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A CIRCULAR VERSION OF GÖDEL’S T AND ITS

ABSTRACTION COMPLEXITY

ANUPAM DAS∗

Abstract. Circular and non-wellfounded proofs have become an increasingly
popular tool for metalogical treatments of systems with forms of induction
and/or recursion. In this work we investigate the expressivity of a variant CT
of Gödel’s system T where programs are circularly typed, rather than including
an explicit recursion combinator. In particular, we examine the abstraction
complexity (i.e. type level) of CT , and show that the Gödel primitive recursive
functionals may be typed more succinctly with circular derivations, using types
precisely one level lower than in T . In fact we give a logical correspondence
between the two settings, interpreting the quantifier-free type 1 theory of level
n + 1 T into that of level n CT and vice-versa.

We also obtain some further results and perspectives on circular ‘deriva-
tions’, namely strong normalisation and confluence, models based on heredi-
tary computable functionals, continuity at type 2, and a translation to terms
of T computing the same functional, at all types.

1. Introduction

In recent years non-wellfounded proofs have attracted increasing attention. The
modern inception of the area arguably lies with the celebrated work [NW96] of
Niwinski and Walukiewicz, where a circular analytic tableau system was proved
sound and complete for Kozen’s modal µ-calculus [Koz83]. Since then several dis-
tinct lines of research have emerged, in particular pivoting towards proof theoretical
aspects of non-wellfounded reasoning:

• Modal logic. Niwinski and Walukiewicz’s system has been recast as more
traditional sequent based systems in, e.g., the works [DHL06a] for the linear
time fragment, and [Stu08] for the general fragment, both offering alterna-
tive cut-free completeness proofs. Recently more ‘constructive’ proofs have
emerged of both these results, namely [Dou17] and [AL17]. Similar results
may be readily recovered for many other fixed point modal logics.

• Predicate logic. Brotherston and Simpson initiated a program for non-
wellfounded proof theory based on predicate logic [BS07, BS11]. Here,
syntactic correctness criteria from modal logic, themselves inspired by au-
tomaton theory, were adapted to provide a sound circular proof theory
for forms of inductive definitions. This approach has found applications
in automated theorem proving [BGP12, BDP11, RB17], and more recently
variations of these systems in the setting of first-order arithmetic have been
investigated [Sim17, BT17b, Das20, CR20].
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• Type systems. Recently, formulations of cyclic proofs through the lens of
the Curry-Howard correspondence have garnered attention in the French
school of proof theory. Fortier and Santocanale, also inspired by [NW96],
seem to have been the first of the modern era to give a cut-elimination
result for circular proofs with the aforementioned correctness conditions,1

namely for additive linear logic with least and greatest fixed points [FS13].
This was generalised in later work to the logic including multiplicatives
too (for closed formulas) in [BDS16], and with more expressive correctness
conditions recently in [BDKS20]. Deepening this Curry-Howard viewpoint,
presentations of ‘proof nets’ have recently appeared [DS19], yielding a form
of Natural Deduction for circular proofs.

• Algebras. Inspired by the aforementioned work on type systems, there have
been many recent applications to classes of algebras based on fixed points, in
particular the Kleene star. [DP17] has presented a cut-free complete system
for Kleene algebra, and established a cut-elimination result for it and the
extension by residuals and meets (i.e. Lambek calculus + Kleene star) in
[DP18]. These have been used directly to obtain alternative completeness
results, e.g. [DDP18], and have inspired recent undecidability results, e.g.
for the logic of action lattices [Kuz19], which solved a longstanding open
problem.

A key motivation in all these areas is the so-called ‘Brotherston-Simpson conjec-
ture’: are cyclic proofs and inductive ones equally powerful? Naturally, the answer
depends on how one interprets ‘equally powerful’, e.g. as provability, proof com-
plexity, logical complexity etc., as well as on the logic at hand. One example of this
nuance is readily found in the setting of first-order logic:

• Berardi and Tatsuta have shown that first-order proofs with induction, over
particular inductive definitions, do not prove the same theorems as cyclic
ones [BT17a].

• Simpson in [Sim17] and Berardi and Tatsuta in [BT17b] have independently
shown that inductive and cyclic proofs are equally powerful in the presence
of Peano Arithmetic.

• Both these results were refined in [Das20] where it was shown that prov-
ability by cyclic proofs containing only Σn formulas (CΣn) coincides with
provability by Σn+1-induction (IΣn+1), over Πn+1 theorems.

The current work is somewhat inspired by the line of work just mentioned, in
the sense that it attempts to understand the Brotherston-Simpson question for
type systems and their corresponding equational theories at the level of abstraction
complexity (or type level). In particular, motivated by the results for arithmetic
mentioned above, our natural starting point is Gödel’s ‘system T ’ [Gö58].

T is a multi-sorted classical quantifier-free theory over a simply typed program-
ming language based on primitive recursion at all finite types. Gödel’s celebrated
Dialectica functional interpretation [Gö58] allows all of first-order arithmetic to
be interpreted by this simple theory,2 essentially trading off logical complexity of

1Of course, in this regard, one must also mention Mints’ famous ‘continuous cut-elimination’
[Min78]; while his approach indeed seems to apply, the main difficulty herein seems to be the
preservation of syntactic correctness at the limit.

2In fact, Gödel’s interpretation was only for the intuitionistic theory Heyting Arithmetic. Peano
Arithmetic may be duly interpreted upon composition with a suitable double negation translation.
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quantifiers for abstraction complexity in functional programs. This tradeoff was
made precise by Parsons in [Par72]: the fragment IΣn+1 of Peano Arithmetic is
ND-interpreted into the fragment of T admitting only type n recursion (Tn). Nat-
urally, a converse result holds too, in the sense that Tn may be interpreted into
appropriate fragments of arithmetic where the interpretation of types is relativised
to classes of hereditarily computable functionals.

In this work we present a circular (or cyclic) version CT of Gödel’s T , where
typing derivations may be non-wellfounded, but remain finitely presentable. At the
level of the type system, we simply adapt the correctness conditions of many of
the previously mentioned works to the language of simple types. At the level of
the theory we admit the same axioms as T , in particular quantifier-free induction,
and include a form of extensional equality. Our main result is that, similar to
the arithmetic setting, CT and T are mutually interpretable. In fact, we obtain a
similar refinement: the type n restriction of CT (CT n) is interpretable in Tn+1 and
vice versa, over at least the type 1 quantifier-free theory. Intuitively this means that
cyclic typing derivations, and their induced theory, are more succinct than ones in
T , by precisely 1 type level.

Our arguments, however, are more subtle and technical than the analogous ones
from [Das20], since we are working simultaneously with systems for typing and sys-
tems for reasoning within a theory. We take a proof mining approach to interpreting
CT in T , formalising a totality argument in suitable fragments of ‘second-order’3

arithmetic. Extraction of witnessing functionals and corresponding specifications in
fragments of T follow by the aforementioned results of Parsons, under well-known
conservation results over fragments of first-order arithmetic. Notably, since we are
unable to formalise the standard set theoretic model of higher order functionals,
we take a detour through the model theory of T , in particular presenting ‘coterm’
models that play the roles of the hereditarily recursive (and hereditarily effective)
operations. We give a rewriting theoretic implementation of program execution,
and establish a confluence result within RCA0, yielding determinism of normalising
programs. The interpretation of CT in T is then a consequence of the fact that
these type structures indeed constitute models of CT . For the refinement at each
type level, we take advantage of recent results on the reverse mathematics of cyclic
proof checking from [Das20], inspired by [KMPS19b, KMPS19a].

Our ultimate motivation is to establish a correspondence between two of the
proof theoretic worlds mentioned at the start: predicate logic and type systems. In
future work we would like to establish a ‘circular Dialectica’ functional interpreta-
tion, thereby completing the picture and formally associating the two settings.

1.1. Related work. Kuperberg, Pinault and Pous have notably also studied non-
wellfounded typing derivations inspired by T in [KPP21], in particular investigating
affinity. Their types are closed under a ‘Kleene star’ operation for list formation,
inspired by previous works such as [DP18], and are equivalent to the usual notion
of simple (or finite) types. They show that the affine fragment of this type system,
where contraction is omitted, computes precisely the primitive recursive functions
in the standard set-theoretic model, generalising a similar result by Dal Lago for
affine T [Lag09]. They also show that, in the presence of contraction, their type 1

3As for simple type theory, the allusion to ‘second’ or ‘higher’ order is only suggestive: formally
speaking these are multi-sorted first-order settings and not bona fide second or higher order.
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fragment computes just the type 1 primitive recursive functionals (à la Gödel), i.e.
those computed by type 1 terms of T in the standard model.

This latter result is subsumed by and, in particular, refined in the current work
in terms of type level (we discuss this further in Section 8.5). Moreover, the point
of this work is to establish a logical correspondence between fragments of CT and
T , i.e. at the level of their equational/quantifier-free theories, not only at the level
of interpretation of their terms in the standard model.

1.2. Outline and prerequisites. The remainder of this paper is structured as
follows. In Section 2 we give some preliminaries on Church’s simple type theory
and we recall system T in Section 3, in particular giving a sequent-style presentation
of typing derivations.

In Section 4 we present non-wellfounded typing derivations (‘coderivations’),
in particular giving semantic results with respect to the standard model such as
extensional completeness at type 1, Turing completeness for the regular fragment
and, of course, well-definedness of the induced functionals. This section concludes
with the definition of CT and its type-level-restricted fragments CTn. In Section 5
we give a simulation of Tn+1 within CTn, over the type n+1 theory, in the presence
of extensionality. The techniques of this section are entirely proof-theoretic.

In Section 6 we turn to the model theory of CT . We recast traditional type
structures of hereditarily recursive and hereditarily effective operations into ‘coterm’
models, in light of the aforementioned Turing-completeness result. At the base
level, program execution is implemented as a rewrite system induced from the
equational axioms in the usual way; in particular we prove a confluence result,
yielding determinism of computation. In Section 7 we formalise the aforementioned
type structures within fragments of second-order arithmetic, in particular proving
(within these fragments) that they constitute models of CT (with extensionality).
By applying standard proof mining results, we obtain an interpretation of CTn

into Tn+1, over the type 1 equational theory, a converse result to that of Section 5.
Finally, in Section 8 we give some further results and perspectives on CT coterms,

in particular obtaining type 2 continuity, weak and strong normalisation, and a
translation to T terms computing the same functional. We also discuss proof
theoretic strength, cut-elimination and the incorporation of fixed point operators.

It would not be pertinent to give a purely self-contained presentation of the
content herein, since we rely on a number of established disciplines. That said, we
aim for a level of exposition that highlights the significance and subtleties of our
results and techniques for the general proof theorist.

Naturally, it is helpful to have some background with Gödel’s system T and the
Dialectica functional interpretation (though we shall not explicitly work with it),
for which [AF98] is an excellent survey and [Tro73, Koh08] are more comprehensive.
There are also excellent references for the technical disciplines underlining this work,
namely rewriting theory (e.g. [Ter03]), reverse mathematics (e.g. [Sim09, Hir14])
and higher-order computability theory (e.g. [LN15]). Finally, we give metamath-
ematical accounts of many of our results,4 and so assume some familiarity with
metamathematics of first- and second-order arithmetic (e.g. [HP93], also [Kle80]
for a recursion-theoretic viewpoint and [Tro73] for a constructive viewpoint).

4This is for two reasons: (a) for self-contained interest; while some such results are probably
folklore, they have not appeared elsewhere, as far as we know; and, more importantly, (b) since
we exploit these metamathematical resuls in Section 7 in order to interpret CT within T .
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2. Preliminaries on Church’s simple type theory

At the heart of Gödel’s T is a rudimentary version of Church’s Simple Type
Theory [Chu40]. Since we later consider a rather non-standard ‘circular’ calculus
CT , we will here give a presentation of simple type theory that underlies both T
and CT .

2.1. Simple types. Throughout this work we will deal with terms that are simply
typed. (Simple) types, written σ, τ etc., are defined as follows:

• N is a type.
• If σ and τ are types, then so is (σ → τ).

We typically omit parentheses on types when they are associated to the right. E.g.,
we may write ρ → σ → τ instead of ρ → (σ → τ) and so on.

We define the level of a type σ, written lev(σ), inductively as follows:

• lev(N) = 0
• lev(σ → τ) = max(1 + lev(σ), lev(τ)).

Every type σ can be uniquely written as σ1 → · · · → σn → N , for some n ∈ N.
In this case we sometimes write ~σ for (σ1, . . . , σn) and, as an abuse of notation,
we also sometimes write ~σ → N for σ. We call n here the arity of σ (in reference
to the type isomorphism ρ → σ → τ ≡ (ρ × σ) → τ). Note that, in this case,

lev(σ) = 1 +
n

max
i=1

(lev(σi)).

2.2. Simply typed theories (STTs). A simply typed language is a multi-sorted
first-order language, whose sorts are just the simple types. The simply typed lan-
guages considered in this work will consist of some basic set of constants of simple
type, called combinators, as well as infinitely many variables, written x, y, z etc., of
each simple type. We may sometimes indicate the type of a variable (or term) as
superscript to aid parsing, e.g. writing xσ for a variable x of type σ.

Terms are formed from constants (and variables) by typed application:

• Any constant or variable of type σ is a term of type σ.
• if s and t are terms of types σ and σ → τ , respectively, then (t ◦ s) is a
term of type τ .

We usually just omit the application symbol ◦, e.g. writing t s instead of t ◦ s,
and omit parentheses for long applications when they are associated to the left,
e.g. writing r s t for (r s) t and so on. We do not include a λ-abstraction operation
as primitive, instead requiring that it is coded by constants and composition for
combinatory completeness (see, e.g., Fact 3).

Remark 1 (Application). Formally speaking, being in a multi-sorted first-order
framework, ‘application’ itself comprises a family of operations, one for each pair
of types (σ → τ, σ). We shall gloss over this formality in what follows, unless we
need to distinguish application operations of differing types.

Simply typed languages, for us, always include a binary relation symbol =σ

‘equality at type σ’, on each type σ. Atomic formulas have the form s =σ t,
where s and t are terms of type σ, although we shall suppress the subscript σ when
it does not cause confusion. Formulas are built from atomic ones in the usual
way, using ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⊃ (implication), ≡ (if
and only if), ∃ (existential quantifier), and ∀ (universal quantifier).
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Simply typed theories (or STTs) are (first-order, classical) theories over a (sim-
ply typed) language, typically specified by a set of quantifier-free axioms and rules.
We always assume that STTs include the axioms for equality from Figure 1.

(1) t =σ t, for any term t of type σ. (Reflexivity)
(2) (s =σ t ∧ ϕ(s)) ⊃ ϕ(t), for terms s, t of type σ. (Leibniz)

Figure 1. Axiom schemata for (intensional) equality.

We will also include a form of extensionality for equality given by the extension-
ality rule (ER) in Figure 2.

(ER) If ⊢ s ~x = t ~x then ⊢ s = t.

Figure 2. Extensionality rule.

Remark 2 (On equality). Our inclusion of an equality symbol in all finite types
coupled with a rule for extensionality is non-standard, but it eases some of the
technical development. Let us note, however, that our version has been previously
considered in the literature, e.g. in [Par72] where ER is called ‘SI’ and facilitates
the translation from IΣn+1 into Tn (cf. Section 3.5 later).

Our axiomatisation of equality thus sits somewhere between intensional or weakly
extensional variants and the fully extensional variant. Since our principal concern
in this work is in comparing STTs by their type 1 theories, the precise variant of
equality is not so important, vis a vis known extensionality-elimination techniques
at lower types, cf. [Luc73]. Weaker formulations, in particular weak extensionality,
seem to suffice for certain results, but the appropriate proof adaptations seem to
introduce technicalities that detract from our main purpose. Thus such consid-
erations are beyond the scope of this work, but they will naturally be of greater
importance for related directions, in particular for proof interpretations.

2.3. Structures and the standard model. We consider usual Henkin structures
for simply typed languages, called type structures. Note that we do not, a priori,
require =σ to be interpreted as true equality on the interpretation of σ.

One particular structure, the ‘standard’ or ‘full set-theoretic’ model N, is given
by the following interpretation of types:

• NN is N.
• (σ → τ)N is the set of functions σN → τN.
• ◦N is just function application, i.e. given f ∈ σN and g ∈ (σ → τ)N,
g ◦N f ∈ τN is defined as g(f).

• For each type σ, we have an extensional equality relation =N
σ :

– =N

N is just equality of natural numbers;
– for f, g ∈ (σ → τ)N, we have f =N

σ→τ g just if ∀x ∈ σN.f(x) =N
τ g(x).

As a notational convention, for a function f : X → ZY and x ∈ X , y ∈ Y ,
we may write f(x, y) for f(x)(y), and so on, in reference to the usual ‘Currying’
isomorphism (ZY )X ∼= ZX×Y .

This structure also has standard extensions to the STTs considered later in this
work, which will be presented at the appropriate moments.
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2.4. Example: Combinatory Algebra. The language of combinatory algebra
consists of the following constants:

• Kστ , for each pair (σ, τ), of type σ → τ → σ.
• Sρστ , for each triple (ρ, σ, τ), of type (ρ → σ → τ) → (ρ → σ) → ρ → τ .

We will typically omit the type subscripts of the combinators in what follows when
it is unambiguous. Combinatory Algebra is a theory over this language that
includes all axioms of the form:

(1)
K x y = x
S x y z = x z (y z)

The standard model N may be extended to a model of Combinatory Algebra by
taking the equations above as definitions (oriented from left to right). It is well-
known that Combinatory Algebra is complete:

Fact 3. For each term t of type τ and variable x of type σ, there is a term λxt of
type σ → τ s.t. (1) ⊢ (λxt) y = t[y/x].

2.5. Sequent style type system. Sequent calculi give us a way to write typed
terms that are more succinct with respect to type level, and also enjoy nice proof
theoretic properties, e.g. cut-elimination. From the point of view of the Curry-
Howard correspondence, they associate sequent proofs of minimal logic to simply
typed terms. Importantly, the sequent presentation and its induced relations be-
tween type occurrences makes it easier to define our notion of progressing non-
wellfounded derivation later.

Definition 4 (Sequent calculus). Sequents are expressions ~σ ⇒ τ , where ~σ is a list
of types and τ is a type. The rules for minimal logic are given in Figure 3.

~ρ, σ, ρ, ~σ ⇒ τ
ex

~ρ, ρ, σ, ~σ ⇒ τ

~σ ⇒ τ
wk

~σ, σ ⇒ τ

~σ, σ, σ ⇒ τ
cntr

~σ, σ ⇒ τ

~σ ⇒ σ ~σ, σ ⇒ τ
cut

~σ ⇒ τ

id

σ ⇒ σ

~σ ⇒ ρ ~σ, σ ⇒ τ
L

~σ, ρ → σ ⇒ τ

~σ, σ ⇒ τ
R

~σ ⇒ σ → τ

Figure 3. Sequent style typing rules from minimal logic.

Here, and throughout this section, colours of each type occurrence in typing rules
may be ignored for now and will become relevant later in Section 4. That said, it
may be illustrative for the reader to imagine that, once we give interpretations of
these rules, type occurrences of the same colour will correspond to identical inputs
for the corresponding functionals. In this way, the colour assigned to a type on the
LHS of a sequent is a sort of variable annotation for that occurrence.

Recall that, for a list of types ~σ = (σ1, . . . , σn), we sometimes write ~σ → σ for
the type σ1 → · · · → σn → σ. Each rule instance (or step) determines a constant
of the appropriate type:

• A step
~τ ⇒ τ

is a constant of type ~τ → τ .

• A step
~σ ⇒ σ

~τ ⇒ τ
is a constant of type (~σ → σ) → ~τ → τ .
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• A step
~ρ ⇒ ρ ~σ ⇒ σ

~τ ⇒ τ
is a constant of type (~ρ → ρ) → (~σ → σ) → ~τ → τ .

We will usually refer to steps only by their labels, e.g. ex, cntr, R etc., rather than
explicitly indicating their types in the premisses and conclusions; unless otherwise
clear from context, the associated typing should be assumed to be as given in the
original specification of the rule, e.g. in Figure 3.

Definition 5 (Derivations and terms). A sequent calculus derivation of ~σ ⇒ τ
determines a term of type ~σ → τ in the expected way, by applying all the inference
steps according to its structure. Formally, derivations are construed as terms by
inductively setting:

•
s

~σ ⇒ σ
r

~τ ⇒ τ

is the term r s; and,

•
r

~ρ ⇒ ρ

s

~σ ⇒ σ
r

~τ ⇒ τ

is the term r r s.

We write t : ~σ ⇒ τ if t is a derivation of the sequent ~σ ⇒ τ (and so also a term of
type ~σ → τ).

Note that, strictly speaking, derivations form a strict subset of all closed terms,
since they are not formally closed under application. I.e., for s : ⇒ σ and t : σ ⇒ τ ,
we have that t s is a term of type τ , but t s is not, in general, a derivation.5 In what
follows, we will see that we can interpret the term t s as the derivation cut t s (with
appropriate types), but it will nonetheless be convenient to distinguish these two
terms. In particular this interpretation does not admit the same notion of ‘thread’
for non-wellfounded derivations we consider later.

Remark 6 (Why rules as combinators?). While it may seem strange to adopt a
sequent style type system but construe inference steps as combinators rather than
meta-level operations on, say, λ-terms, we adopt this approach to facilitate our later
notions of non-wellfounded derivations and coterms. This combinatory approach
ensures that the ‘term associated to a derivation’ is actually a continuous construc-
tion, so that when we later consider non-wellfounded derivations, the corresponding
notion of ‘coterm’ is well-defined.

On the other hand, why do we use the sequent calculus at all? This is due to
the particular termination criterion we will adopt for non-wellfounded derivations
later, exploiting well-known notions of formula ancestry available in the sequent
calculus. This is why the sequent calculus is the standard formalism in circular
proof theory.

Definition 7 (Axiomatisation). We define the axiomatisation in Figure 4, where
the types corresponding to each rule label are as indicated in the corresponding
rule instance in Figure 3.

5E.g., if t concludes with a binary step, then the only way to write t s in the form r r1 · · · rn,
with r an inference step, requires n > 2, which is not possible since all rules are at most binary.
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id x = x
ex t ~x x y ~y = t ~x y x ~y

wk t ~x x = t ~x
cntr t ~x x = t ~x x x
cut s t ~x = t ~x (s ~x)
L s t ~x y = t ~x (y (r ~x))
R t ~x x = t ~x x

Figure 4. Equational axiomatisation of sequent calculus rules.

Note that, here and elsewhere, there is no formal reason why we distinguish the
arguments corresponding to subderivations by term meta-variables, s, t etc., and
other arguments by variables x, y etc. It is purely in order to facilitate the identi-
fication of the corresponding arguments. All axioms are closed under substitution
of terms for variables.

Remark 8 (Combinatory completeness). The sequent calculus in Figure 3, un-
der the axiomatisation in Figure 4, is equivalent to Combinatory Algebra (from
Section 2.4). In particular there are derivations for Kστ and Sρστ that satisfy the
corresponding equational axioms. As a consequence, our sequent calculus is also
combinatory complete.

Remark 9 (Standard model). The structure N from Section 2.3 may be extended
to one for Figures 3 and 4 by taking the equations of Figure 4 as definitions, oriented
left-to-right.

Convention 10 (Rules modulo exchange). In the rest of this work, it will often
be convenient to omit instances of exchange, ex, in typing derivations and their
corresponding notation as terms. For example, we may freely write a ‘rule instance’,

(2)
~ρ, ~σ ⇒ σ ~ρ, σ, ~σ ⇒ τ

cut

~ρ, ~σ ⇒ τ

instead of the corresponding derivation with exchanges, and an ‘axiom’,

cut s t ~x~y = t ~x (s ~x ~y) ~y

instead of the corresponding equation derived using the ex and cut axioms. Again,
we may omit typing of rule labels when it is unambiguous.

3. Preliminaries on Gödel’s system T

So far we have not imposed any restrictions on our base type N , despite the fact
that the standard model N interprets N as N. System T is a simple type theory
that extends Combinatory Algebra by including new constants, axioms and rules
that constrain the interpretation of N to this effect. Its definition is borne out over
the following subsections.

3.1. Constants for natural numbers and recursion. The language of T ex-
tends the sequent system from Figure 3 by the typing rules in Figure 5. Again, we
may omit the subscript (and other typing information) of an instance of recτ when
it is unambiguous.
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0
⇒ N

s

N ⇒ N

~σ ⇒ τ ~σ,N, σ ⇒ τ
recτ

~σ,N ⇒ τ

Figure 5. Typing rules for 0, s and recτ combinators.

When writing terms, we assume s binds stronger than application. This is usually
visually signified since the symbol s will appear in closer proximity to the term it
is bound to. E.g. We write s st for s ◦ (s ◦ t).

A numeral is a term of the form s · · · s
︸ ︷︷ ︸

n

0, which we more succinctly write as n.

3.2. Recursion axioms. T includes as axioms the equations from Figure 6. Be-

rec s t ~x 0 = s ~x
rec s t ~x sy = t ~x y (rec s t ~x y)

Figure 6. Equational axioms for recursion combinators, where y
is a variable of type N .

fore concluding our definition of T , let us note that the equational axioms thus far
presented are enough to expose well-behaved computational content:6

Fact 11 ([Tai67]). Orienting the axioms of Figures 4 and 6 left-to-right yields a
terminating and confluent rewriting system on closed terms of T.

We will not elaborate now on the rewriting theoretic aspects of T since we will
revisit it in more detail later in Section 6. However, let us note that Tait’s result
above induces a well-behaved term model of T , with equality simply comparing
(unique) normal forms. The point of Section 6 is to establish similar models for
the non-wellfounded type system we will introduce in Section 4, formalised in the
setting of second-order arithmetic.

3.3. Number-theoretic axioms. Finally, T includes the axioms from Figure 7,
indicating that (0, s) generates a free and inductive structure.

(1) ¬ sx = 0
(2) sx = sy ⊃ x = y

(Ind) If ⊢ ϕ(0) and ⊢ ϕ(x) ⊃ ϕ(sx) then ⊢ ϕ(t), for ϕ quantifier-free.

Figure 7. Number-theoretic axioms for T , where x and y are
variables of type N , and t is a term of type N .

This concludes the definition of T , i.e.:

Definition 12 (System T ). T is the simple type theory over the language given
by Figures 3 and Figures 5, axiomatised by the formulas and rules from Figures 1,
2, 4, 6 and 7.

6Note that this result also applies to alternative combinatorial bases such as ours, e.g. as noted
in [CH72], Chapter B.
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Going back to Fact 11 and the succeeding discussion, one crucial property of T is
that the only (closed) normal forms of type N are numerals. For the aforementioned
term model induced by unique normal forms of closed terms, this property allows
the verification of the induction schema (2) in Figure 7 to be reduced to induction
at the meta-level. Interestingly, this property fails for the non-wellfounded calculus
we will present in Section 4 (see Remark 44), necessitating a somewhat specialised
construction of corresponding models in Section 6.

3.4. The standard model and primitive recursive functionals. The standard
model N from Section 2.3 may be extended to one of T by setting,

• 0N := 0 ∈ N.
• sN(n) := n+ 1.

and taking the axioms for rec from Figure 6 as definitions, oriented left-to-right.
Note that the interpretation of rec is indeed well-defined by these axioms, provable
by induction on N.

The interpretations of terms in this model, i.e. the functionals tN, form a higher-
order function algebra known as the (Gödel) primitive recursive functionals of fi-
nite type, written PRF. It is well-known by a result of Kreisel that its type 1
functions coincide with those definable by effective transfinite recursion up to ε0
[Kre51, Kre52], and moreover that ordinal complexity (height of an ω-tower) can
be effectively traded off for abstraction complexity (type level) and vice-versa (cf.,
e.g., [Tai68, Sch75]).

3.5. Restricting the level of recursors. The main subject of study in this work
will be fragments of T induced by restricting the type level of recursors.

Definition 13 (Fragments of T ). Tn is the restriction of T to the language con-
taining only recursors recσ where lev(σ) ≤ n.

The significance of these fragments was investigated in the seminal work of Par-
sons [Par72]. In particular we have:

Proposition 14 ([Par72]). If IΣn+1 ⊢ ∀~x∃yA(~x, y), where A is ∆0, then there is
a Tn term t with Tn ⊢ A(~x, t ~x).7

In fact, this result is a direct consequence of Gödel’s famous ‘Dialectica’ functional
interpretation [Gö58], composed with a suitable negative translation. The converse,
that IΣn+1 proves the totality of all type 1 terms of Tn, is obtained by formalis-
ing models of hereditarily computable functionals similar to those in Section 6.
Both directions may be alternatively obtained via the aforementioned transfinite
recursion theoretical characterisations of T , using purely structural proof theoretic
methods, cf. [Bus95].

Both results naturally extend to the conservative extension RCA0 + IΣ0
n+1.

Corollary 15. If RCA0+ IΣn+1 ⊢ ∀~x∃yA(~x, y), where A is ∆0
0, then there is a Tn

term t with Tn ⊢ A(~x, t ~x).

For the results of Section 5, it will be useful to have the following normal form
of typing derivations:

7We assume here some standard encoding of ∆0 formulas into quantifier-free formulas of T0.
Alternatively we could admit bounded quantifiers into the language of T , on which induction is
allowed, without affecting expressivity. We shall gloss over this technicality here.
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Proposition 16 (Partial normalisation). Let t : ~σ ⇒ τ be a Tn derivation, where
τ and each σi have level ≤ n. Then there is a Tn-derivation t′ : ~σ ⇒ τ such that
tN = t′N. Moreover, Tn ⊢ t = t′.

Since we could not easily find an explicit statement of this in the literature, a
self-contained proof is given in Appendix A.

3.6. Example: typing the Ackermann-Péter function. Let us take a moment
to see an example of typing and reasoning within T . The Ackermann-Péter function
A : N× N → N is defined by the following equations:

(3)
A(0, y) := y + 1

A(x + 1, 0) := A(x, 1)
A(x + 1, y + 1) := A(x,A(x + 1, y))

Formally, we may see A as being defined by induction on a lexicographical product
order on N×N. This function may duly be computed by a term of T by appealing
to primitive recursion at type level 1. We first define a functional I by primitive
recursion (at type N) satisfying:

(4)
I f 0 = f 1
I f sy = f (I f y)

Formally, I may be typed by the following derivation,

1

⇒ N
id

N ⇒ N
L

N → N ⇒ N

id

N ⇒ N

id

N ⇒ N
wk

N,N ⇒ N
L

N → N,N ⇒ N
recN

N → N,N ⇒ N

where principal types are underlined and red occurrences of N correspond to the
same input (morally y in (4)). T proves the defining equations from (4) for I:

I f 0 = L 1 id f by rec axioms
= id (f 1) by L axiom
= f 1 by id axiom

I f sy = L id (wk id) f (I f y) by rec axioms
= wk id (f (id (I f y))) (I f y) by L axiom
= id (f (id (I f y))) by wk axiom
= f (id (I f y)) by id axiom
= f (I f y) by id axiom

From here A is obtained by primitive recursion at type N → N , satisfying:

(5)
A 0 = s

A sx = I (Ax)
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Formally, such A may be typed by the following derivation,

s

N ⇒ N
R

⇒ N → N

I

N → N,N ⇒ N
R

N → N ⇒ N → N
wk

N,N → N ⇒ N → N
recN→N

N ⇒ N → N

where principal types are underlined.

Proposition 17. T1 proves the following equations:

A0 y = sy
A sx 0 = Ax 1
A sx sy = Ax (A sx y)

Proof. We have,

A 0 y = R s y by rec axioms
= sy by R axiom

A sx y = wk (R I)x (Ax) y by rec axioms
= R I (Ax) y by wk axiom
= I (Ax) y by R axiom (∗)

whence we have immediately A sx 0 = Ax 1 by (4). For y non-zero, we have:

A sx sy = I (Ax) sy by (∗) above
= Ax (I (Ax) y) by (4)
= Ax (A sx y) by (∗) above �

The recursors used to type A have level 1. This is not a coincidence, since
primitive recursion at level 0 (i.e. on only natural numbers) computes just the
primitive recursive functions:

Fact 18. If t : Nk → N is a term of T0 then tN : Nk → N is primitive recursive.

Note that, together with Proposition 14, this constitutes a proof that IΣ1 (or
RCA0) well-defines just the primitive recursive functions.

4. A circular version of T

We will now move on to the main subject of study in this work: typing ‘deriva-
tions’ that are non-wellfounded and their corresponding notion of term. Let us
henceforth write T− for the restriction of T to the language without recursion
combinators recτ .

Definition 19 (Conditional combinator). We introduce a new typing rule cond for
derivations, as well as corresponding axioms, in Figure 8. As before, the colouring
of type occurrences above will become apparent soon.

Again, the interpretation of cond in the standard modelN is uniquely determined
by the defining axioms of Figure 8. Throughout this section, we will work in the
language of T− + cond, unless otherwise specified.
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~σ ⇒ τ ~σ,N ⇒ τ
cond

~σ,N ⇒ τ

cond s t ~x 0 = s ~x
cond s t ~x sy = t ~x y

Figure 8. Typing rule and axioms for cond combinators.

4.1. Non-wellfounded ‘terms’ and ‘derivations’. Coterms are generated coin-
ductively from constants and variables under typed application. Formally, we may
construe a coterm as a possibly infinite binary tree (of height ≤ ω) where each
leaf (if any) is labelled by a typed variable or constant and each interior node is
labelled by a typed application operation, having type consistent with the types of
its children. I.e., an interior node with children of types σ and σ → τ , respectively,
must have type τ .

At the risk of confusion, we expand the range of the metavariables s, t, etc. to
include coterms as well as terms, clarifying further only in the case of ambiguity.
We adopt the same writing and bracketing conventions as for terms, where it is
meaningful, e.g. writing r s t for (r ◦ s) ◦ t.

We will not dwell much on arbitrary coterms, since we will only deal with those
induced by our sequent style type system.

Definition 20 (Coderivations). A coderivation is some possibly non-wellfounded
‘derivation’ built from the typing rules of T− + cond, in a locally correct manner.
Formally, a coderivation is a possibly infinite labelled binary tree (of height ≤ ω)
whose nodes are labelled by rule instances s.t. the premisses of a node (if any)
match the conclusions of the node’s respective children (if any).

We construe coderivations as coterms in the same way as we construed deriva-
tions as terms. Namely, we coinductively set:

•
s

~σ ⇒ σ
r

~τ ⇒ τ

is the coterm r s; and,

•
r

~ρ ⇒ ρ

s

~σ ⇒ σ
r

~τ ⇒ τ

is the coterm r r s.

Note that this association is continuous at the level of the underlying trees, so it is
indeed well-defined.

Again overloading notation, we will write t : ~σ ⇒ τ if t is a coderivation of the
sequent ~σ ⇒ τ , and t : σ if t is a coterm of type τ . If we need to distinguish t as a
term then we will say so explicitly.

Note that the equational theory induced by Figures 4, 6 and 8 form a Kleene-
Herbrand-Gödel style equational specification for coterms (cf., e.g., [Kle80]), now
understanding the metavariables s, t etc. there to range over coterms. We may
thus view coterms as partial recursive functionals in the standard model N of the
appropriate type. More formally:
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Definition 21 (Interpretation of coterms as partial functionals). We define a type
structure N⊥ by interpretations ·N⊥ and corresponding ‘totally undefined function-
als’ ⊥σ as follows:

• ⊥N is just some fresh element ⊥.
• NN

⊥ is N ∪ {⊥}.
• ⊥σ→τ : σN

⊥ → τN⊥ by a 7→ ⊥τ , for any a ∈ σN

⊥ .
• (σ → τ)N⊥ is the set of functions f : σN

⊥ → τN⊥ s.t. f(⊥σ) = ⊥τ .
• =N

⊥ is just extensional equality (for each type).

A partial functional of type σ is just a function in σN

⊥ . A (total) functional of type
σ is just a partial functional f of type σ with f(x) = ⊥ if and only if x = ⊥.

We now define the interpretation of coterms in N⊥ as follows:

• If t : N then tN⊥ = n ∈ N just if n is the unique interpretation of t (under
the equations of Figures 4 and 8) in N⊥. Otherwise tN⊥ is ⊥.

• If t : σ → τ and a ∈ σN

⊥ then tN⊥(a) := (t a)N⊥ .8

Note that total functionals of type σ are just elements of σN, when restricted
to non-⊥ arguments. Moreover, for any (finite) term t we have immediately that
tN⊥ = tN, when restricted to non-⊥ arguments. In light of this, we shall henceforth
unambiguously write tN rather than tN⊥ , and simply write N instead of N⊥.

We shall omit here the finer details of this interpretation of coterms as partial
functionals, since we will give a more formal (and, indeed, formalised) treatment
of ‘regular’ coterms and their computational interpretations in Section 6. We point
the reader to the excellent book [LN15] for further details on models of (partial)
(recursive) function(al)s.

Let us now consider some relevant examples of coderivations and coterms, at
the same time establishing some foundational results. As before, the reader may
safely ignore the colouring of type occurrences in what follows. That will become
meaningful later in the section.

Example 22 (Extensional completeness at type 1). For any f : Nk → N, there
is a coderivation t : Nk ⇒ N s.t. tN = f . To demonstrate this, we proceed by
induction on k.9 If k = 0 then the numerals clearly suffice. Otherwise, suppose
f : N × N

k → N and write fn for the projection N
k → N by fn(~x) = f(n, ~x). We

define the coderivation for f as follows:

(6)
f0

~N ⇒ N

f1

~N ⇒ N

f2

~N ⇒ N

...
cond

N, ~N ⇒ N
cond

N, ~N ⇒ N
cond

N, ~N ⇒ N
cond

N, ~N ⇒ N

where the derivations for each fn are obtained by the inductive hypothesis. It is
not difficult to see that the interpretation of this coderivation in the standard model
indeed coincides with f .

8Here we are implicitly using parameters from the model.
9While we may assume k = 1 WLoG by the availability of sequence (de)coding, the current

argument is both more direct and avoids the use of cuts (on non-numerals).
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Notice that, while we have extensional completeness at type 1, we cannot pos-
sibly have such a result for higher types by a cardinality argument: there are only
continuum many coderivations.

Example 23 (Näıve simulation of primitive recursion). Terms of T may be inter-
preted as coterms in a straightforward manner. The only difficulty is the simulation
of the rec combinators, which may be interpreted by coderivations as follows:

(7)
~σ ⇒ σ ~σ,N, σ ⇒ σ

rec

~σ,N ⇒ σ
 

~σ ⇒ σ

...
cond •

~σ,N ⇒ σ ~σ,N, σ ⇒ σ
cut

~σ,N ⇒ σ
cond •

~σ,N ⇒ σ

where the occurrences of • indicate roots of identical derivations.
Denoting the RHS of (7) above as rec′, we can check that the two sides of (7)

are indeed equivalent. Formally, we show rec s t ~x y = rec s t ~x y by induction on y:

rec′s t ~x 0 = cond s (cut (rec′s t) t) ~x 0 by definition of rec′ above
= s ~x by cond axioms
= rec s t ~x 0 by rec axioms

rec′s t ~x sy = cond s (cut (rec′s t) t) ~x sy by definition of rec′ above
= cut (rec′s t) t ~x y by cond axioms
= t ~x y (rec′ s t ~x y) by cut axiom
= t ~x y (rec s t ~x y) by inductive hypothesis
= rec s t ~x sy by rec axioms

Note that our reasoning here was completely syntactic, indeed only using axioms
and rules from Figures 4, 7 and 8, (understanding metavariables s, t etc. in those
figures to now range over coterms as well as terms). This is no coincidence, and
the argument above will actually turn out to be a formal proof in our theory defined
later, thus inducing equivalence of rec and rec′ in all models.

4.2. Regularity. Until now, our coderivations and coterms were potentially non-
uniform in structure and, as exemplified in Example 22, comprise a computational
model of extreme expressivity. Naturally, within formal theories, we would prefer
to manipulate only finitely presentable objects. To this end we will study a natural
fragment in non-wellfounded proof theory:

Definition 24 (Regular coderivations and coterms). A coderivation t is regular
(or circular) if it has only finitely many distinct sub-coderivations. A regular
coterm is similarly just one with finitely many distinct sub-coterms.

Note that a regular coderivation or coterm is indeed finitely presentable, e.g. as a
finite directed graph, possibly with cycles, or a finite binary tree with ‘backpointers’.
When dealing with recursion-theoretic matters, we will implicitly assume such a
finitary representation. Further details on such a formalised representation are
given in Section 6.3.

Once again we have that regular coderivations are regular coterms, and con-
versely that closed regular coterms may be interpreted as regular coderivations
(under cut-as-composition).
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One example we have already seen of a regular coderivation is the RHS of (7).
In fact, it turns out that the regular coterms constitute a sufficiently expressive
programming language:

Proposition 25 (Turing completeness). The set of regular coderivations of type
level 1 is Turing-complete,10 i.e. {tN | t : Nk ⇒ N regular} includes all partial re-
cursive functions on N.

Proof. We have already seen in Example 23 that we can encode the primitive recur-
sive functions, so it remains to simulate minimisation, i.e. the operation µx(fx = 0),
for a given function f . For this, we observe that µx(fx = 0) is equivalent to H 0
where

(8) H x = cond (f x) x (H sx)

Note that H may be interpreted by the following coderivation:

(9)
f

N ⇒ N

id

N ⇒ N

s

N ⇒ N

...
cut •

N ⇒ N
cut

N ⇒ N
wk

N,N ⇒ N
cond

N,N ⇒ N
cut •

N ⇒ N

It is intuitive here to think of the blue N standing for x, the red N standing for
f(x), and the purple N standing for sx.

Working in the standard model N, may show that H indeed satisfies (8) as
follows. We have that:

H x = cut f (cond id (wk (cut sH)))x by definition of H
= cond id (wk (cut sH)) (f x)x by cut axiom

Now, we conduct a case analysis on the value of f(x):

• If f(x) = 0, then we have H x = idx = x, by the cond and id axioms,
thus satisfying (8).

• If f(x) = sy, for some y, then,

H x = wk (cut sH) y x by cond axioms
= cut sH x by wk axiom
= H sx by cut axiom

again satisfying (8). �

Remark 26 (Reasoning over partial functionals). Note, again, that the reasoning
above was entirely syntactic, using only axioms thus far presented in Figures 4, 6, 7
and 8. While the coderivation in (10) will not formally be a symbol of our eventual
theory CT , the reasoning above hints at well-behaved extensions accommodating
partially defined coterms.

10For a model of program execution, we may simply take the aforementioned Kleene-Herbrand-
Gödel model with equational derivability, cf. [Kle80]. Note that this coincides with derivability
by the axioms thus far presented.
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Remark 27 (Turing completeness at level 0). Note that the argument above re-
quired coderivations including only occurrences of N . This means that the set of
type 0 regular coderivations are already a Turing-complete programming language,
under derivability via Figures 4, 6, 7 and 8.

4.3. The progressing criterion. Despite regular coderivations being finitely pre-
sentable, they do not necessarily denote totally defined functionals in the standard
model N, cf. Proposition 25, contrary to the norm for terms in formal theories. In
this work we will consider coderivations satisfying a standard ‘termination crite-
rion’ in non-wellfounded proof theory. First, let us recall some standard structural
proof theoretic concepts about (co)derivations.

Definition 28 (Immediate ancestry). Let t be a (co)derivation. A type occurrence
σ1 is an immediate ancestor11 of a type occurrence σ2 in t if σ1 and σ2 appear
in the LHSs of a premiss and conclusion, respectively, of a rule instance and have
the same colour in the corresponding rule typeset in Figure 3, 5 or 8. If σ1 and
σ2 are elements of an indicated list, say ~σ, we also require that they are at the
same position of the list in the premiss and the conclusion. Note that, if σ1 is an
immediate ancestor of σ2, they are necessarily occurrences of the same type.

The notion of immediate ancestor thus defined, being a binary relation, induces
a directed graph whose paths will form the basis of our termination criterion.

Definition 29 (Threads and progress). A thread is a maximal path in the graph
of immediate ancestry. A σ-thread is a thread whose elements are occurrences of
the type σ. We say that a N -thread progresses when it is principal for a cond step
(i.e. it is the indicated blue N in the cond rule typeset in Figure 8). A (infinitely)
progressing thread is a N -thread that progresses infinitely often (i.e. it is infinitely
often the indicated blue N in the cond rule typeset in Figure 8.)

A coderivation is progressing if every infinite branch has a progressing thread.

Note that progressing threads do not necessarily begin at the root of a coderiva-
tion, they may begin arbitrarily far into a branch. In this way, the progressing
coderivations are closed under all typing rules. Note also that arbitrary coderiva-
tions may be progressing, not only the regular ones.

Example 30 (Extensional completeness at type 1, revisited). Recalling Exam-
ple 22, note that the infinite branch marked · · · in (6) has a progressing thread
along the red Ns. Other infinite branches, say through f0, f1, etc., will have pro-
gressing threads along their infinite branches by an appropriate inductive hypothesis,
though these may progress for the first time arbitraryily far from the root of (6).

As previously mentioned, we shall focus our attention in this work on the regular
coderivations. Let us take a moment to appreciate some previous (non-)examples
of regular coderivations with respect to the progressing criterion.

Example 31 (Primitive recursion, revisited). Recalling Example 23, notice that
the RHS of (7) is a progressing coderivation: there is precisely one infinite branch
(that loops on •) and it has a progressing thread on the blue N indicated there.

Example 32 (Turing completeness, revisited). Recalling the proof of Proposi-
tion 25, notice that the coderivation given for H in (9) is not progressing: the

11This terminology is standard in proof theory, e.g. as in [Bus98].
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only infinite branch loops on • and immediate ancestry, as indicated by the colour-
ing, admits no thread along the •-loop. This is no coincidence, as it turns out that
the progressing criterion suffices for coderivations to denote total functionals in the
standard model N, as we will show in the next subsection.

One of the most appealing features of the progressing criterion is that, while
being rather expressive and admitting many natural programs, e.g. as we will see
in Section 4.6, it remains effective (for regular coderivations) thanks to well known
arguments in automaton theory:

Fact 33 (Folklore). It is decidable whether a regular coderivation is progressing.

This well-known result (see, e.g., [DHL06b] for an exposition for a similar circular
system) follows from the fact that the progressing criterion is equivalent to the
universality of a Büchi automaton of size determined by the (finite) representation
of the input coderivation. This problem is decidable in polynomial space, though the
correctness of this algorithm requires nontrivial infinitary combinatorics, as formally
demonstrated in [KMPS19b]. Nonetheless, a non-uniform version of this problem
is formalisable in the weakest of the big-five theories of reverse mathematics:

Proposition 34 ([Das20]). For any regular progressing coderivation t, RCA0 proves
that t is progressing.

As noted in that work, the above result cannot be strengthened to a uniform one
unless RCA0 (and so PRA) is inconsistent, by a reduction to Gödel-incompletness.

4.4. Progressing coterms denote total functionals. As outlined in Defini-
tion 21, coderivations denote partial functionals in the standard model N. In fact,
the partial functionals induced by progressing coderivations are indeed totally de-
fined, by adapting well-known infinite descent arguments in non-wellfounded proof
theory:

Proposition 35. If t : ~σ ⇒ τ is a progressing coderivation, then tN is a well-
defined total functional in (~σ → τ)N.

The idea behind this result is to, by contradiction, assume a non-terminating
‘run’ of a progressing coderivation, and thence extract an infintely decreasing
sequence of natural numbers from a progressing thread, contradicting the well-
ordering property. We stop short of giving an explicit ‘operational semantics’ here,
being beyond the scope of this work. Rather, let us simply note that the totally
defined functionals are closed under composition by typing rules (since typing rules
are constants interpreted as totally defined functionals themselves). Contraposi-
tively this means that if a coderivation is interpreted by a non-total functional,
then so is one of its immediate sub-coderivations.

Proof of Proposition 35. Suppose otherwise and let ~a ∈ ~σN be inputs on which tN

is not well-defined, i.e. tN(~a) = ⊥. We may thus inductively construct an infinite
branch (ti : ~σi ⇒ τi)i∈ω and associated inputs (~ai ∈ ~σN

i ) s.t. tNi (~ai) = ⊥ as follows:

• t0 = t and ~a0 = ~a.
• If ti concludes with a wk, ex or cntr step then ti+1 is the only immediate
sub-coderivation and ~ai+1 is just ~ai with the appropriate deletion, switch
or duplication of arguments.
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• (ti cannot conclude with a nullary step id, 0 or s, by assumption that ti is
non-total.)

• If ti concludes with a cut step, as typeset in Figure 3, then ti+1 is the
left sub-coderivation if it is not totally defined on inputs ~ai; otherwise
ti+1 is the right sub-coderivation and ~ai+1 = (~a, a), for some a ∈ σN s.t.
tNi+1(~ai, a) = ⊥.

• If ti concludes with a L step, as typeset in Figure 3, then ti+1 is the left sub-
coderivation if it is not totally defined on inputs ~ai; otherwise ti+1 is the
right sub-coderivation and ~ai+1 = (~ai, a), for some a ∈ σN s.t. tNi+1(~ai, a) =
⊥.

• If ti concludes with a R step, as typeset in Figure 3, then ti+1 is the
only immediate sub-coderivation and ~ai+1 = (~ai, a), for some a ∈ σN s.t.
tNi+1(~ai, a) = ⊥.

• If ti concludes with a cond step and ~ai = (~a′i, n), then ti+1 is the left sub-
coderivation if n = 0 and ~ai+1 = ~a′i; otherwise, if n = m + 1, ti+1 is the
right sub-coderivation and ~ai+1 = (~a′i,m).

Now, notice that, since t is progressing, we must have some progressing thread
(N i)i≥k along some tail (ti)i≥k. Writing ni for the input in ~ai corresponding to N i,
notice that (ni)i≥k is a non-increasing sequence of natural numbers, by construction
of ti and ~ai. Moreover, we have that ni+1 < ni whenever N

i is principal for a cond

step, so for infinitely many i ≥ k by definition of a progressing thread. Thus (ni)i≥k

has no least element, contradicting the well-ordering property. �

4.5. The simply typed theory CT and its fragments. We are finally ready
to give the definition of our circular version of System T .

Definition 36 (Circular version of T ). The language of CT extends contains every
regular progressing coderivation of T− + cond as a symbol. We identify ‘terms’ of
this language with coterms in the obvious way, and call them (regular) progressing
coterms. CT itself is a STT axiomatised by the schemata from Figures 4, 7 and
8, now interpreting the metavariables s, t etc. there as ranging over coterms.

The aim of this work is to compare fragments of CT and fragments of T delin-
eated by type level. In light of Proposition 16, the following definition gives natural
circular counterparts of the fragments Tn of T :

Definition 37 (Type level restricted fragments of CT ). CTn is the fragment of CT
restricted to the language containing only coderivations where all types occurring
have level ≤ n. CTn still has constant symbols for each individual constant of
T− + cond.

Notice that, despite the fact that coderivations of CTn may type only level n+1
functionals, progressing coterms are closed under application and so, by definition
of a STT, CTn admits ‘terms’ of arbitrary type by composing with the constants
and variables of T− + cond. In particular we still have combinatory completeness,
as usual. In what follows, however, it will usually suffice to only consider the
coderivations when proving properties of CTn, the generalisation to progressing
coterms following by closure under application.

4.6. Example: Ackermann-Péter, revisited. Let us revisit the example of the
Ackermann-Péter function from Section 3.6. Despite the fact that type level 1
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recursion is required to type it in T (cf. Fact 18), A may be circularly typed in CT
by a coderivation A using only the base type N :12

(10) s

N ⇒ N
wk

N,N ⇒ N

1
⇒ N

...(1)
•

N,N ⇒ N
cut

N ⇒ N
wk

N,N ⇒ N

...(2)
•

N,N ⇒ N

...(3)
•

N,N ⇒ N
cut

N,N,N ⇒ N
cond

N,N,N ⇒ N
cond

N,N,N ⇒ N
cntr •

N,N ⇒ N

As usual, the occurrences of • above indicate roots of identical coderivations, and
we have indicated three distinct threads, coloured red, blue and orange. Note that
the purple N prefixes both the red and the blue thread. Finally note that the
red N thread progresses on every visit to (1) and (3), while the orange N thread
progresses on every visit to (2).

Proposition 38. A is progressing and regular, and so is a symbol of CT 0.

Proof. To show that A is progressing, we conduct a case analysis on an infinite
branch B, based on which of the simple loops (1), (2) and (3) are traversed infinitely
often:

• B hits only (1) infinitely often. Then there is a progressing thread along
the red N .

• B hits only (2) infinitely often. Then eventually there is a progressing
thread along the orange N .

• B hits only (3) infinitely often. Then eventually there is a progressing
thread along the red N .

• B hits only (1) and (2) infinitely often. Then eventually there is a progress-
ing thread along the red N on iterations of (1) (on which it progresses) and
along the blue N on iterations of (2) (on which it is constant).

• B hits only (1) and (3) infinitely often. Then eventually there is a pro-
gressing thread along the red N , which progresses on any iteration of (1)
or (3).

• B hits only (2) and (3) infinitely often. Then eventually there is a progress-
ing thread along the blue N on iterations of (2) (on which it is constant)
and along the red N on iterations of (3) (on which it progresses).

• B hits all of (1), (2) and (3) infinitely often. Then there is a progressing
thread along the red N on iterations of (1) and (3) (on which it progresses)
and the blue N on iterations of (2) (on which it is constant).

Clearly A is regular and contains only occurrences of N , so A is indeed a symbol
of CT 0. �

In fact, we may also show that CT 0 proves the defining equations of A from (3):

12For convenience we have implemented some branching rules as context-splitting, namely the
cut steps. Formally, there are implicit wk steps that are not indicated, a convention that we will
henceforth adopt for the sake of easing legibility.
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Proposition 39. CT 0 proves the following equations:

A0 y = sy
A sx 0 = Ax 1
A sx sy = Ax (A sx y)

Proof. Writing A0 and A1 for the left and right coderivations, respectively, com-
posed by the lowermost cond step in (10), we have:

(11)
Ax y = cntr (condA0 A1)x y by definition of A

= condA0 A1 xx y by cond axioms

From here we obtain the first equation of (3), in CT 0:

A 0 y = A0 x y by (11) above and cond axioms
= wk sx y by definition of A0

= sy by wk axiom

Now writing A10 and A11 for the left and right coderivations, respectively, com-
posed by the uppermost cond step typeset in (10), we have:

(12)
A sx y = A1 x sx y by (11) above and cond axioms

= condA10 A11 x sx y by definition of A1

From here we obtain the second and third equations of (3), in CT 0:

A sx 0 = A10 x sx by (12) above and cond axioms
= wk (cut (1A))x sx by definition of A10

= cut (1A)x by wk axiom
= Ax 1 by cut axiom

A sx sy = A11 x sx y by (12) above and cond axioms
= cut (AA)x sx y by definition of A11

= Ax (A sx y) by cut axiom �

Now, let us revisit Section 3.6, where we gave a T term for the Ackermann-Péter
function based on type 1 recursion. Calling that term A′, temporarily, we now have
that A′ and A satisfy the same defining equations from (3). Working in a combined
theory, we may thus deduce their equivalence via a nested induction.

Proposition 40. CT 0, rec1 ⊢ Ax y = A′x y.

Proof. Working inside CT 0 + rec1, we show Ax = A′x by induction on x. We
have,

A 0 y = sy by Proposition 39
= A′0 y by Proposition 17

so A0 = A′0 by ER. For the inductive step, we show that A sx y = A′sx y by a
sub-induction on y:

A sx 0 = Ax 1 by Proposition 39
= A′x 1 by main inductive hypothesis
= A′sx 0 by Proposition 17

A sx sy = Ax (A sx y) by Proposition 39
= A′x (A sx y) by main induction hypothesis
= A′x (A′sx y) by sub-induction hypothesis
= A′sx sy by Proposition 17

Thus we have A sx = A′sx by ER, proving the main inductive step as required. �
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As we mentioned before, general extensionality is not strictly necessary for many
of our results, and this is in particular the case for the result above. We could
have also proceeded under weak extensionality by an instance of Π1-induction
(∀y(Ax y = A′x y)). Standard witnessing theorems then reduce this to an in-
stance of quantifier-free induction, but such a development is beyond the scope of
this work.

5. CT simulates T , more succinctly

In this section we give a simulation of Tn+1 terms of level≤ n+1 into CTn, prov-
ably satisfying the same equational theory, thus improving on the naive simulation
of primitive recursion from Examples 23 and 31. This matches similar results from
the setting of arithmetic, [Das20], and the exposition is entirely proof theoretic.

The main goal is to show the following result:

Theorem 41. If t : σ is a term of Tn+1 with lev(σ) ≤ n+ 1 then there is a CTn

coderivation t′ : σ s.t.:

(13) CTn, recn+1 ⊢ t = t′

The idea is to rely on the partial normalisation result, Proposition 16, to work
with a normal form of T derivations, and then translate into CT coderivations
under a constructive realisation of the deduction theorem (for typing derivations).

5.1. Derivations with ‘oracles’. We consider (co)derivations with fresh intial

sequents of the form f
σ1, . . . , σn ⇒ τ

, denoting a functional f of type σ1 → · · · →

σn → τ , as expected. We write,

fi i
~σi ⇒ τi

t

~σ ⇒ τ

for a (co)derivation t of ~σ ⇒ τ with initial sequents among fi i
~σi ⇒ τi

, with i

varying over some fixed range. We distinguish fi from variable symbols, since
coderivations until now are closed coterms; instead it is more pertinent to think
of them as some fresh constant ‘oracle’ symbols. We thus use metavariables f, g,
etc. for these new initial sequents. The interpretation of such (co)derivations into
the standard model N is as expected, with (co)derivations now computing (partial)
functionals with respect to oracles for each fi.

5.2. Constructive realisation of the deduction theorem. We describe how to
‘realise’ a version of the deduction theorem for typing derivations in order to lower
type level. The key feature of this translation is that recursion is simulated by a
cyclic derivation in a succinct way, in terms of abstration complexity.

As notation throughout this section, if ~f = f1, . . . , fn then we may simply write

(~f ~x) for (f1 ~x) (f2 ~x) . . . (fn ~x), to lighten the syntax. Our key intermediate result
is the following lemma:
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Lemma 42. Let t : ~σ, ~N ⇒ τ be a Tn+1 derivation, i.e.,

t

~σ, ~N ⇒ τ

with all Ns indicated, s.t. all types occurring in t have level ≤ n+ 1.
Write τ = ~τ → N and σi = ~σi → N . For each ~ρ of levels ≤ n there is a CTn

coderivation t~ρ(~f) : ~ρ, ~N, ~τ ⇒ N using initial sequents fi i
~ρ, ~σi ⇒ N

, i.e.,

fi i
~ρ, ~σi ⇒ N

t~ρ(~f)

~ρ, ~N, ~τ ⇒ N

such that,

(14) CTn, recn+1 ⊢ t~ρ(~f) ~x ~y ~z = t (~f ~x) ~y ~z

Moreover, for any j, there is a ρj-thread from the ρj in the conclusion of t~ρ(~f) to
the ρj in any occurrence of the initial sequent fi.

Before giving the proof let us set up some further notation to lighten the expo-
sition as much as possible.

• We shall sometimes suppress the initial sequent arguments of a coderivation

when it is unambiguous, e.g. writing t~ρ instead of t~ρ(~f) etc. We will only do
this when the initial sequents, or approrpriate substituted (co)derivations,
are explicitly typeset.

• We shall write r∗ for the reflexive transitive closure of a rule r.
• As in the statement of the lemma, we shall typically assume that a type,
say, τ has the form ~τ → N and so on.

• Variables ~x, x will typically correspond to types ~ρ, ρ, variables ~y, y to ~N,N ,
and ~z z to ~τ , τ .

Proof of Lemma 42. We proceed by induction on the structure of t, and refer to an
inductive hypothesis for a smaller derivation s by IH (s).

If t is the initial sequent id

σ ⇒ σ
then:

• If σ = N , then t~ρ is:

id

N ⇒ N
wk

~ρ,N ⇒ N

There are no new initial sequents so also no thread condition to check. To
verify (14), we have:

t~ρ ~x y = wk∗ id~x y by definition of t~ρ

= id y by wk axioms
= t y by definition of t
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• Otherwise t~ρ is just:

f
~ρ, ~σ ⇒ N

The required threading property is immediate, and to verify (14) we have:

t~ρ(f) ~x~y = f ~x~y by definition of t~ρ.
= id (f ~x) ~y by id axiom
= t (f ~x) ~y by definition of t

If t is the initial sequent 0
⇒ N

, then t~ρ is:

0
⇒ N

wk

~ρ ⇒ N

There are no new initial sequents, so no threading property to check. To verify (14)
we have:

t~ρ ~x = wk∗ 0 ~x by definition of t~ρ

= 0 by wk axioms
= t by definition of t

If t is the initial sequent s

N ⇒ N
then t~ρ is:

s

N ⇒ N
wk

~ρ,N ⇒ N

There are no new initial sequents, so no threading property to check. To verify (14)
we have:

t~ρ ~x y = wk∗ s ~x y by definition of t~ρ

= s y by wk axioms
= t y by definition of t

If t concludes with a weakening step,

s

~σ, ~N ⇒ τ
wk

~σ, π, ~N ⇒ τ

then:

• If π = N then we define t~ρ(~f) by just commuting with the weakening step:

s~ρ(~f)

~ρ, ~σ, ~N, ~τ ⇒ N
wk

~ρ, ~σ,N, ~N, ~τ ⇒ N
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The threading property is readily obtained from the inductive hypothesis,
and we verify (14) as follows:

t~ρ(~f) ~x y ~y ~z = wk s~ρ(~f) ~x y ~y ~z by definition of t~ρ

= s~ρ(~f) ~x ~y ~z by wk axiom

= s (~f ~x) ~y ~z by IH (s)

= wk s (~f ~x) y ~y ~z by wk axiom

= t (~f ~x) y ~y ~z by definition of t

• Otherwise, t~ρ(~f, g) is simply just s~ρ(~f) (the initial sequents f : ~π ⇒ N
are never used), and the required properties are inherited directly from the
inductive hypothesis.

If t concludes with a contraction step,

s

~σ, π, π, ~N ⇒ τ
cntr

~σ, π, ~N ⇒ τ

then:

• If π = N then we define t~ρ(~f) by just commuting with the contraction step:

s~ρ(~f)

~ρ, ~σ,N,N, ~N, ~τ ⇒ N
cntr

~ρ, ~σ,N, ~N, ~τ ⇒ N

The threading property is readily obtained from the inductive hypothesis,
and we verify (14) as follows:

t~ρ(~f) ~x y ~y ~z = cntr s~ρ(~f) ~x y ~y ~z by definition of t~ρ

= s~ρ(~f) ~x y y ~y ~z by cntr axiom

= s (~f ~x) y y ~y ~z by IH (s)

= cntr s (~f ~x) y ~y ~z by cntr axiom

= t (~f ~x) y ~y ~z by definition of t

• Otherwise, t~ρ(~f, g) is just s~ρ(~f, g, g) and the threading property is imme-
diate from the inductive hypothesis. (14) is also easily verified:

t~ρ(~f, g) ~x ~y ~z = s~ρ(~f, g, g) ~x~y ~z by definition of t

= s (~f ~x) (g ~x) (g ~x) ~y ~z by IH (s)

= cntr s (~f ~x) (g ~x) ~y ~z by cntr axiom

= t (~f ~x) (g ~x) ~y ~z by definition of t

If t concludes with a cut step,

r

~σ, ~N ⇒ π

s

~σ, π, ~N ⇒ τ
cut

~σ, ~N ⇒ τ
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then:

• If π = N then we define t~ρ(~f) by just commuting with the cut step:

r~ρ(~f)

~ρ, ~N ⇒ N

s~ρ(~f)

~ρ,N, ~N, ~τ ⇒ N
cutN

~ρ, ~N, ~τ ⇒ N

The threading property is readily obtained from the inductive hypotheses
and we verify (14) as follows:

t~ρ(~f) ~x ~y ~z = s~ρ(~f) ~x (r~ρ(~f) ~x ~y) ~y ~z by cut axiom

= s (~f ~x) (r (~f ~x) ~y) ~y ~z by IH (r) and IH (s)

= t (~f ~x) ~y ~z by cut axiom

• Otherwise, we define t~ρ(~f) as:

fi i
~ρ, ~σi ⇒ N

wk

~ρ, ~N, ~σi ⇒ N

r~ρ(~f)

~ρ, ~N, ~π ⇒ N

s~ρ,
~N

~ρ, ~N, ~N, ~τ ⇒ N
cntr

~ρ, ~N, ~τ ⇒ N

The threading property is readily obtained from the inductive hypotheses,
and we verify (14) as follows:

t~ρ ~x ~y ~z = s~ρ,
~N (wk∗ ~f, r~ρ(~f)) ~x ~y ~y ~z by cntr axioms

= s (wk∗ ~f ~x~y) (r~ρ(~f) ~x ~y) ~y ~z by IH (s)

= s (wk∗ ~f ~x~y) (r (~f ~x) ~y) ~y ~z by IH (r) and ER

= s (~f ~x) (r (~f ~x) ~y) ~y ~z by wk axioms and ER

= t (~f ~x) ~y ~z by definition of t

If t concludes with a right-implication step,

s

~σ, π, ~N ⇒ τ
R

~σ, ~N ⇒ π → τ

then:

• If π = N then t~ρ(~f) is just:

s~ρ(~f)

~ρ,N, ~N, ~τ ⇒ N
ex

~ρ, ~N,N, ~τ ⇒ N
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The threading property is readily obtained from the inductive hypothesis
and (14) is easily verified:

t~ρ(~f) ~x ~y y ~z = s~ρ(~f) ~x y ~y ~z by ex axioms

= s (~f ~x) y ~y ~z by IH (s)

= t (~f ~x) ~y y ~z by R axiom

• Otherwise lev(π) ≤ n and we define t~ρ(~f) as:

fi i
~ρ, ~σi ⇒ N

wk

~ρ, π, ~σi ⇒ N

app

π, ~π ⇒ N
wk

~ρ, π, ~π ⇒ N

s~ρ,π

~ρ, π, ~N, ~τ ⇒ N
ex

~ρ, ~N, π, ~τ ⇒ N

where app is a simple (finite) derivation satisfying:

(15) app z ~w = z ~w

The threading property is readily obtained from the inductive hypothesis,
and we verify (14) as follows:

t~ρ ~x ~y z ~z = s~ρ,π(wk ~f,wk∗app) ~x z ~y ~z by ex axioms

= s (wk ~f ~x z) (wk∗app ~x z) ~y ~z by IH (s)

= s (~f ~x) (app z) ~y ~z by wk axioms and ER

= s (~f ~x) z ~y ~z by (15) and ER

= t (~f ~x) ~y z ~z by R axiom

If t concludes with a left-implication step,

r

~σ, ~N ⇒ τ ′

s

~σ, π, ~N ⇒ τ
L

~σ, τ ′ → π, ~N ⇒ τ

then:

• If π = N then we define t~ρ(~f, g) as:

r~ρ(~f)

~ρ, ~N, ~τ ′ ⇒ N
R

~ρ, ~N ⇒ τ ′

g
~ρ, τ ′ ⇒ N

s~ρ(~f)

~ρ,N, ~N, ~τ ⇒ N
cut

~ρ, τ ′, ~N, ~τ ⇒ N
cut

~ρ, ~N, ~τ ⇒ N
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The threading property is readily obtained from the inductive hypotheses
and we verify (14) as follows:

t~ρ(~f, g) ~x ~y ~z = cut g s~ρ(~f) ~x (R∗ r~ρ(~f) ~x~y) ~y ~z by cut axiom

= s~ρ(~f) ~x (g ~x (R∗ r~ρ(~f) ~x~y)) ~y ~z by cut axiom

= s~ρ(~f) ~x (g ~x (r~ρ(~f) ~x ~y)) ~y ~z by R axioms and ER

= s (~f ~x) (g ~x (r~ρ(~f) ~x ~y)) ~y ~z by IH (s)

= s (~f ~x) (g ~x (r (~f ~x) ~y)) ~y ~z by IH (r) and ER

= t (~f ~x) (~g ~x) ~y ~z by L axiom

• Otherwise we define t~ρ(~f, g) as:

fi i
~ρ, ~σi ⇒ N

wk

~ρ, ~N, ~σi ⇒ N

r~ρ(~f)

~ρ, ~N, ~τ ′ ⇒ N
R

~ρ, ~N ⇒ τ ′

g
~ρ, τ ′, ~π ⇒ N

wk

~ρ, ~N, τ ′, ~π ⇒ N
cut

~ρ, ~N, ~π ⇒ N

s~ρ,
~N

~ρ, ~N, ~N, ~τ ⇒ N
cntr

~ρ, ~N, ~τ ⇒ N

The threading property is readily obtained from the inductive hypotheses
and we verify (14) as follows:

t~ρ(~f, g) ~x~y ~z = s~ρ,
~N (wk∗ ~f, cut(R∗r~ρ(~f))(wk∗g)) ~x~y ~y ~z by cntr axioms

= s (wk∗ ~f ~x~y) (cut(R∗r~ρ(~f))(wk∗g)~x~y) ~y ~z by IH (s)

= s (~f ~x) (cut(R∗r~ρ(~f))(wk∗g)~x~y) ~y ~z by wk axioms and ER

= s (~f ~x)(wk∗g ~x ~y (R∗r~ρ(~f) ~x ~y)) ~y ~z by cut axiom

= s (~f ~x)(g ~x (R∗r~ρ(~f) ~x ~y)) ~y ~z by wk axioms and ER

= s (~f ~x)(g ~x (r~ρ(~f) ~x~y)) ~y ~z by R axioms and ER

= s (~f ~x) (g ~x (r (~f ~x) ~y)) ~y ~z by IH (r) and ER

= t (~f ~x) (g ~x) ~y ~z by L axiom

Finally, if t concludes with a recursion step,

r

~σ, ~N ⇒ τ

s

~σ, τ, ~N,N ⇒ τ
rec

~σ, ~N,N ⇒ τ

then:

• If τ = N (so ~τ is empty) then we define t~ρ similarly to before in Example 23,
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(16) r~ρ(~f)

~ρ, ~N ⇒ N

...
cond •

~ρ, ~N,N ⇒ N

s~ρ(~f)

~ρ,N, ~N,N ⇒ N
cut

~ρ, ~N,N ⇒ N
cond •

~ρ, ~N,N ⇒ N

where • marks roots of identical sub-coderivations. The threading property
is readily obtained from the inductive hypotheses. For progressiveness, any
infinite branch either just loops on • indefinitely, in which case there is a

progressing thread along the blue N , or is eventually in just r~ρ(~f) or s~ρ(~f),
in which case there is a progressing thread by the inductive hypotheses. To
verify (14) we shall show,

(17) t~ρ(~f) ~x~y y = t (~f ~x) ~y y

by (object-level) induction on y:

t~ρ(~f) ~x~y 0 = r
~f (~f) ~x ~y by cond axiom

= r (~f ~x) ~y by IH (r)

= t (~f ~x) ~y 0 by rec axioms

t~ρ(~f) ~x~y sy = cut t~ρ(~f) s~ρ(~f) ~x ~y y by cond axioms

= s~ρ(~f) ~x (t~ρ(~f) ~x ~y y) ~y y by cut axiom

= s (~f ~x) (t~ρ(~f) ~x ~y y) ~y y by IH (s)

= s (~f ~x) (t (~f ~x) ~y y) ~y y by inductive hypothesis (17)

= t (~f ~x) ~y sy by rec axioms

• Otherwise we define t~ρ(~f) to be,

(18)

r~ρ(~f)

~ρ, ~N, ~τ ⇒ N

fi i
~ρ, ~σi ⇒ N

wk

~ρ, ~N,N, ~σi ⇒ N

...
cond •

~ρ, ~N,N, ~τ ⇒ N

s~ρ,
~N,N

~ρ, ~N,N, ~N,N, ~τ ⇒ N
cntr

~ρ, ~N,N, ~τ ⇒ N
cond •

~ρ, ~N,N, ~τ ⇒ N

where • marks roots of identical sub-coderivations. The threading prop-
erty is readily obtained from the inductive hypotheses. For progressiveness,
notice that any infinite branch that hits • infinitely often will have a pro-
gressing thread along the blue N , thanks to the threading property from
the inductive hypothesis for s. Any other infinite branch is eventually in

r~ρ(~f) or s~ρ,
~N,N , so progressiveness follows from the inductive hypotheses.

To verify (14) we show that,

(19) t~ρ(~f) ~x~y y ~z = t (~f ~x) ~y y ~z
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by (object-level) induction on y:

t~ρ(~f) ~x~y 0 ~z = r~ρ(~f) ~x ~y ~z by cond axioms

= r (~f ~x) ~y ~z by IH (r)

= t (~f ~x) ~y 0 ~z by rec axioms

t~ρ(~f) ~x~y sy ~z = cntr∗ s~ρ,
~N,N (wk∗ ~f, t~ρ(~f)) ~x ~y y ~z by cond axioms

= s~ρ,
~N,N(wk∗ ~f, t~ρ(~f)) ~x ~y y ~y y ~z by cntr axioms

= s (wk∗ ~f ~x~y y) (t~ρ(~f) ~x ~y y) ~y y ~z by IH (s)

= s (~f ~x) (t~ρ(~f) ~x ~y y) ~y y ~z by wk axioms and ER

= s (~f ~x) (t (~f ~x) ~y y) ~y y ~z by inductive hypothesis (19)

= t (~f ~x) ~y sy ~z by rec axioms �

5.3. CTn simulates Tn+1. We are now ready to prove the main result of this
section, which essentially boils down to an instance of the main Lemma in the
previous subsection.

Proof of Theorem 41. Without loss of generality assume t is a derivation of ⇒ σ
and apply Lemma 42 with ~ρ empty, to obtain a coderivation t∅ : ~σ ⇒ N s.t.:

(20) CTn, recn+1 ⊢ t ~x = t∅ ~x

Note that t∅ uses no new initial sequents since the antecedent of the conclusion of
t is empty. Now we define t′ as:

t∅

~σ ⇒ N
R

⇒ σ

We verify (13) as follows, working inside the theory:

t ~x = t∅ ~x by (20)
∴ t ~x = R∗t∅ ~x by R axioms
∴ t ~x = t′~x by definition of t′

∴ t = t′ by ER �

6. Coterm-based models of T and CT

Our ultimate goal is to establish a converse to the main result of the previous
section, which we shall demonstrate in the next two sections. Before that we need
to introduce some type structures arising from our formulation of CT . Ultimately,
we will reduce the simulation of CTn in Tn+1 to the provability in an appropriate
arithmetic theory that certain structures are models of CT .

We cannot formalise the standard model N in arithmetic for cardinality reasons,
however there are natural models of partial recursive functionals that can be for-
malised, namely the hereditarily recursive and the hereditarily effective operations
of finite type (see, e.g., [LN15]).

Since regular coterms form a Turing-complete programming language (cf. Propo-
sition 25), the domains of our structures will simply be classes of regular coterms.
Viewed as Kleene-Herbrand-Gödel equational specifications (see, e.g., [Kle80]), note
that the corresponding notion of computation is subsumed by provable equality of
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coterms by rules and axioms of CT . In fact, we will distill from CT a suitable frag-
ment of provable equality, namely that induced by the respective rewriting system.
This will eventually give rise to an intensional model, whence an extensional one
can be obtained by, as usual, taking the extensional collapse.

6.1. Reduction and conversion of coterms. The reduction relation on coterms
is defined by orienting all the equations in Figures 4, 6 and 8 left-to-right and taking
closure under substitution and contexts. Formally:

Definition 43 (Reduction and conversion).  is the least relation on (co)terms
satisfying the reductions in Figure 9, where the types of each rule label are as
indicated in Figures 3, 5 and 8,13 and closed under substitution and contexts.

We write ≈ for the reflexive, symmetric, transitive closure of  , and freely use
standard rewriting theoretic terminology and notations for these relations. We
sometimes write  σ for the restriction of  to coterms of type σ, and ≈σ for the
restriction of ≈ to coterms of type σ.

id x  x
ex t ~x x y ~y  t ~x y x ~y

wk t ~x x  t ~x
cntr t ~x x  t ~x x x
cut s t ~x  t ~x (s ~x)
L s t ~x y  t ~x (y (r ~x))
R t ~x x  t ~x x

rec s t ~x 0  s ~x
rec s t ~x sy  t ~x (rec s t ~x y)

cond s t ~x 0  s ~x
cond s t ~x sy  t ~x y

Figure 9. Reduction rules for (co)terms

We shall address metamathematical matters w.r.t. formalising reduction and re-
duction sequences shortly, but first let us examine some basic mathematical prop-
erties of reduction.

6.2. On normality and numerality. The term model for T , due to Tait [Tai67],
may be obtained by proving normalisation and confluence of the rewrite system in
Figure 9 for terms, and taking the (unique) normal forms of closed terms as the
domain of the type structure. Crucial to this approach is the property that the only
closed normal forms of terms of type N are the numerals, which allows induction
in T to be reduced to induction at the meta-level.

Since regular coterms are Turing-complete, cf. Proposition 25,14 one cannot hope
for such a normalisation result, and so our models will be obtained by restricting
to normalising coterms. Normalisation for progressing coterms at type N follows
by showing that they are indeed elements of the type structure. We will address

13Again there is no reason, other than for ease of legibility, that we write terms variables s, t

etc. for the premiss inputs and variables x, y etc. for the antecedent inputs. Under substitution,
it makes no difference.

14Notice from that proof that Turing-completeness is retained under as a model of execution.
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confluence shortly, adapting known proofs to the non-wellfounded setting. However,
we point out that the final point, that closed normal forms of type N are just the
numerals, fails for coterms:

Remark 44 (Non-numeral normal coterms of type N). There are closed -normal
coterms of type N that are not numerals, e.g. the coterm H with,

H = cond 0 1H

that returns 0 or 1, depending on whether it itself is 0 or non-zero. Clearly H is
undefined in the standard model, though may be consistently interpreted by 0 or 1
in extensions of it. Note that H is even a regular counterexample to numerality of
closed -normal coterms, and so the  -normal regular coterms will be too large a
domain for the type structures we later define. For this reason, our type structures
will restrict the interpretation of N to (classes of) coterms that normalise to a
numeral.

6.3. Formalising reduction sequences of regular coterms. Before continuing,
let us make some comments about our arithmetisation of reduction sequences. First
and foremost, to avoid unnecessary technicalities, all the coterms we consider later
will be regular, and so can be coded by natural numbers. Thus all quantification
over them is strictly first-order. In fact, many of our results go through in a more
general setting since finite reduction sequences may be coded by finite data, but
such a treatment is beyond the scope of this work. In what follows we shall be
rather brief, outlining only the main ideas and proof methods behind the results
we need.

While equality for arbitrary coterms is Π0
1, we should justify that it is recursive

for regular coterms. Namely, we should argue that we may decide if two presenta-
tions of regular coterms (as finite labelled graphs) represent the same coterm (as
an infinite labelled tree), i.e. are bisimilar.

For v ∈ {0, 1}∗ and a coterm t, construed as a labelled binary tree, let us
temporarily write tv for the sub-coterm of t rooted at position v, and t[v] for the
rule instance at position v. For a regular presentation G of a coterm, a finite rooted
labelled graph, write G(v) for the node of G reached by following the word v along
its edge relation. Note that all of these notions are provably computable in t, G
and v in RCA0.

Proposition 45. Bisimilarity of rooted finite labelled directed graphs is provably
recursive in RCA0.

Proof. For recursivity, just blindly search for a bisimulation relation between the
two vertex sets (in exponential time). Now we need to show that two finite graphs
G and H are bisimilar if and only if there is a bisimulation between them:

• Suppose R is a bisimulation between G and H . We prove by induction on
node position v ∈ {0, 1}∗ that (G(v), H(v)) ∈ R. From here, by definition
of a bisimulation, any two nodes related by R have the same label, and so
the unfoldings of G and H are equal.

• Suppose G and H have the same unfolding. We inductively construct a
bisimulation R from the root by continually adding (G(v), H(v)) to R. We
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terminate when we hit a pair that is already in R, which will happen in at
most |G||H |+ 1 steps, by the finite pigeonhole principle.15 �

Corollary 46. Equality for regular coterms is provably ∆0
1 in RCA0.

Now, we better show that reduction preserves certain properties of coterms, not
least regularity. More generally, since we will work with a certain class of regular
coterms, we should make sure that this class is closed under reduction.

Proposition 47 (RCA0). If s t then t is finitely composed of sub-coterms of s:

(21) ∃ a finite term r(x1, . . . , xn). ∃〈v1, . . . , vn〉. t = r(sv1 , . . . , svn)

This result holds for arbitrary coterms and, indeed, the existential quantifiers
may be explicitly witnessed by primitive recursive functions in terms of s and t.
We can take sv1 , . . . , svn to include the coderivations indicated in the contractum
of a reduction in Figure 9, as well as the ‘comb’ of the redex of the reduction in s,
i.e. the siblings of all the nodes in the path leading to the redex. r(~x) is now the
finite term induced by the contracta and this comb.16

As an immediate consequence of the above proposition we have, for arbitrary
coterms:

Corollary 48 (RCA0). Suppose s t.

(1) If s has only finitely many variable occurrences then so does t.
(2) If s has only finitely many redexes then so does t.
(3) If s is regular then so is t.
(4) If s is progressing then so is t.

Restricting now to regular coterms, we obtain the analogue of Proposition 47 for
reduction sequences by Σ0

1-induction:

Proposition 49 (RCA0). If s is regular and s ∗ t, then (21).

Again, we could also deduce a similar result for arbitrary coterms, specifying
reduction sequences as finite lists of redex positions, but formally developing this
is beyond the scope of this work. As expected, we obtain the same properties of
Corollary 48 for regular reduction sequences:

Corollary 50 (RCA0). Suppose s is regular and s ∗ t. Then the conditions (1),
(2), (3) and (4) from Corollary 48 hold.

6.4. Confluence of reduction. In order to obtain basic metamathematical prop-
erties of the coterm models we later consider, we need to know that our model of
computation is deterministic, so that coterms have unique interpretations. There
are various ways to prove this in arithmetic, but we will approach it in terms of
confluence in rewriting theory.

We will need to formalise our argument within RCA0 for later results, compris-
ing an additional contribution to the literature, bounding the logical strength of
confluence for finitary and certain infinitary rewrite systems operating with regular

15Note that, while the usual infinite pigeonhole principle is not provable in RCA0, it is easy to
see that the finite one is provable in RCA0 (and even weaker theories), by a straightforward Σ0

1

induction.
16Note that there is no need for weak König’s lemma here, since combs may be explicitly proved

to induce finite trees in RCA0. In any case, WKL0 is arithmetically conservative over RCA0.
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coterms. To facilitate this formalisation, all the coterms we consider in this section
will be finite applications of regular coderivations to variables and constants (‘farcs’
for short) which, by Proposition 49, are closed under reduction sequences, provably
in RCA0. farcs are not necessarily progressing but, since coderivations are closed
and have no redexes or variables, farcs have at most finitely many variables or re-
dexes, provably in RCA0 (each application operation can add at most one variable
and redex).

The main goal of this subsection is to prove the following:

Theorem 51 (Church-Rosser, RCA0). Let t : σ be a farc. If t0  ∗ t  ∗ t1 then
there is t′ : σ such that t0  

∗ t′  ∗ t1.

To some extent, we follow a standard approach to proving this result. In partic-
ular we aim to find a relation ⊲ such that:

(1) s t =⇒ s ⊲ t =⇒ s ∗ t ; and,
(2) ⊲ satisfies the ‘diamond’ property: if t0 ⊳ t ⊲ t1 then there is t′ such that

t0 ⊲ t′ ⊳ t1.

The first property ensures that the reflexive transitive closure of and ⊲ coincide,
i.e.  ∗=⊲∗. The second property then ensures confluence of  ∗

Since coterms are infinite (and, moreover, non-wellfounded), we must carry out
our argument without appeal to induction on term structure, ruling out standard
arguments due to Tait and Martin-Löf (cf., e.g., [HS86]). Approaches of Takahashi
in [Tak95] and others that rely on complete developments could potentially be
adapted, since we are working with farcs which have only finitely many redexes.
However, instead, we perform an argument by induction on reduction length, as in,
e.g., [Pfe92], which also seems to require less machinery from rewriting theory.

Definition 52 (Parallel reduction). We define the relation ⊲ on farcs as follows:

(1) t ⊲ t for any farc t.

(2) For a reduction step r~t r(~t), if each ti ⊲ t′i then we have r~t ⊲ r(~t′).

(3) For a reduction step r~t ss  r(~t, s) (i.e. a rec or cond successor step), if

each ti ⊲ t′i and s ⊲ s′ then we have r~t ss ⊲ r(~t′, s′).
(4) If s ⊲ s′ and t ⊲ t′ then s t ⊲ s′ t′.

Note that we really do seem to require clause (1), t ⊲ t, for arbitrary farcs t, not
just variables and constants, since we cannot finitely derive the former from the
latter.

Proposition 53 (RCA0). s t =⇒ s ⊲ t =⇒ s ∗ t.

The proof of this result is not difficult, but before giving an argument let us
point out a particular consequence that we will need, obtained by Σ0

1-induction on
the length of reduction sequences:

Corollary 54 (RCA0). s ∗ t ⇐⇒ s ⊲∗ t

Even though it is not necessary to prove the proposition above, we shall first
prove the following useful lemma since we will use it later:

Lemma 55 (Substitution, RCA0). Suppose t ⊲ t′. If s ⊲ s′ then s[t/x] ⊲ s′[t′/x],
for a variable x of the same type as t and t′.

In what follows, we may write d : s ∗ t or d : s ⊲ t or even d : s ⊲∗ t to indicate
that d is a (finite) derivation witnessing the respective relation.
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Proof. We show d : s ⊲ s′ =⇒ s[t/x] ⊲ s′[t′/x] by Σ0
1-induction on the structure

of the derivation d : s ⊲ s′.
If d is obtained by just (1), i.e. s′ = s, then we show s[t/x] ⊲ s[t′/x] by a

subinduction on the maximum depth of an x-occurrence in s. (Recall that farcs
have only finitely many variable occurrences.)

• if s is just the variable x then s[t/x] ⊲ s′[t′/x] by assumption of t ⊲ t′.
• if s is just a variable y 6= x then s[t/x] = y ⊲ y = s′[t′/x] by (1).
• if s is just a constant symbol r then s[t/x] = r ⊲ r = s′[t′/x] by (1).
• if s = s0s1 then all the (finitely many) occurrences of x in s0 and s1 have
lower depth, so we have s0[t/x] ⊲ s0[t

′/x] and s1[t/x] ⊲ s1[t
′/x] by the

inductive hypothesis, whence s[t/x] ⊲ s[t′/x] by (4).

If d ends by (2) we can write s = r~s and s′ = r(~s′) s.t. r~s r(~s) is a r-reduction
and each si ⊲ s′i. By the inductive hypothesis we have that si[t/x] ⊲ s′i[t

′/x]. We
also have that r~s[t/x]  r(~s[t/x]) is an r-reduction, where r is variable-free (by
inspection of the reduction rules). Thus we have s[t/x] = r~s[t/x] ⊲ r(~s′[t/x]) =
s′[t/x] by (2).

(The argument when d ends by (3) is similar to that of (2).)
If d ends by (4) we can write s = s0s1 and s′ = s′0s

′
1 s.t. s0 ⊲ s′0 and s1 ⊲ s′1. By

the inductive hypothesis we have s0[t/x] ⊲ s′0[t/x] and s1[t/x] ⊲ s′1[t/x], whence
s[t/x] ⊲ s′[t/x] by (4). �

Notice that Proposition 53 now follows immediately, by simply instantiating the
Lemma above with s = s′ to deduce context-closure of ⊲.

We can now turn to proving the required ‘diamond property’ for ⊲:

Lemma 56 (Diamond property of ⊲, RCA0). Suppose t0 ⊳ s ⊲ t1. Then there is
some u with t0 ⊲ u ⊳ t1.

Before giving the proof, it will be useful to have the following intermediate result:

Proposition 57 (RCA0). Suppose d : r~s ⊲ t, and there is no redex in r~s involving
r. There are some ~t s.t. t = r~t and, for each i, some di : si ⊲ ti for some di < d.

Proof. We proceed by Σ0
1-induction on the length of ~s. If ~s is empty, then only

clause (1) applies to r~s, so we may set ~t empty too.
Suppose r~s s ⊲ t, and there is no redex involving r. Then only clause (4) applies

to r~s s, so we have t = t0t1 and some d0 : r~s ⊲ t0 and d1 : s ⊲ t1 with d0, d1 < d.
By inductive hypothesis there are ~t0 s.t. t0 = r~t0 and some d0i : si ⊲ t0i with
d0i < d0. Thus we have t = r~t0 t1 and d0i : si ⊲ t0i and d1 : s ⊲ t1 with
d0i, d1 < d, as required. �

We are now ready to prove the diamond property for ⊲:

Proof of Lemma 56. We proceed by simultaneous induction on the structure of the
reductions t ⊲ t0 and t ⊲ t1. Formally we show,

∃s′. ((d0 : s ⊲ t0 and d1 : s ⊲ t1) =⇒ (t0 ⊲ s′ and t1 ⊲ s′))

by Σ0
1-induction on min(|d0|, |d1|).

• If t0 = s (i.e. d0 is just (1)) then we have t0 ⊲ t1 ⊳ t1, by assumption and
reflexivity, and we are done.

• Similarly if t1 = s (i.e. d1 is just (1)), so we may henceforth assume that
t0 6= t 6= t1, and d0 and d1 conclude with one of the clauses (2),(3) or (4).
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• If d0 and d1 both end by clause (2), then we have s = r~s and t0 = r(~s0) and
t1 = r(~s1), for some reduction step r~s  r(~s) and some ~s0, ~s1 s.t. si ⊲ s0i
and si ⊲ s1i. By the inductive hypothesis we have ~s′ s.t. s0i ⊲ s′i and
s1i ⊲ s′i. Thus by repeatedly applying Lemma 55 we have t0 = r(~s0) ⊲ r(~s′)
and t1 = r(~s1) ⊲ r(~s′), so we may set s′ = r(~s′).

• (similarly if d0 and d1 end with clause (3))
• (it is not possible for one to end with clause (2) and the other to end by
(3), since in all cases precisely one reduction step applies at the head.)

• If d0 ends by clause (2) and d1 ends by clause (4), then from d0 we have
r, r s.t. s = r~s u  r(~s, u) and some ~s0, u0 with si ⊲ s0i and u ⊲ u0

with t0 = r(~s0, u0). From d1 we further have some t′, u1 s.t. t1 = t′u1 and
r~s ⊲ t′ and u ⊲ u1. By Proposition 57 we have some ~s1 s.t. t′ = r~s1
and smaller derivations of si ⊲ s1i. By the inductive hypothesis we have
~s′, u′ s.t. s0i ⊲ s′i ⊳ s1i and u0 ⊲ u′ ⊳ u1. Thus, by repeatedly applying
Lemma 55 we have that t0 = r(~s0, u0) ⊲ r(~s′, u′), and by (2) we have
t1 = r~s1 u1 ⊲ r(~s′, u′), so it suffices to set t′ = r(~s′, u′).

• (the case when d0 ends by clause (2) and d1 ends by clause (4) is symmetric
to the one above)

• If both d0 and d1 end by clause (4), then we have s = s0s1, t0 = r0r1,
t1 = u0u1 s.t. r0 ⊳ s0 ⊲ u0 and r1 ⊳ s1 ⊲ u1. By inductive hypothesis
we have s′0 and s′1 s.t. r0 ⊲ s′0 ⊳ u0 and r1 ⊲ s′1 ⊳ u1. Thus we have that
t0 = r0r1 ⊲ s′0s

′
1 ⊳ u0u1 by (4), so we may set s′ = s′0s

′
1.

�

Proposition 58 (Weighted CR for ⊲, RCA0). If t0 ⊳
m t ⊲n t1 then there is some

t′ with t0 ⊲
n t′ ⊳m t1.

Proof. We show,

(d0 : t ⊲m t0 and d1 : t ⊲n t1) =⇒ ∃t′(t0 ⊲
n t′ and d′1 : t1 ⊲

m t′)

by Σ0
1-induction on m = |d0|.

• If m = 0 then t0 = t and we may simply set t′ = t1, whence we have that
t0 = t ⊲n t′ by assumption and t′ = t1 ⊳

0 t1.
• Now, suppose t0 ⊳ t′0 ⊳

m t ⊲n t1. By the inductive hypothesis we have
that

t′0 ⊲
n t′′ ⊳m t1

for some t′1. This means in particular that t0 ⊳ t′0 ⊲
n t′1, so we have again

from the inductive hypothesis a t′ with

t0 ⊲
n t′ ⊳ t′1

Putting these together we indeed have t0 ⊲
n t′ ⊳m+1 t1, as required. �

The following corollary is immediate:

Corollary 59 (CR for ⊲, RCA0). If t0 ⊳
∗ t ⊲∗ t1 then there is t′ s.t. t0 ⊲

∗ t′ ⊳∗ t1.

We may finally conclude CR for  :

Proof of Theorem 51. Suppose t0  ∗ s  ∗ t1. Then, by Corollary 54 we have
t0 ⊳

∗ s ⊲∗ t1. By Corollary 59 above, we have some s′ with t0 ⊲
∗ s′ ⊳∗ t1, whence

t0  
∗ s′  t1 by Corollary 54 again. �
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From here we derive other properties:

Corollary 60 (RCA0). We have the following:

(1) (Peaks and valleys) s ≈ t if and only if ∃r. s ∗ r  ∗ t.
(2) (UN for  ) If s0 and s1 are normal with s0  ∗ t ∗ s1, then s0 = s1.
(3) (UN for ≈) If s0 and s1 are normal with s0 ≈ t ≈ s1, then s0 = s1.

Proof sketch. For (1), the right-to-left implication is obvious, so we prove the left-
to-right implication by induction on the length of a derivation s ≈ t. The critical
case is when we have s ≈ t′  t (or equivalently s  s′ ≈ t). By the inductive
hypothesis we have some r′ s.t. s ∗ r′  ∗ t′. This means that we have r′  ∗ t′  t
so by confluence, Theorem 51, we have some r s.t. r′  ∗ r  ∗ t.

(2) is immediate from Theorem 51 and the definition of normal form.
(3) is immediate from (1), the definition of normal form and (2). �

6.5. Structure of finitely applied coderivations, constants and variables.
Before presenting the main type structures of this section, let us take a moment to
note that we have now proven enough to show that the set of farcs, under conversion,
forms a model of T without induction and extensionality, even provably within
RCA0.

Definition 61 (Farc structure). We write FARC for the type structure of farcs,
defined as follows:

• σFARC := {t : σ | t is a farc}.
• rFARC is just r, for each constant r.
• t ◦FARC s is just ts.
• =FARC

σ is just ≈σ.

All the structures we consider in this section will be substructures of FARC that
are moreover closed under conversion. Thus they will inherit the (quantifier-free)
theory of FARC, to which end the following result is naturally indispensable:

Theorem 62 (RCA0). FARC is a model of T − {ER, Ind}. I.e. each T term t of
type σ is in σFARC, and moreover FARC satisfies the axioms of Figures 1, 4, 6, 8
and the axioms (1) and (2) of Figure 7.

Proof. For each T term t of type σ we have t ∈ σFARC simply by definition of a
farc, so we continue to verify the axioms.

The axioms governing the constants, i.e. those from Figures 4, 6 and 8, follow
immediately from the definitions of  and ≈, cf. Figure 9.

For the equality axioms from Figure 1:

• Reflexivity of ≈ follows by definition.
• For the Leibniz property, suppose that t ≈ t′ and r(t) ≈ s(t). Then we have
r(t) ≈ r(t′) and s(t) ≈ s(t′) by closure of ≈ under contexts, and the fact
that farcs have only finitely many redexes, so there are only finitely many
occurrences of t in r(t) and s(t) (cf. Corollary 48). Thus we have r(t′) ≈
s(t′) by transitivity of ≈. By symmetry, we also have that if r(t′) ≈ s(t′)
then r(t) ≈ s(t), and so in general ϕ(t) ≡ ϕ(t′) for any formula ϕ.

For the first two number-theoretic axioms from Figure 7:

• ¬s0 ≈ 0 follows from confluence, in particular unique normal forms cf. Corol-
lary 60: both s0 and 0 are normal but are not identical.
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• Suppose ss ≈ st, so ss  ∗ u  ∗ st, by Corollary 60. Notice that no
reduction rule has s at the head, so by Σ0

1 induction we can extract reduction
sequences s ∗ u′  ∗ t for some u′ with u = su′. Thus indeed s ≈ t. �

6.6. Hereditarily total coterms under conversion. We are now ready to present
the type structures that will allow us to obtain a simulation of CTn within Tn+1.
The structure that we present in this subsection is essentially the hereditrarily re-
cursive operations of finite type, but where we adopt farcs under conversion as the
underlying model of computation, cf. Proposition 25.

Definition 63 (Hereditarily total farcs). We define the following sets of farcs:

• HRN := {t : N | ∃n ∈ N. t ≈ n}
• HRσ→τ := {t : σ → τ | ∀s ∈ HRσ. t s ∈ HRτ}

We write HRn for the union of all HRσ with lev(σ) ≤ n.

Note that it is immediate from the definition that each HRσ contains only closed
farcs of type σ.

Notice that, by the confluence result of the previous subsection, namely by Corol-
lary 60, if t ≈ n then n ∈ N is unique and in fact t  ∗ n (provably in RCA0). In
this way we can view every element of HRN as computing a unique natural number
by means of reduction.

Fact 64. HRN is Σ0
1, and if lev(σ) = n > 0 then HRσ is Π0

n+1.

Proof. HRN is Σ0
1 just since ≈ is Σ0

1. Furthermore, expanding out the definition:

HRσ→τ (t) ⇐⇒ ∀s.(s ∈ HRσ =⇒ ts ∈ HRτ )

We proceed by the induction on the structure of σ.
In the base case, when σ = τ = N , we have that HRσ and HRτ are Σ0

1, and so
HRσ→τ is indeed Π0

2, as required.
For the inductive hypothesis, we have that HRσ and HRτ are Πn and Πn+1

respectively, and so again HRσ→τ is indeed Πn+1. �

Proposition 65 (Closure properties of HR). Suppose lev(σ) < n and lev(τ) ≤ n.
Then we have the following, provably in RCA0:

(1) If s ∈ HRσ and t ∈ HRσ→τ then ts ∈ HRτ . (HR closed under application)
(2) If t ∈ HRτ and t ≈ t′ then t′ ∈ HRτ . (HR closed under conversion)

Note that provability within RCA0 above is non-uniform in σ and τ , i.e. RCA0

proves the statements for each particular σ and τ .

Proof. (1) is immediate from the definition of the sets HRσ. (2) follows by (meta-
level) induction on the structure of τ :

• The base case, when τ = N , follows from symmetry and transitivity of ≈.17

• Suppose τ = σ → τ ′ and let s ∈ HRσ. Since t ≈ t′ we also have t s ≈ t′s, by
closure of ≈ under contexts, and so t′s ∈ HRτ ′ , by the inductive hypothesis.
Thus t′ ∈ HRτ , as required. �

These properties justify defining the following type structure:

17Note here that it was important to take conversion, ≈, which is symmetric, rather than
reduction,  ∗, for the definition of HRN .
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Definition 66 (HR structure). We simply write HR for the type structure defined
as follows:

• σHR is HRσ.
• rHR is just r for each constant r.
• t ◦HR s is just ts.
• =HR

σ is ≈σ.

Ultimately we will show that this structure constitutes a model of CT − ER
(i.e. without extensionality). In fact, in Section 7 we will prove this within an
appropriate theory of arithmetic, so that we may also extract terms of T that are
equivalent under conversion.

Note that HR is a substructure of FARC, in the model-theoretic sense, and so
inherits its quantifier-free theory (over the respective domains). The key feature
of HR over FARC is that it satisfies induction, provably in RCA0 in the following
sense:

Lemma 67 (Induction for HR, RCA0). Suppose r(x) and s(x) are farcs. If r(0) ≈
s(0) and ∀t ∈ HRN .(r(t) ≈ s(t) =⇒ r(st) ≈ s(st)), then ∀t ∈ HRN .r(t) ≈ s(t).

Proof. This is essentially ‘forced’ by the definition of HRN , reducing the statement
to induction in RCA0. Assuming the premisses, in particular we have r(n) ≈ s(n)
implies r(sn) ≈ s(sn) for any n ∈ N, and so by Σ0

1-induction on n we have ∀n ∈
N. r(n) ≈ s(n). Now, suppose t ∈ HRN . Then by definition we have t ≈ n for some
n ∈ N, and so indeed r(t) ≈ s(t) by the Leibniz property (inherited from FARC,
cf. Theorem 62) �

Notice that induction for arbitrary quantifier-free formulas may be duly reduced
to the case of equational formulas in the usual way, interpreting Boolean connectives
as operations on (co)terms. To conclude that HR actually constitutes a model of
T (and later of CT ), without extensionality, we will further have to show that it
can interpret each term of T (and later coterm of CT ). For T , this follows from
well-known standard results:

Proposition 68. HR is a model of T − ER.

Proof sketch. Given Theorem 62 and Lemma 67 above, it remains to show that for
each closed term t of type τ in T , we indeed have that t ∈ HRτ . This part of
the argument is in fact what requires significant logical complexity, since it implies
the consistency of T (and so also PA and ACA0), and is what cannot be directly

transferred to the coterm setting. Given a term of type τ = ~τ → N and ~t ∈ HR~τ ,
we have that t~t converts to a unique numeral, thanks to Tait’s result Fact 11, and
since the only normal terms of type N are numerals. Thus t~t ∈ HRN , and so
t ∈ HRτ by repeatedly unfolding its definition. �

In fact this proof can be formalised non-uniformly in the following sense: for
each term t of type τ with lev(σ) ≤ n, we have RCA0 + IΣ0

n+1 ⊢ HRτ (t). We will
see a similar situation for membership of CTn coterms in HRn later, but with the
quantifier complexity of induction increased by 1.

6.7. Modelling extensionality via collapse of conversion. One issue with the
HR structure is that equality is not extensional, and so it is not closed under ER.
In particular two distinct coderivations may compute the same function, but are
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already in normal form if we have not fed any inputs. A very simple example already
at type 1 are the coderivations cond 0 0 : N → N → N vs cond′ 0 0 : N → N → N ,
where cond examines the first input and cond′ examines the second input. Both
return 0, but the two coderivations are not convertible. Naturally more complex
and nontrivial examples abound, e.g. distinct programs for sorting, etc.

However, we may recover an extensional equality relation in a standard way
thanks to the notion of extensional collapse from higher-order computability theory,
cf. [LN15].

Definition 69 (Extensional equality and HE-structure). We define the following
relations ≃σ on coterms.

• ≃N is just ≈N .
• t ≃σ→τ t′ if ∀s ∈ HRσ. t s ≃ t′s

We define the type structure HE just as HR, but with =σ interpreted by ≃σ.

The price to pay for extensionality, however, is high: the equality relation is no
longer semi-recursive, and its logical complexity grows with type level.

Fact 70. ≃N is Σ0
1 and, if lev(τ) = n > 0, then ≃τ is Π0

n+1.

Proof. The case of N follows immediately from the definition, and for lev(τ) > 0 we
proceed by induction on the structure of τ = ρ → σ with lev(ρ) < n and lev(σ) ≤ n.

• If ρ = σ = N , so n = 1, then t ≃τ t′ iff ∀s(s ∈ HRN ⊃ ts ≈ t′s). We have
s ∈ HRN is Σ0

1 by Fact 64 and ≈ is also Σ0
1, so indeed t ≃τ t′ is Π0

2.
• For the inductive step, t ≃τ t′ iff ∀r(r ∈ HRρ ⊃ tr ≃σ t′r). We have
r ∈ HRρ is Π0

n by Fact 64 and ≃σ is Π0
n by inductive hypothesis, so indeed

t ≃τ t′ is Π0
n+1. �

Note that we have the following closure properties in HE:

Proposition 71. Suppose t ∈ HRτ . Then:

(1) if t ≈τ t′ then t ≃τ t′. (≃ coarser than ≈)
(2) if t ≃τ t′ then t′ ∈ HRτ . (HR closed under ≃)

Proof. We proceed by induction on the structure of τ .

• If τ = N then the statements are immediate from the equivalence of ≈N

and ≃N and symmetry/transitivity.
• Suppose τ = ρ → σ and let r ∈ HRρ.

(1) If t ≈τ t′ then also t r ≈ t′r, by closure of ≈ under contexts. Therefore
t r ≃σ t′r, by the inductive hypothesis, and so t ≃τ t′.

(2) If t ≃τ t′ then t r ≃σ t′r, by definition. Therefore t′r ∈ HRσ by the
inductive hypothesis, and so t′ ∈ HRτ . �

Consequently, HE is in turn a substructure of HR and inherits its quantifier-
free theory. Notice that this does not a priori cover satisfaction of induction, but
nonetheless, as promised, we have the following:

Proposition 72. HE is a model of T .

Proof sketch. Since HE is a substructure of FARC, it remains to verify ER and Ind.
Extensionality is ‘forced’ by the definition of ≃. Suppose t, t′ ∈ HRσ→τ and for

all s ∈ HRσ we have ts ≃ t′s. Then by definition we have t ≃ t′.
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We may show that HE satisfies induction in a similar way as we did for HR,
Lemma 67, though note that this is no longer possible in RCA0, due to the increasing
complexity of ≃τ with the level of τ . Supose r(0) ≃ s(0) and for all t ∈ HRN we
have r(t) ≃ s(t) =⇒ r(st) ≃ s(st). In particular we have that r(n) ≃ s(n) =⇒
r(sn) ≃ s(sn), for any n ∈ N. We thus have for all n ∈ N that r(n) ≃ s(n) by
Π0

k+1-induction on n (where lev(r), lev(s) ≤ k). Now, suppose t ∈ HRN . Then by
definition we have t ≈ n, and so t ≃ n, for some n ∈ N, so indeed r(t) ≃ s(t) by
the Leibniz property (inherited from FARC, Theorem 62). �

7. From CTn to Tn+1, via arithmetisation of models

In this section we will present a converse result to that of Section 5, i.e. that
terms of Tn+1 may simulate terms of CTn, satisfying the same type 1 quantifier-free
theory. The methodology of Section 5 was entirely proof theoretic, thanks in part to
the well-foundedness of the T -terms that were simulated. A priori, we do not admit
a similar methodology for the converse direction, due to the non-wellfoundedness of
coterms, and so we employ a model-theoretic approach. Namely, we will show that
the type structures HR and HE introduced in the previous section indeed constitute
models of CT−ER and CT , respectively. In fact, we will formalise the membership
of CTn coterms in HRn+1 within the theory RCA0+IΣ0

n+2 (non-uniformly), whence
we obtain explicit equivalent terms of Tn+1 by proof mining.

Throughout this section we continue to work only with coterms that are finite
applications of coderivations, variables and constants (farcs). We will work mainly
within RCA0 + IΣ0

n+1 or RCA0 + IΣ0
n+2, to be clearly indicated at the appropriate

points.

7.1. Canonical branches of non-total coterms. As for T , the main difficulty
in showing that HR or HE is a model of CT is in showing that each CT coterm is,
indeed, interpreted in the structure. For us, this will amount to a formalised proof
of the totality of (regular) progressing coterms. Our approach will be to import
a suitable version of the proof of Proposition 35 but relativise all the quantifiers,
there in the standard model, to their respective domains in HR.

First let us note that HR is closed under the typing rules of CT :

Observation 73. Consider a rule instance as follows, with k ≤ 2:

~σ1 ⇒ τ1 · · · ~σk ⇒ τk
r

~σ ⇒ τ

If ti ∈ HR~σi→τi then r t1 · · · tn ∈ HR~σ→τ .

This follows by simple inspection of the rules of CT , and we shall indeed give a
proof of a more refined statement shortly. As a consequence, by contraposition, any
coderivation /∈ HR must induce an infinite branch of coderivations /∈ HR, similarly
to the proof of Propostion 35. The next definition formalises a canonical such
branch, as induced by an input on which the coderivation is non-hereditarily-total.
We shall present just the definition of the branch first, and then argue that it is
well-defined, for each explicit Tn coderivation, in RCA0 + IΣ0

n+2.

Definition 74 (Branch generated by a non-total input). Let t0 : ~σ0 ⇒ τ0 be a
coderivation and let ~s0 ∈ HR~σ0

s.t. t ~s /∈ HRτ . We define the branch (ti : ~σi ⇒ τi)i≥0

and inputs ~si ∈ HR~σi
, generated by t0 and ~s0 as follows, always satisfying the

invariant ti ~si /∈ HRτi :
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(1) (ti cannot be an initial sequent).

(2) Suppose ti =
t

~σ ⇒ τ
wk

~σ, σ ⇒ τ

and ~si = (~s, s). Then ti+1 := t and ~si+1 := ~s.

(3) Suppose ti =
t

~ρ, σ, ρ, ~σ ⇒ τ
ex

~ρ, ρ, σ, ~σ ⇒ τ

and ~si = (~r, r, s, ~s). Then ti+1 := t and

~si+1 := (~r, s, r, ~s).

(4) Suppose ti =
t

~σ, σ, σ ⇒ τ
cntr

~σ, σ ⇒ τ

and ~si = (~s, s). Then ti+1 := t and ~si+1 :=

(~s, s, s).

(5) Suppose ti =
t

~σ ⇒ ρ

t′

~σ, ρ ⇒ τ
cut

~σ ⇒ τ

and ~si = ~s. Then if t ~s ∈ HRρ then

ti+1 := t′ and ~si+1 := (~s, t ~s). Otherwise, ti+1 := t and ~si+1 := ~s.

(6) Suppose ti =
t

~σ ⇒ ρ

t′

~σ, σ ⇒ τ
L

~σ, ρ → σ ⇒ τ

and ~si = (~s, s). If t ~s ∈ HRρ then ti+1 := t′

and ~si+1 := (~s, s (t ~s)). Otherwise ti+1 := t and ~si+1 := ~s.

(7) Suppose ti =
t

~σ, σ ⇒ τ
R

~σ ⇒ σ → τ

and ~si = ~s. Let s be the least18 element of HRσ

such that t ~s s /∈ HRτ . We set ti+1 := t and ~si+1 := (~s, s).

(8) Suppose ti =
t

~σ ⇒ τ

t′

~σ,N ⇒ τ
cond

~σ,N ⇒ τ

and ~si = (~s, r). If r ≈ 0 then ti+1 := t

and ~si+1 := ~s. Otherwise, if r ≈ sn, then ti+1 := t′ and ~si+1 := (~s, n).

Note that certain arbitrary choices from the proof of Proposition 35 have been
made canonical in the definition above. We also define inputs for cut and L directly,
to ease the formalisation in arithmetic.

Proposition 75. Let t0 : ~σ0 ⇒ τ0 be a fixed coderivation in which all types oc-
curring have level ≤ n. RCA0 + IΣ0

n+2 proves the following: if ~s0 ∈ HR~σ0
s.t.

18Recall that, strictly speaking, we assume all our objects are coded by natural numbers in the
ambient theory (here fragments of second-order arithmetic). Thus we may always find a ‘least’
object satisfying a property when one exists, by induction on that property.
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t0 ~s0 /∈ HRτ0 then the branch (ti)i and inputs (~si)i generated by t0 and s0 are
∆0

n+2-well-defined.

Proof. Let us write Gen(i, (t0, ~s0), (ti, ~si)) for “ti and ~si are the ith sequent and
input tuple generated by t0 and ~s0”. Notice that the construction of ti and ~si
itself is recursive in HRn, t0 and ~s0, and so Gen is certainly recursion-theoretically
∆0

n+2(t0, ~s0), by appealing to Fact 64. To formally prove that Gen is ∆0
n+2 inside

our theory, it suffices to show determinism:

∀i.∀(ti, ~si), (t
′
i, ~s

′
i).

(
Gen(i, (t0, ~s0), (ti, ~si)) ∧Gen(i, (t0, ~s0), (t

′
i, ~s

′
i))

=⇒ ti = t′i ∧ ~si = ~s′i

)

Writing Gen syntactically as a Σ0
n+2 formula, the above may be directly proved by

Π0
n+2-induction on i, appealing to the cases of Definition 74 above.
It remains to show that the construction is total, i.e. that each (ti, ~si) actually

exists. In fact we will simultaneously prove this and the inductive invariant of the
construction, so the formula,

(22) ∃(ti, ~si).(Gen(i, (t0, ~s0), (ti, ~si)) ∧ ti ~si /∈ HRτi)

by induction on i. Note that, since lev(τi) ≤ n we have that HRτi is Π0
n+1 by

Fact 64, and so ti~si /∈ HRτi is Σ0
n+1, whereas Gen(i, (t0, ~s0), (ti, ~si)) is ∆0

n+2 as
already mentioned. Thus the inductive invariant in (22) is indeed Σ0

n+2.
First, to justify (1), let us consider the possible initial sequents:

• For the 0 rule: we have 0 ∈ HRN by definition;
• For the s rule: if t ∈ HRN , then t ≈ n for some n ∈ N, by definition of
HRN , and so also st ≈ sn, by closure of ≈ under contexts. Hence st ∈ HRN .

• For an idσ rule: if s ∈ HRσ then id s ≈ s by id reduction. Hence id s ∈ HRσ.

Now, the base case, for i = 0, follows by the assumption on t0 and ~s0, so
let us assume that Gen(i, (t0, ~s0), (ti, ~si)) and ti ~si /∈ HRτi . We will witness the
existential of the inductive invariant with the coderivation ti+1 and inputs ~si+1 as
given in Definition 74 above (justifying their existence when necessary), showing
ti+1 ~si+1 /∈ HRτi+1

. We shall also adopt the same notation for inputs and types as
in Definition 74.

For (2), the wk case, we have:

ti ~si /∈ HRτ by inductive hypothesis
∴ wk t ~s s /∈ HRτi by definitions
∴ t ~s /∈ HRτ by  wk and closure of HRτ under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions

For (3), the ex case, we have:

ti ~si /∈ HRτi by inductive hypothesis
∴ ex t ~r r s~s /∈ HRτ by definitions
∴ t ~r s r ~s /∈ HRτ by  ex and ∵ HRτ closed under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions

For (4), the cntr case, we have:

ti ~si /∈ HRτi by inductive hypothesis
∴ cntr t ~s s /∈ HRτ by definitions
∴ t ~s s s /∈ HRτ by  cntr and ∵ HRτ closed under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions
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For (5), the cut case, assume without loss of generality that t ~s ∈ HRτ . We have:

ti ~si /∈ HRτi by inductive hypothesis
∴ cut t t′~s /∈ HRτ by definitions
∴ t′~s (t ~s) /∈ HRτ by  cut and ∵ HRτ closed under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions

For (6), the L case, assume without loss of generality that t ~s ∈ HRτ , and so also
s (t ~s) ∈ HRσ by Proposition 65. We have:

ti ~si /∈ HRτi by inductive hypothesis
∴ L t t′~s s /∈ HRτ by definitions
∴ t′~s (s (t ~s)) /∈ HRτ by  L and ∵ HRτ closed under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions

For (7), the R case, we have:

ti ~si /∈ HRτi by inductive hypothesis
∴ R t ~s /∈ HRσ→τ by definitions
∴ ∃s′ ∈ HRσ. R t ~s s′ /∈ HRτ by definition of HRσ→τ

∴ ∃s′ ∈ HRσ. t ~s s
′ /∈ HRτ by  R and ∵ HRτ closed under ≈

∴ t ~s s /∈ HRτ ∵ s is well-defined by Σ0
n+1-minimisation

∴ ti+1 ~si+1 /∈ HRτi+1
by definitions

In the penultimate step, note that we have from the inductive hypothesis ∃s(s ∈
HRσ ∧ t ~s s /∈ HRτ ), where lev(σ) < n and lev(τ) ≤ n. Thus (s ∈ HRσ ∧ t ~s s /∈ HRτ )
is indeed Σ0

n+1, by Fact 64, and so Σ0
n+1-minimisation applies.

For (8), the cond case, note by the inductive hypothesis we have r ∈ HRN so by
definition of HRN and confluence, namely Corollary 60, we have that r converts to
a unique numeral. Thus the two cases considered by the definition of ti+1 and ~si+1

are exhaustive and exclusive, and we consider each separately.
If r ≈ 0 then we have:

ti ~si /∈ HRτi by inductive hypothesis
∴ cond t t′~s r /∈ HRτ by definitions
∴ cond t t′~s 0 /∈ HRτ by assumption and ∵ HRτ closed under ≈
∴ t ~s /∈ HRτ by  cond and ∵ HRτ closed under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions

If r ≈ sn then we have:

ti ~si /∈ HRτi by inductive hypothesis
∴ cond t t′~s r /∈ HRτ by definitions
∴ cond t t′~s sn /∈ HRτ by assumption and ∵ HRτ closed under ≈
∴ t′~s n /∈ HRτ by  cond and ∵ HRτ closed under ≈
∴ ti+1 ~si+1 /∈ HRτi+1

by definitions

This concludes the proof. �

7.2. Progressing coterms are hereditarily total. We are now ready to show
that progressing coterms are hereditarily total, i.e. that they belong to HR (and
HE). Now that we have formalised the infinite ‘non-total’ branches of the proof of
Proposition 35, relativised to the type structure HR, we continue to formalise the
remainder of the argument.
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Lemma 76 (RCA0). Let t0 : ~σ0 ⇒ τ0 and ~s0 ∈ HR~σ0
be a coderivation and inputs

s.t. t0 ~s0 /∈ HRτ0 . Furthermore let (ti : ~σi ⇒ τi)i and ~si ∈ HR~σi
be a branch and

inputs generated by t0 and ~s0, satisfying Definition 74.
Suppose some N -occurrence N i+1 ∈ ~σi+1 is an immediate ancestor of some N -

occurrence N i ∈ ~σi. Write si ∈ ~si for the coterm in HRN corresponding to N i, and
similarly si+1 ∈ ~si+1 for the coterm si+1 ∈ HRN corresponding to N i+1.

If si ≈ ni and si+1 ≈ ni+1, for some ni, ni+1 ∈ N, then:

(1) ni ≥ ni+1.
(2) If N i is principal for a cond step, then ni > ni+1.

Proof. Follows directly from inspection of Definition 74, and confluence of conver-
sion, namely Corollary 60. �

In order to complete our formalisation of the totality argument, we actually have
to use an arithmetical approximation of thread progression that nonetheless suffices
for our purposes. The reason for this is that, even though non-total branches are
well-defined by Proposition 75, we do not a priori have access to them as sets in
extensions of RCA0 by fragments of arithmetical induction, and so the lack of pro-
gressing threads along them does not directly contradict the fact that a coderivation
is progressing. Notice that this is not an issue in the presence of arithmetical com-
prehension, i.e. in ACA0, but in that case logical complexity of defined sets is not a
stable notion: all of arithmetical comprehension reduces to Π0

1-comprehension.
A similar issue underlies the notion of ‘arithmetical acceptance’ for a non-

deterministic automaton in [Das20]. The fact that our arithmetical approximation
suffices is borne out by the ‘moreover’ clause in the following result:

Proposition 77 (RCA0). Suppose ti and ~si are as in Lemma 76. Any N -thread
along (ti)i is not progressing. Moreover, ∀k.∃m. any N -thread from tk progresses
≤ m times.

Proof. We shall prove only the ‘moreover’ clause, the former following a fortiori.
First, suppose we have a (finite) N -thread (N i)li=k beginning at tk. Let si ∈ ~si be
the corresponding input of N i for 1 ≤ i ≤ l, and let each ri ≈ ni, for unique ni ∈ N,
by definition of HRN and confluence, Corollary 60. Letting m be the number of
times that (N i)li=1 progresses, we may show by induction on l that nl ≤ nk −m,
using Lemma 76 for the inductive steps.

Now, to prove the ‘moreover’ statement, fix some k and let ~Nk ⊆ ~σk exhaust
the N occurrences in ~σk. Let ~rk ⊆ ~sk be the corresponding inputs, and write ~nk

for the unique natural numbers such that each rki ≈ nki, by definition of HRN and
confluence, Corollary 60. We may now simply set m := max~nk, whence no thread
from tk may progress more than m times by the preceding paragraph. �

Finally, we are ready to show that coterms of CT are indeed interpreted in
the type structures we have presented. It is here that we will have to make use
of the fact that, for each regular coderivation, RCA0 proves whether it progresses
and, moreoever, we shall take advantage of the aforementioned implied arithmetical
approximation of progression in order to deduce the necessary contradiction without
invoking additional set existence principles.

Theorem 78. Let t : ~σ ⇒ τ be a progressing coderivation containing only types of
level ≤ n (i.e. a CTn-coderivation). Then RCA0 + IΣ0

n+2 ⊢ t ∈ HR~σ→τ .
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Proof. First, by Proposition 34 (from [Das20]), we have that RCA0 proves that t is
progressing. Consequently RCA0 proves that, for any branch (ti)i, there is some k
s.t. there are arbitrarily often progressing finite threads beginning from tk:

19

(23) ∃k.∀m. there is a (finite) N -thread from tk progressing > m times

Note that this statement is purely arithmetical in (ti)i and so, if (ti)i is ∆
0
n+2-well-

defined, then in fact RCA0+IΣ0
n+2 proves (23), by conservativity over IΣn+2((ti)i)

and then substitution of the ∆n+2-definition of (ti)i.
Now, working inside RCA0 + IΣ0

n+2, suppose for contradiction that ~s ∈ HR~σ s.t.
t ~s /∈ HRτ . By Proposition 75, we can ∆0

n+2-well-define the branch (ti)i generated
by t and ~s. Thus we indeed have (23), contradicting Proposition 77. �

Corollary 79. HR is a model of CT − ER, and HE is a model of CT.

Proof. All the axioms of CT − ER and CT are already satisfied in HR and HE

respectively, inherited from Propositions 68 and 72 respectively. Thus the result
follows immediately from Theorem 78 above (and soundness). �

Corollary 80. If t : ~N ⇒ N is a progressing coterm of CTn, then there is a

Tn+1-term t : ~N → N such that t′N = tN.

Proof. By Theorem 78 we have, in particular, that:

(24) RCA0 + IΣ0
n+2 ⊢ ∀~m∃n t~m ≈ n

Since this is a Π0
2 theorem, we may apply extraction, Proposition 14, to obtain the

required term t′ of Tn+1 so that t′ ~m witnesses the existential quantifier in (24).
The result now follows by soundness of RCA0 + IΣ0

n+2 and since (HR, ≈) is a
substructure of the standard model N. �

7.3. Interpretation of CTn(−ER) into Tn+1(−ER). We may now realise our
model-theoretic results as bona fide interpretations of fragments of CT into frag-
ments of T . As a word of warning, coterms of CT in this section, when operating
inside T , should formally be understood by their Gödel codes, i.e. in this section
T is ‘one meta-level higher’ than CT . Until now we have been formalising the
metatheory of CT within second-order arithmetic, and so arithmetising its syntax
as natural numbers. Since we will here invoke program extraction from these frag-
ments of ACA0 to fragments of T to interpret CT , the same coding carries over. At
the risk of confusion, we shall suppress this formality in the statements of results
that follow, in line with the exposition so far.

Theorem 81. If CTn − ER ⊢ s = t then Tn+1 − ER ⊢ s ≈ t.

Proof. Let us work in RCA0 + IΣ0
n+2. By Theorem 78 we have that s, t ∈ HRσ, so

suppose that CTn−ER ⊢ s = t (which is a Σ0
1 relation). Now, invoking Theorem 62

and Lemma 67, we indeed have that s ≈ t, by Σ0
1-induction on the CTn−ER proof

of s = t.
Now, invoking the extraction theorem, Proposition 14, for the above paragraph,

we can extract a Tn+1-term d(·) witnessing the following ‘reflection’ principle:

Tn+1 − ER ⊢ “P is a CTn − ER proof of s = t” ⊃ d(P ) : s ≈ t

We may duly substitute a concrete CTn − ER proof P of s = t into the above
principle to conclude that Tn+1 − ER ⊢ s ≈ t, as required. �

19The argument for this is similar to that of Proposition 6.2 from [Das20].
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We also have an analogous statement in the presence of the extensionality rule
though, as expected, we must restrict to only type 1 equations for the interpretation
to hold:

Theorem 82. Let lev(s) = lev(t) ≤ 1. If CTn ⊢ s = t then Tn+1 ⊢ s ≃ t.

Proof. The proof is similar to the one above, only using the proof of Proposition 72
instead of Lemma 67 to simulate induction steps of CTn in HE (now requiring
IΣ0

n+2). The restriction on levels is required in order to invoke the extraction
theorem, since the logical complexity of ≃σ grows with the type level of σ. In
particular, ≃1 is a Π0

2 relation, by Fact 70, and unwinding its definition we have

s ≃1 t is equivalent to ∀~r ∀~n ∀~d : ~r ≈ ~n. ∃d : ~r ≈ t ~r. Thus we extract the following
‘reflection’ principle for some Tn+1-term d:

Tn+1 ⊢ (“P is a CTn proof of s = t” ∧ ~d : ~r ≈ ~n) ⊃ d(P, ~d,~r) : s~r ≈ t ~r

Again substituting a concrete CTn proof P of s = t into the above principle indeed
gives us Tn+1 ⊢ s ≃ t, as required. �

8. Perspectives and further results

In this section we shall give some further discussion and results related to the
system CT we have presented.

8.1. On confluence and consistency. We should point out that, from the point
of view of just the extensional properties of extracted programs, it is not necessary
to use the confluence result we presented in Section 6. We could simply assume con-
sistency of CT as an axiom throughout Section 7 (indeed we shall take this direction
in the next subsection for simplicity). Consistency of CT is a true Π0

1 statement by
meta-level reasoning, and we would be able to extract the same functionals, since
Π0

1 statements carry no computational content. This is particularly pertinent when
extracting an infinitely descending sequence of natural numbers from a progressing
thread in Lemma 76: we require these natural numbers to be uniquely defined,
which follows by either confluence or consistency. However this approach would
compromise our ultimate interpretations of CTn, requiring the same consistency
principle to be added to the target theory Tn+1 (with and without ER).

Incidentally, note that our approach, by a special case of the simulations from
Sections 5 and 7, implies the equiconsistency of CTn and Tn+1, over a weak base
theory.

8.2. Continuity at type 2. It is well-known that the type 2 functionals of T
are continuous, in the sense that any type 1 function input is only queried a finite
number of times. The classical way to prove this is to augment the rewrite system
from Section 6 by fresh type 1 constant symbols that play the roles of the inputs,
say of a type 2 functional, and adding appropriate reductions. An account of this is
given in [Tro73], though there are several other known arguments, e.g. by showing
that the strucutre of total continuous functionals forms a model for T (cf. [Sca71])
or, more recently, via an elegant form of ‘syntactic continuity predicate’ (cf. [Xu20]).

For the case of CT , we may actually formalise a variation of this argument within
second-order arithmetic, extending the simulation of CT coterms within T to type
2 functionals. We shall here refrain from an analysis of abstraction complexity, for
the sake of brevity, and also focus solely on the interpretation of (co)terms in the
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standard model, disregarding their theories. Our exposition will be brief, since the
finer details are adaptations of earlier results.

Let us fix a CT coderivation t : ~σ ⇒ N s.t. each σi =

ki
︷ ︸︸ ︷

N → · · · → N → N ,
and let us henceforth work in ACA0, distinguishing second-order variables fi :

ki
︷ ︸︸ ︷

N× · · · × N → N, intuitively representing the inputs for t.

Within CT , introduce new (uninterpreted) constant symbols f
i
:

ki
︷ ︸︸ ︷

N → · · · → N →
N for each σi, and new reduction steps:

(25) f
i
n1 . . . nki

 fi(n1, . . . , nki
)

Notice that reduction is now still semi-recursive in the oracles ~f , i.e.  , ∗,≈ are

now Σ0
1(
~f). To save the effort of reproving our confluence results from Section 6 with

these new oracle symbols, we shall simply henceforth assume a suitable consistency
principle:

UNFN : ∀m,n. (m ≈ n ⊃ m = n)

Note that, since this is a true Π0
1 statement, it carries no computational content

and adding it to ACA0 still admits extraction into T . (The drawback of this, as
mentioned in the previous subsection, is that we do not recover any bona fide
interpretation of CT into T .)

From here, we define HR
~f
σ just as HRσ, but allowing coterms to include the sym-

bols ~f . Since each HRσ is arithmetical in  , we have that each HR
~f
σ is arithmetical

in our extended reduction relation, so with free second-order variables ~f . Note in

particular that we have that each f
i
∈ HR

~f
σi
, thanks to (25) above. By adapting

our approach from Section 7, we may show the following:

Theorem 83 (ACA0 +UNFN ). ∀~f. t ~f ∈ HR
~f
N

Proof sketch. The argument is essentially the same as that for Theorem 78. Assum-
ing otherwise, for contradiction, we may generate a non-hereditarily-total branch is
just as in Definition 74, and its well-definedness is shown just as in Proposition 75.

Note that all induction/minimisation used is in fact arithmetical in  and HR
~f
σ, so

the branch is indeed ∆0
n+2(

~f)-well-defined (for n the maximal type level in t).
Since we no longer concern ourselves with the refinement of type levels, the re-

mainder of the argument is actually simpler than that of Section 7. Instead of
dealing with the arithmetical approximation of progressiveness, we may immedi-
ately access the generated non-total branch as a set, thanks to the availability of
arithmetical comprehension in ACA0. We also have a suitable version of Lemma 76

for HR
~f
N , this time using UNFN above instead of confluence, and so the appropriate

contradiction of the well-ordering property of N is readily obtained. �

Expanding out this result we have that ACA0 + UNFN ⊢ ∀~f.∃n. t ~f ≈ n. Note
that this yields the required syntactic continuity property: since any ≈-sequence is

finite, we may compute t(~f) by querying each fi only finitely many times.
From here, by applying a relativised version of program extraction (see, e.g.,

[Koh08]), we may witness the existential by a term t′(~f) of T , so that T +UNFN ⊢
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t ~f ≈ t′(~f). Now, in the standard model N, we have that UNFN is true and that

≈ is sound for equality (i.e. s ≈ t =⇒ sN = tN), so we finally have:

Corollary 84. If t is a level 2 coterm of CT, then there is a T term t′ s.t. t′N = tN.

It would be interesting to see if we could adapt this approach to give models
of CT based on continuous functionals at higher types (cf. [LN15]), but such a
development is beyond the scope of this work. We point out that forms of continuity
at higher types for T are less canonical, cf. [Tro73]. Nonetheless, we shall show
in Section 8.6 that, for every CT coterm there is a T term computing the same
functional (in N).

8.3. A ‘term model’ à la Tait and strong normalisation. It is an immediate
consequence of our results that CT -coterms are weakly normalising.

Proposition 85. If t ∈ HR then t is weakly normalising.

Proof sketch. We proceed by induction on the type of t:

• For t of typeN , we rely on the confluence result, Theorem 51, and normality
of numerals.

• If t has type σ → τ , then for some/any s ∈ HRσ we have that ts ∈ HRτ , by
definition, and so is weakly normalising by the inductive hypothesis. We
define a new normalisation sequence for t from one for ts by induction on
its length, simply ignoring reductions that are not entirely inside t. �

Thus, by Theorem 78, we have:

Corollary 86. Each closed CT coterm is weakly normalising. Moreover, any CTn

coterm is provably weakly normalising inside RCA0 + IΣ0
n+2.

Given that we also have a confluence for CT , we are not far from a strong nor-
malisation result. It would be interesting if we could define an increasing measure
for reduction to this end, perhaps induced by the progressing thread criterion. In-
stead, we show that Tait’s ‘convertibility’ predicates may be suitably adapted for
this purpose, yielding a minimal model for CT . We will not formalise our ex-
position within arithmetic, but expect it to go through in a suitable fragment of
second-order arithmetic.

We will define a minimal ‘coterm model’ in a similar way to Tait’s term models of
sytem T [Tai67]. This is complementary to our development of HR and HE: while
those structures were ‘over-approximations’ of the language of CT , the structure
we are about to define is an ‘under-approximation’, by virtue of its definition.
Naturally, the point is to show that the approximation is, in fact, tight.

Definition 87 (Convertibility). We define the following sets of closed CT -coterms:

• CN := {t : N | t is strongly normalising}.
• Cσ→τ := {t : σ → τ | ∀s ∈ Cσ. ts ∈ Cτ}.

We can adapt suitable versions of Proposition 85 and Proposition 65 to the
setting of C:

Proposition 88. We have the following:

(1) If t ∈ Cσ→τ and s ∈ Cσ then ts ∈ Cτ . (C closed under application)
(2) If t ∈ Cτ and t t′ then t′ ∈ Cτ . (C closed under reduction)
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(3) If t ∈ Cτ then t is strongly normalising. (C ⊆ SN)

Proof. (1) is immediate from the definition of C.
(2) is proved by induction on type:

• Suppose t ∈ CN and t t′. By definition t is strongly normalising, so also
t′ is strongly normalising, and so t′ ∈ CN by definition.

• Suppose t ∈ Cσ→τ and t  t′. Let s ∈ Cσ. Then ts  t′s by closure of
 under contexts, and so t′s ∈ Cτ by the inductive hypothesis. Since the
choice of s ∈ Cσ was arbitrary, we have t′ ∈ Cσ→τ .

Finally, (3) is also proved by induction on type:

• Suppose t ∈ CN . Then t is strongly normalising by definition.
• Suppose t ∈ Cσ→τ and, for contradiction, let t = t0  t1  · · · be a
diverging reduction sequence. Then for some/any s ∈ Cσ, we have that
ts = t0s t1s · · · is also a diverging reduction sequence, contradicting
the inductive hypothesis. �

Note that the strong normalisation condition for CN is crucial to justify closure
under reduction, (2), at base type N . In contrast, for HRN we only asked for
conversion to a numeral, and so the analogous property of closure under conversion
was a consequence of symmetry.

Let us call a coterm t neutral if any redex of ts is either entirely in t or entirely
in s. We also have the following expected characterisation of convertibility:

Lemma 89 (Convertibility lemma). Let t be neutral. If ∀t′  t. t′ ∈ Cτ , then
t ∈ Cτ .

Proof. We proceed by induction on type. The base case, for type N , follows by
definition of strong normalisation, so let us assume,

(26) ∀t′  t. t′ ∈ Cσ→τ

and assume that the statement of the Proposition holds for all smaller types (IH),
in particular σ and τ .

To prove t ∈ Cσ→τ , let s ∈ Cσ and we show that ts ∈ Cτ . In fact, we will show,

(27) ∀r  ts. r ∈ Cτ

whence ts ∈ Cτ follows by the inductive hypothesis (IH) for τ . Since s ∈ Cσ and so
is strongly normalising by Proposition 88, we may prove (27) by a sub-induction
on the size of the complete reduction tree of s, say RedTree(s).20

• Suppose r = t′s, so t t′. Then t′ ∈ Cσ→τ by (26), and so t′s = r ∈ Cτ .
• Suppose t = ts′, so s s′. Then we have RedTree(s′) < RedTree(s) so by
the sub-inductive hypothesis (27) we have ∀r′  ts′. r′ ∈ Cτ . Thus by the
main inductive hypothesis (IH) for τ , we have ts′ = r ∈ Cτ .

In all cases we have that r ∈ Cτ , yielding (27) as required. �

Now we can go on to define a non-converting branch, just like we did for the
standard model N in Proposition 35 (non-total branch), and for HR (also HE) in
Definition 74 (non-hereditarily-recursive branch). As in the latter case, we need to
prove well-definedness of such a branch, cf. Observation 73 and Proposition 75.

20Since regular progressing coterms are, in particular, finite applications of coderivations, con-
stants and variables (i.e. farcs), there are only finitely many redexes in a CT coterm, and so the
reduction tree is finitely branching. By König’s lemma, the complete reduction tree is thus finite.
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Proposition 90 (Preservation of convertibility). Let ~r ∈ C~ρ and ~s ∈ C~σ. We have
the following:21

• If s ∈ Cσ then id s ∈ Cσ.
• If r ∈ Cρ, s ∈ Cσ and t ~r s r ~s ∈ Cτ then ex t ~r r s~s ∈ Cτ .
• If s ∈ Cσ and t ~s ∈ Cτ then wk t ~s s ∈ Cτ .
• If s ∈ Cσ and t ~s s s ∈ Cτ then cntr t ~s s ∈ Cτ .
• If t0 ~s ∈ Cσ and ∀s ∈ Cσ. t1 ~s s ∈ Cτ then cut t0 t1 ~s ∈ Cτ .
• If r ∈ Cρ→σ and t0 ~s ∈ Cρ and ∀s ∈ Cσ. t1 ~s s ∈ Cτ then L t0 t1 ~s r ∈ Cτ .
• If ∀s ∈ Cσ. t ~s s ∈ Cτ then R t ~s ∈ Cσ→τ .

• 0 ∈ CN .
• If s ∈ CN then ss ∈ CN .
• If s ∈ CN and t0 ~s ∈ Cτ then cond t0 t1 ~s 0 ∈ Cτ .
• If s ∈ CN and t1 ~s s ∈ Cτ then cond t0 t1 ~s ss ∈ Cτ .

Proof. We proceed by induction on RedTree(~s)+RedTree(s)+RedTree(~r)+RedTree(r).
In most cases there is a redex at the head, so we shall directly use the conversion
lemma, rather showing that any term obtained from reduction is convertible.

• id s id s′ ∈ Cσ by the inductive hypothesis, and id s s ∈ Cσ by assump-
tion. Thus id s ∈ Cσ by Lemma 89.

• ex t ~r r s~s  ex t ~r′ r′ s′ ~s′ ∈ Cτ by inductive hypothesis, and ex t ~r r s~s  
t ~r s r ~s ∈ Cτ by assumption. Thus ex t ~r r s~s ∈ Cτ by Lemma 89.

• wk t ~s s  wk t ~s′ s′ ∈ Cτ by inductive hypothesis, and wk t ~s s  t ~s ∈ Cτ
by assumption. Thus wk t ~s s ∈ Cτ by Lemma 89.

• cntr t ~s s  cntr t ~s′ s′ ∈ Cτ by inductive hypothesis, and cntr t ~s s  
t ~s s s ∈ Cτ by assumption. Thus cntr t ~s s ∈ Cτ by Lemma 89.

• cut t0 t1 ~s  cut t0 t1 ~s
′ ∈ Cτ by inductive hypothesis, and cut t0 t1 ~s  

t1 ~s (t0 ~s) ∈ Cτ by assumptions. Thus cut t0 t1 ~s ∈ Cτ by Lemma 89.
• L t0 t1 ~s r  L t0 t1 ~s

′ r′ ∈ Cτ by inductive hypothesis, and L t0 t1 ~s r  
t1 ~s (r (t0 ~s)) ∈ Cτ by assumptions and closure of C under application,
Proposition 88.(1). Thus L t0 t1 ~s r ∈ Cτ by Lemma 89.

• To show R t ~s ∈ Cσ→τ , let s ∈ Cσ and we shall show that R t ~s s ∈ Cτ .
We proceed by induction on RedTree(s) (as well as RedTree(~s)). R t ~s s  
R t ~s′ s′ ∈ Cτ by inductive hypothesis, and R t ~s s  t ~s s ∈ Cτ by assump-
tion. Thus R t ~s s ∈ Cτ by Lemma 89, as required.

• 0 ∈ CN since it is already normal.
• There is no reduction at the head of ss, so any reduction sequence for ss
projects to one for s, and so terminates by assumption.

• cond t0 t1 ~s 0  cond t0 t1 ~s
′ 0 ∈ Cτ by inductive hypothesis, and cond t0 t1 ~s 0  

t0 ~s ∈ Cτ by assumption. Thus cond t0 t1 ~s 0 ∈ Cτ by Lemma 89.
• cond t0 t1 ~s ss  cond t0 t1 ~s

′ ss′ ∈ Cτ by inductive hypothesis, and cond t0 t1 ~s ss  
t1 ~s s ∈ Cτ by assumption. Thus cond t0 t1 ~s ss ∈ Cτ by Lemma 89. �

As a consequence of our results in Sections 6 and 7, observe the following:

Observation 91. If s ∈ CN then s reduces to a unique numeral.

Proof. Since CN contains only CT -coterms, we have as a special case of Theorem 78
that s ≈ n for some n ∈ N. By confluence, namely Corollary 60, we have that n is
unique and furthermore s ∗ n. �

21All rules have type as presented in Figures 3, 5 and 8.
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In fact, both our weak normalisation argument and our confluence result seem
to be crucial for establishing the above property of normal elements of CN , as well
as the fact that C ‘under-approximates’ the class of CT -coterms. It is otherwise not
immediate how we rule out possibilities such as the coterm · · · sssx, reached at the
‘limit’ of reducing the following (non-progressing) coderivation (applied to x):22

(28) s

N ⇒ N

...
cut •

N ⇒ N
cut •

N ⇒ N

This is the same issue that we raised in Section 6.2, and in particular another prob-
lematic example was given in Remark 44, in the form of a coterm cond 0 1 (cond0 1 (· · · )).
In contrast to that coterm, where there were two consistent interpretations in the
standard model (0 or 1), the coterm · · · sssx has no consistent interpretation in N.

Theorem 92 (Convertibility for CT ). Any CT-coderivation t : ~σ ⇒ τ is in C~σ→τ .

Proof. Suppose for contradiction we have ~s ∈ C~σ such that t ~s /∈ Cτ . We define a
branch (ti : ~σi ⇒ τi)i of t and inputs ~si ∈ C~σi

s.t. ti ~si /∈ Cτi by induction on i just
like in Definition 74 (or the proof of Proposition 35). The only difference is that we
use Proposition 90 above for preservation in C rather than the analogous closure
properties for HR (or N).

There is one subtlety, which is the treatment of the cond case. Suppose we have
a derivation,

t

~σ ⇒ τ

t′

~σ,N ⇒ τ
cond

~σ,N ⇒ τ

and ~si = (~s, s) with ~s ∈ C~σ, s ∈ CN and cond t t′~s s /∈ Cτ . Since s ∈ CN we have
from Observation 91 that s reduces to a unique numeral n. We will show that,

• if n = 0 then t ~s /∈ Cτ ; and,
• if n = m+ 1 then there is some r ∈ CN reducing to m with t′~s r /∈ Cτ ;

by induction on RedTree(~s) + RedTree(s). By the conversion lemma, Lemma 89,
there must be a reduction from cond t t′ ~s s not reaching Cτ . Let us consider the
possible cases:

• If s = 0 and cond t t′ ~s s  t ~s /∈ Cτ then we are done.
• If s = sr and cond t t′ ~s s  t′~s r /∈ Cτ then we are done. (Note that such r
must strongly normalise to m, and so in particular r ∈ CN ).

• If cond t t′ ~s s  condt t′~s′s′ /∈ Cτ , then by the inductive hypothesis either,
– n = 0 and t ~s′ /∈ Cτ , so t ~s /∈ Cτ by Proposition 88.(2); or,
– n = m+ 1 and there is some r ∈ CN reducing to m s.t. t′ ~s′ r /∈ Cτ , so

t′~s r /∈ Cτ by Proposition 88.(2).

From here, any progressing thread (N i)i≥k along (ti)i yields a sequence of
coterms (ri ∈ CN)i≥k that, under normalisation, induces an infinitely often de-
scending sequence of natural numbers, yielding the required contradiction. �

22Note that no induction on ‘size’ is available for general (non-wellfounded) coterms.
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Since C is closed under application, Proposition 88.(1), we inherit C membership
for all CT -coterms. Since elements of C are strongly normalising, Proposition 88.(3),
and since reduction is confluent, Theorem 51, we finally have:

Corollary 93 (Strong normalisation for CT ). Any closed CT coterm strongly
normalises to a unique normal form.

8.4. Towards an infinitary λ-calculus for CT and cut-elimination. From the
point of view of the Curry-Howard correspondence, rules of the sequent calculus
are usually associated with meta-level term forming operations for the λ-calculus,
rather than comprising constants in their own right. Let us describe this in some
more detail here.

First, the appropriate notion of term is defined as follows:

• 0 is a term of type N .
• p is a term of type N → N .23

• If t is a term of type σ → τ and s is a term of type σ then (ts) is a term of
type τ .

• If t is a term of type τ and x is a variable of type σ then λxt is a term of
type σ → τ .

• If r is a term of typeN and s, t are terms of type τ then if r = 0 then s else t
is a term of type τ .

From here the typing rules of the sequent calculus can be recast in annotated style,
with variable annotations on the LHS and term annotation on the RHS:

~x : ~ρ, y : σ, x : ρ, ~y : ~σ ⇒ t(~x, y, x, ~y) : τ
ex

~x : ~ρ, x : ρ, y : σ, ~y : ~σ ⇒ t(~x, x, y, ~y) : τ

~x : ~σ, x0 : σ, x1 : σ ⇒ t(~x, x0, x1) : τ
cntr

~x : ~σ, x : σ ⇒ t(~x, x, x) : τ

id

x : σ ⇒ x : σ

~x : ~σ ⇒ t(~x) : τ
wk

~x : ~σ, x : σ ⇒ t(~x) : τ

~x : ~σ, x : σ ⇒ t(~x, x) : τ
R

~x : ~σ ⇒ λx.t(~x, x) : σ → τ

~x : ~σ ⇒ s(~x) : σ ~x : ~σ, x : σ ⇒ t(~x, x) : τ
cut

~x : ~σ ⇒ t(~x, s(~x)) : τ

~x : ~σ ⇒ r(~x) : ρ ~x : ~σ, x : σ ⇒ t(~x, x) : τ
L

~x : ~σ, y : ρ → σ ⇒ t(~x, y r(~x)) : τ

0

⇒ 0 : N
p

x : N ⇒ px : N

~x : ~σ ⇒ s(~x) : τ x : ~σ, y : N ⇒ t(~x, y) : τ
cond

~x : ~σ, y : N ⇒ if y = 0 then s(~x) else t(~x, py) : τ

As we mentioned from the start, the reason for not pursuing such an approach
is that this association of a term to a derivation is not continuous and so does not
a priori produce a well-defined coterm from arbitrary coderivations. Consider, for
instance, the operation on terms induced by the cut rule: we may have to go further
along the right branch to eventually print the root of any associated coterm. As an
extreme example (an adaptation of) the coderivation from (28),

p

N ⇒ N

...
cut •

N ⇒ N
cut •

N ⇒ N

23The interpretation of p is ‘predecessor’ in the standard model: pN(0) := 0 and pN(n+1) := n.
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has no well-defined coterm representation induced by the type system above. One
of the reasons for employing our combinatory approach was simply to avoid such
problems; however we also point out that our notion of reduction from Section 6
gives us a consistent way to interpret the derivation above as an infinitary coterm:
‘at the limit’ it normalises to · · · pppx (after application to x). It would be inter-
esting to make this idea more formal, in particular using tools from infinitary term
rewriting (see, e.g., [KSSdV05, KS11, Sim12]).

We should mention also that the system and (co)terms above, as presented, are
not strongly normalising, due to the presence of predcessor, p, instead of successor,
s, and the corresponding cond rule. An appropriate treatment should seek to avoid
this issue.

On a similar subject, the Curry-Howard correspondence also motivates the in-
vestigation of cut-elimination for our type system, cf. [BDS16, BDKS20]. The
relationship to normalisation for our reduction system is not entirely clear, since
the way we associate (co)derivations and (co)terms means that reduction is not
internal for coderivations, i.e. if t  s and t is a coderivation, s is not necessar-
ily a coderivation. This is related to the fact that we, strictly speaking, distin-
guish cut and application. On the other hand it is this distinction that admits the
aforementioned continuity property, as well as admitting the possibility of cut-free
normal (co)terms. The precise relationship between normalisation of coterms and
cut-elimination subsumes that for minimal logic, between normalisation for natural
deduction (or simply typed λ-calculus) and cut-elimination in the sequent calculus,
for which there is a substantial literature. See, e.g., [TS00] for a detailed account
of such matters.

We should mention that it would make sense, for the pursuit of cut-elimination,

to replace the s initial sequent with a corresponding rule,
~σ ⇒ N

s

~σ ⇒ N
, with the obvious

interpretation, to admit an appropriate cut-reduction against the conditional rule,
cond.

8.5. Incorporating fixed point operators. We could naturally extend our type
system by (co)inductive fixed points, similarly to work such as [Cla10] for intuition-
istic logic and [Bae12] for linear logic. Indeed, as we mentioned in the introduction,
the circular proof theory of linear logic type systems with fixed points is increasingly
well-developed, e.g. [BDS16, DS19, BDKS20].

At the level of expressivity, T already has the capacity to express a range of
(co)inductive types. In particular, being the type theoretic counterpart to Peano
Arithmetic, T admits recursion on effective well-orders of order type < ε0 (see

[Kre51, Tai68]), and so can encode (co)inductive types of closure ordinal ω ...
ω

.24

Similarly to [BDS16], extensions of CT with (co)inductive types may be duly
defined by demanding progressing threads on the LHS on least fixed points, or on
the RHS on greatest fixed points. In terms of conservativity over T , the pertinent
question is whether the encoding of (co)inductive types in T admits a corresponding
coding of circular derivations, in particular preserving ancestry and the progressing
thread criterion. This does not seem to be too technical, but a comprehensive
treatment is beyond the scope of this work.

24Note, incidentally, that in a higher typed setting, coinductive types may themselves be
encoded as inductive types.
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However let us consider one pertinent example arising from the aforementioned
work [KPP21], where a circular version of T was presented with a slightly different
type language. In particular they include a Kleene star operator for list formation,
along with the accompanying rules (ancestry indicated by colours):

~σ ⇒ τ ~σ, σ, σ∗ ⇒ τ
∗l

~σ, σ∗ ⇒ τ
∗r

⇒ τ∗
~σ ⇒ τ ~σ ⇒ τ∗

∗r

~σ ⇒ τ∗

The semantics of these constants are intuitive, and explained in [KPP21]. Being a
least fixed point, the associated progressing thread condition is that each infinite
branch has an infinite thread on a ∗-type on the LHS that is infinitely often prin-
cipal. Semantically this induces a similar totality argument to ours for N -threads,
cf. Proposition 35: at a progress point the corresponding list decreases in length.

As suggested above, we may duly encode the fixed point ∗, along with its rules
and corresponding notion of progressing coderivation, within our type system for
CT . First, temporarily using product types to ease the exposition, we may em-
bed each type σ∗ into a type N × (N → σ).25 Semantically the first component
represents the length of the list, and the second component represents a stream
from which the list is extracted, where we do not care about the values of elements
beyond the length specified by the first component. Using this embedding we may
duly derive the translations of the typing rules above. The first ∗r rule is translated
to the following derivation:

0

⇒ N

0τ

⇒ τ
wk

N ⇒ τ
R

⇒ N → τ
×r

⇒ N × (N → τ )

Here 0τ is just the 0 function of type τ , and so we set the empty τ -list to be just
the stream (0τ , 0τ , . . . ). Note that it would not matter if we set it to something
else, since the first component tells us to ignore elements beyond the length, in this
case the entire stream. The second ∗r rule is translated to the following derivation:

~σ ⇒ τ ~σ ⇒ N × (N → τ )

s

N ⇒ N

id

τ ⇒ τ

id

N ⇒ N
id

τ ⇒ τ
L

N → τ,N ⇒ τ
cond

τ,N → τ,N ⇒ τ
R

τ,N → τ ⇒ N → τ
×r

τ, N,N → τ ⇒ N × (N → τ )
×l

τ,N × (N → τ ) ⇒ N × (N → τ )
2cut

~σ ⇒ N × (N → τ )

25Note that this embedding also induces a well-behaved notion of type level in the presence of
Kleene ∗: we may set lev(σ∗) := lev(σ), as long as lev(σ) > 0. The type N∗ may also be embedded
at level 0 using a coding of sequences, but to preserve ancestry, similarly to the current encoding,
we should nonetheless encode it as a pair N×N , the first component still representing the length.
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Finally the ∗l rule is translated to the following derivation:

~σ ⇒ τ
wk

~σ,N → σ ⇒ τ

0

⇒ N
id

σ ⇒ σ
L

N → σ ⇒ σ

s

N ⇒ N

id

N ⇒ N
id

σ ⇒ σ
L

N → σ,N ⇒ σ
cut

N → σ,N ⇒ σ
R

N → σ ⇒ N → σ ~σ, σ, N,N → σ ⇒ τ
cut

~σ, σ,N,N → σ ⇒ τ
cut

~σ,N,N → σ ⇒ τ
cond

~σ,N,N → σ ⇒ τ

The verification of the semantics of these derivations is left as an exercise to the
reader. Note that, as indicated by the colouring of type occurrences, ancestry is
preserved by this translation. In particular, for the translation of σ∗, ancestry and
progressiveness are preserved on the first component (the blue N) of a left rule.

It should be straightforward to formalise the ideas above to obtain an embedding
of the system from [KPP21] into ours, thereby inheriting similar results, but a com-
prehensive development is beyond the scope of this work. It would be interesting,
for future work, to more generally study extensions of CT by suitable fixed points,
least and greatest, and in particular show that they may be interpreted back into
CT using translations like the ones above. The key point above was to use the
first component (length) to store a recursive parameter on which ancestry is pre-
served. For the case of Kleene ∗ this is straightforward since its closure ordinal is
ω, however we must be more careful for fixed points with greater closure ordinals:
while we can indeed code recursive ordinals by natural numbers, we must be able
to implement ‘circular recursion’ on them in a way that preserves ancestry and
progressiveness. Naturally, some use of higher types should be required, trading off
ordinal complexity for abstraction complexity, cf. [Kre51, Tai68, Par72, Bus95].

8.6. ‘Cyclic recursive functionals’ are Gödel primitive recursive. Besides
the relationships between CT and T as theories and in the various models we have
discussed, like HR and HE, it is natural to ask about their relationships in the
standard model N. In this section we shall show that the interpretations of their
terms in N in fact comprise the same algebra of functionals, by reduction of CT
computability to some form of higher type recursion on ordinals smaller than ε0.

Recall that the Gödel primitive recursive functionals, PRF, are just the interpre-
tations of T terms in N, i.e. {tN | t a T -term}. Now writing CRF (‘cyclic recursive
functionals’) for the interpretations of CT terms in N, i.e. {tN | t a CT -coterm},
the main result of this subsection is:

Theorem 94. CRF = PRF. I.e. for every CT coterm there is a T term computing
the same functional (in N) and vice versa.

Notice that the right-left inclusion follows readily from the encoding of primitive
recursion from Example 23, so we concentrate on the left-right inclusion. The
statement above could indeed be refined in terms of type level, as for the main
results in this work, but we shall drop such a specialisation for the sake of brevity.

For the remainder of this section we shall work inside the standard model N. We
employ (higher-order) recursion theoretic methods, and in particular take advantage
of some well-known meta-recursion-theoretic results.
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8.6.1. Recursion schemes on well-founded relations. Let ⊳ be a well-founded strict
partial order on N. We say that f : N → τ is obtained from g : N → (N → τ) → τ
by recursion on ⊳ (henceforth Rec(⊳)) if:

(29) f(n) = g(n, λz ⊳ n.f(z))

Here λ, as expected, refers to abstraction of arguments; the ‘guarding’ of the ab-
straction by ⊳ is formally defined as follows,

(λz ⊳ n.f(z))(m) :=

{

f(m) if m⊳ n

0τ otherwise

where 0τ is the ‘zero’ functional of type τ , setting 0N := 0 and 0σ→τ : x 7→ 0τ .
We say that {fi : N → τi}

k
i=1 are obtained by simultaneous recursion on ⊳

(henceforth SimRec(⊳)) from {hi : N → (N → τ1) → · · · → (N → τk)}
k
i=1 if:

(30) fi(n) = hi(n, λz ⊳ n.f1(z), . . . , λz ⊳ n.fk(z))

The following is well-known:

Proposition 95 (Closure under simultaneous recursion). If PRF is closed under
Rec(⊳) then PRF is also closed under SimRec(⊳).

Proof sketch. For simplicity, we shall make use of product types, thanks to usual
primitive recursive (de)pairing operations (see, e.g., [Tro73] for more details). For
xi of type σi, we will write 〈x1, . . . , xk〉 for an element of type σ1 × · · · × σk, and
conversely for a list z of type σ1 × · · · × σk we shall write πi(z) for the ith element
of the list.

Let f1, . . . , fk be as above, satisfying (30), and define f : N → (τ1× · · ·× τk) by:

f(n) := 〈f1(n), . . . , fk(n)〉

Note that we have,

f(n) = 〈fi(n)〉
k
i=1

= 〈hi(n, λz ⊳ n.f1(z), . . . , λz ⊳ n.fk(z))〉
k
i=1

= 〈hi(n, π
′
1(λz ⊳ n.f(z)), . . . , π′

k(λz ⊳ n.f(z))))〉
k

i=1

where π′
j : (N → (τ1 × · · · × τk)) → N → τj by π′

j(g, n) := πj(g(n)). This is an
instance of Rec(⊳), so f ∈ PRF. From here we indeed have, for j = 1, . . . , k, that
fj = λn.(πj(f(n))) ∈ PRF. �

8.6.2. Closure under recursion on provably well-founded orders. In this subsection
we shall assume a standard primitive recursive representation of the ordinals up to
ε0 as natural numbers, written α, β etc., and the usual (strict) well-order on them,
written ≺. Note that, while we may indeed represent ≺ primitive recursively in,
say, RCA0, we certainly cannot prove that it is a well-order on ε0 even in ACA0,
being its proof-theoretic ordinal.

Recalling the recursion schemes of the previous subsubsection, we shall write
simply Rec(α) for recursion on ≺ restricted to the initial segment α of ε0, and
Rec(≺ ε0) for the union of Rec(α) for α ≺ ε0.

The following is a well-known result, originally due to Kreisel [Kre59] by means
of Gödel’s Dialectica functional interpretation (see also [Tai65, How80]):

Theorem 96 (Kreisel). If α ≺ ε0 then PRF is closed under Rec(α).
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We want to eventually reduce well-founded arguments on coderivations to some
sort of recursion on ordinals ≺ ε0. For this, we shall exploit the notion of ‘provably
well-founded relations’, going back to Gentzen:

Definition 97 ((Provably) inductive relations). A relation ⊳ is inductive if the
following holds: if whenever ∀y ⊳ xX(y) we have X(x), then ∀xX(x).
⊳ is provably inductive in PA if,

PA(X) ⊢ ∀x(∀y ⊳ xX(y) ⊃ X(x)) ⊃ ∀xX(x)

where X is some fresh unary predicate symbol added to PA.

Gentzen already showed that any recursive well-order ⊳ on N provably induc-
tive in PA has order type some α ≺ ε0 [Gen43]. This result was arithmetised by
Takeuti (and independently Harrington), who further showed the existence of an
order-preserving embedding that is ≺ ε0-recursive (see [Tak87, FS95]), i.e. in PRF
(by Kreisel’s result above, Theorem 96). For our results we will need a generali-
sation of this result to well-founded partial orders, which are not necessarily total.
Naturally every well-founded partial order can be order-preserving embedded into
the ordinals, by well-founded induction, but, again, we need an arithmetised ver-
sion of such a result to extract a suitable embedding in PRF. We expect that
the particular well-founded partial orders we consider admit suitable arithmetis-
able linearisations, so as to directly apply Takeuti’s and Harrington’s result, but
thankfully a more than suitable generalisation for well-founded partial orders has
already been obtained by Arai:

Theorem 98 ([Ara98]). Let ⊳ be a primitive recursive well-founded strict partial
order on N that is provably inductive in PA. Then there is some α⊳ ≺ ε0 and some
µ⊳ : N → N in PRF with x⊳ y =⇒ µ⊳(x) ≺ µ⊳(y) ≺ α⊳.

In fact Arai’s result is much stronger: if ⊳ is elementary recursive, then so is
f⊳, and the result above can actually be demonstrated within elementary recursive
arithmetic, in particular I∆0 + exp. As it happens, the relations we shall consider
(those induced by CT coderivations) will indeed all be elementary recursive, but
we shall not need such a strengthening of Theorem 98.

Corollary 99. Let ⊳ be as in Theorem 98 above. Then PRF is closed under
Rec(⊳) and SimRec(⊳).

Proof. By Proposition 95 it suffices to show closure under Rec(⊳). Suppose g :
N → (N → τ) → τ is in PRF and we will show that f : N → τ is in PRF where:

f(n) = g(n, λz ⊳ n.f(z))

Letting µ⊳ and α⊳ ≺ ε0 be as obtained by Theorem 98 above, let us write:

f ′(α, n) =

{

f(n) if µ(n) ≺ α

0τ otherwise

Notice that, as long as µ(n) ≺ α ≺ α⊳, we have:

f ′(α) = λn.g(n, f ′(µ(n)))
= λn.g(n, (λβ ≺ α.f ′(β))(µ(n)))

This is an instance of Rec(α⊳) and so f ′ ∈ PRF by Theorem 96. From here we
have f(n) = f ′(µ⊳(n) + 1, n), and so indeed f ∈ PRF, as required. �
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8.6.3. A well-founded order on ‘runs’ of progressing coderivations. For the remain-
der of this subsection, let us fix a CT coderivation t whose (finitely many) distinct

sub-coderivations are {ti : ~Ni, ~σi ⇒ τi}
n
i=1, with all N occurrences indicated.

Let T ⊆ {0, 1}∗ be the underlying (infinite) coderivation tree of t, and let
{T1, . . . , Tn} partition T into the sets of nodes rooting t1, . . . , tn respectively. Notice
that all these sets are provably recursive (given t) in even RCA0.

We define a binary relation _ on T × N
∗ (i.e. _ ⊆ (T × N

∗) × (T × N
∗)) as

follows. (u, ~m) _ (v, ~n) if:

• v is a child of u;
• u roots some ti (i.e. u ∈ Ti) and v roots some tj (i.e. v ∈ Tj).

• |~m| = | ~Ni| and |~n| = | ~Nj |.
• if Njl is an immediate ancestor of Nik then nl ≤ mk.
• if Nik is principal for a cond step and Njl is its immediate ancestor, then
nl < mk.

We do not impose any other constraints on _.

Example 100 (Examples of ‘runs’). Revisiting Example 23, suppose t is the coderiva-
tion on the RHS of (7). We have:

• (ε, 6) _ (1, 5) _ (10, 5).
• (ε, 6) _ (1, 3) _ (10, 2).
• (ε, 6) _ (1, 2) _ (11, 8).

Revisiting Section 4.6, now suppose t is the coderivation from (10). We have:

• (ε, 5, 3) _ (0, 5, 5, 3) _ (00, 5, 3) _ (000, 3)
• (ε, 5, 3) _ (0, 5, 4, 3) _ (01, 4, 4, 3) _ (010, 4, 4) _ (0100, 4) _ (01001, 2)
• (ε, 5, 3) _ (0, 5, 5, 3) _ (01, 3, 5, 2) _ (011, 3, 4, 0) _ (0110, 4, 0)
• (ε, 5, 3) _ (0, 2, 4, 3) _ (01, 1, 4, 3) _ (011, 1, 4, 1) _ (0111, 1, 9)

Note that _ is clearly a polynomial-time recursive relation, and in particular
is provably ∆0

1 in even RCA0. Since we have fixed t in advance, we may actually
establish the well-foundedness of _ within RCA0:

Theorem 101 (RCA0). _ is terminating, i.e. ∀f.∃n.f(n) 6_ f(n+ 1).

Proof sketch. Suppose, for contradiction, that f : N → N with ∀n.f(n) _ f(n+1).
Writing f(n) = (un, ~mn), we have that (un)n∈ω is (the tail of) a branch of t.
By Proposition 34 (itself from [Das20]), RCA0 proves that t is progressing, and
so we have an infinitely progressing thread along (un)n∈ω. From this thread we
can extract from (~mn)n∈ω a sequence of natural numbers (mnin)n∈ω corresponding
to the thread. However, by construction, (mnin)n∈ω is monotone decreasing (by
induction on n) and has no least element (since it follows a progressing thread). �

Let us note that the uniform version of the above result, quantifying over all CT
coderivations t, requires IΣ0

2, cf. [KMPS19a, Das20].

Corollary 102 (ACA0). ^ is inductive, i.e. (∀x(∀y ^ xX(y) ⊃ X(x)) ⊃ ∀xX(x)).

Proof. Suppose, for contradiction, that ¬X(n) and ∀x(∀y ^ xX(y) ⊃ X(x)), i.e.
∀x(¬X(x) ⊃ ∃y ^ x¬X(y)). Since _ is (provably) recursive, we may define ni

with n0 = n and ni+1 least such that ni _ ni+1 and ¬X(ni+1), recursively in i.
By comprehension we may have the graph of the function f(i) := ni for i ∈ ω,
contradicting termination, Theorem 101 above. �
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Let us henceforth write
+

_ for the transitive closure of _.

Corollary 103. PRF is closed under Rec(
+

^), and so also SimRec(
+

^).

Proof sketch. By Corollary 102 above, we immediately have that
+

^ is inductive, a
fortiori, provably in ACA0, and so also in PA(X) by conservativity. The result now
follows by Corollary 99. �

8.6.4. Main result. We continue to work with the fixed regular coderivation t from

the previous subsubsection and its distinct sub-coderivations {ti : ~Ni, ~σi ⇒ τi}
n
i=1.

Proof of Theorem 94. We shall assume some basic primitive recursive coding and
decoding 〈·〉 of lists, and suppress the explicit functions associated with it, namely
those adding and extracting elements from lists.

We show that the functionals {gi : N → ~σi → τi}
n
i=1 with gi(〈u, ~m〉) := tNi (~mi),

as long as u ∈ Ti, may be obtained by SimRec(
+

^).

• If ti has form idN
N ⇒ N

then gi(〈u,m〉) = m.

• If ti has form idσ
σ ⇒ σ

with σ 6= N then gi(〈u〉) = idNσ .

Henceforth, we shall always assume that σ 6= N .

• If ti has form
tj

~N,~σ ⇒ τ
wkN

~N,N, ~σ ⇒ τ

then:

gi(〈u, ~m,m〉) = gj(〈u0, ~m〉)
= (λz

+

^ 〈u, ~m,m〉 .gj(z))(〈u0, ~m〉)

Henceforth, we shall simply write recursive calls more compactly as gj(〈u0, ~m0〉)
or gk(〈u1, ~m1〉) when 〈u0, ~m0〉

+

^ 〈u, ~m〉 and 〈u1, ~m1〉
+

^ 〈u, ~m〉, rather than fully
writing (λz

+

^ 〈u, ~m〉 .gj(z))(〈u0, ~m0〉) or (λz
+

^ 〈u, ~m〉 .gk(z))(〈u1, ~m1〉).

• If ti has form
tj

~N,~σ ⇒ τ
wk

~N,~σ, σ ⇒ τ

then gi(〈u, ~m〉) = wkN(gj(〈u0, ~m〉)), where the

wk constant has the appropriate type, i.e. (~σ → τ) → ~σ → σ → τ .

Henceforth, we shall omit the types of the constants we use, being determined by
the context in which it appears.

• If ti has form
tj

~N,N,N, ~σ ⇒ τ
cntrN

~N,N, ~σ ⇒ τ

then gi(〈u, ~m,m〉) = gj(〈u0, ~m,m,m〉).
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• If ti has form
tj

~N,~σ, σ, σ ⇒ τ
cntr

~N,~σ, σ ⇒ τ

then gi(〈u, ~m〉) = cntrN(gj(〈u0, ~m〉)).

• If ti has form
tj

~N,~σ ⇒ N

tk

~N,N, ~σ ⇒ τ
cutN

~N,~σ ⇒ τ

then

gi(〈u, ~m〉) = λ~x.gk(〈u1, ~m, gj(〈u0, ~m〉 , ~x)〉 , ~x)

• If ti has form
tj

~N,~σ ⇒ σ

tk

~N,~σ, σ ⇒ τ
cut

~N,~σ ⇒ τ

then

gi(〈u, ~m〉) = cutN(gj(〈u0, ~m〉), gk(〈u1, ~m〉))

• If ti has form
tj

~N,~σ ⇒ ρ

tk

~N,N, ~σ ⇒ τ
LN

~N,~σ, ρ → N ⇒ τ

then

gi(〈u, ~m〉) = λ~x.λh.(gk(〈u1, ~m, h(gj(〈u0, ~m〉 , ~x))〉 , ~x))

• If ti has form
tj

~N,~σ ⇒ ρ

tk

~N,~σ, σ ⇒ τ
L

~N,~σ, ρ → σ ⇒ τ

then

gi(〈u, ~m〉) = LN(gj(〈u0, ~m〉), gk(〈u1, ~m〉))

• If ti has form
tj

~N,N, ~σ ⇒ τ
RN

~N,~σ ⇒ N → τ

then gi(〈u, ~m〉) = λ~x.λm.gj(〈u0, ~m,m〉 , ~x)

• If ti has form
tj

~N,~σ, σ ⇒ τ
R
~N,~σ ⇒ σ → τ

then gi(〈u, ~m〉) = RN(gj(〈u0, ~m〉))

• If ti has form 0
⇒ N

then gi(〈u〉) = 0.

• If ti has form s

N ⇒ N
then gi(〈u,m〉) = sm.
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• If ti has form
tj

~N,~σ ⇒ τ

tk

~N,N, ~σ ⇒ τ
cond

~N,N, ~σ ⇒ τ

then

gi(〈u, ~m,m〉) =

{

gj(〈u0, ~m〉) if m = 0

gk(〈u1, ~m,m− 1〉) otherwise

where the conditional “if then else” operation is obtained, as usual, by
primitive recursion.

From here we have tNi (~m, ~x) = gi(〈u, ~m〉 , ~x), for some u ∈ Ti (say the least one), so
tNi ∈ PRF for i = 1, . . . , n. Since our initial CT coderivation t is just some ti, we
thus indeed have tN ∈ PRF, so in particular tN is computed by a term of T . �

9. Conclusions

In this work we presented a circular version CT of Gödel’s system T and investi-
gated its expressivity at the level of abstraction complexity (i.e. type level). To this
end, we showed that CTn and Tn+1 have the same logical and recursion-theoretic
strength, by means of interpretations in each direction, over at least the type 1
quantifier-free theory.

We also gave several further results about the coterms of CT , for instance models
of hereditarily computable functions, continuity at type 2, strong normalisation and
confluence, and a translation to terms T computing the same funtional, at all types.

As mentioned in the Introduction, our ultimate motivation is to bring one of the
hallmarks of 20th century proof theory to the setting of non-wellfounded proofs:
a bona fide correspondence between theories in predicate logic and type systems
for functional programming languages. The obtention of a Dialectica-style proof
interpretation, cf. [Gö58], between circular versions of arithmetic [Sim17, BT17b,
Das20] and the theory CT here presented is thus the natural next step.
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66 A CIRCULAR VERSION OF GÖDEL’S T AND ITS ABSTRACTION COMPLEXITY

[LN15] John Longley and Dag Normann. Higher-Order Computability. Theory and Applica-
tions of Computability. Springer, 2015.

[Luc73] Horst Luckhardt. Extensional Godel Functional Interpretation. Lecture Notes in
Mathematics. Springer, 1 edition, 1973.

[Min78] G. Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathe-
matics, 10:548–596, 1978.

[NW96] Damian Niwinski and Igor Walukiewicz. Games for the mu-calculus. Theor. Comput.
Sci., 163(1&2):99–116, 1996.

[Par72] Charles Parsons. On n-quantifier induction. The Journal of Symbolic Logic,
37(3):466–482, 1972.

[Pfe92] Frank Pfenning. A proof of the church-rosser theorem and its representation in a logi-
cal framework. Technical report, Carnegie-Mellon University, Pittsburgh. Department
of Computer Science., 1992.

[RB17] Reuben N. S. Rowe and James Brotherston. Realizability in cyclic proof: Extract-
ing ordering information for infinite descent. In Automated Reasoning with Analytic
Tableaux and Related Methods - 26th International Conference, TABLEAUX 2017,
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Appendix A. Partial cut-elimination for T

In this section we prove a (presumably folklore) result that derivations of T
can be partially normalised so that all types occurring have level dominated by
that of a recursor (cf. Proposition 16). It is well-known that the complexity of
cut-elimination (at the level of provability of sequents) is ‘superexponential’ (see,
e.g., [HP93]), so this argument should go through already inside RCA0 (and even
weaker theories), though we stop short of giving a complexity-theoretic analysis to
this effect, so as not to complicate the exposition.

A.1. Adapting the system for cut-elimination. For simplicity, we no longer
consider the exchange rule, but rather close all the instances of the other rules
by composition with exchange, making formal how we were already informally
typesetting rules in the main body of this paper. The axiomatisation of such
combinators and their interpretations in the standard model N are as expected,
and we do not formalise this in detail.

We shall also assume that all identity initial sequents are in atomic form. For-
mally, we define id

′
N as idN , and inductively define id

′
σ→τ as below, left. Clearly

id′N = idN , and we give an argument by induction on type that id′σ→τ = idσ→τ

below, right (under ER):

id′σ

σ ⇒ σ

id′τ

τ ⇒ τ
L

σ → τ, σ ⇒ τ
R

σ → τ ⇒ σ → τ

id′σ→τx y = R (L id′σ id
′
τ )x y by definition of id′

= L id
′
σ id

′
τx y by R axiom

= id′τ (x (id
′
σy))

= x y by inductive hypotheses
= idσ→τ x y by id axiom

Furthermore, to simplify the termination argument for cut-elimination, we shall
admit contraction by absorbing it into the other rules. For this, we shall need the
following variant L′ of the left-arrow rule, and its corresponding axioms:

(31)
~σ, ρ → σ ⇒ ρ ~σ, ρ → σ, σ ⇒ τ

L′

~σ, ρ → σ ⇒ τ
L′s t ~x y = t ~x y (y (s ~x y))

Note that this rule is easily derivable in T , along with its corresponding equation,
by combining the L and cntr rules:

~σ, ρ → σ ⇒ ρ ~σ, ρ → σ, σ ⇒ τ
L

~σ, ρ → σ, ρ → σ ⇒ τ
cntr

~σ, ρ → σ ⇒ τ

cntr (L s t) ~x y
= L s t ~x y y
= t ~x y(y (s ~x y))

We may freely use L′ in derivations, understanding it to be shorthand for the
derivation above. A contraction-free derivation is one whose only cntr-steps are
already part of L′ steps.

Proposition 104. For every T derivation t : ~σ ⇒ τ there is a contraction-free
derivation t′ : ~σ ⇒ τ , possibly with more cutN -occurrences, s.t. T ⊢ t = t′.

Proof sketch. Follows by a straightforward induction on the structure of t, commut-
ing cntr steps over those above. The most interesting commutation is when a cntr
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step is immediately below a rec step, for which we must introduce some N -cuts:

s

~σ,N ⇒ τ

t

~σ,N,N, τ ⇒ τ
rec

~σ,N,N ⇒ τ
cntr

~σ,N ⇒ τ

7→
0
⇒ N

s

~σ,N ⇒ τ
cut

~σ ⇒ τ

s

N ⇒ N

t

~σ,N,N, τ ⇒ τ
cut

~σ,N, τ ⇒ τ
rec

~σ,N ⇒ τ

We can verify that the derivation after transformation is provably equivalent in T
by an object-level induction on the recursion parameter:

rec (cut 0 s) (cut s t) ~x 0 = cut 0 s ~x by rec axioms
= s ~x 0 by cut axiom
= rec s t ~x 0 0 by rec axioms
= cntr (rec s t) ~x 0 by cntr axiom

rec (cut 0 s) (cut s t) ~x sy = cut s t ~x y (rec (cut 0 s) (cut s t) ~x y) by rec axioms
= cut s t ~x y (cntr (rec s t) ~x y) by inductive hypothesis
= t ~x sy y (cntr (rec s t) ~x y) by cut axiom
= rec s t ~x sy sy by rec axioms
= cntr (rec s t) ~x sy by cntr axiom �

We shall also use a generalised version of the cut rule that incorporates both
context sharing and context splitting behaviour:

(32)
~ρ0, ~σ, σ ⇒ τ ~ρ1, ~σ ⇒ τ

cut′

~ρ0, ~ρ1, ~σ ⇒ σ
cut′s t ~x0 ~x1 ~y = t ~x1 ~y (s ~x0 ~y)

The point of this rule is to absorb extraneous weakening steps from cut-reductions
into cuts. Note that we have been implicitly using this until now, e.g. as in the
derivation in the proof sketch of Proposition 104. Similarly to L′, the rule cut′ and
its corresponding equation can be derived from cut and wk:

~ρ0, ~σ ⇒ σ
wk

~ρ0, ~ρ1, ~σ ⇒ σ

~ρ1, ~σ ⇒ τ
wk

~ρ0, ~ρ1, ~σ, σ ⇒ τ
cut

~ρ0, ~ρ1, ~σ ⇒ σ

cut (wk∗s) (wk∗t) ~x0 ~x1 ~y
= wk∗t ~x0 ~x1 ~y(wk

∗s ~x0 ~x1 ~y)
= t ~x1 ~y (wk

∗s ~x0 ~x1 ~y)
= t ~x1 ~y (s ~x0 ~y)

Again, we may freely use cut′ in derivations, understanding it to be shorthand
for the derivation above. However, crucially, we will only count instances of L′ and
cut′ as single steps, in order to facilitate the upcoming induction arguments.26

A.2. Main free-cut elimination argument. As usual, our overall argument will
be by an induction on the complexity of cut-formulas:

• The level of a cut′ on σ is just lev(σ).
• The d-level of a derivation is the multiset of all its cut-levels > d.

26Another approach could be to ignore all wk and cntr steps (‘weak inferences’) when counting
the size/depth of derivations, but then we would need a lemma for commuting above those steps
in order to reduce an induction measure based on size/depth.
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We assume that multisets of natural numbers are ordered in the usual way.27 We
may write cut′d, cut

′
≤d and cut′>d for a cut

′ instance of level d, ≤ d or> d respectively.

Lemma 105. Let t : ~σ ⇒ τ be a contraction-free Tn-derivation with at least one
cut′>n. Then there is a contraction-free Tn-derivation t′ : ~σ ⇒ τ of lower n-level
such that Tn ⊢ t = t′.

Proof. We proceed by induction on |t|, by inspection of a topmost cut>n. All
permutation cases are given in the subsequent subsections, as well as arguments
verifying that the derivations before and after transformation are provably equiv-
alent in Tn. In each case, we may have to apply the induction hypothesis zero,
one or two times to smaller subderivations. Note that the only transformation that
introduces more cuts (even after applying inductive hypotheses) is the R-L′ ‘key’
case. �

Proposition 16 is now an immediate consequence of the following result:

Theorem 106. For any Tn-derivation t : ~σ ⇒ τ there is a cut′>n-free Tn-derivation
t′ : ~σ ⇒ τ , such that T ⊢ t′~x = t ~x.

Proof. Assume t is contraction-free by Proposition 104. The result follows by in-
duction on the n-level of t, applying Lemma 105 above for the inductive steps. �

A.3. R-L′ key case.

s

~ρ0, ~σ, ρ ⇒ σ
R

~ρ0, ~σ ⇒ ρ → σ

r

~ρ1, ~σ, ρ → σ ⇒ ρ

t

~ρ1, ~σ, ρ → σ, σ ⇒ τ
L′

~ρ1, ~σ, ρ → σ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ ⇒ τ

is transformed to:

s′

~ρ0, ~σ ⇒ ρ → σ

r

~ρ1, ~σ, ρ → σ ⇒ ρ
cut′

~ρ0, ~ρ1, ~σ ⇒ ρ

s

~ρ0, ~σ, ρ ⇒ σ
cut′

~ρ0, ~ρ1, ~σ ⇒ σ

s′

~ρ0, ~σ ⇒ ρ → σ

t

~ρ1, ~σ, ρ → σ, σ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ, σ ⇒ τ
cut

~ρ0, ~ρ1, ~σ ⇒ τ

where we write s′ for the derivation

s

~ρ0, ~σ, ρ ⇒ σ
R

~ρ0, ~σ ⇒ ρ → σ

27It is well-known that for any well-order < of order type α, the corresponding multiset order

has order type ωα. Thus the multiset order on even ω is already not available in RCA0, whose
proof-theoretic ordinal is ωω . However, cut-elimination arguments based on the multiset ordering
are nonetheless typically formalisable in RCA0 thanks to explicit complexity bounds on the multiset
branching, i.e. the number of smaller number occurrences that replace a larger one when reducing.
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We verify that Tn proves the equality of the derivations before and after trans-
formation as follows:

cut (cut′(cut′s′r) s) (cut′s′t) ~x0 ~x1 ~y
= cut′s′t ~x0 ~x1 ~y (cut

′(cut′s′r) s ~x0 ~x1 ~y) by cut axiom
= cut′s′t ~x0 ~x1 ~y (s ~x0 ~y (cut

′s′r ~x0 ~x1 ~y)) by cut′ axiom
= cut′s′t ~x0 ~x1 ~y (s ~x0 ~y (r ~x1 ~y (s

′~x0 ~y))) by cut′ axiom
= t ~x1 ~y (s

′~x0 ~y) (s ~x0 ~y (r ~x1 ~y (s
′~x0 ~y))) by cut′ axiom

= t ~x1 ~y (s
′~x0 ~y) (s

′~x0 ~y (r ~x1 ~y (s
′~x0 ~y))) by R axiom

= L r t ~x1 ~y (s
′~x0 ~y) by L axiom

= cut′s′(L r t) ~x0 ~x1 ~y by cut′ axiom

A.4. cut′-rec commutative case. The most interesting commutative case is com-
muting a cut′>n above a rec≤n step:

r

~x0, ~σ,N ⇒ σ

s

~ρ1, ~σ, σ ⇒ τ

t

~ρ1, ~σ, σ,N, τ ⇒ τ
recτ

~ρ1, ~σ, σ,N ⇒ τ
cut′

~ρ0, ~ρ1, ~σ,N ⇒ τ

is transformed to,

r

~x0, ~σ,N ⇒ σ

s

~ρ1, ~σ, σ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ,N ⇒ τ

r

~x0, ~σ,N ⇒ σ

t

~ρ1, ~σ, σ,N, τ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ,N,N, τ ⇒ τ
recτ

~ρ0, ~ρ1, ~σ,N,N ⇒ τ
cntr

~ρ0, ~ρ1, ~σ,N ⇒ τ

where we have underlined principal types and used colours to identify type occur-
rences according to ancestry.

We verify that Tn proves the equality of the derivations before and after trans-
formation as follows. First we show that,

(33) rec (cut′r s) (cut′r t) ~x0 ~x1 ~y a z = rec s t ~x1 ~y (r ~x0 ~y a) z

by (object-level) induction on z. For the base case:

rec (cut′r s) (cut′r t) ~x0 ~x1 ~y a 0
= cut′r s ~x0 ~x1 ~y a by rec axioms
= s ~x1 ~y (r ~x0 ~y a) by cut′ axiom
= rec s t ~x1 ~y (r ~x0 ~y a) 0 by rec axioms

For the inductive step:

rec (cut′r s) (cut′r t) ~x0 ~x1 ~y a sz
= cut′r t ~x0 ~x1 ~y a z (rec (cut

′r s) (cut′r t) ~x0 ~x1 ~y a z) by rec axioms
= cut′r t ~x0 ~x1 ~y a z (rec s t ~x1 ~y (r ~x0 ~y a) z) by inductive hypothesis, (33)
= t ~x1 ~y (r ~x0 ~y a) z (rec s t ~x1 ~y (r ~x0 ~y a) z) by cut′ axiom
= rec s t ~x1 ~y (r ~x0 ~y a) sz by rec axioms

From here we conclude the verification in Tn by the cntr and cut axioms.
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A.5. cut′-cut commutative cases. Sometimes we have to commute a cut′>n over
a cut≤n. It is notationally cumbersome to consider all splitting possibilities for
commuting cut′ over cut′, so instead we just permute a cut′>n step over a cut≤n

step. From here, commutation over a cut′≤n step follows by further commutation

over wk-steps (see next subsection).

r

~ρ0, ~σ ⇒ ρ

s

~ρ0, ~σ, ρ ⇒ σ
cut≤n

~ρ0, ~σ ⇒ σ

t

~ρ1, ~σ, σ ⇒ τ
cut′>n

~ρ0, ~ρ1, ~σ ⇒ τ

is transformed to:

r

~ρ0, ~σ ⇒ ρ

s

~ρ0, ~σ, ρ ⇒ σ

t

~ρ1, ~σ, σ ⇒ τ
cut′>n

~ρ0, ~ρ1, ~σ, ρ ⇒ τ
cut′≤n

~ρ0, ~ρ1, ~σ ⇒ τ

We verify that Tn proves the equality of the derivations before and after trans-
formation as follows:

cut′r (cut′s t) ~x0 ~x1 ~y
= cut′s t ~x0 ~x1 ~y (r ~x0 ~y) by cut′ axiom
= t ~x1 ~y (s ~x0 ~y (r ~x0 ~y)) by cut′ axiom
= t ~x1 ~y (cut r s ~x0, ~y) by cut axiom
= cut′(cut r s) t ~x0 ~x1 ~y by cut′ axiom

There is also a similar cut-commutation the other way around, when the right
premiss of a cut′ step ends with cut. There is no commutation of cut′ above the
left side of a rec step, since that would immediately imply that the level of the cut
is bounded by that of a recursor.

A.6. cut′-wk key and commutative case. There are two possible interactions
between cut′ and wk, depending on whether the cut-formula is weakened or not.
Both are relatively simple.

s

~ρ0, ~σ ⇒ σ

t

~ρ1, ~σ ⇒ τ
wk

~ρ1, ~σ, σ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ ⇒ τ

is transformed to:

t

~ρ1, ~σ ⇒ τ
wk

~ρ0, ~ρ1, ~σ ⇒ τ
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We verify that Tn proves the equality of the derivations before and after transfor-
mation as follows:

wk
∗t ~x0 ~x1 ~y

= t ~x1 ~y by wk axioms
= wk t ~x1, ~y (s ~x0 ~y) by wk axiom
= cut′s (wk t) ~x0 ~x1, ~y by cut′ axiom

s

~ρ0, ρ, ~σ ⇒ σ

t

~ρ1, ~σ, σ ⇒ τ
wk

ρ, ~ρ1, ~σ, σ ⇒ τ
cut′

~ρ0, ρ, ~ρ1, ~σ ⇒ τ

is transformed to either the left or right derivations below, depending on whether
the purple ρ is present or not, respectively:

s

~ρ0, ρ, ~σ ⇒ σ

t

~ρ1, ~σ, σ ⇒ τ
cut′

~ρ0, ρ, ~ρ1, ~σ ⇒ τ

s

~ρ0, ~σ ⇒ σ

t

~ρ1, ~σ, σ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ ⇒ τ
wk

~ρ0, ρ, ~ρ1, ~σ ⇒ τ

We verify that Tn proves the equality of the derivations before and after transfor-
mation, respectively, as follows:

cut′s t ~x0 x~x1 ~y
= t ~x1 ~y (s ~x0 x~y) by cut′ axiom
= wk t x ~x1 ~y (s ~x0 x~y) by wk axiom
= cut′s (wk t) ~x0 x~x1 ~y by cut′ axiom

wk (cut′ s t) ~x0 x~x1 ~y
= cut′ s t ~x0 ~x1 ~y by wk axiom
= t ~x1 ~y (s ~x0 ~y) by cut′ axiom
= wk t x ~x1 ~y (s ~x0 ~y) by wk axiom
= cut′s (wk t) ~x0 x~x1 ~y by cut′ axiom

There are similar cases when the left premiss of a cut′ concludes a wk step.

A.7. cut′-L′ commutative cases. We have to treat the cases when a L′ step is on
the left or on the right separately.

r

~ρ0, ~σ, ρ → σ ⇒ ρ

s

~ρ0, σ, ρ → σ, σ ⇒ π
L′

~ρ0, ~σ, ρ → σ ⇒ π

t

~ρ1, ~σ, ρ → σ, π,⇒ τ
cut′

~ρ0, ~ρ1, ~σ, ρ → σ ⇒ τ

is transformed to,

r

~ρ0, ~σ, ρ → σ ⇒ ρ
wk

~ρ0, ~ρ1, ~σ, ρ → σ ⇒ ρ

s

~ρ0, σ, ρ → σ, σ ⇒ π

t

~ρ1, ~σ, ρ → σ, π ⇒ τ
cut′

~ρ0, ~ρ1, ~σ, ρ → σ, σ ⇒ τ
L′

~ρ0, ~ρ1, ~σ, ρ → σ ⇒ τ
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where the purple occurrence of ρ → σ after transformation is present only if it is
present before transformation.

We verify that Tn proves the equality of the derivations before and after trans-
formation as follows,

L′(wk∗r) (cut′s t) ~x0 ~x1 ~y z
= cut′s t ~x0 ~x1 ~y z (z (wk

∗r ~x0 ~x1 ~y z)) by L′ axiom
= cut′s t ~x0 ~x1 ~y z (z (r ~x0 ~y z)) by wk axioms
= t ~x1 ~y z (s ~x0 ~y z (z (r ~x0 ~y z))) by cut′ axiom
= t ~x1 ~y z (L

′r s ~x0 ~y z) by L′ axiom
= cut′(L′r s) t ~x0 ~x1 ~y z

where, again, the purple z is present just if the purple ρ → σ are present in the
derivations.

r

~ρ0, ~σ, ρ → σ ⇒ π

s

~ρ1, ~σ, ρ → σ, π ⇒ ρ

t

~ρ1, ~σ, ρ → σ, σ, π ⇒ τ
L′

~ρ1, ~σ, ρ → σ, π ⇒ τ
cut′

~ρ0, ~ρ1, ~σ, ρ → σ ⇒ τ

is transformed to,

r

~ρ0, ~σ, ρ → σ ⇒ π

s

~ρ1, ~σ, ρ → σ, π ⇒ ρ
cut′

~ρ0, ~ρ1, ~σ, ρ → σ ⇒ ρ

r

~ρ0, ~σ, ρ → σ ⇒ π

t

~ρ1, ~σ, ρ → σ, σ, π ⇒ τ
cut′

~ρ0, ~ρ1, ~σ, ρ → σ, σ ⇒ τ
L′

~ρ0, ~ρ1, ~σ, ρ → σ ⇒ τ

where the purple occurrences of ρ → σ after transformation are present just if they
are before transformation.

We verify that Tn proves the equality of the derivations before and after trans-
formation as follows,

L′(cut′r s) (cut′r t) ~x0 ~x1 ~y z
= cut′r t ~x0 ~x1 ~y z (z (cut

′r s ~x0 ~x1 ~y z)) by L′ axiom
= cut′r t ~x0 ~x1 ~y z (z (s ~x1 ~y z (r ~x0 ~y z))) by cut′ axiom
= t ~x1 ~y z (z (s ~x1 ~y z (r ~x0 ~y z))) (r ~x0 ~y z) by cut′ axiom
= L′s t ~x1 ~y z (r ~x0 ~y z) by L′ axiom
= cut′r (L′s t) ~x0 ~x1 ~y z by cut′ axiom

where the purple z occurrences are present only if the purple ρ → σ occurrences
are present in the derivations.

A.8. cut′-R commutative case.

s

~ρ0, ~σ ⇒ σ

t

~ρ1, ~σ, σ, ρ ⇒ τ
R

~ρ1, ~σ, σ ⇒ ρ → τ
cut′

~ρ0, ~ρ1, ~σ ⇒ ρ → τ
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is transformed to:

s

~ρ0, ~σ ⇒ σ

t

~ρ1, ~σ, σ, ρ ⇒ τ
cut′

~ρ0, ~ρ1, ~σ, ρ ⇒ τ
R

~ρ0, ~ρ1, ~σ ⇒ ρ → τ

We verify that Tn proves the equality of the derivations before and after trans-
formation as follows:

R (cut′s t)~x0 ~x1 ~y z
= cut′s t ~x0 ~x1 ~y z by R axiom
= t ~x1 ~y (s ~x0 ~y) z by cut′ axiom
= R t ~x1 ~y (s ~x0 ~y) z by R axiom
= cut′ s (R t) ~x0 ~x1 ~y z by cut′ axiom
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