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1.  Introduction
The use of heat as a tracer has become an important and frequently applied tool to quantify water fluxes across 
streambeds (Abbott et al., 2016; Irvine et al., 2017) since available temperature sensors are inexpensive, robust, 
and reliable. Numerous studies have explored the theory behind and application of heat as a tracer to quantify 
water flow in and across riverbed sediments (Constantz, 2008; Rau et al., 2014) whereas others have focused 
on the development of methods and devices to collect temperature time series at multiple streambed depths and 
locations (Banks et al., 2018; Briggs et al., 2012; Schmidt et al., 2014). To estimate vertical fluxes from these now 
more and more abundantly available, temperature-time series data, a variety of model codes and software tools 
(Ford et al., 2021; Irvine et al., 2015; Koch et al., 2016; Munz & Schmidt, 2017) have been devised that make use 
of analytical (Goto et al., 2005; Hatch et al., 2006; Keery et al., 2007; Luce et al., 2013) or numerical solutions 
(Lapham, 1989) of the 1D heat transport equation.

The vast majority of previous studies interested in the quantification of the vertical exchange flux across stre-
ambeds (often also called Darcy flux) from temperature-time series data has made use exclusively of the diurnal 
temperature signal (Fanelli & Lautz, 2008; Hatch et al., 2010; Jensen & Engesgaard, 2011). Although, the diurnal 
frequency represents the strongest temperature signal in many field settings, Wörman et al. (2012) demonstrated 
how additional information contained in the temperature signal gained from assessing multiple frequencies can 
potentially improve the estimation of flux and thermal diffusivity. Subsequently, methods were put forward by 
Vandersteen et al. (2015), Schneidewind et al. (2016), and Sohn and Harris (2021), that solve the 1D heat trans-
port equation after Carslaw and Jaeger (1959) in the frequency domain and explicitly consider multiple frequen-
cies during flux estimation (see Table S1 in Supporting Information S1 for a concise overview).

As not all frequencies are equally informative, multifrequency analysis requires that noise (i.e., uncertainties) 
at individual frequencies be accounted for (van Berkel et al., 2014b). Vandersteen et al. (2015), Schneidewind 
et al. (2016), and Sohn and Harris (2021) all handle the noise in an optimal way when estimating flux and ther-
mal diffusivity with a maximum likelihood estimator (MLE). Differences in their methods are found in how 
these uncertainties are determined, how the model domain is delineated and the used information content. For 
example, Sohn and Harris (2021) use the multitaper method while Vandersteen et al. (2015) and Schneidewind 
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et al. (2016) apply the local polynomial (LP) method to estimate uncertainties and reduce leakage. Where Sohn 
and Harris (2021) as well as Vandersteen et al. (2015) considered the subsurface as semi-infinite, Schneidewind 
et al. (2016) developed an early bounded (finite) domain model with the idea to estimate vertical flux for distinct 
streambed sections. This early bounded model (LPMLE3) utilized information from three (noisy) sensors, two 
for the input (top and bottom boundaries) and the third for the output.

Here, we introduce LPMLEn, which builds upon works from Vandersteen et  al.  (2015) and Schneidewind 
et  al.  (2016) by extending the bounded LPMLE3 method to include temperature data from n sensors in the 
parameter estimation process and by considering noisy input and output data for both semi-infinite and bounded 
domains. The possibility to use n sensors better constrains parameter uncertainty whereas the lower boundary 
condition better insulates the parameter estimation process from spatial and temporal heterogeneities outside the 
probed domain. This is especially helpful when flux and thermal diffusivity are estimated within small vertical 
subsections of the streambed to detect streambed heterogeneity. The advantage of using n sensors within bounded 
domains is beneficial in the analysis of flux within heterogenous sediment when data are collected with temper-
ature probes containing many sensors such as multilevel temperature lances (Munz et  al.,  2016) or FO-DTS 
(Selker et al., 2006).

2.  The LPMLEn Method
The LPMLEn combines the LP method with an MLE to estimate 1D vertical streambed fluxes and thermal 
diffusivities using data from n temperature sensors. It operates in the frequency domain and can use multiple 
frequencies and sensors simultaneously for the parameter estimation process. The LP method is applied to reduce 
leakage (transients) and estimate the noise levels at the selected frequency components of the measured temper-
ature signals. The LPMLEn is provided here with two models: (a) the semi-infinite domain model where only an 
upper temperature boundary condition is specified to estimate the parameters and (b) a bounded (finite) domain 
model where an additional lower local temperature boundary condition is assigned to estimate the parameters for 
a distinct section of the streambed.

Like other 1D models, LPMLEn assumes local thermal equilibrium (or a slow-moving equilibrium without 
significant change of diffusivity and vertical flux), steady water flow and constant thermal parameters over the 
model domain. While it provides information on the vertical flux, we would like to remind potential users that in 
natural settings water flow has vertical and nonvertical flow components (horizontal or lateral). While flowlines 
at the center of a stream are formed in such a way that they often indicate predominantly vertical flow (Cuthbert 
& Mackay, 2013; Shanafield et al., 2010), it has been shown that nonvertical flow components can often become 
significant closer to streambanks or in areas of high hyporheic flow (Lautz, 2010; Reeves & Hatch, 2016; Roshan 
et al., 2014). Nonvertical flow does not invalidate 1D heat transport estimates, however curvature in the flow 
path may, depending on the degree of curvature (Cuthbert & Mackay, 2013). Areas with high curvature in flow 
paths warrant the use of more complex and data-intensive 3D heat transport models (Ghysels et al., 2021; Karan 
et al., 2014).

Coupled vertical (1D) water flow and heat transport defined after Stallman (1965) is given by the advection-dif-
fusion equation

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐷𝐷

𝜕𝜕2𝑇𝑇

𝜕𝜕𝜕𝜕2
+ 𝑉𝑉

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
,� (1)

where the temperature 𝐴𝐴 𝐴𝐴 (𝑧𝑧𝑧 𝑧𝑧) [Θ] around an equilibrium is a function of depth 𝐴𝐴 𝐴𝐴 [L] and time 𝐴𝐴 𝐴𝐴 [T]. Here, time-in-
variant parameter 𝐴𝐴 𝐴𝐴  [LT −1] represents advection given by

𝑉𝑉 = −𝑞𝑞𝑧𝑧
𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤

𝜌𝜌𝜌𝜌
,� (2)

with 𝐴𝐴 𝐴𝐴𝐴𝐴 [ML −1 T −2Θ −1] as the volumetric heat capacity of the water-sediment mix, 𝐴𝐴 𝐴𝐴𝑤𝑤𝑐𝑐𝑤𝑤 [ML −1 T −2Θ −1] the volu-
metric heat capacity of water, and 𝐴𝐴 𝐴𝐴𝑧𝑧 [LT −1] as the vertical flux (a positive value means downward flow). The 
parameter 𝐴𝐴 𝐴𝐴 [L 2T −1] represents the effective thermal diffusivity and can be described by

𝐷𝐷 =
𝑘𝑘

𝜌𝜌𝜌𝜌
+ 𝛾𝛾 (𝜓𝜓𝜓 𝜓𝜓𝑧𝑧) ,� (3)
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where 𝐴𝐴 𝐴𝐴 [ML T −3 Θ −1] is the bulk thermal conductivity and 𝐴𝐴 𝐴𝐴 is a function based on 𝐴𝐴 𝐴𝐴𝑧𝑧 and the thermal dispersivity 
𝐴𝐴 𝐴𝐴 [L]. Here, we use the LPMLEn to estimate 𝐴𝐴 𝐴𝐴 without prior knowledge of either thermal conductivity or disper-

sivity. If all thermal parameters in (3) were known (e.g., through prior field or lab measurements), the LPMLEn 
could also be used to only estimate the Darcy flux, but this is discouraged because 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  are coupled. However, 
this prior knowledge could be used to validate the estimation method and model choice (Luce et al., 2013).

As the solution to (1) is determined by its boundary conditions, we first cover the analytical solution for two 
common choices, (a) the semi-infinite domain and (b) the bounded domain with Dirichlet (temperature specified) 
boundary conditions. As we provide the analytical solutions in the frequency domain, but the measured data are 
time series, a transformation to the frequency domain and additional processing are required, for which we use 
the Fast Fourier Transform (FFT) and the LP method, respectively. The unknown parameters are then estimated 
using the MLE considering multiple frequencies, n sensors and their uncertainty (the MLEn part).

2.1.  The Models and Their Analytical Solutions

For well-posedness, i.e., to obtain a unique solution to (1), two boundary conditions are required. The two choices 
commonly applied are: (a) the semi-infinite domain where the upper boundary condition at depth 𝐴𝐴 𝐴𝐴𝑈𝑈 is given by 
the function 𝐴𝐴 𝐴𝐴𝑈𝑈 (𝑡𝑡) and the lower boundary condition is set to approach zero at infinity (Hatch et al., 2006; Luce 
et al., 2013; Sohn & Harris, 2021; Stallman, 1965; Vandersteen et al., 2015) and (b) the bounded domain where 
the upper boundary condition at depth 𝐴𝐴 𝐴𝐴𝑈𝑈 is given by the function 𝐴𝐴 𝐴𝐴𝑈𝑈 (𝑡𝑡) and the lower boundary at depth 𝐴𝐴 𝐴𝐴𝐿𝐿 by the 
function 𝐴𝐴 𝐴𝐴𝐿𝐿(𝑡𝑡) (Schneidewind et al., 2016). The semi-infinite domain model 𝐴𝐴 𝑆𝑆𝑆𝑆 is given by

�� ∶
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⎪

⎪
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z→∞
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and the bounded domain model 𝐴𝐴 𝐵𝐵𝐵𝐵 by
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𝑇𝑇 (𝑧𝑧𝑈𝑈 , 𝑡𝑡) = 𝑇𝑇𝑈𝑈 (𝑡𝑡)

𝑇𝑇 (𝑧𝑧𝐿𝐿, 𝑡𝑡) = 𝑇𝑇𝐿𝐿(𝑡𝑡).

� (5)

Using a transfer function notation, the solution to both models is given according to van Berkel et al. (2014a) and 
van Berkel et al. (2013) by

Θ(𝑧𝑧𝑧 𝑧𝑧) = 𝐺𝐺𝑈𝑈 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧)𝑈𝑈𝑈𝑈 (𝑠𝑠) + 𝐺𝐺𝐿𝐿(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧)𝑈𝑈𝐿𝐿(𝑠𝑠),� (6)

where 𝐴𝐴 Θ(𝑧𝑧𝑧 𝑧𝑧) is the Laplace transform of 𝐴𝐴 𝐴𝐴 (𝑧𝑧𝑧 𝑧𝑧) , while 𝐴𝐴 𝐴𝐴𝑈𝑈 (𝑠𝑠) and 𝐴𝐴 𝐴𝐴𝐿𝐿(𝑠𝑠) are the Laplace transforms of the func-
tions describing the upper and lower boundary conditions, respectively. The transfer functions 𝐴𝐴 𝐴𝐴𝑈𝑈 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) and 

𝐴𝐴 𝐴𝐴𝐿𝐿(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) for the semi-infinite domain model 𝐴𝐴 𝑆𝑆𝑆𝑆 are given by

𝐺𝐺𝑈𝑈 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) = 𝑒𝑒
𝜆𝜆
1
(𝑠𝑠𝑠𝑠𝑠)(𝑧𝑧−𝑧𝑧𝑈𝑈 )� (7)

𝐺𝐺𝐿𝐿(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) = 0,� (8)

and for the bounded (finite) domain model 𝐴𝐴 𝐵𝐵𝐵𝐵 by

𝐺𝐺𝑈𝑈 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) =
𝜉𝜉 (𝑧𝑧𝐿𝐿,𝑠𝑠𝑠𝑠𝑠  ) 𝜁𝜁 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) − 𝜁𝜁 (𝑧𝑧𝐿𝐿,𝑠𝑠𝑠𝑠𝑠  ) 𝜉𝜉(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧)

𝜁𝜁 (𝑧𝑧𝑈𝑈 ,𝑠𝑠𝑠𝑠𝑠  ) 𝜉𝜉 (𝑧𝑧𝐿𝐿,𝑠𝑠𝑠𝑠𝑠  ) − 𝜁𝜁 (𝑧𝑧𝐿𝐿,𝑠𝑠𝑠𝑠𝑠  ) 𝜉𝜉 (𝑧𝑧𝑈𝑈 ,𝑠𝑠𝑠𝑠𝑠  )
� (9)

𝐺𝐺𝐿𝐿(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) = −

𝜉𝜉 (𝑧𝑧𝑈𝑈 ,𝑠𝑠𝑠𝑠𝑠  ) 𝜁𝜁 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) − 𝜁𝜁 (𝑧𝑧𝑈𝑈 ,𝑠𝑠𝑠𝑠𝑠  ) 𝜉𝜉(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧)

𝜁𝜁 (𝑧𝑧𝑈𝑈 ,𝑠𝑠𝑠𝑠𝑠  ) 𝜉𝜉 (𝑧𝑧𝐿𝐿,𝑠𝑠𝑠𝑠𝑠  ) − 𝜁𝜁 (𝑧𝑧𝐿𝐿,𝑠𝑠𝑠𝑠𝑠  ) 𝜉𝜉 (𝑧𝑧𝑈𝑈 ,𝑠𝑠𝑠𝑠𝑠  )
,� (10)

with
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𝜉𝜉(𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) = 𝑒𝑒
𝜆𝜆1(𝑠𝑠𝑠𝑠𝑠)𝑧𝑧� (11)

𝜁𝜁 (𝑧𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧) = 𝑒𝑒
𝜆𝜆2(𝑠𝑠𝑠𝑠𝑠)𝑧𝑧� (12)

𝜆𝜆1,2(𝑠𝑠𝑠 𝑠𝑠) = −𝑎𝑎 ∓

√
𝑎𝑎2 + 𝑏𝑏𝑏𝑏𝑏� (13)

and 𝐴𝐴 𝐴𝐴 = [𝑎𝑎𝑎 𝑎𝑎]
𝑇𝑇
=

[
𝑉𝑉

2𝐷𝐷
,
1

𝐷𝐷

]𝑇𝑇
 as a simplification of the parameters for the eigenvalues, described in detail in van 

Berkel et  al.  (2014a). The aim is to estimate 𝐴𝐴 𝐴𝐴 = [𝑎𝑎𝑎 𝑎𝑎]
𝑇𝑇  , which then can be transformed back to 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑧𝑧 . 

However, to estimate the unknown parameters, the model needs to be linked to the temperature time series. In 
practice, the Laplace variable can only be measured on the imaginary axis, thus 𝐴𝐴 𝐴𝐴 = 𝑖𝑖𝑖𝑖 , where 𝐴𝐴 𝐴𝐴 =

√
−1 and 𝐴𝐴 𝐴𝐴 is 

the angular frequency. Any measured temperature time series can be transformed to the frequency domain using 
the FFT such that it is a function of 𝐴𝐴 𝐴𝐴𝐴𝐴 . However, the measured streambed temperature data are commonly not 
perfectly periodic due to natural conditions such as temperature fluctuations that are slower than the measurement 
period, introducing spectral leakage (Pintelon & Schoukens, 2012). Furthermore, the measured temperatures can 
be subject to transients due to the initial condition, sensor drift and noise. To reduce spectral leakage and remove 
the other unwanted contributions to the temperature signal, we apply the LP method to assess and improve the 
quality of the data set.

2.2.  Processing the Data Set With the LP Method

A standard method to reduce spectral leakage is windowing, which is known to introduce systematic (bias) and 
random (noise leakage) errors when transforming data to the frequency domain (Pintelon & Schoukens, 2012). 
The LP method (Pintelon et al., 2010a, 2010b) outperforms windowing techniques by assuming linear relation-
ships (transfer functions) between a given noiseless reference signal and the measured response, i.e., the LP 
considers that the signal originates from a system rather than it being independent. The LP method splits the 
measured signal into a forced response, (circular complex normally distributed) noise, and transients (i.e., the 
signal part that cannot be explained by the reference signal). Similar to Vandersteen et al. (2015) and Schneide-
wind et al. (2016), we use the temperature measurement 𝐴𝐴 Θ (𝑧𝑧1, 𝜔𝜔) at the top of the streambed as the “noiseless” 
reference signal, as this signal contains the largest temperature perturbation and as such is least subjected to 
measurement noise. As a result, the LP returns the (estimated) forced response 𝐴𝐴 Θ̂ (𝑧𝑧𝑚𝑚, 𝜔𝜔) and the corresponding 
covariance matrix 𝐴𝐴 𝐴𝐴

Θ̂
(𝜔𝜔) for the remaining 𝐴𝐴 𝐴𝐴 = 2,…,𝑀𝑀 sensors, which will be used for the parameter estimation 

process. This is in contrast to Vandersteen et al. (2015) where the “noiseless” reference signal is included in the 
estimation of 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 . Furthermore, the obtained covariance matrix allows us to assess the quality of the data 
set and to take the measurement uncertainty consistently into account during parameter estimation performed 
subsequently using the MLE.

2.3.  The n-Point MLE

The aim of the MLE is to find those parameters 𝐴𝐴 𝜃̂𝜃 =
[
𝑎̂𝑎𝑎 𝑏̂𝑏

]𝑇𝑇
 for which the output of the selected model (in our 

case 𝐴𝐴 𝑆𝑆𝑆𝑆 or 𝐴𝐴 𝐵𝐵𝐵𝐵 ) is the most likely to generate the measured temperatures. An MLE has been used previously 
by van Berkel et al.  (2013, 2014a) to estimate the thermal transport coefficients considering slab geometries 
on a semi-infinite domain with two sensors (MLE2) and a bounded domain with three sensors (MLE3). They 
were later incorporated into the LPML (Vandersteen et al., 2015) and the LPMLE3 (Schneidewind et al., 2016), 
respectively. A cylindrical representation of the MLE3 has also been put forward (van Berkel et al., 2019).

In a similar fashion, for the LPMLEn, we construct the log-likelihood cost function 𝐴𝐴 𝑀𝑀𝑀𝑀(𝜃𝜃𝜃𝜃𝜃) that consid-
ers the uncertain boundary inputs 𝐴𝐴 𝐴𝐴𝑈𝑈 and 𝐴𝐴 𝐴𝐴𝐿𝐿 as in Schneidewind et al.  (2016) and determines the likelihood 
for the n-outputs 𝐴𝐴 𝐴𝐴𝑛𝑛 , which are the remnant measurements of the system. For the sake of clarity, we define 
the new variable 𝐴𝐴 𝐴𝐴 (𝜔𝜔𝑘𝑘) = [𝑈𝑈𝑈𝑈 (𝜔𝜔𝑘𝑘) , 𝑌𝑌𝑛𝑛 (𝜔𝜔𝑘𝑘) , 𝑈𝑈𝐿𝐿 (𝜔𝜔𝑘𝑘) ]

𝑇𝑇  that contains both the inputs (boundary conditions) 
and the outputs (other temperature measurements) and has the corresponding covariance matrix 𝐴𝐴 𝐴𝐴𝑋𝑋 . Thus, for 

𝐴𝐴 𝑆𝑆𝑆𝑆 : 𝐴𝐴 𝐴𝐴 (𝜔𝜔𝑘𝑘) =

[
Θ̂ (𝑧𝑧2, 𝜔𝜔𝑘𝑘) , …, Θ̂ (𝑧𝑧𝑀𝑀, 𝜔𝜔𝑘𝑘) , 0

]𝑇𝑇
 and for 𝐴𝐴 𝐵𝐵𝐵𝐵 : 𝐴𝐴 𝐴𝐴 (𝜔𝜔𝑘𝑘) =

[
Θ̂ (𝑧𝑧2, 𝜔𝜔𝑘𝑘) , …, Θ̂ (𝑧𝑧𝑀𝑀, 𝜔𝜔𝑘𝑘)

]𝑇𝑇
 . 

Using this general notation, the cost function for the log-maximum likelihood (ML) is given as in Pintelon and 
Schoukens (2012) by
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𝑀𝑀𝑀𝑀(𝜃𝜃𝜃𝜃𝜃) =

∑

𝑘𝑘∈𝕂𝕂

𝑒𝑒(𝜔𝜔𝑘𝑘, 𝜃𝜃𝜃𝜃𝜃)
𝐻𝐻
[𝐶𝐶𝑒𝑒 (𝜔𝜔𝑘𝑘, 𝜃𝜃)]

−1

𝑒𝑒 (𝜔𝜔𝑘𝑘, 𝜃𝜃𝜃𝜃𝜃) ,� (14)

with the Hermitian transpose 𝐻𝐻, the angular frequencies that contain relevant information 𝐴𝐴 𝐴𝐴𝑘𝑘 , 𝐴𝐴 𝐴𝐴 ∈ 𝕂𝕂 , which 
contains a total number of 𝐴𝐴 𝐴𝐴  frequencies. The error is then given by

𝑒𝑒 (𝜔𝜔𝑘𝑘, 𝜃𝜃𝜃𝜃𝜃) =

[
−𝐺𝐺𝑈𝑈𝑈𝑈𝑈 (𝜔𝜔𝑘𝑘, 𝜃𝜃) , 𝐼𝐼𝑛𝑛,−𝐺𝐺𝐿𝐿𝐿𝐿𝐿 (𝜔𝜔𝑘𝑘, 𝜃𝜃)

]
𝑋𝑋 (𝜔𝜔𝑘𝑘) ,� (15)

with its corresponding error covariance matrix

𝐶𝐶𝑒𝑒 (𝜔𝜔𝑘𝑘, 𝜃𝜃) =
[
−𝐺𝐺𝑈𝑈𝑈𝑈𝑈 (𝜔𝜔𝑘𝑘, 𝜃𝜃) , 𝐼𝐼𝑛𝑛,−𝐺𝐺𝐿𝐿𝐿𝐿𝐿 (𝜔𝜔𝑘𝑘, 𝜃𝜃)

]
𝐶𝐶𝑋𝑋 (𝜔𝜔𝑘𝑘)

[
−𝐺𝐺𝑈𝑈𝑈𝑈𝑈 (𝜔𝜔𝑘𝑘, 𝜃𝜃) , 𝐼𝐼𝑛𝑛,−𝐺𝐺𝐿𝐿𝐿𝐿𝐿 (𝜔𝜔𝑘𝑘, 𝜃𝜃)

]𝐻𝐻
,� (16)

where 𝐴𝐴 𝐴𝐴𝑛𝑛 denotes the identity matrix of size 𝐴𝐴 𝐴𝐴 × 𝑛𝑛 . The transfer function vectors 𝐴𝐴 𝐴𝐴𝑈𝑈𝑈𝑈𝑈 and 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿𝐿 are given by

𝐺𝐺𝑈𝑈𝑈𝑈𝑈 (𝜔𝜔𝑘𝑘, 𝜃𝜃) = [𝐺𝐺𝑈𝑈 (𝑧̌𝑧1, 𝜔𝜔𝑘𝑘, 𝜃𝜃) ,…, 𝐺𝐺𝑈𝑈 (𝑧̌𝑧𝑛𝑛, 𝜔𝜔𝑘𝑘, 𝜃𝜃)]
𝑇𝑇� (17)

𝐺𝐺𝐿𝐿𝐿𝐿𝐿 (𝜔𝜔𝑘𝑘, 𝜃𝜃) = [𝐺𝐺𝐿𝐿 (𝑧̌𝑧1, 𝜔𝜔𝑘𝑘, 𝜃𝜃) ,…, 𝐺𝐺𝐿𝐿 (𝑧̌𝑧𝑛𝑛, 𝜔𝜔𝑘𝑘, 𝜃𝜃)]
𝑇𝑇
,� (18)

where 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗 , 𝐴𝐴 𝐴𝐴 = 1,…, 𝑛𝑛 are the 𝐴𝐴 𝐴𝐴 depths of the sensors considered as output of the model. Note that the cost func-
tion is constructed from the sum of squares of the error that is normalized by its (co)variance. Each of the 𝐴𝐴 𝐴𝐴 × 𝐹𝐹  
equations in the cost function will cause a 𝐴𝐴 𝐴𝐴2 distribution with 𝐴𝐴 𝐴𝐴 × 𝐹𝐹  degrees of freedom. Under the assumption 
that we have no modeling error, the expected value of the cost function is 𝐴𝐴 𝐴𝐴 × 𝐹𝐹 −

2

2

 . Here, the correction factor 
2

2 originates from the two real parameters that are estimated.

All things considered, we have now defined the complete set of noise and transfer functions belonging to the 
n-point estimator with constant transport coefficients. Note that the LPML in Vandersteen et al. (2015) results in 
a much simpler form of (15) and (16), i.e., 𝐴𝐴 𝐴𝐴𝑒𝑒 (𝜔𝜔𝑘𝑘, 𝜃𝜃) = [0, 𝐼𝐼𝑛𝑛, 0] 𝐶𝐶𝑋𝑋 (𝜔𝜔𝑘𝑘) [0, 𝐼𝐼𝑛𝑛, 0]

𝐻𝐻 and that in the LPMLE3 in 
Schneidewind et al. (2016) the matrix products were written out considering only one of n sensors resulting in 
scalar expressions for (15) and (16), which were independently derived at the time.

As with the LPML and LPMLE3, the parameters are estimated by minimizing the cost function 𝐴𝐴 𝑀𝑀𝑀𝑀

𝜃̂𝜃 = arg min
𝜃𝜃

𝑀𝑀𝑀𝑀(𝜃𝜃𝜃𝜃𝜃)� (19)

The cost function 𝐴𝐴 𝑀𝑀𝑀𝑀 is nonconvex and is therefore often optimized using nonlinear least squares minimi-
zation techniques such as Gauss-Newton or Levenberg-Marquardt methods (Fletcher, 1980; Levenberg, 1944; 
Marquardt, 1963). As the number of parameters is limited and the analytical transfer functions are known, the 
analytical Jacobian is determined and used to improve computational efficiency. Furthermore, the analytical 
Jacobian is used to determine the variance of the estimated parameters following:

𝐶𝐶𝜃̂𝜃 =

[
2 Re

{
𝐽𝐽𝑀𝑀𝑀𝑀

(
𝜃̂𝜃𝜃 𝜃𝜃

)𝐻𝐻
𝐽𝐽𝑀𝑀𝑀𝑀

(
𝜃̂𝜃𝜃 𝜃𝜃

)}]−1
,� (20)

with its Jacobian

𝐽𝐽𝑀𝑀𝑀𝑀

(
𝜃̂𝜃𝜃 𝜃𝜃

)
=

∑

𝑘𝑘∈𝕂𝕂

𝜕𝜕

𝜕𝜕𝜃̂𝜃
𝐶𝐶𝑒𝑒

(
𝜔𝜔𝑘𝑘, 𝜃̂𝜃

)
−

1

2 𝑒𝑒
(
𝜔𝜔𝑘𝑘, 𝜃̂𝜃𝜃 𝜃𝜃

)
,� (21)

where 𝐴𝐴 𝐴𝐴1∕2 is a square root of the positive definite matrix 𝐴𝐴 𝐴𝐴 , i.e., 𝐴𝐴 𝐴𝐴 = 𝐶𝐶
1

2𝐶𝐶
1

2

𝐻𝐻

. Until this point, the variable 
𝐴𝐴 𝜃̂𝜃 =

[
𝑎̂𝑎𝑎 𝑏̂𝑏

]𝑇𝑇
 is estimated while we are interested in the variable 𝐴𝐴 𝜃̂𝜃′ =

[
𝐷̂𝐷𝐷 𝐷𝐷𝐷𝑧𝑧

]𝑇𝑇
 . To obtain 𝐴𝐴 𝜃̂𝜃′ , 𝐴𝐴 𝜃̂𝜃 is transformed via

𝜃̂𝜃
′

=

[
𝐷̂𝐷𝐷 𝐷𝐷𝐷𝑧𝑧

]𝑇𝑇
=

[
1

𝑏̂𝑏
,−2

𝑎̂𝑎

𝑏̂𝑏

𝜌𝜌𝜌𝜌

𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤

]𝑇𝑇
,� (22)

where the uncertainty of the variable 𝐴𝐴 𝜃̂𝜃′ is obtained using propagation of uncertainty, i.e.,

𝐶𝐶𝜃̂𝜃′ = 𝐽𝐽𝜃̂𝜃→𝜃̂𝜃′𝐶𝐶𝜃̂𝜃𝐽𝐽
𝐻𝐻

𝜃̂𝜃→𝜃̂𝜃′
� (23)
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with the Jacobian of the transformation given by

��̂→�̂′ =

⎡

⎢

⎢

⎢

⎣

0 − 1
�̂2

−21
�̂

��
����

2 �̂
�̂2

��
����

⎤

⎥

⎥

⎥

⎦

.� (24)

Hence, we can estimate the most likely vertical flux and thermal diffusivity 
including the corresponding covariance matrix for both parameters.

3.  Application of the LPMLEn
In this section, we estimate the thermal diffusivity and vertical flux by apply-
ing the LPMLEn on three synthetic and one experimental data set using both, 
the semi-infinite domain model 𝐴𝐴 𝑆𝑆𝑆𝑆 and the bounded domain model 𝐴𝐴 𝐵𝐵𝐵𝐵 . 

The utilization of synthetic data in 1D heat transport modeling to test methodological limitations and better 
understand the modeling process is a common approach also used by others (Glose et al., 2019, 2021; Irvine 
et al., 2020; Lautz, 2010).

Here, the synthetic data sets are used to show that the semi-infinite domain model can estimate the flow in the 
wrong direction even though thermal diffusivity and Darcy flow are constant on the domain where the measure-
ments are taken. Moreover, the semi-infinite domain can be seen as a special case of the bounded domain, i.e., 
on a semi-infinite domain, the bounded domain will still be exact while the inverse is not true. This gives the 
LMPLEn the unique capability to diagnose whether the use of a semi-infinite domain approach is justified for a 
given data set and whether the estimated parameters can be deemed accurate. This is demonstrated by applying 
the LPMLEn on an experimental data set and comparing the estimation results and model fits.

3.1.  Synthetic Data Sets

We apply the LPMLEn with both models on four synthetic data sets. The first two synthetic data sets consist 
of five temperature signals at depths 𝑧𝑧 = [0.15, 0.17, 0.20, 0.25, 0.35] m, generated by evaluating (6) with the 
transfer functions for the semi-infinite domain model (7), (8) resulting in data set I, and the bounded domain 
model (9), (10) resulting in data set II. The used input signals are taken from an experimental data set. Here, the 
lower boundary condition for data set II (bounded domain) does not originate from a semi-infinite domain model. 
Stated differently, the temperature signal at the lower boundary condition contains information that cannot be 
explained by the semi-infinite domain model, e.g., by a contribution of hyporheic flow. For the sake of clarity, 
we did not add noise to these data sets and used the identity matrix as the covariance matrix. More information 
about the generation of the synthetic data sets I and II is presented in the in Supporting Information S1. The simu-
lated and estimated transport parameters for both data sets are shown in Table 1. For completeness, the model 
fits are presented in Figure S2 in Supporting Information S1. The estimation results show that if the underlying 
physics-based model is the semi-infinite domain model (data set I), both models will estimate the same transport 
parameters. On the contrary, for data set II where the lower boundary condition contributes to the solution, the 
flux estimate obtained with the semi-infinite domain model is in the wrong direction.

Data sets I and II are based on constant parameters over the entire model domain. For the semi-infinite domain, 
this means that diffusivity and flux need to be constant up to infinity and deviations from this assumption can 
profoundly affect the estimates. We show this by generating synthetic data set III where the diffusivity is changed 
from 1.5 10 −6 m 2 s −1to 0.8 10 −6 m 2 s −1 at 𝐴𝐴 𝐴𝐴 = 0.275  m. The data set is generated using (6) with a numerical 
approximation of the transfer functions using a central finite difference scheme in MATLAB with 10,001 points. 
The upper boundary condition at 𝐴𝐴 𝐴𝐴 = 0  m is taken from an experimental data set and the lower boundary condi-
tion at 𝐴𝐴 𝐴𝐴 = 10  m is set to zero to mimic a semi-infinite domain. Details about the generation of this data set can be 
found in Supporting Information S1 and our MATLAB model is similar to a numerical model presented in Das 
et al. (2019). Furthermore, the temperature is known, i.e., measured, every 0.05 m from 0.1 to 0.5 m.

A single set of transport parameters is estimated at each depth using three neighboring sensors. The estimation 
results are plotted in Figure 1 at the middle sensor location, e.g., at 0.15 m, the estimated transport parameters 
are shown for the estimate using 𝐴𝐴 𝐴𝐴 = [0.10, 0.15, 0.20]  m. In Figure 1, we clearly see that in shallower depths, 

Data set

I (semi-infinite domain) II (bounded domain 𝐴𝐴 )

𝐴𝐴 𝐴𝐴  × 10 −6 
(m 2 s −1)𝐴𝐴 𝐴𝐴𝑧𝑧 (mm d −1)

𝐴𝐴 𝐴𝐴  × 10 −6 
(m 2 s −1)

𝐴𝐴 𝐴𝐴𝑧𝑧 
(mm d −1)

Simulated parameters𝐴𝐴 1.200 𝐴𝐴 200 𝐴𝐴 1.200 𝐴𝐴 200

Estimated with 𝐴𝐴 𝑆𝑆𝑆𝑆𝐴𝐴 1.200 𝐴𝐴 200 𝐴𝐴 1.830𝐴𝐴 − 17.64

Estimated with 𝐴𝐴 𝐵𝐵𝐵𝐵𝐴𝐴 1.200 𝐴𝐴 200 𝐴𝐴 1.200 𝐴𝐴 200

Table 1 
Simulated and Estimated Transport Parameters Using the Semi-Infinite 
Domain Model 𝐴𝐴 SI and Bounded Domain Model 𝐴𝐴 BD for a Scenario With 
Constant Parameters and Sensors Placed Similarly to the Experimental 
Setup
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above 0.25 m, a large discrepancy exists between the simulated values and the estimated values when using the 
semi-infinite domain model. This is in contrast to the bounded domain model that estimates the transport param-
eters well. Moreover, at 0.15 m, the shallowest location tested, the semi-infinite domain model estimated the flow 
in the wrong direction. The change in diffusivity affects the temperature at shallower depths and the assumptions 
for the semi-infinite domain are not satisfied. Therefore, the semi-infinite domain model implicitly averages to 
greater depths during the parameter estimation, and consequently the diffusivity and velocity estimates attempt 
to compensate for the change in parameters. In contrast, the bounded domain model can isolate individually 
homogeneous units such that parameter estimates are correct, and only generate small errors in averaging across 
the step in diffusivity.

In addition to synthetic data set III and Figure 1, Figure S3 in Supporting Information S1 contains the estimation 
results of the diffusivity change in the opposite direction (data set IV), i.e. from 𝐴𝐴 0.8 ⋅ 10

−6 to 𝐴𝐴 1.5 ⋅ 10
−6  m 2 s −1. 

The results are similar to Figure 1, but now with the semi-infinite domain model overestimating the transport 
parameters instead of underestimating them.

In conclusion, we have shown two scenarios where the LPMLEn can help us detect when estimates of the semi-in-
finite domain approach are inaccurate compared to using a bounded domain model. Additionally, the LPMLEn 
with the bounded domain model might prove extremely helpful analyzing the vertical flux of distinct small (local) 
domains with variations in streambed sediment taking multiple sensors into account, especially for temperature 
data with very high vertical spatial resolution (e.g., in the cm range) as is typically the case for data collected 
with FO-DTS where the fiber-optic cable is coiled around a PVC core (Briggs et al., 2012; Folegot et al., 2018; 
Vogt et al., 2010).

Figure 1.  Simulated and estimated transport parameters using the semi-infinite domain model 𝐴𝐴 SI and bounded domain model 𝐴𝐴 BD for a scenario with a change in 
diffusivity, where the sensors are placed from 0.1 to 0.5 m, every 0.05 m and the parameters are estimated using a moving triplet of consecutive sensors for which the 
estimate is shown at the center of the triplet. Above 0.25 m, a significant discrepancy exists between the simulated values and the estimated values for the semi-infinite 
domain model but not for the bounded domain model. At 0.15 m, the semi-infinite domain model estimated the flow in the wrong direction.
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3.2.  Experimental Data Set

Here, the LPMLEn is demonstrated on a 90-day temperature time series (location ML1) from the Slootbeek, 
a small tributary to the Aa River, Belgium. The field site and flow system of the River Aa and Slootbeek have 
been described in detail in previous studies (Anibas et al., 2016, 2018; Ghysels et al., 2021). Temperature was 
measured using a multilevel temperature lance (UIT, Dresden, Germany) from 17 February to 12 May 2012 
every 10 min at the streambed top and six additional depths (see Figures 2a and 2b). To determine 𝐴𝐴 𝐴𝐴𝑧𝑧 following 
(22), we used 𝐴𝐴 𝐴𝐴𝑤𝑤𝑐𝑐𝑤𝑤 = 4.18 × 10

6 Jm −3 K −1 and 𝐴𝐴 𝐴𝐴𝐴𝐴 = 3.07 × 10
6 Jm −3 K −1. The value for 𝐴𝐴 𝐴𝐴𝐴𝐴 is based on previous 

research from Vandersteen et al.  (2015) and closely represents a sandy loam (Ren et al., 2000; Stonestrom & 
Constantz, 2003).

Similar to Vandersteen et al. (2015), we analyze the experimental data set using a rectangular 10-day window. 
To reduce the computational load during parameter estimation, only the relevant or informative frequencies 
should be included in the analysis. To select the relevant frequencies, the data set is transformed to the frequency 
domain using the FFT and then processed using the LP method with sensor 1 as noiseless reference signal. As 
the LP method provides the covariance matrix of the processed Fourier coefficients for the other sensors, the 
ratio between the amplitude squared and the variance of the Fourier coefficients, i.e., signal-to-noise ratio (SNR), 
shown in Figure 2c for one 10-day window, can be used to select the informative frequencies for the parame-
ter estimation process. Similar to Vandersteen et al. (2015), we choose to include all frequencies up to 𝐴𝐴 1.5 d −1. 
While selecting the relevant frequencies and sensors for the parameter estimation is ultimately the choice of the 
modeler this selection will influence the parameter estimates. However, including noninformative frequencies in 
the parameter estimation process will have little impact on the estimates because the MLEn uses the error (co)
variances as weighting, hence signals with a low SNR have a smaller contribution to the solution. They will influ-
ence (increase) the expected value of the cost function and delay the computation. On the other hand, discarding 
informative frequencies will influence the estimation depending on the (co)variance.

Comparatively, excluding a sensor has a more significant effect on the estimates than excluding noninformative 
frequencies as it also changes the domain on which the parameters are estimated. In Vandersteen et al. (2015), 
the parameters are estimated using sensors 1–7, while we here estimate the parameters using sensors 2–6 as 
sensor 1 is used as noiseless reference signal for the LP method and sensor 7 is excluded due to the low SNR at 
some intervals. In addition, our bounded domain model 𝐴𝐴 𝐵𝐵𝐵𝐵 uses the bottom sensor as boundary condition, i.e., 

𝐴𝐴 𝐴𝐴 = 3 , whereas the semi-infinite domain model 𝐴𝐴 𝑆𝑆𝑆𝑆 considers this sensor as an output (𝐴𝐴 𝐴𝐴 = 4) . Consequently, 
the semi-infinite domain model is fitted over one additional sensor depth. For this reason, we also estimate the 
parameters with the semi-infinite domain model using sensors 2–5, such that the number of outputs between 
semi-infinite and bounded domain models is the same (𝐴𝐴 𝐴𝐴 = 3) . However, note that this estimate is then based on 
a reduced data set compared to the bounded domain model. The diffusivity, vertical flux, and the (normalized) 

Figure 2.  (a) Multilevel temperature lance used to collect data, (b) temperature data from the Slootbeek at ML1 (both modified from Vandersteen et al., 2015), (c) 
example of signal-to-noise ratio (SNR) plot for one 10-day window after using the local polynomial method. It can be used to select informative frequencies. We chose 
to include all frequencies up to 𝐴𝐴 1.5 d −1, indicated by the vertical dashed line.
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cost function value are obtained by moving the 10-day window along the data set (Figure 3). As the number of 
equations 𝐴𝐴 𝐴𝐴𝐴𝐴  is much larger than the correction factor 𝐴𝐴

2

2
 , the expected value 𝐴𝐴

𝑀𝑀𝑀𝑀

𝑛𝑛𝑛𝑛
≈ 1 if there are no modeling 

errors. Hence, the difference with this expected value reflects the modeling error.

From Figure 3c, we see that, in general, the bounded domain model has the smallest modeling error. Moreover, 
while on some intervals, estimates with the semi-infinite and bounded domain models agree, at other intervals the 
flow is estimated in opposite directions (Figure 3b, e.g., between day 10 and day 20). As shown with the synthetic 
data set, if both models agree in their estimates, the estimates can be deemed trustworthy. However, in case the 
two models do not agree, the bounded domain model is more likely to estimate the correct flow. To verify this, 
we can look at how the models fit the data. For clarity, the model fits at 𝐴𝐴 𝐴𝐴1 = 9.2569 and 𝐴𝐴 𝐴𝐴2 = 17.2153 are shown 
in Figure 4 without the error bars on the measured data, while a figure with error bars is shown in Figure S4 in 
Supporting Information S1. In these figures, we see that at 𝐴𝐴 𝐴𝐴1 all models fit the data very similarly, while at 𝐴𝐴 𝐴𝐴2 the 
bounded domain model describes the phase behavior better than the semi-infinite domain models do.

Additional evidence is provided by looking at the joint variation of the estimated diffusivity and flux from 
Figures 3a and 3b, presented in Figure 5. As mentioned previously, we estimated the thermal diffusivity instead 
of the bulk thermal conductivity as there is a physical basis to expect variation of the diffusivity with flux (3), 
namely, hydraulic dispersion. Two common notations of the thermal dispersivity are given by de Marsily (1986) 
and Rau et al. (2012)

� = �
��

+ �
|

|

|

|

����
��

��
|

|

|

|

,� (25)

𝐷𝐷 =
𝑘𝑘

𝜌𝜌𝜌𝜌
+ 𝜓𝜓

(
𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤

𝜌𝜌𝜌𝜌
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)2

.� (26)

Figure 3.  (a) Estimated diffusivity, (b) Darcy flux (positive means downwelling) with their 95% confidence bounds, and (c) 
(normalized) cost function value, shown at the start of the analyzed 10-day window for the semi-infinite domain 𝐴𝐴 SI and 
bounded domain 𝐴𝐴 BD models. The two vertical dashed black lines indicate the time for the model fits shown in Figure 4.
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The estimates originating from the bounded domain model 𝐴𝐴 𝐵𝐵𝐵𝐵 follow that pattern much more strongly than the 
semi-infinite domain model 𝐴𝐴 𝑆𝑆𝑆𝑆 , suggesting that some of the variations estimated by the semi-infinite domain 

model are spurious. A linear least squares fit of (25) and (26) on the bounded 
domain estimates is shown along the estimates in Figure 5. As both fits do not 
perfectly fit the data, further research is necessary to establish more insight 
into the joint variation of the estimated parameters. However, one should note 
that the observed variations are not the result of small variations within the 
data set, but originate from larger trends as small variations, e.g., estimates 
originating from the next and previous 10-day windows, would be close to 
each other (within each others 95% confidence ellipses, see Figure S5 in 
Supporting Information S1).

Combining the knowledge from the synthetic data set, the model fits and 
the variation of the diffusivity with flux, indicates to us that the semi-in-
finite domain model estimates the flow in the wrong direction and that the 
estimates originating from the bounded domain model are more trustworthy. 
However, as with any model no absolute guarantee exists that all underlying 
physical processes in our natural system are described sufficiently well.

4.  Conclusion
The LPMLEn extends previous frequency domain approaches to estimate 
vertical streambed fluxes and thermal diffusivities by including tempera-
ture data from n sensors in the multifrequency parameter estimation process. 

Figure 4.  The amplitude ratio (top) and change in phase (bottom) of the measured frequency response functions and fitted 
semi-infinite domain model 𝐴𝐴 SI and bounded domain model 𝐴𝐴 BD at the two times shown with dashed lines in Figure 3. The 
shown amplitude ratios and changes in phase are from sensor 2 at 0.15 m to sensors 3, 4, 5, and 6 at 0.17, 0.20, 0.25, and 
0.35 m, respectively. Note that sensor 6 is used as boundary input for the bounded domain model; thus, the fitted response 
would equal the measured response and is left out for clarity.

Figure 5.  Diffusivity as a function of flux for the semi-infinite domain model 
𝐴𝐴 SI and bounded domain model 𝐴𝐴 BD compared to two common notations 

that are fitted on the estimates from the bounded domain model.
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It contains the commonly used semi-infinite domain model, and a more robust and physically based bounded 
(finite) domain model. Processing the data with the LP method and systematically taking the measurement uncer-
tainty into account by minimizing the (log) ML cost function result in an estimate of the parameters and their 
corresponding uncertainties.

The application of the two models to the same data set is crucial in verifying whether the use of the semi-infinite 
domain approach is justified and the estimated diffusivity and Darcy flux can be deemed accurate. The semi-in-
finite domain model is a special case of the more general, bounded (finite) domain model; hence, the semi-in-
finite domain model is more likely to estimate the flux erroneously whereas the bounded domain model has a 
higher likelihood to estimate the direction of the flux correctly as is demonstrated using synthetic data sets as 
well as field measurements. In case estimates obtained with both model types agree, model fits and cost function 
values are also very similar. Where the estimated parameters do not agree, the bounded domain model fits the 
data better and has a much lower cost function value.

As such, the LPMLEn with the bounded model can be used to verify assumptions made for the semi-infinite 
domain model. Additionally, if the data set allows for it, the bounded domain model can easily be used to estimate 
parameters for distinct vertical streambed sections, which might shed light on the contribution of shallow hypor-
heic flux and deeper groundwater upwelling to the overall flux estimate in future studies.

Data Availability Statement
For the moment, LPMLEn is provided in MATLAB but future improvements will include a Python-based GUI 
that allows the user to compare various 1D temperature models and choose specific windowing techniques. 
The MATLAB version (van Kampen et  al.,  2022) is available at HydroShare: http://www.hydroshare.org/
resource/3b13760174174c31988120baeb84e2e8.
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