programs that are picked up only if they are valid. For generating the test cases, we used co-evolution with SSP. We do
not show the same type of experiment with the other configurations because the results are very similar. Two-tailed Fisher’s
Exact Tests with a 0.05 significance level were carried out to state whether using ensembles gives different performance
compared to using only a single program. In Tables 5 and 6, cells of ensembles that give statistically better performance than
non-ensemble are colored in dark-grey, whereas if they give worse performance the used color is light-grey.

8.4. Discussion

Table 3 shows that the formal specifications in our case study can be automatically implemented by our framework. In
fact, for all the formal specifications it was possible to evolve a correct program at least once out of 100 independent runs of
the framework. However, for some configurations (4 out of 13) of the used primitives it was not possible to evolve a correct
program (i.e., Order_1, Sorting_1, Median_1 and Median_2).

Table 4
For each tested configuration, it is shown the number of valid programs that are incorrect out of 100 independent runs of
the framework.

Programs RS COE SSP
MaxValue 0 0 0
AllEqual 34 78 71
TriangleClassification 0 72 36
Swap 85 1 0
Order_1 94 0 0
Order_2 94 66 7
Sorting_1 0 0 0
Sorting_2 0 0 0
Sorting_3 2 1 6
Median_1 0 0 0
Median_2 0 0 0
Median_3 31 11 30
Median_4 0 4 1

Table 5
For each program version, it is shown the percents of correct evolved ensembles out of 100 independent ensemble creation processes. Both valid and invalid
programs were used for generating the ensembles.

Programs Correct % Correct ensemble

s2 s3 s4 s5 s6 s7 s8 s9 s10
MaxValue 15 2 10 3 2 0 0 1 0 0
AllEqual 3 0 0 2 0 0 0 0 0 0
TriangleClassification 13 2 14 4 11 6 13 7 17 11
Swap 18 6 11 8 6 4 5 7 6 9
Order_1 0 0 0 0 0 0 0 0 0 0
Order_2 91 81 98 95 100 99 100 100 100 100
Sorting_1 0 0 0 0 0 0 0 0 0 0
Sorting_2 0 0 0 0 0 0 0 0 0 0
Sorting_3 86 77 94 95 99 98 100 100 100 100
Median_1 0 0 0 0 0 0 0 0 0 0
Median_2 0 0 0 0 0 0 0 0 0 0
Median_3 16 1 6 3 6 4 6 7 6 5)
Median_4 99 95 100 100 100 100 100 100 100 100
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Table 6
For each program version, it is shown the percents of correct evolved ensembles out of 100 independent ensemble creation processes. Only valid programs were
used for generating the ensembles.

Programs Correct % Correct ensemble
2 3 4 5 6 7 8 9 10

MaxValue 100 100 100 100 100 100 100 100 100 100
AllEqual 4 0 4 2 1 0 0 1 1 0
TriangleClassification 27 6 30 15 30 26 54 32 53 46
Swap 100 100 100 100 100 100 100 100 100 100
Order_1 0 0 0 0 0 0 0 0 0 0
Order_2 93 92 100 97 98 100 100 100 100 100
Sorting_1 0 0 0 0 0 0 0 0 0 0
Sorting_2 0 0 0 0 0 0 0 0 0 0
Sorting_3 93 90 98 99 100 100 100 100 100 100
Median_1 0 0 0 0 0 0 0 0 0 0
Median_2 0 0 0 0 0 0 0 0 0 0
Median_3 35 12 26 25 21 26 34 39 45 46
Median_4 99 99 100 100 100 100 100 100 100 100

Regarding the comparison of the three different algorithms for generating the test cases, the results in Table 3 show that
SSP has statistically better performance in two problems (TriangleClassification and Order_2), but worse in one (Sorting_3).
However, in this latter case it is still able to achieve a good performance of 86%. This leads us to consider SSP as the best
algorithm among the ones we analysed.

Unfortunately, the performances in general are not very satisfactory (only in three cases out of 13 the performance was
higher than 50%). The main reason seems to be the presence of large regions of the search space with gradient toward local
optima, where a small program perfectly satisfies a single predicate of the specification but not the others. For example, in
the case of Sorting, an empty program p, (i.e., a program that does not do any computation) would perfectly satisfy the con-
straint that the output array should be a permutation of the input one. In the same way, a program p,, that in a single loop
writes the same constant in each position of the array, would satisfy the constraint that each element should be less than or
equal to the next ones. Of course, in this latter case the output array would not be a permutation of the input one.

Mutation operators do not seem to be suitable for escaping from the basin of attraction of local optima in our experi-
ments. In this example, neighbourhood solutions (i.e., solutions with very similar tree structures) around p, and p, would
fail both predicates (unless of course they are semantically equivalent to either p; or p,). Effective crossover requires the
presence of building blocks [24]. There should be blocks of the genome that would positively contribute to the fitness value
even if they are present in non-optimal individuals. Crossover can be used to gather these building blocks and to spread them
in the next generations (a detailed description of the building blocks theory is outside the scope of this paper, please see for
example [24] for more details). Unfortunately, neither p, nor p, contains any important building block, hence an offspring
generated by a crossover of p; and p, is likely to have a worse fitness value. Depending on the weights that the two pred-
icates have in the fitness function, most of the time the population quickly converges to either p, or p,, and our experiments
confirmed it.

Simply increasing the population size and the number of generations would not particularly help to address the above
problem. In fact, it is the fitness function that plays the main role in this problem. A way to address it would be to formulate
the function c (defined in Section 4.3) as a multi-objective function [18], in which each predicate is a separate objective. By
doing that, solutions that partially satisfy more than one predicate (and hence they are likely to have some good building
blocks in them) will not be disadvantaged against very small simple programs that completely satisfy a single predicate
but behave poorly on the other predicates.

For three program configurations (i.e., Order_2, Sorting_3 and Median_4) the performance was strangely high (>90%)
compared to the other ten configurations (with the highest performance of 18% for Swap). This means that the fitness func-
tion that is automatically derived for those problems was particularly appropriate. We hence conjecture that, regarding the
performance of our framework, the quality of the automatically derived fitness functions (measured in their ability of pro-
viding gradient toward the optima) is more important than the complexity of the target software. In other words, more com-
plex software can be addressed with a good fitness function, whereas simple software can fail to be refined if the fitness
function is not appropriate.

From Table 4 we can see that our testing engine was not appropriate for some problems (i.e., AllEqual, TriangleClassifi-
cation and Median_3). Note that a low value in that table does not necessarily mean a good performance of the testing en-
gine. It depends on how many correct programs were evolved. For example, if no correct program was evolved, then having
no valid program that is incorrect does not give any hint on the performance of the testing engine. If the unit tests are not
able to find faults, there is little hope to expect that the GP engine will evolve faultless programs. Therefore, the testing en-
gine has a drastic impact on the final outcome, and Table 4 shows the consequences of it. In particular, the very poor per-
formances of our framework applied to the AllEqual problem shown in Table 3 are likely due to the testing engine.
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Table 5 empirically confirms Eq. (5). In other words, if the probability C(o) of having a correct problem is greater than 50%,
then an ensemble will increase the performance. Because in the case of C(g) < 0.5 we can observe some statistically signif-
icant degradations of the performance (for MaxValue, TriangleClassification, Swap and Median_3 in Table 5), we could
hypothesise that the evolved incorrect programs have the same types of faults. This would mean that there is a large area
of the search space of GP with a gradient towards a particular subset of local optima representing programs with at least one
wrong behaviour in common (i.e., a particular input exists that is wrongly computed in the same way by all the evolved
incorrect programs).

The performances of the TriangleClassification shown in Table 6 are quite interesting. Although C(g) < 0.5, relative large
ensembles give statistically better performance. This would mean that, although incorrect programs might be used to form
an ensemble, if they are valid then there are groups of them in which each group has unrelated faults regarding the other
groups, hence the performance is increased. Median_3 shows a similar trend. Although no statistically better performance
is obtained, it might be possible to obtain that with larger ensemble sizes. It is worth noting that ensemble individuals gen-
erated in our experiments are not strictly independent of each other. Therefore, it is possible to produce more reliable
ensembles for less reliable individuals.

From Tables 5 and 6 we can learn that, for generating an ensemble, invalid programs should not be used. A valid program
is not necessarily correct, but an ensemble of them seems to give better performance. It is important to remember that a
correct ensemble might be composed of only incorrect programs, as long as their faults are not positively correlated. For
the same reason, theoretically it is not even necessary that the programs should be valid.

By analysing the results in Tables 5 and 6, the strategy that we suggest to use is to run the framework k times (with k
depending on how much computational resource is available), and then combine the output programs of these runs in an
ensemble. However, only valid programs should be used in the ensemble, that will hence have a size less than or equal
to k. If no valid program is generated, we can say that the search has failed.

Given a valid program, it might be argued why we want to generate an ensemble instead of using that computational time
to test the valid program more intensively. In fact, if a more intensive test phase does not show any fault in the valid pro-
gram, then we can have a better confidence in its correctness. Otherwise, we can use our framework again to generate a new
program, and then carry out a new intensive testing phase on it. Unfortunately, this approach has a non-trivial flaw. The
problem is that the programs have already been intensively tested during the co-evolution. If no fault was found during
the co-evolution, it is unlikely to find one with a new testing phase. Using a different testing engine for a final intensive test-
ing phase could be a good strategy. We will investigate this in the future.

9. Conclusions

Evolving programs from their formal specifications is a novel field that this paper addresses for the first time. A new con-
ceptual framework is introduced, where the goal of automatically refining specifications is achieved by co-evolution of pro-
grams and unit tests. The work presented in this paper shows that nature inspired computation can be used to tackle very
challenging software engineering problems. These software engineering problems also pose new challenges to natural com-
putation, for which new techniques need to be developed. This paper is a significant step forward in automatic programming
using natural computation techniques.

However, the performance of our framework still needs to be further improved. Although it is recognised that the pro-
posal of a new technology does not always give immediate industrial results, it is required to show possible ways in which
stronger results can be obtained. In particular, we identify four promising ways that deserve to be investigated further:

o The reformulation of the fitness function of the programs as a multi-objective function [18] is likely to help the algorithm
to prevent the convergence toward simple programs that satisfy only a single predicate of the formal specification.

o Besides being exploited for the construction of the fitness function of the programs, a formal specification might also be
used to directly create useful sub-trees, which can be added to the set of employed primitives. Several different heuristics
can be designed and studied to accomplish this task. For example, an expression such as Vx € A could add the sub-tree
(loop 0 length skip). This would be an example in which transformation techniques could be heuristically exploited in
our framework. Of course, if a direct mapping between a formal specification and its implementation exists, then instead
of using our framework it will be better to directly use transformation techniques.

o The same software specification can be written in different ways, and each of these versions will generate a different fit-

ness function. Some of these fitness functions might have a smooth landscape, others may have many local optima. For-

mal techniques for transforming a specification into an equivalent one that might generate a better fitness function needs
further investigation.

Our framework is composed of complex components, and for each component several different variants exist in the lit-

erature. For example, there are several variants of GP operators and different co-evolutionary algorithms. Because our

choice of the component variants was fairly arbitrary, research on how to properly do that choice, and on how to effec-
tively tune all the components and their interactions, is likely to lead to significantly better performance for our
framework.
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At any rate, our conceptual framework has the following limitations:

e Even if better fitness functions might be designed, there is no guarantee that there will always be an easy search land-
scape. Hence, there might exist real-world classes of specifications for which our framework might not perform well.

e GP is computationally expensive, because in non-trivial applications there is the need of generating and executing mil-
lions of individuals before obtaining a final program. If the execution of the application is not too expensive, testing mil-
lions of programs is still feasible. For complex software systems, fitness evaluation is usually very expensive. Hence, even
if our framework could search that space of solutions in an efficient way, the cost of each fitness function evaluation
would be too high.

¢ In contrast to formal methods, there is no guarantee that the output of our framework is a correct implementation of the
target specification.
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