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Non-invasive near-infrared spectral tomography (NIRST) can
incorporate the structural information provided by simul-
taneous magnetic resonance imaging (MRI), and this has
significantly improved the images obtained of tissue function.
However, the process of MRI guidance in NIRST has been
time consuming because of the needs for tissue-type segmen-
tation and forward diffuse modeling of light propagation.
To overcome these problems, a reconstruction algorithm for
MRI-guided NIRST based on deep learning is proposed and
validated by simulation and real patient imaging data for breast
cancer characterization. In this approach, diffused optical
signals and MRI images were both used as the input to the
neural network, and simultaneously recovered the concen-
trations of oxy-hemoglobin, deoxy-hemoglobin, and water
via end-to-end training by using 20,000 sets of computer-
generated simulation phantoms. The simulation phantom
studies showed that the quality of the reconstructed images
was improved, compared to that obtained by other existing
reconstruction methods. Reconstructed patient images show
that the well-trained neural network with only simulation data
sets can be directly used for differentiating malignant from
benign breast tumors. © 2022 Optica Publishing Group under the

terms of theOptica Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.446576

Near-infrared spectral tomography (NIRST) has been investigated
as a non-invasive imaging tool to characterize soft tissue optical
properties in the spectral range of 600–1000 nm for early detection
of cancer [1,2]. NIRST image reconstruction is ill-posed due
to strong photon diffuse scattering in biological tissue [3,4] and
remains a significant challenge for the technique and its clinical
adoption.

To date, studies have examined how to mitigate the ill-
posedness of NIRST image reconstruction by employing
regularization techniques. Optimal approaches utilize data fit-
ting terms together with regularizers (L2, L1, total variation norm,

etc.) to instablilize from measurement noise and modeling errors
[5]. Within the cadre of approaches, Tikhonov regularization is a
common and very effective method [6] that utilizes the L2 norm
as the regularizer. However, it tends to over-smooth reconstructed
images and reduces the contrast between tumor and surrounding
tissue. To enhance the quality of reconstructed images, other imag-
ing modalities can be used to provide structural information to
guide the reconstruction [7].

Two major classes of constraint-based image guidance in
NIRST reconstruction involve algorithms that introduce hard
[7,8] or soft priors [9] or direct regularization imaging (DRI)
[10,11]. Soft/hard priors can enhance accuracy significantly within
localized regions by reducing the ill-posedness of NIRST image
reconstruction, but they usually require manual segmentation
to identify regions of interest. Indeed, manual segmentation can
introduce errors into the reconstruction process, and the accuracy
of estimated chromophores is then dependent on the accuracy of
image segmentation. Additionally, the segmentation step can be
time consuming and requires sufficient experience to avoid bias
or error. In contrast, DRI does not need to segment anatomical
images; however, it still needs to model light propagation in tissue,
and model errors due to mesh discretization, imperfect boundary
conditions, and approximate governing equations are inevitable in
NIRST image reconstruction.

Deep learning (DL) has been investigated and shown to
improve certain image reconstruction problems [12–19]. In par-
ticular, Lan et al . developed an image reconstruction algorithm
for photoacoustic (PA) tomography to recover initial pressure dis-
tributions based on the Y-net architecture [14] in which network
inputs were measured PA signals and poor quality images recov-
ered by conventional reconstruction algorithms. Accordingly, the
approach models PA propagation and requires mesh discretization.
A multilayer perceptron based inverse problem method has been
developed to improve the accuracy of source location in biolumi-
nescence tomography [15]. More recently, several groups [16–19]
have reported DL based approaches to estimate optical properties
in diffuse optical tomography (DOT) [16–18] and validated these
algorithms with phantoms [19]. The studies have focused on using
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Fig. 1. Architecture of the proposed Z-Net. All operations are accom-
panied by batch normalization (BN) and ReLU.

DL with a single optical input, whereas the method decribed here
incorporates network inputs from multiple imaging modalities to
achieve image reconstruction.

Inspired by these developments and with the unique opportu-
nity to incorporate anatomical images into these networks that can
further improve NIRST image quality, we developed a DL based
algorithm (Z-Net) for MRI-guided NIRST image reconstruction.
In our approach, segmentation of MRI images and modeling of
light propagation are avoided, and the concentrations of chro-
mophores of oxy-hemoglobin (HbO), deoxy-hemoglobin (Hb),
and water are recovered from acquired NIRST signals guided by
MRI images through end-to-end training with simulated datasets.
Figure 1 shows the Z-Net architecture for 2D experiments. Optical
signals at nine wavelengths (661, 735, 785, 808, 826, 852, 903,
912, and 948 nm) and MRI images provide the input to the net-
work. The Z-Net based reconstruction algorithm is described in
the following steps:

Step 1. Measured NIRST signals, s ∈ R Ns , are input into the
network and mapped into feature space, ϕ0, with size 6 ∗ 6 ∗ 256
through a resizing operation described as

ϕ0
= L(p(σ (σ (s ∗ k3×3) ∗ k3×3))), (1)

where k3×3 is a convolution kernel, ∗ represents the convolution
operation, σ(·) denotes the batch normalization (BN) and rec-
tified liner unit (ReLU) operation, p is the pooling operation,
L denotes the double sampling linear interpolation operation,
ϕ0 is the output of the resize operation, and Ns is the number of
measurements.

Next, the optical features, ϕn(n = 1, 2, 3, 4), are obtained
through four up-sampling layers, and the feature of the nth
up-sampling layer is reformulated as

ϕn
= σ(σ(ϕn−1

⊗ k2×2) ∗ k3×3) n = 1, 2, 3, 4, (2)

where ⊗ denotes the deconvolution operation, and k2×2 is a
convolution kernel of size 2× 2.

Step 2. MRI images, m, are the second Z-net input. They are
mapped to feature space, ψ0, by down-sampling layers described

by

ψ0
= σ (σ(m ∗ k1×1) ∗ k1×1), (3)

where k1×1 is a convolution kernel, which is used to change the
number of channels. Next, MRI image features, ψn , of the nth
layer are obtained through four down-sampling layers:

ψn
= Pmax(σ (σ (ψ

n−1
∗ k3×3) ∗ k3×3)) n = 1, 2, 3, 4, (4)

where Pmax denotes the max pooling operation.
Step 3. The features obtained in steps 1 and 2 are input to the

deconvolution layers after concatenation. Each deconvolution
layer concatenates the features from both its previous layer and two
other paths. The output of the first layer can be described as

φ0
= σ((σ ((ϕ0

⊕ψ4)⊗ k2×2)) ∗ k3×3), (5)

where⊕ denotes the concatenation operation. After concatenating
features from the previous layer, features in the nth (n = 1, 2, 3, 4)
concatenation layer are expressed as

φn
= σ((σ ((ϕn−1

⊕ψn−1
⊕ φ5−n)⊗ k2×2)) ∗ k3×3). (6)

Finally, images of chromophore concentrations, <, are output
through the fourth convolution layer:

<= σ(σ(φ4
∗ k3×3) ∗ k3×3). (7)

A series of 2D circular phantoms with a diameter of 82 mm
was used to create simulation datasets in which 16 light source
and detector pairs were uniformly distributed around the cir-
cumference of each phantom. One or two circular inclusions
with varied inclusion-to-background contrasts were placed
randomly at locations inside the phantoms. Chromophore con-
centrations of HbO, Hb, and water used for training are listed in
Supplement 1, Table S1. The diameter of the single inclusion was
set to be 12, 16, or 20 mm. For phantoms with two inclusions,
diameters were fixed at 16 mm, but with varied edge-to-edge
distances (from 4 to 42 mm). Chromophore concentrations
listed in Table S1 were assigned randomly to phantoms with one
or two inclusions of different sizes. A total of 20,000 phantoms
were created to generate the simulation data. When one detector
position operates as the source, data were collected at the remain-
ing 15 detector locations for each wavelength. Thus, a total of
2160 (16 ∗ 15 ∗ 9) data points were collected for each phantom.
Open source software, Nirfast, was used to generate boundary
measurements by solving the diffusion equation [20], and 2%
Gaussian noise (twice the amplitude noise level of our existing
NIRST system, which is <1% [21]) was added randomly to
the measurements, to evaluate the performance of the proposed
algorithm.

MRI images corresponding to each phantom were also gen-
erated. Specifically, gray values of inclusions in MRI images were
set to 80, and gray values of background were assigned as 50,
according to the dynamic contrast enhanced (DCE)-MRI contrast

Table 1. Number of Training Parameters and Training
Time for Different Network Architectures

Method Y-Net Z-Net

Number of parameter (M) 6.09 3.48
Training time (hours) 7.2 3.9

https://doi.org/10.6084/m9.figshare.18662870
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commonly observed. In addition, 4% Gaussian noise was added to
the MRI images.

We used 70% of these datasets for training, 20% for validation,
and 10% as testing. The Z-net algorithm was implemented in
Python 3.7 with PyTorch [22] of Adam [23] with a learning rate
of 0.005, batch size of 128, and mean square error (MSE) loss
function for backpropagation, respectively. A workstation with
an Intel Xeon CPU at 2.20 GHz and 2 NVIDIA GeForce RTX
2080 graphic cards with 8 GB memory was the computational sys-
tem used for training and validating our network. Computations
consumed 3.9 h for training with 200 epochs.

Table 1 shows the number of training parameters and training
times for two DL based algorithms. Our Z-Net has only 3.48M
parameters, and it took approximately 3.9 h for training from a
100× 100-sized dataset. Relative to Y-Net, our method saved 43%
in parameters and 46% in computation time without reducing
reconstruction performance.

Three evaluation metrics were used to validate Z-net perform-
ance: MSE [24], peak signal-to-noise ratio (PSNR) [25], and
structural similarity index (SSIM) [26]. For performance assess-
ment, we compared our algorithm against two reconstruction
methods including DRI [10] and Y-Net (network architecture
shown in Supplement 1, Fig. S1) [14].

Figure 2 reports statistical results for MSE and PSNR for all
phantoms in the testing dataset (SSIM shown in Supplement 1,
Fig. S2). These phantoms were not used for training. Average MSE
of water was reduced from 3.6± 2.1, 0.19± 0.09 (with DRI and
Y-net, respectively) to 0.05± 0.04 (with Z-Net), and average
PSNR was improved from 22.1± 1.7, 37.4± 5.7 (with DRI and
Y-net) to 43.3± 3.8 dB with Z-net. In addition, average SSIM
increased from 0.49,0.78 to 0.99, which is 102% and 27% higher
than values yielded by DRI and Y-Net, respectively, indicating that
the recovered images are very close to their ground truths.

Supplement 1, Fig. S3 shows representative recovered images
of HbO, Hb, and water in the case of a phantom with three inclu-
sions. Quantitative results are compiled in Supplement 1, Table
S2. Compared to reconstructed images by DRI or Y-Net, images
recovered with Z-net have values much closer to their ground
truths with fewer artifacts. Table S2 indicates that the proposed
Z-net method provided accurate recovery of HbO, Hb, and water
concentrations compared to the other two algorithms. Errors in
recovered values were less than 2% of known values. Compared
with DRI or Y-net, MSE obtained with Z-Net was 92.6%, 85.7%,
and 99.7%, and 99.2%, 91.7%, and 99.8% lower for HbO, Hb,
and water, respectively.

To test further generalization of a well-trained Z-Net, the
number of source–detector pairs in the testing phantom data was
reduced from 16 to eight. The corresponding reconstructed images
with different algorithms are shown in Supplement 1, Fig. S4.
Compared to DRI or Y-net, images reconstructed by Z-net are

Fig. 2. Statistical results for three algorithms for (a) MSE and
(b) PSNR.

higher in quality, and estimated chromophore values are closer to
the ground truths.

Finally, as an example of clinical relevance, we applied the Z-net
approach to image reconstruction of patient data obtained by our
MRI-guided NIRST system [10,11]. The MRI exam and NIRST
data acquisition were carried out simultaneously for women with
undiagnosed abnormalities at the time of the imaging exam. A
triangular interface with 16 fiber bundles as sources–detectors
was used to acquire NIRST data at each of nine wavelengths in
the range of 660 nm to 1064 nm (which are the same as those used
in the previous simulation experiments). MRI acquisition con-
sisted of standard (T1, T2, diffusion weighted imaging) and DCE
sequences. Amplitude data at each of nine wavelengths and MRI
DCE images were input to the trained Z-net. Figure 3 illustrates
results obtained from a 61-year-old woman with invasive ductal
carcinoma in her right breast. Figure 3(a) shows a 3D image render-
ing from the T1-MRI data. The NIRST imaging plane is marked
by the red rectangle in Fig. 3(b), and dynamic contrast MR images
are shown in Fig. 3(c). Breast density was fatty, and the patient’s
BIRADS score was 5. Figures 3(d)–3(f ) present reconstructed
HbO, Hb, and water images from acquired CW data, respectively.
The tumor is located accurately, and HbT contrast between tumor
and surrounding normal tissue was 1.47—high values indicate
the abnormality was malignant, which was confirmed later by
pathology.

Figure 4 illustrates results obtained from a 28-year-old woman
with a suspicious mass in her left breast. Images presented in the
figure are the same as Fig. 3. Breast density was heterogeneous
dense, and the BIRADS score was 3. In this case, HbT contrast
between the suspicious mass and the surrounding normal tissue
was 1.05, suggesting the lesion is benign. Pathological analysis
confirmed later that the abnormality was a fibroadenoma.

Although DL has been adapted for optical image reconstruc-
tion [12–19], the algorithm developed here is the first to use DL
for combined multimodality image reconstruction. The struc-
tural information obtained from DCE-MRI was combined with
NIRST through DL without segmenting the MRI or modeling the
NIRST light propagation in tissue. Simulation results show that
the quantitative accuracy of NIRST is improved relative to DRI
or other DL-based reconstruction algorithms. Patient results also
suggest that Z-net, when trained with only computer generated
simulation data from simple and regular-shaped phantoms, has

Fig. 3. Z-net results from a breast cancer patient with a malignant
lesion. (a) 3D MRI, (b) measurement plane, (c) MRI DCE image, and
(d)–(f ) reconstructed images of HbO (µM), Hb (µM), and water (%),
respectively. The red rectangle denotes the reconstruction plane.

https://doi.org/10.6084/m9.figshare.18662870
https://doi.org/10.6084/m9.figshare.18662870
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Fig. 4. Z-net results from a subject with a benign lesion. (a) 3D MRI,
(b) measurement plane, (c) MRI DCE image, and (d)–(f ) reconstructed
images of HbO (µM), Hb (µM), and water (%), respectively. The red
rectangle denotes the reconstruction plane.

potential to differentiate malignant from benign breast abnormal-
ities. Since Z-net was trained successfully with simulated phantom
data, unlimited training sets can be generated to enhance further
the generalization of Z-net for MRI-guided NIRST image recon-
struction. While the MRI images used in training had two regions,
one of which mimicked fatty tissue (the background) and the other
mimicked tumor, and gray-scale contrasts between tumor and
surrounding background regions were assumed to be constant (at
1.5), patient images were generated with Z-net that had different
chromophore contrasts in malignant and benign cases. These
results indicate the robustness of the approach, and the possibility
that it can be applied to other combined multimodality image
reconstructions.

We found Z-net reconstructions generated images with better
quantitative accuracy relative to Y-net results (Table S2). Z-net
also reduced the number of trained parameters to about half those
needed in Y-net (Table 1). Training time was also reduced with
Z-net (from 7.2 h for Y-net to 3.9 h for Z-net). Finally, Z-net
proved to offer an end-to-end reconstruction that takes only a few
seconds after successful training and leads to near real-time image
reconstruction that could be applied in clinical settings where more
dynamic results are needed.

In this study, only tissue hemoglobin concentration (HbO
and Hb) and water images were used in Z-net to differentiate
malignant from benign breast abnormalities. Since Z-net can be
expanded by adding other parameters, such as oxygen saturation,
lipids, and scattering properties into the network, the diagnostic
power for breast cancer detection may be increased even further as
multi-spectral systems for tissue spectroscopy are advanced.

Supplement 1, Fig. S5 confirms the importance of using MRI
images to guide NIRST reconstruction. The phantom used to
generate the results in Fig. S5 is the same as the one used in Fig.
S3. Figures S5(a) and S5(b) present images reconstructed with a
traditional reconstruction algorithm [20] that uses only NIRST
signals as network input. Image quality of the reconstructions in
Fig. S5 is inferior to that with MRI guidance (in Fig. S3). Indeed,
inclusion contrast relative to the surrounding background in Fig.
S5(b) has nearly disappeared. This result demonstrates the value of
combining MRI images with NIRST reconstruction, especially for
DL based image recovery.

In summary, we developed a new tomographic reconstruc-
tion algorithm based on Z-Net that recovers concentrations of

chromophores in NIRST guided by MRI without modeling light
propagation in tissue or segmenting MRI. We demonstrated
that the Z-Net algorithm yielded superior performance after
being trained by a deep neural network with computer generated
synthetic phantom data. Future work will expand Z-Net to incor-
porate 3D patient data and test its performance in a larger clinical
trial.
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