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Topological data analysis tools enjoy increasing popularity in a wide range of applications, such as
Computer graphics, Image analysis, Machine learning, and Astronomy for extracting information.
However, due to computational complexity, processing large numbers of samples of higher dimensional-
ity quickly becomes infeasible. This contribution is twofold: We present an efficient novel sub-sampling
strategy inspired by Coulomb’s law to decrease the number of data points in d-dimensional point clouds
while preserving its homology. The method is not only capable of reducing the memory and computation
time needed for the construction of different types of simplicial complexes but also preserves the size of
the voids in d-dimensions, which is crucial e.g. for astronomical applications. Furthermore, we propose a
technique to construct a probabilistic description of the border of significant cycles and cavities inside the
point cloud. We demonstrate and empirically compare the strategy in several synthetic scenarios and an
astronomical particle simulation of a dwarf galaxy for the detection of superbubbles (supernova
signatures).
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Topological data analysis (TDA) provides exploration tools for
increasingly diverse applications in various domains, ranging from
Biology and medical images [1], mapping disease spaces [2], and
Astronomy [3]. Persistent homology (PH) is a TDA technique for
computing the properties of shapes of a finite metric space (also
called point cloud dataset) and can capture these features in an
extended range of scales. Nonetheless, as the number of points or
the dimensions of a dataset increases, the computation of the PH
soon becomes impractical.

Numerous methods and toolboxes provide novel approaches to
tackle the problem of computational costs. Sparse Rips filtration [4]
builds an �-net on top of the point set followed by an association of
weights to each node, which results in a provably good approxima-
tion of the full data Rips filtration. In [5] two new atomic opera-
tions for efficient computation of PH are suggested, and SimBa
[6] combines these two strategies to reach a higher sparsity in
the number of simplices, which increases the efficiency for compu-
tation of Rips filtration. The toolbox Ripser [7] decreases the com-
putational costs by avoiding to build the complete coboundary
matrix building and storing only the parts needed. This improves
the memory consumption and reduces the computational time.
These methods are limited to Rips and are not extendible to other
types of filtration.

A general concept for scaling down the computation indepen-
dent of the filtration was reported in [8] proposing to sub-
sample the data randomly repeatedly and construct an average
landscape for the point cloud. Although their approach can be
applied for constructing all types of filtration, it is sensitive to
the distribution of the data on the structures as a consequence
of random sampling. MaxMin [9] was introduced as another
intuitive sub-sampling approach. By selecting a random data
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2 The source code and synthetic datasets are publicly available athttps:/
github.com/abst0603/ASAP
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point as the first sample, it continuously picks the next sample
point that has the longest distance to the previous samples until
the desired number of samples is achieved. Although sampling
using this method usually achieves more uniformly spaced dis-
tribution of points than random sub-sampling [8], it does not
provide any information about the range or distance between
samples, and final results may vary a lot dependent on the start-
ing point.

When applying a filtration to a point set, topological features
appear and disappear (referred to as birth and death) by increasing
the filtration parameter value. Topological features exhibiting a
short lifetime are considered as topological noise in some applica-
tions, as explained in [10]. They introduced the confidence band
inspired by the p-value definition from statistics. Using this defini-
tion, one can distinguish between properties which belong to the
point cloud and do not emerge as artifacts due to the sub-
sampling of the data. Furthermore, the persistence diagram does
not provide any information about the location of these features
inside the point cloud. This location information is essential in sev-
eral applications, such as medical image segmentation [1], detect-
ing voids in the cosmic web [3] and supernovae in galaxies. In [1] a
technique for positioning persistent 1-cycles was introduced,
which is not easily extendable for locating cavities and higher
dimensional properties. Moreover, Dionysus [11] can also record
the boundaries of a topological feature during the computation of
PH. In [3], the authors use this toolbox to locate the voids and fil-
aments in the Cosmic web. The recovered boundary, however, is
often not fully located on the border of a hole or cavity and varies
with repeated sampling over the point cloud. They furthermore
construct the filtration on top of a 3D grid and then compute the
distance-to-measure function [12] for every point on the grid. As
a consequence the boundary points also fluctuate by changing
the grid size. We will discuss the above mentioned problems in
detail in Section 2.3.

While simplicial complexes and filtrations are useful for pro-
ducing clean representations of noise-free data sets, they are not
as effective when applied to intrinsically noisy structures. In these
cases, a probabilistic description of the low dimensional structures
is desirable, as a way to capture the underlying nature of the
observed data. Existing techniques are for example non-
parametric density estimators, such as Parzen windows [13], its
extensions Manifold Parzen Windows [14] and Fast-Parzen Win-
dows [15] or semi-parametric generative models like the Infinite
Gaussian Mixture Model [16]. However, despite fitting observed
points with high accuracy those techniques are blind towards the
low-dimensional nature of the structures and often the computa-
tional costs for training and evaluation is prohibitive. As an alter-
native, Generative Topographic Mapping (GTM) [17] models a
noisy manifold as a low dimensional, linear, latent space embed-
ded in the ambient space through a non-linear mapping function.
The corresponding noise is defined as a Multivariate Gaussian Mix-
ture Model (GMM) [18], with centers constrained to lie on the
embedded latent space. However, despite the non-linearity of the
mapping function, classical GTM is insufficiently flexible to model
cavities and holes, which are non homeomorphic to a linear
subpsace.

Physical particle simulations are one way of investigating astro-
nomical phenomena such as galaxies and supernovae. Radiation
and winds from massive stars at the end of their life can greatly
affect the dynamics of gas in the interstellar medium (ISM) and
in turn, change the structure of the galaxy and its ability to create
new stars. Dwarf galaxies are very sensitive to the physical pro-
cesses determining their evolution due to their low mass and are
therefore used as probes to characterize, study and isolate them
in simulations. Similar to real dwarfs simulated irregular galaxies
have a very clumpy ISM and holes due to supernovae visible in
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the gas density distribution [19,20]. The characterization of the
distribution of supernova shells in the ISM (so-called superbub-
bles), and the energies of the expanding shells [21,22], can shed
light on the feedback physical processes. Superbubbles are of great
astronomical interest but typically measured by eye in available
catalogues and automatic tools are highly desirable.

This contribution extends A Sub-sampling Approach for Pre-
serving topological structures ASAP2 [23], that reduces the compu-
tational cost suitable for different types of PH filtration, general d-
dimensional point clouds, and large number of samples. In this paper
the structures found by subsequently performed PH are statistically
analyzed to determine their robustness. Additionally, we propose a
strategy to provide a probabilistic description of the shell of these
bubbles, which, in our astronomical application, provides additional
information about the supernovae borders and the stars that shape
these borders. In order to fully capture the properties of such cavi-
ties, taking advantage of their low dimensional nature, we propose
a modified version of the GTM: geodesic GTM (gGTM). Through this
formulation, the topological features of the modelled structures are
accounted for by embedding a closed low dimensional latent space
onto the ambient space of the point cloud. Through the new latent
space formulation we are finally able to interpret the topological
structure of manifolds, embedded in higher dimensional spaces,
while still capturing their natural stochasticity.

In the following, the novel sub-sampling strategy, statistical
analysis, and probabilistic description is explained in detail. We
then compare to state-of-the-art methods in several controlled
experiments and finally investigate a snapshot of an astronomical
particle simulation by computing the number and size of super-
bubbles within a jelly-fish like dwarf galaxy.

2. Methods

This section consists of three main parts. First, we describe the
sub-sampling procedure followed by the calculation of the confi-
dence band on the PH plot and its interpretation. Every time the
point cloud is sampled, we extract the boundaries of significant
features in the PH plot. Finally, as the boundary points fluctuate
between samples, we suggest a probabilistic description of the bor-
der of cycles and cavities in the PH plot.

2.1. The sub-sampling approach ASAP

Computing the PH for the analysis of the evolution of shapes
across different resolutions is often prohibitive due to the combi-
natorial nature of existing algorithms complexity, in both time
and space. Therefore, we propose a two-stage strategy based on
sub-sampling and Coulomb’s law [24]. As described before, we first
sub-sample points from the point cloud data set N (finite metric
space) to reduce the amount of computation time and memory.
The subset Nr � N aims to contain fewer points s 2 Nr for which
the persistence diagram D Nrð Þ approximates the persistence dia-
gram D Nð Þ of the full data. Therefore the set Nr has to satisfy the
following two conditions [4] checked in every step:

1ð Þ covering Nr ¼ 8p 2 N;9s 2 Nr j d p; sð Þ 6 rf g and
2ð Þ packing d si; sj

� �
> r 8si; sj 2 Nr with i– j:

We satisfy (1) by selecting a random point si, insert it to Nr and
remove all points pj

� �
from N belonging to an open ball centered

around si with radius r:
/

https://github.com/abst0603/ASAP
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The process is repeated until the point set N is depleted, impli-
cating that all points are covered by at least one open ball of a sam-
ple point in Nr . Due to the removal of points in every step, the
packing condition is also fulfilled for all remaining points with dis-
tance larger than r from si in N.

The sub-sampling strategy fulfils both necessary conditions,
but the result is not completely uniform, and the pairwise dis-
tance of any sample point pair is between r and 2r. However,
it is more desirable to have sample points equidistant from each
other forming a uniform grid. As a result, we expect when all
points on its boundary connect to each other it coincides with
the birth time of the void. Moreover, in astronomical applications
it is crucial to measure the size of the cycles, cavities and
streams as accurately as possible, for which Nr needs to contain
the borders of the data. Therefore we propose an extension to
the sampling inspired by the movement of identical electrical
particles, such as electrons, on the surface of a conductive sphere
[24]. The electrons will repel each other based on Coulomb’s law
and approximate a uniform distribution. To take advantage of
this physical repulsion force each sample is repelled by neigh-
bouring samples by

mi ¼ disp sið Þ ¼
X
sj2Ni

sj � si
ksj � sik �

c
ksj � sik2

;

where the set Ni consists of sample points in 2r radius of si and c
denotes the learning rate. If neighbouring points are far from si the
force will be low, and the learning rate controls the strength of the
movement. The appropriate range for the displacement is between
0:1r; rð Þ, since the effect of smaller movements is negligible and lar-
ger movements result in si intruding positions already covered by
other samples. The learning rate is gradually reduced in every step
t following

c ¼ r3 exp �t=sð Þ; ð3Þ

such that the samples converge to the new positions. s is a con-
stant which determines the decay rate of the learning rate.
Instead of moving the samples itself we take the closest point
in the original set ŝi 2 N to the displacement position as substitute
for si

ŝi ¼ argminpj d pj; si þmi
� �� � 8pj 2 N ð4Þ

if it is not contained in an open ball of any other sample point.
Algorithm 1 details the complete procedure of the extended sam-
pling strategy and Fig. 1 shows the result on a simple two-
dimensional example. Panel (a) depicts the point cloud N consist-
ing of a line and a square with a circular hole in the centre and (b)
shows the open ball cover after random sampling. The balls of Nr

after the update using the repulsion force are illustrated in (c)
achieving a more uniform grid that covers all boundaries as
desired.
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Algorithm 1: ASAP a sub-sampling approach preserving
topological structures

The computational complexity of Algorithm 1 depends on the
number of times that repulsion forces are iterated, which depends
on the data and the learning rate. With our choice of learning rate
we typically observe about 10 iterations in our experiments. For-
mally, assuming the while loop on repulsion forces iterates k times
in the d-dimensional data set that contains jNj points over the
maximum number of samples denoted by Ds, the worst case com-
plexity can be written as O kdjNjDsð Þ. Here we discuss the general
case, however, in our implementation we employ k-d trees [25]
for the neighborhood search in Eq. (1), (2) and (4), which reduces
the computational complexity for pairwise distances from squared
to log linear.

2.2. Confidence bands of significant features

The persistence diagram illustrates the birth and death time of
topological features for a unique point cloud. These features in
every dimension represent a specific property of the dataset, such
as connected components (H0), holes (H1), cavities (H2), etc. As a
result, the derived persistence diagram of sampled data D Nrð Þ does
not entirely resemble the persistence plot of the point cloud D Nð Þ.
The Bottleneck distance is a metric of comparing two persistence
diagrams [26], and it is defined as follows

dB D Nð Þ;D Nrð Þð Þ ¼ inf
l:D Nð Þ!D Nrð Þ

sup~p2D Nð Þk~p� l ~pð Þk1: ð5Þ

Here l is a bijection that maps every feature point ~p of D Nð Þ to a
point on D Nrð Þ. The diagonal line where the birth and death time of
features are identical is assumed to include an infinite number of
points such that if the number of feature points in the persistence
diagram of N and Nr is not the same, the extra points are paired
with the points on the diagonal line.

Since the persistence diagram varies for distinguished sets of
samples, a confidence band was introduced to separate significant
topological features from noise [10]. To this aim, we follow the
bootstrap procedure as described by [10]. However, we either sam-



Fig. 1. (a) Points N distributed on a line and holed square, (b) ball cover after random sub-sampling and (c) after repulsive selection.
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ple the data based on Random Sub-sampling Method [8] (abbrevi-
ated by RSM in the following), MaxMin [9], or our novel method
ASAP. Next, for a given significance level a 2 0;1½ �, we determine
cn such that

lim
n!1

sup P dB D Nð Þ;D Nrð Þð Þ > cnð Þ 6 a: ð6Þ

As a result Cn ¼ 0; cn½ � is an asymptotic 1� að Þ confidence set for
the bottleneck distance dB D Nð Þ;D Nrð Þð Þ. A 1� að Þ confidence set
determines the region on a persistence diagram where we detect
topological signal in the dataset with 1� a confidence. According
to [10], a confidence band could be included in persistence diagram
with a band width of

ffiffiffi
2
p

cn, which specifies if a point in diagram
should be considered as signal or noise.

2.3. Locating cavities and cycles

Following distinguishing significant topological signals and
measuring their radius size, the other on-demand information is
to identify and describe the point set that builds the observed fea-
ture. For instance, as explained in the introduction, a decisive step
in observing a supernova in a simulated galaxy is to describe its
shell or boundary. To this aim, we took advantage of the Dionysus
toolbox [11], which also records the location of the topological fea-
ture generator during the computation of the persistence diagram.
However, this method returns the boundaries of cycles or cavities
that even may contain points outside the border of the structure.
Fig. 2(a) exemplifies one cycle boundary detected by [11], and
indeed the boundary of the cycle misses some border points of
the hole and invades the structure, even in this ideal situation.

One way of overcoming this problem is to locate the boundary
of the same cycle in every taken sub-samples during the bootstrap
procedure. Consequently, all parts of the border of a hole are
recorded through sampling and locating the same hole several
times. We collect the boundary points retained through such
repeated sampling in a multiset C. The set of distinct points from
C form the set �C. Multiplicity m bð Þ of each boundary point b 2 �C
expresses howmany times bwas selected in a bootstrap procedure
during the repeated sampling by ASAP.

To stabilize the selection of boundary points, we created the fol-
lowing voting scheme: First a tolerance ball B b; rð Þ of radius r is
created around every b 2 �C. Next, a collection of counter variables
379
ni
j for bi;bi 2 �C is constructed, such that nj

i ¼ m bið Þ if bi 2 B bj; r
� �

,

otherwise nj
i ¼ 0. Therefore the vote for a potential boundary point

bi 2 �C is computed as

v bið Þ ¼
X
bj2�C

nj
i:

Finally, we sort the points by their vote value and save the ones
with the upper quartile v3 of the votes. Fig. 2(b) shows the result of
the voting operation (100 times) on the single cycle inside the data
that recovers the border very satisfactory.

2.4. Building probabilistic models of cavities

Having identified the cavities, we would now like to capture
their shape and location in the form of a probability density model
aligned with the individual cavities sampled by points bi. Given
the low dimensional nature of such topological features, we will
model the probability distribution as the Generative Topographic
Mapping (GTM) [17]. The main idea behind GTM is to represent
inherently low-dimensional structures (manifolds) embedded in
a higher dimensional space by constructing a mapping via Radial
Basis Functions (RBF) from a linear latent space in R‘ (‘ > 0 being
the intrinsic dimension of the manifold) to the embedding space
RD. With classical GTM, the resulting embedded manifold is
always a ‘‘stretched” and ‘‘bent” version of the linear latent space.
While such a model has been shown to be very useful in capturing
densities aligned along non-linear embeddings of linear spaces
(e.g. deformed ‘‘sheets of paper” embedded in RD with D P 3)
[27], it cannot naturally capture closed manifolds such as cycles
and spheres. To make GTM applicable to our case we need to mod-
ify the latent space definition. The resulting density modelling
algorithm is in the following referred to as of ‘‘geodesic GTM
(gGTM)”.

Let us concentrate on the case of holes with their corresponding
spherical latent space. Consider the sphere centered at
O ¼ 0;0;0ð Þ 2 R3, having radius r ¼ 1 (unit sphere). Every point x
on the surface of the sphere is uniquely determined by a pair of
angular coordinates: h and k where, by definition of spherical coor-
dinates, we have: h; kð Þ 2 I‘\ ¼ �p;p½ � � �p=2;p=2½ �. The notation
I‘\ indicates the ‘-dimensional, angular interval, in this case ‘ ¼ 2.



Fig. 2. (a) Sample points extracted by ASAP (black) and the boundary of the cycle found by [11] (red). Panel (b) corresponds to the border recovered by the voting system (100
runs) with the colorbar depicting the number of votes.
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The geodesic distance between any pair of points xi; xk 2 I‘\ is given
by (e.g. [28])

dX xi; xkð Þ ¼ rDX ð7Þ
where r is the radius of the unit sphere: r ¼ 1 and DX is the central
angle under the segment of great circle connecting xi and xk:

DX ¼ 2arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 Dk

2

� �
þ cos ki cos kk sin

2 Dh
2

� �s
; ð8Þ

where Dk ¼ ki � kk and Dh ¼ hi � hk. In the spirit of the original GTM
[17] we can now define a regular grid of sizeM on the angular inter-
val I‘\, placing an RBF on each node cm;m ¼ 1; . . . ;M of the grid. The
radial basis function centered on cm is:

/ x; cmð Þ ¼ exp
�dX x; cmð Þ2

2r2

" #
; ð9Þ

where r > 0 is a scale parameter. The only difference with [17] is
the replacement of the Euclidean distance with the geodesic dis-
tance defined in Eq. (7) (hence, the name geodesic GTM). Every
point on the unit sphere is then mapped to the ambient space by
the function:

y x;Wð Þ ¼W/ xð Þ; ð10Þ
where the elements of / xð Þ are the M RBFs as defined in Eq. (9) and
W is the weight matrix of dimension D�M.

The gGTMmodel will be trained on the ‘‘robust” set of boundary
points, i.e. those that accumulated enough votes in the resampling
voting scheme described in the previous section. We collect such
points (exemplified in Fig. 2b) in the set Q ¼ t1; . . . ; tlf g, where
v tið ÞP v3 for all i ¼ 1;2; . . . ; l. To initialise the weight matrix W
we first take advantage of a physics-inspired diffusion algorithm
(SAF, [29]) that collapses points ti 2 Q towards high density regions
in their proximity, thus sampling closer to the ‘‘mean” of the noisy
manifold. The resulting data set ~Q ¼ ~t1; . . . ;~tN

� �
is the diffused ver-

sion of the data Q.
We then estimate the mean radius and the boundary centre as:

rM ¼ 1
2N

XN
i¼1

max
k
k~ti � ~tkk
� �	 


; ð11Þ

l ¼ l1;l2;l3� �> ¼PN
i¼1~ti
N

: ð12Þ

The weights in matrix W can be initialised by building a refined

grid hi; kið Þf gKi¼1 over I‘\ and defining latent points xi ¼ hi; kið Þ. The
latent points are then mapped to the embedding space by applying
the transformation between spherical and Cartesian coordinates:
380
ni ¼
n1i
n2i
n3i

0
B@

1
CA ¼

l1 þ rM sin hi cos ki
l2 þ rM sin hi sin ki
l3 þ rM cos hi

0
B@

1
CA: ð13Þ

The weights in matrix W are set through linear regression so
that y xi;Wð Þ � ni for all corresponding points xi 2 I‘\ and ni. For
every point xi in the latent space, the orthogonal vector to the
spherical surface computed at the embedded point y xi;Wð Þ is:

n̂i ¼ n̂1
i ; n̂

2
i ; n̂

3
i

� �> ¼ y xi;Wð Þ � l
rM

: ð14Þ

A pair of tangent vectors toM orthogonal to n̂ and spanning the
tangent space TM nið Þ toM at the point y xi;Wð Þ can be recovered by
differentiating ni (Eq. (13)) w.r.t. h and k. After normalization to
unit length, we obtain

ui ¼ @ni
@h ¼ cos hi cos ki; cos hi sin ki;� sin hið Þ>;

v i ¼ @ni
@k ¼ � sin ki; cos ki;0ð Þ> :

We can now define the noise model for our gGTM by construct-
ing covariance matrices Ci of multivariate Gaussians centered at
images y xi;Wð Þ of the latent centers. In particular, we construct
Ci proportional to the matrices having as Eigenvectors ui and v i:

Ci ¼ 1
b
Iþ g uiu>i þ v iv>i

� �
: ð15Þ

Here, 0 < b < 1 is a regularization term, I the identity matrix
and g a scaling factor proportional to the distance between neigh-
bouring nodes of the embedded grid. The manifold aligned proba-
bilistic model takes the form of a constrained mixture model:

p t;W;bð Þ ¼ 1
K

XK
i¼1

p tjxi;W;b;gð Þ; ð16Þ

where each component p tjxi;W; b;gð Þ is defined by:

p tjxi;W;b;gð Þ ¼ 1

2pð ÞDjCij
h i1=2 exp �1

2
Dt>C�1i Dt

� �

and Dt ¼ y xi;Wð Þ � t 2 R3. The parameters can be trained via the
Estimation Maximization (EM) algorithm [30], as described in [31]
for a manifold-aligned noise model. In the case of circles, the gGTM
model is constructed analogously. The only difference is that the
latent space has circular structure parametrized by one-
dimensional angular interval I‘\ ¼ �p;p½ � with ‘ ¼ 1.
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3. Experiments

In this section, we address the comparison between ASAP as a
preprocessing step for building a simplicial complex and other
state-of-the-art methods that were proposed to decrease the
resources needed for computing the TDA. To compute the PH of
point sets we mainly use GUDHI [32], which is faster and more
memory efficient due to the structure of the simplex tree than
many other toolboxes [33]. In order to obtain the Rips filtration
on datasets with larger number of points, we build the simplicial
complex using Ripser [7]. We first discuss controlled experiments
with known ground truth, followed by the results of ASAP on
real-world data from an astronomical galaxy particle simulation.

3.1. Synthetic data with ground truth

2circles dataset We first experiment on a simple two-
dimensional dataset which was introduced in [8] to demonstrate
several sub-sampling methods for PH. 500 points are distributed
uniformly on two circles with radius 1 and 4. For comparison we
subsample 100 times with each method, saving the minimal point
set required that recover the known features outside the 95% con-
fidence band in the PH. We record the performance in form of sev-
eral different evaluation measures, namely the average number of
constructed simplices, as well as Median Relative Dominance
(MRD) and Median Absolute Dominance (MAD), as summarized
in Tables 1 and 2. Fig. 3(d) shows the persistence plot for Alpha fil-
tration of the samples selected based on ASAP, RSM [8], and Max-
Min [9]. Each point illustrates the birth–death time of a topological
feature of the point cloud. The points for features of homology
groups H0, H1 are presented in red and blue, respectively. The
death time of the features with Betti number 1 shows the correct
value for the radii of both circles. The two red dots outside the con-
fidence band manifest the data consists of two separated parts.
Furthermore, the two blue dots outside the confidence band imply
the existence of two significant holes in the dataset. The figure was
denoised by removing points with minimum persistence (death
time - birth time for every feature) smaller than threshold 0.5.

Notably, the sub-sampling suggested in [8] can only reduce the
number of samples to 175 points that preserve the persistence of
all features of the original dataset, while MaxMin and the proposed
method ASAP can reduce the original point set to only 30 and 25
points, respectively. However, comparing panel ASAP (a) and Max-
Min (c) shows that the former samples are more uniformly spaced
than MaxMin on both circles and therefore the PH over repeated
runs is typically more robust. Furthermore, due to covering and
packing conditions of ASAP, the distance between every two neigh-
boring samples is not smaller than r and bigger than 2r if enough
data points lie in the space between two samples. The same condi-
tions does not hold for MaxMin samples.
Table 1
Comparison of the number of simplices constructed by several methods and filtrations wi

Dataset njdð Þ
Method Filtration 2Circles (500j2)
ASAP Alpha 81

RIPS 2 639
RSM Alpha 309

RIPS 37 876
MaxMin Alpha 136

RIPS 5 030
SimBa RIPS 1 031
GUDHI Alpha 2 345

RIPS 13 752 927
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In an additional experiment, we also compared the three sub-
sampling methods reducing the number of points consecutively
while observing the resulting death time of the small circle, with
the result shown in Fig. 4. Since we know the data points form a
circle, the death time also stands for the radius of the circle. Note,
that the circle with radius 4 contains more samples and hence is
robust for all sub-sampling methods. We repeat the MaxMin and
RSM 10 times as suggested in [8], and the number of points in each
sub-sample of ASAP corresponds to hyperparameter r ranging from
0:1;1:1½ �. We are more lenient in this experiment, observing the
death time without considering if the feature stands out of the
95% confidence band or not. For both Alpha and Rips filtration
(Fig. 4 (a) and (b)) ASAP and MaxMin preserve the death time of
the smaller circle with much fewer points than RSM, as indicated
by the shorter blue line. Moreover, in both plots by decreasing
the number of points, the death time is mostly increasing. In panel
(a) the changes are not dominant, but in panel (b) the change is
more visible with MaxMin diverging more from the baseline (de-
picting the true death time of the original small circle) for equal
sample size.

2Spheres To compare the methods in higher dimensions we dis-
tribute points non-uniformly and unevenly on two hyper-spheres
in R5 with radius 1 and 2, in the following referred to as 2Spheres
dataset. Even though the data consists only of 1200 points the
computation of Rips filtration is very memory consuming due to
dimensionality. Note that the code for efficient Rips filtration with
SimBa [6] only returns the Betti numbers up to 3 dimensions. We
sub-sample the point cloud based on ASAP, RSM [8], and MaxMin
[9] and construct the Alpha complex on the resulting sub-sets.
We iterate the sampling procedure 100 times and present the per-
sistence diagram and barcode plot that is similar for all three
methods in Fig. 5. Since the data is not uniform RSM [8] cannot
preserve its homology outside the 95% confidence band if we
reduce the number of samples to less than 1000 points. On the
other hand, ASAP with radius 0.58 preserves not only the homol-
ogy of the data in R5 with an average of 686 sub-sampled points,
but also the death times for Betti number 4 corresponds to the radii
of the spheres. MaxMin can also recover the same two features
with a slightly lower number of samples 680. This is possible since
MaxMin takes the number of samples as a parameter, while ASAP
controls the number indirectly by the radius parameter. The persis-
tence diagrams and barcode plots of all three methods are mostly
identical if RSM is allowed enough samples, except for the small
difference in the confidence interval, and therefore only the result
of ASAP is displayed. The persistence barcode was furthermore
denoised by removing properties with a minimum of birth–death
time below 0.2 to make the plot more readable.

Synthetic dwarf galaxy Finally we create a synthetic data-set
mimicking some main characteristics of our astronomical applica-
th lowest numbers marked in bold.

2Spheres (1 200j5) s.dwarf (9 659j3)
502 002 14 193
1 –
584 657 170 219
1 –
496 123 14 125
1 –
– 63 004
718 531 250 991
1 1



Fig. 3. 2circles dataset: The original 2D data (black) and subsampled data (red) as acquired by (a) ASAP (25 points), (b) RSM [8] (175 points) and MaxMin [9] (30 points) that
result in identical persistence diagrams as depicted in panel (d).

Table 2
Comparison of MRD and MAD for several methods and filtrations with best values marked in bold. Suffix (s) and (b) mark the results for the small or big structure respectively.

Metric, filtration

Method dataset MRD, Alpha MRD, RIPS MAD, RIPS

ASAP 2Circles(s) 0.040 0.094 0.055
2Circles(b) 0.973 0.813 0.474
2Spheres(s) 0.110 – –
2Spheres(b) 0.703 – –

MaxMin 2Circles(s) 0.031 0.063 0.037
2Circles(b) 0.962 0.780 0.459
2Spheres(s) 0.097 – –
2Spheres(b) 0.703 – –
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tion, in the following referred to as s.dwarf. In total 9656 non-
uniformly distributed points in R3 form a synthetic dwarf galaxy
containing 2 cavities with different size, 3 cycles: two with the
same radius and one with a slightly bigger radius contained within
a half spherical head, as well as a connected and a separated
stream as shown in panel (a) of Fig. 6. As demonstrated in panel
(b), the persistence diagram of Alpha filtration on 551 sub-
samples (only 5.7% of the original set) with ASAP (r ¼ 0:15) pre-
serves the main features of the original data and also maintains
the radii of cycles and cavities. The RSM [8], on the other hand,
can save the same features outside the confidence band only with
more than 6200 sub-samples. The striking difference between the
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number of samples needed using [8] and ASAP, is caused by the
aim of the latter to distribute the points evenly and thus keeping
the same topological features with much fewer samples. MaxMin
can also preserve all known features outside the confidence band
with 550 sub-samples. The difference between the persistence dia-
gram of the three methods is small, thus we only present the ASAP
result in panel (b).

Both GUDHI and Ripser fail to compute the Rips filtration of the
entire dataset due to high memory usage. Nevertheless, if we
decrease the number of points by ASAP with r ¼ 0:15, Ripser man-
ages to calculate the Rips filtration and its persistence diagram. All
expected features are visible outside the confidence band in panel



Fig. 5. 2Spheres: Persistence diagram (a) and barcode plot (b) of Alpha filtration. The plots are very similar for samples extracted by ASAP, RSM, and MaxMin and hence we
just show one example.

Fig. 4. 2circles: mean and standard deviation of the death time of the smaller circle over 10 repeated samplings of ASAP, RSM, and MaxMin when reducing the number of
samples kept with Alpha (a) and Rips filtration (b).
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(d). However, some new 0 homology features also appear in this
plot that emerge since the distance between every two points after
sub-sampling is more than r. SimBa is also capable of computing
the Rips filtration, as depicted in Fig. 6(e), but the death times do
not conform with the exact size of the cycles and cavities within
the head. Besides, 0 homology features are represented with three
red points that do not correspond to the number of connected
components. Note that points on the persistence diagram shape a
multiset, and each red dot can illustrate more than one feature.
We can also compute the Rips filtration on the MaxMin selected
sub-samples. As presented in panel (e), all expected features stand
out the confidence band, and similar to ASAP some extra 0 homol-
ogy features are also included. Nevertheless, the birth time of fea-
tures is more distorted as the features of the same size (two out
three cycles) are presented with two distinct points. The run time
of the ASAP sampling for 2sphere dataset r ¼ 0:58ð Þ is about 0.4 s
and it occupies about 1 MB of memory. On the Synthetic dwarf
galaxy r ¼ 0:15ð Þ, it takes about 0.7 s to select the samples and it
consumes 2.2 MB of memory. All experiments were conducted
on a single core of a processor with a maximum clock rate of
4.5 GHz.

To locate the position of notable features with a confidence
value higher than 95%, we use Dionysus [11] and then applied
the voting procedure as explained in Section 2.3. In Fig. 6(a) points
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in light and dark green are the detected points on the border of
cycles, and the points in dark and light blue build the outline of
two cavities inside the head of the synthetic galaxy. The probabilis-
tic models visualized in Fig. 7 built using the detected border
points from Fig. 6a clearly depict the intrinsic nature of the struc-
tures. The top panels (a–c) depict the likelihood of the datasets
given the models, as iso-surfaces over the space containing the
respective data points: the manifolds’ neighbourhood. Each neigh-
bourhood is discretized in a uniform grid and for each node in the
grid we compute its likelihood given the manifold’s model. The iso-
surfaces in Figs. 7–8 are obtained by locally interpolating all nodes
of the grid having the same likelihood, equal to a specific iso-value.
For all figures, the iso-value is chosen to be 1% of the maximum
likelihood computed over the whole grid. The coherent structures
emerging from these iso-surfaces explain the noisy cycles that
characterize the boundaries of the 2-dimensional holes. In the
same way, the noisy spherical iso-surfaces in panels (d and e) of
Fig. 7, cleanly separate regions populated by the boundary points
(spherical shells) from the internal holes.

Table 1 presents the total number of simplices arising in every
filtration on all synthetic datasets investigated. SimBa can only
compute the Rips filtration and although Ripser computes the Rips
filtration on the synthetic dwarf dataset it does not provide any
information about the size of the simplicial complex inside the



Fig. 6. s.dwarf (a): persistence diagram of: (top) Alpha filtration based on 551 ASAP points (b), Rips filtration for ASAP points (c), (bottom) SimBa (d), and Rips filtration for 550
MaxMin points (e).
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structure indicated by a ‘‘–” in the respective columns. Addition-
ally, we denote with ‘‘1” whenever the computation of the Rips fil-
tration fails due to the memory complexity. For our proposed
method, MaxMin [9] and RSM [8], we report the results for the
number of samples preserving the homology of the data after
denoising. This information reveals that ASAP decreases the num-
ber of sample points significantly, and hence reducing the number
of simplices in different filtration while preserving the topological
features.

To evaluate the robustness of detecting known toplogical fea-
tures from point clouds the Median Relative Dominance (MRD)
and Median Absolute Dominance (MAD) were introduced in [9].
Relative dominance and absolute dominance are defined as
R1 � R0ð Þ=K0 and R1 � R0ð Þ=K1, respectively, where R0 and R1 stand
for the birth and death time of a feature. K0 is the time when the
Betti profile changes permanently to the profile of a single point
in d-dimensions, and K1 targets the time for which a complex
becomes a complete simplex between all edges. Finally, we com-
pute the median value over 100 iterations of sampling the data
and calculating these metrics. Note that these metrics are calcu-
lated for every feature in a dataset separately, hence we add the
suffix (s) and (b) in Table 2 to denote the results for the small
and big circle or sphere respectively. The higher the value of these
two metrics, the more robust the identification of similar features
in the sub-sampled dataset is. Note that these metrics are not suit-
able for the synthetic dwarf galaxy dataset, since if the border
points of the features are looser than the real border, the death
time and metrics value increase falsely. Besides, the value of K1

may vary drastically for alpha filtration if the center of an enclosing
ball for the final added simplex located outside the simplex, thus
we only discuss the MRD.

Table 2 displays the comparison based on these two metrics for
ASAP and MaxMin. We did not insert RSM results here as long as
RSM needed a larger number of samples to get similar topological
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features, thus the comparison is biased by the number of samples.
As explained before, ASAP and MaxMin reach a similar number of
samples for 2Spheres dataset. For 2Circles dataset, we chose the
radius of sub-sampling using ASAP equal to 0.8 which results on
average 28 samples that is closer to the number of samples
selected by MaxMin (30). In both cases ASAP and MaxMin detect
the expected features outside the 95% confidence band and the
sub-sampling is repeated 100 times. The results disclose that ASAP
reaches higher values for the MRD and MAD evaluation measures
on both datasets. The lower metrics values for MaxMin stem from
the strategy of the method to select samples. Fig. 3 reveals that
although MaxMin samples are more evenly spaced than RSM, they
are not as well placed to their neighbors as ASAP samples, which
lead to a later birth time and lower metrics values.
3.2. Particle simulation of a Jellyfish-like dwarf galaxy

Fig. 8 panel (a) shows an N-body Smoothed Particle Hydrody-
namics [34] simulation snapshot of a dwarf galaxy falling into a
cluster environment with its gas stripped by ram pressure. The
point set corresponds to the position of 33 500 gas particles. The
distribution of points in this point cloud varies significantly, and
points are dispersed on multiple separated parts. Hence, we expect
to see several red points linked with Betti number 0 in the persis-
tence diagram of this dataset as the Betti number 0 corresponds to
connected components of the dataset. We sub-sample the dataset
using ASAP with r ¼ 0:4 reducing the set to � 37:6% of the total
amount of points. Then the Alpha simplicial complex was con-
structed on the subset. We select a radius value for sub-sampling
using ASAP to pursue two conditions: first, the expected topologi-
cal features are outside the 95% confidence band and second, the
computation of Alpha filtration on the remaining samples is
tractable.



Fig. 7. Iso-surfaces of the likelihood computed by the probabilistic models of the recovered cycles (top row) and holes (bottom) of the synthetic dwarf galaxy (s.dwarf)
depicted in Fig. 6(a).
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Fig. 8 panel (b) shows the persistence diagram for the reduced
set, denoised using a threshold of 1 for the minimum birth–death
time. Based on the confidence band of 95% the data consists of four
distinguished parts (0 homology features in red) and three cavities
(blue points) with death time equal to 3.98, 1.66, and 1.48 respec-
tively. We repeat the sub-sampling by ASAP 100 times, and each
time, these three features are located inside the sub-sample sets,
then using the technique defined in Section 2.3, the points on the
border of each hole are detected. Panel (a) also illustrates the bor-
der points of the three cavities inside the head part of the galaxy.
The largest cavity has a late birth time (approximately 10) shown
in panel (b) of Fig. 8. A gap between points on the border of this
cavity (points highlighted in light blue) is the reason for this
delayed birth time. The first two holes were modelled via the mod-
ification to GTM described previously in Section 2.4. The resulting
iso-surfaces of the likelihood of the probabilistic models w.r.t. a
regular grid for the points enclosing the two holes are shown in
panel (d) and (e) of Fig. 8. Given the spherical latent space adopted
in our version of GTM, we could not properly model the irregular
hole previously mentioned. Instead, we adopted the methodology
outlined in [35], where multiple manifolds in a data set are mod-
elled as low-dimensional graphs and embedded through the RBF
formulation onto the ambient space. The results for this ‘‘hole”
are shown in Fig. 8(e).

The technique presented can be used to get insights into the
physical processes at play in galaxy evolution by post-processing
N-body simulations. Firstly, in the simulations, by computing the
time evolution of the probabilistic iso-surfaces (like those shown
in Fig. 8) it is possible to follow the expansion of the gas around
the modeled supernovae explosions, thus verifying the efficiency
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of the stellar feedback process. Also, distributions of the diameters,
expansion velocities, ages of the bubbles can be computed. The
standard model describing the evolution of superbubbles is an adi-
abatic, pressure-driven expanding process with a continuous
energy injection [21]. Recent simulations suggest that the ambient
pressure does affect the expansion of the bubbles [36], which can
now be analyzed quantitatively.

With ASAP and subsequent probabilistic modelling identifying
the expanding superbubbles automatically, it would be possible
to study the effect of the environment on the superbubbles accre-
tion rate, and whether it depends on parameters such as the local
ambient pressure and density. Moreover, the superbubble size dis-
tribution can be measured in a dynamical scenario like the one that
is recreated in the simulations we used i.e. the fall of a galaxy in the
hot and high density cluster gas. Observations show that the slope
of the distribution of the size of superbubbles is different in galax-
ies with different morphologies (late-type vs. early-type) [36,37].
Our simulation scenario effectively captures the well known galac-
tic morphological transformation due to the galaxy-cluster interac-
tion, thus allowing a comparison of superbubble distribution for
different galactic evolutionary stages. Lastly, being able to isolate
the particles belonging to the cavity walls can shed light on the
physical properties of the shock wave at the border of the bubbles.
4. Conclusion

In this paper we expand the novel ASAP formulation for sub-
sampling a point cloud that preserves the topological properties
and reduces the memory consumption and computational cost



Fig. 8. Jellyfish-like dwarf galaxy particles (a) and Alpha filtration of the ASAP subset (b). Iso-surfaces of the likelihood computed by the probabilistic models of the recovered
holes (c–e).
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for TDA analysis. The formulation is expandable for d-dimensions,
is not limited to a specific type of filtration and its performance is
shown for a variety of data sets. The features found are analyzed
for their robustness using a statistical approach providing the con-
fidence levels. We separate the signal from noisy features through
a statistical test and argue the downside of the suggested tech-
nique for detecting the boundary of a cycle. Accordingly, we sug-
gest a voting strategy to solve this problem, and finally, the
points on the outline of the located cycles or cavities are modeled
by a probabilistic model. Each model is generated by a generalized
GTM approach, which allows further investigation and analysis of
their properties. As it is disclosed through empirical results on sev-
eral datasets, the proposed approach preserves the size of topolog-
ical properties. The accuracy of such information is indispensable
in some domains, such as astronomy where it informs about phys-
ical phenomena, namely supernovae in a galaxy.
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