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Optimizing the Energy Consumption of
Blockchain-based Systems Using Evolutionary
Algorithms: A New Problem Formulation

Akram Alofi, Mahmoud A. Bokhari, Rami Bahsoon and Robert Hendley

Abstract—BIlockchain technology has gained recognition in industrial, financial, and various technological domains for its potential in
decentralizing trust in peer-to-peer systems. A core component of blockchain technology is a consensus algorithm, most commonly
Proof of Work (PoW). PoW is used in blockchain-based systems to establish trust among peers; however, it does require the
expenditure of an enormous amount of energy that affects the environmental sustainability of blockchain-based systems. Energy
minimization, whilst ensuring trust within blockchain-based systems that use PoW, is a challenging problem. The solution has to
consider how energy consumption can be minimized without compromising trust, whilst still ensuring, for instance, scalability, security,
and decentralization. In this paper, we represent the problem as a subset selection problem of miners in a blockchain-based system.
We formulate the problem of blockchain energy consumption as a Search-Based Software Engineering problem with four objectives:

energy consumption, carbon emission, decentralization, and trust. We propose a model composed of multiple fitness functions. The
model can be used to explore the complex search space by selecting a subset of miners that minimizes the energy consumption
without drastically impacting the primary goals of the blockchain technology (i.e., security/trustworthiness and decentralization). We
integrate our proposed fitness functions into five evolutionary algorithms to solve the problem of blockchain miners selection. Our
results show that the environmental sustainability of blockchain-based systems (e.g. reduced energy use) can be enhanced with little
degradation in other competing objectives. We also report on the performance of the algorithms used.

Index Terms—Search-Based Software Engineering, Blockchain, Mining, Optimization, Evolutionary Algorithms, Sustainability.

1 INTRODUCTION

N 2008, a new decentralized cryptocurrency was pro-
Iposed, Bitcoin [1] that relies on blockchain technology.
Since then, blockchain has attracted considerable interest
from the research and industrial communities, and it has
been applied in a variety of fields, including finance, man-
ufacturing, and academia [2]. Despite the great potential of
blockchain technology, there is an important issue regard-
ing its energy consumption. In the context of the existing
debate concerning sustainability and global warming, such
a perspective could result in constraining or postponing
the global adoption of this technology [3]. Therefore, the
question of optimizing and finding solutions for this issue
is currently receiving much attention.

Optimization is a fundamental technique in all branches
of applied mathematics, engineering, medical science, eco-
nomics, and other sciences. The most recent advancements
in the previous few decades have largely relied on meta-
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heuristic algorithms. Indeed, meta-heuristic algorithms are
used in the great majority of modern optimization tech-
niques in all important disciplines of engineering and sci-
ence, as well as industrial applications. Also, meta-heuristic
algorithms, such as Particle Swarm Optimization, Genetic
Algorithms, etc. have become increasingly powerful in tack-
ling hard optimization problems [4].

The amount of energy consumed by blockchain-based
systems is critical. According to [5], one Bitcoin transaction
uses approximately the same amount of energy as that
consumed by the average British household in eight weeks.
Moreover, as of 31 March 2021, Cambridge Bitcoin Electric-
ity Consumption Index (CBECI) estimated that the Bitcoin
network consumes 137.20 terawatt-hours of electricity per
year [6].

Due to the huge amount of energy that can be con-
sumed by blockchain-based systems, researchers have pro-
posed more sustainable and energy-efficient mechanisms for
trustworthy verification. Solutions include new consensus
algorithms, regulatory mechanisms, and fiscal policies, as
well as limiting the use of these systems. However, re-
search has not utilized Search-Based Software Engineering
(SBSE) techniques to solve the problem of blockchain energy
consumption. In SBSE, software engineering problems are
converted into a search problem, and then search-based
optimization algorithms are used to find optimal and near-
optimal solutions.

Optimizing the energy consumption by selecting miners
in a blockchain-based system is an SBSE problem that can be
considered as an instance of a subset selection problem. This
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has a time complexity of O(2") and is an NP-hard problem.
As the number n increases, the number of possible so-
lutions increases exponentially. Approximation algorithms
can be used to generate good solutions to such problems.
One category of approximate algorithms is evolutionary
algorithms (EAs), which evolve a set of optimal solutions.
Although several optimization solutions use heuristic or
meta-heuristic techniques, the problem proposed in this
study has not been previously reformulated using meta-
heuristics through evolutionary computing. Therefore, this
study intends to show the possibility of reformulating the
miners’ subset selection problem in blockchain-based sys-
tems as an SBSE problem. Also, it can help researchers
and developers to reformulate the problem into a search
problem, as needed.

Similarly to the majority of real-world applications,
blockchain-based systems require trade-offs. In such sys-
tems, many objectives can be balanced which can be viewed
as a distinct optimization challenge. In blockchain-based
systems, there are conflicting objectives that include secu-
rity, scalability, energy consumption, performance, decen-
tralization, and trust. Although different well-developed
optimization techniques are available and show promise to
address optimization problems in many fields, minimizing
the energy consumption of blockchain-based systems has
not been formulated as an optimization problem and solved
using EAs.

In this paper, we reformulate the problem of blockchain-
based energy consumption as an SBSE problem: miners
subset selection problem. We represent the problem as a
set of participating miners within the system. Each miner
consumes energy and emits carbon to add blocks and has a
reputation score. The features of miners in a set, constitute
a decentralization score, and as the score decreases, the
system becomes a centralized system. With such trade-offs,
we propose the use of EAs to optimize the energy con-
sumption of blockchain-based systems by selecting miners
that minimize the energy use and carbon emissions while
maximize other conflicting objectives. In this work, we use
four different fitness functions: energy versus reputation,
energy versus carbon versus reputation, energy versus de-
centralization versus reputation, and energy versus carbon
versus decentralization versus reputation.

The main contributions of this paper are summarized as
follows:

e We formulate the problem of selecting miners within
blockchain-based systems as a SBSE problem.

e A novel optimization model for the problem of se-
lecting miners within blockchain-based systems is
proposed using four different fitness functions for
optimizing the energy consumption of blockchain-
based systems.

e We conducted an experimental evaluation to show
the efficacy of the proposed model in saving energy.

e A comparison among EAs is presented to analyze
their performance in solving the problem of selecting
miners within blockchain-based systems.

The rest of the paper is organized as follows. We briefly
give the background of blockchain technology in Section 2.
Section 3 introduces the related work. The details of our

optimization problem are presented in Section 4. The experi-
ment design is explained in Section 5. We present our results
and discussion in Section 6. Finally, Section 7 presents our
conclusions and potential future work leading from this

paper.

2 BLOCKCHAIN BACKGROUND

The appearance of Bitcoin has resulted in the widespread
adoption of blockchain technology. In blockchain-based sys-
tems, encrypted ledgers are maintained within a database
that is publicly distributed. Blockchain-based systems con-
sistently accumulate data over a wide network among nodes
in a trusted environment that does not require third-party
contributions. This innovative technology has drawn a great
deal of interest for both business and academic purposes,
thanks to offering a range of qualities that include privacy,
reliability, anonymity, and decentralization [7]. Currently,
blockchain has been incorporated into a wide range of ap-
plications, such as Internet of Things (IoT) services, Finance
initiatives, and Supply Chain Economics [2].

Blockchain-based systems can best be understood as a
sequence of blocks similar to public ledgers that accept
and maintain transaction data, which is interconnected by a
reference hash belonging to the previous block (hash block).
The process begins with a genesis block that is also called
a ‘starting” block. Each block is made up of a block body
that consists of both transactions and a transaction counter,
together with a header. The header incorporates a range of
metadata including timestamp, previous block hash, Merkle
tree root hash, nonce, nBits, and the block version [7].

Three forms of blockchain-based systems can be con-
sidered to exist: private, public, and consortium [7]. As
the name suggests, private blockchains are managed by a
designated user or organization and a list of predefined val-
idators. However, the content of blocks can be visible to any
node without permission or a list of predefined nodes with
permission. A public blockchain not only publicly displays
the content but allows anyone to participate in verifying
transactions and adding a new block to the blockchain-
based system. In contrast, consortium blockchains are struc-
tured to allow a set of determined participants, such as
universities, to confirm transactions and add blocks to the
system. Nevertheless, blocks can be accessed by restricted
groups or can be open to everyone. In regards to the energy
consumed by miners in each type of blockchain, public
blockchain consumes a huge amount of energy because of
the large number of miners participating in mining blocks.
In contrast, private and consortium blockchains could be
more efficient due to the limited number of miners. Ta-
ble 1 shows comparison of public, private, and consortium
blockchain.

One of the building blocks of blockchain-based systems
is a consensus algorithm that makes decisions on the way
agreements are established among all nodes on the verifying
network and for appending a new block. The most prim-
itive, commonly used consensus algorithm in blockchain-
based systems is Proof of Work (PoW) [8].

In PoW, every node in a network calculates a hash value
for the block header, which constantly changes. To achieve a
consensus, the calculated value must be equal to or smaller
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TABLE 1
A Comparison of Public, Private, and Consortium Blockchain

Public Private Consortium
Consensus Determination All miners One organization A selected number of nodes
Consensus Process Permissionless Permissioned Permissioned
Centralization No Yes Partially
Transactions Reading Public Can be restricted or public ~ Can be restricted or public
Transaction Processing Speed ~ Slow Faster than Public Faster than Public
Identity Anonymous Predefined participants Predefined participants
Immutability Almost impossible to tamper ~ Could be tampered Could be tampered
Propagating Transactions Low efficient High efficient High efficient
Energy Efficiency High Low Moderate

than a particular predefined value. In a decentralized net-
work, every participant must continuously undertake the
calculation of the hash value by employing a number of
nodes until the target is achieved. The nodes employed for
calculating the hash are referred to as miners, with the PoW
procedures being referred to as mining [7]. To solve a PoW
puzzle and add suitable blocks, each miner needs enough
computing power to find the hash quickly. This can be
achieved by adding a random value called a nonce to a set of
transaction that will be in a new block of the blockchain [7].
Therefore, considerable computational resources are needed
for the PoW mechanism of those applications using this
algorithm.

3 RELATED WORK

Due to the excessive energy consumption of PoW, several
consensus algorithms have been proposed to reduce energy
consumption and improve environmental sustainability by
reducing the number of miners in the competition to find the
nonce. These algorithms track the miners’ behaviors over a
period of time and then calculate their reputation or trust
values. These values are used to allow miners to add blocks.
In [9], the authors propose a new consensus algorithm,
called Proof of Trust (PoT), which selects miners randomly
based on a trust graph built from the miners’ network.
A miner’s trust value is considered a waiver for mining
difficulty in PoW to add blocks. Proof of Reputation (PoR) is
a consensus algorithm suggested in [10] in which the reputa-
tions of nodes are evaluated based on transaction activities,
assets, and consensus participation for a node. Unlike these
studies, our work does not change the architecture of the
blockchain-based systems that rely on PoW, it changes the
mechanism of choosing the appropriate miners that improve
the environmental sustainability of mining blocks.

Since the consensus algorithm is a primitive component
of blockchain-based systems, several studies propose alter-
native consensus algorithms to reduce the energy consump-
tion of such systems. For example, Proof of Stake (PoS) [11]
which uses miners” stake for deciding which miners should
add the next block. Other techniques require miners to
invest in specific hardware, such as high storage devices
(e.g. Proof of Space [12]), or special Intel-based hardware
(e.g. Proof of Luck [13]). Our approach does not propose
a new consensus algorithm, rather it is used within the
most common consensus algorithm (i.e., PoW). In addition,
it does not require investing in specific hardware.

Several optimization models are proposed in the litera-
ture to reduce the environmental impact related to energy

consumption. The problem of scheduling is one of the prob-
lems that has been formulated as a multi-objective optimiza-
tion problem for optimizing energy consumption in many
areas, such as heterogeneous computing systems [14], cloud
computing [15], wireless sensor networks [16], and multi-
core processors systems [17]. Also, another energy-efficient
optimization problem is formulated in various works re-
garding the offloading process. These studies aim to reduce
the energy consumption of offloading processes in diverse
domains including cloud computing [18] and mobile edge
computing for the IoT [19]. Clustering techniques are em-
ployed to optimize energy consumption as well in different
fields, such as cloud computing [20] and wireless sensor
networks [21].

There is other work that solves blockchain-based system
problems using EAs. For example, [22] proposes a Pareto-
based technique to detect major influencers in a blockchain-
based system. In addition, [23] proposes a transaction selec-
tion process using a combination of large deviation theory
and Lyapunov optimization.

SBSE techniques have been utilized successfully to im-
prove the non-functional properties of software. The study
by [24] applied Genetic Improvement (GI) of software for
trading-off energy consumption with the functional prop-
erties of software running on a Raspberry PI; the study
presented in [25] utilizes in-vivo optimization using GI to
achieve a trade-off between the energy consumption of
Rebound (an animation library for Android, written in Java)
and its output accuracy; the study [26] implements a multi-
objective approach to optimize the energy use of Android
applications by changing 'GUIs” color palettes; in [27]
they fix object-oriented and energy anti-patterns by finding
an optimal set of refactoring sequences to maximize the
number of fixed anti-patterns.

Additionally, software runtime and memory consump-
tion have been optimized using SBSE. For instance, the
study [28] has applied GI on the Viola-Jones algorithm (a
face detection algorithm in the openCV library) to trade-
off its functionality with its runtime; the study [29] has
utilized a multi-objective approach to speed-up the runtime
of shader software by degrading its output graphics.

Our work is different from the above studies as none of
these studies solves or discusses the most serious problem of
blockchain based-systems, energy consumption, using SBSE
techniques. In addition, we trade-off two of the main ob-
jectives related to the environmental sustainability dimen-
sion: energy consumption and carbon emission. We compro-
mise these objectives with other non-functional properties
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of blockchain-based systems, namely decentralization and
trustworthiness. Table 4 ! shows a summary of each study
in this section representing the problem solved by the study,
the optimization technique used, and its area.

4 OPTIMIZATION PROBLEM FORMULATION

Similarly to many real-world systems, blockchain-based
systems have trade-offs among different objectives that are
considered as one kind of optimization problem. According
to [30], there are many conflicting blockchain objectives,
such as trust and energy consumption that can be used for
optimizing blockchain-based systems.

We posit that trust provisioning within blockchain-based
systems is expensive, both computationally and in terms of
energy. We consider energy consumed for managing trust
within these systems to be an optimization problem. The
problem is represented as a subset selection problem of
miners participating in a blockchain-based system. To solve
the above problem, in which there is a trade-off between
energy consumption and other conflicting objectives, we
present a novel optimization model that can enhance the
environmental sustainability of blockchain-based systems.
Our model is generally applicable to scenarios where min-
ers are predefined and controlled. Consortium and private
Blockchain-based systems can benefit from our model as
the participating miners are often managed and predefined.
Public blockchain-based systems can still benefit from our
model if a global standard or policy for selecting miners to
mine blocks is specified.

Blockchain-based systems, especially those that use a
Proof of Work consensus algorithm, have a scalability is-
sue [31] that limits the capability of these systems to han-
dle a large amount of transaction data in a short time.
Since a dynamic optimization could increase the overall
mining process overhead that may affect the scalability of
blockchain-based systems, our model employs a static opti-
mization style that performs optimization first then applies.
While researchers attempt to shorten the time needed to
create a new block [32], we believe that a dynamic opti-
mization model can increase the time for adding blocks to
the chain. Applying a dynamic optimization may cause a
delay in the processing of mining blocks. In other words,
a large number of transactions will have to wait for a long
time because of the time spent for the optimization model to
select optimal miners and for adding the transactions to the
chain, especially for blockchain-based systems with a large
number of users. Although we employ a static optimization
model, our model can be employed to perform a dynamic
optimization that can select optimal miners during run-time
(i-e., select optimal miners after each mined block).

In this paper, we reformulate the problem of mini-
mizing the energy consumption and carbon emissions of
blockchain-based systems by reducing the number of min-
ers. Moreover, this formulation includes maximizing the
trust level of these systems not only by selecting miners
with high reputation values but also by the degree of decen-
tralization in the blockchain network where decentralized
trust is fundamental to the operations of these systems.

1. Available in the online supplemental material (see Appendix A)

We follow the definition of trust in [33] that describes
trust as “the firm belief in the competence of an entity to
act dependably, securely, and reliably within the specified
context”. Also, we use the reputation definition that is stated
in [34]. The authors describe reputation as “an expectation
about an agent’s behavior based on information about its
past behaviour”. We consider a blockchain-based system as
an entity and a miner as an agent. There is an inherent trade-
off between the number of miners, energy consumption, de-
centralization, and miners’ reputations within blockchain-
based systems [35]. The more miners a blockchain network
has, the more energy is consumed, the greater the levels of
carbon emissions, and the more decentralized and trusted
it becomes. Furthermore, better decentralization of miners
leads to greater resistance against censorship of individual
transactions and, consequently, greater trust in the system.

4.1 Solution Representation

Solution representation determines how the problem is
structured in the EAs, as well as the genetic operators
that can be used. In the proposed model, the chromosome
representation is an array of nodes which represents a set
of miners in a blockchain network. The length of chromo-
somes (number of genes) is exactly equal to the number of
miners that participate in the mining process. Each gene X;
holds a Boolean value which determines whether a miner is
included.

4.2 Optimization Model

In this model, we devise four objective functions that are
mathematically formulated to minimize the total energy
consumption and the total carbon emissions produced by
blockchain-based systems. These also maximize trust levels
based on maximizing the degree of decentralization and
the reputation values for miners within blockchain-based
systems. A list of notations used and their description are
presented in Table 5 2.

4.2.1 Energy Consumption Objective

This paper focuses on enhancing the sustainability of
blockchain-based systems through the saving of energy
used in computing procedures by miners, which accounts
for the bulk of blockchain-based systems’ energy consump-
tion. Power is a measurement of the rate at which energy
is used or work is performed by a system over a period of
time [36]. From this definition and due to the relationship
between power, energy, and time, the energy consumption
for each miner EM (kilowatt — hour) can be calculated by:

S (P X T)
1000 M

where P; is the amount of power used by a mining device ¢
that is needed for all mining device components including
processor and memory (watt), T; is the hours of participat-
ing in the blockchain network per day (hours), and mD is
the number of mining devices since one miner could have
more than one device.

EM =

2. Available in the online supplemental material (see Appendix B)
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As the optimization objective is to minimize the total en-
ergy consumption ET (kilowatt — hour) of all participating
miners in a Pareto front’s solution, the smaller the energy
value is, the fitter the solution is. We optimize the energy
consumption as follows:

m
ET = Z X; x EM; 2)

i=1

Minimize:

where m is the total number of miners that compose the
blockchain network, and X; is the value of each gene in a
solution representation. It can be either ‘1’, which denotes
the miner is selected for participation in the mining process
for the next block, or ‘0’, which denotes a non-selected
miner.

4.2.2 Carbon Emission Objective

The carbon emission of electricity can be defined as the
greenhouse gas emitted for producing or using a certain
amount of electricity, which indicates that lowering the
energy use by blockchain-based systems will actually re-
duce greenhouse gas emissions. Thus, the carbon emissions
caused by the electricity used by a mining device can be
defined as:

CM = EF x EM 3)

where CM is greenhouse gas emissions produced by a miner
in grams (g), EF is the emission factor of electricity in the
miner’s location (gCOzeq/kWh), and EM is the energy
consumption for each miner (kilowatt — hour) calculated
using Equation 2.

We optimize the total carbon emission C'T" generated
by all participating miners in a Pareto front’s solution as
follows:

Minimize: CT =) X;x CM; @)
i=1

4.2.3 Decentralization Objective

In distributed systems, decentralization means that systems
do not rely on a central party among connected and dis-
tributed nodes or peers [35]. This guarantees that a single
authority or a group of authorities cannot control the as-
sets in the system or impose any change without consent
from other users. In blockchain-based systems, one way
of quantifying decentralization is based on the number of
miners that participate in the mining process. Specifically, it
is useful to look at the number of miners, or how many or-
ganizations control the nodes, and their power expressed in
hashrate. A network’s destiny is controlled by the hashrate
power held by miners. Thus, there is no benefit of having
1000 miners competing if one miner has a 51% hashrate in
the network. This is because this miner would then have
the chance to control the whole network. The key point is to
look at which individual has the highest hashrate or creates
the most blocks. Decentralization is important for how the
system is controlled. When a system has a high degree of
decentralization, it means the system has greater strength
against attacks and tampering, which leads to a high level
of trust in the system [35].

It is critical to have scientific measurements of decentral-
ization in order to assess the level of decentralization for
blockchain-based systems. Several fields have used entropy
for the quantification of the randomness or uncertainty of a
specific mechanism or event [35]. Taking a blockchain-based
system as a source of information, modeling can be used
with the system serving as a random variable. In this case,
the quantity of information a source puts out represents
the quantity of uncertainty that exists before the release
of information. In blockchain-based systems, estimations
can be made of how probable it is that a miner can mine
the next block, on the basis of its hashrate. Following the
models proposed in [35] and [37], we can calculate the self-
information of the event mining blocks for a miner to use
with Shannon’s entropy [38].

Since decentralization is one of the core features in
blockchain, we want to use this valuable feature as one ob-
jective of our model. We use Shannon’s entropy to quantify
decentrality D based on the distribution of miners” hashrate
to prevent one miner from mining all blocks and taking
control of the blockchain-based system (i.e., 51% attack). The
optimization of this objective is defined as:

Maximize:

D ==Y X;x (FH; x log, FH;) (5)
i=1

where m is the number of miners in a blockchain-based

system, and F'H; is the fraction of the hashrate of a miner

in a Pareto front’s solution. The F'H; is calculated using the

following;:

h
e

where each miner’s hashrate is represented by h;, and the
total hashrate of participating miners in the solution is h.

FH; = (6)

4.2.4 Reputation Objective

In our model, the number of miners will be reduced, so we
need to support the PoW consensus algorithm by increas-
ing the trust level for blockchain-based systems. The trust
level can be raised by calculating the reputation value for
each miner. We can use certain trustworthiness evaluation
models to compress a miners historical activities into a
reputation value for each miner. Since building a trust or
reputation model is not an essential contribution of this
paper, we adopt a simple model inspired by the ideas of
PoW and PoS.

In our optimization model, we use a sigmoid function to
evaluate the trustworthiness of miners within a blockchain
network after each published block. We collect two features
about each miner and use them to calculate their reputation
values. The first feature is the number of blocks a miner has
added to the blockchain while the second is the stake the
miner has. Similarly to PoW, we assume that the miner will
not assault the network after doing a lot of work with sig-
nificant requirements. Furthermore, the miner’s ownership
of the amount of currency should be a protection against
attacks on the network because miners do not want to
lose their coins, as with PoS. In this model, the reputation
value for the miner is the sum of the sigmoid function for
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each feature. Thus, the reputation value for each miner RM
within a blockchain network can be calculated as:

& 1 1
RM:;<1+6_b+1+e_s) )

where B is the total number of mined blocks in the
blockchain, b is the number of blocks mined by a miner,
and s is the total of fees and rewards the miner has.

The last objective to maximize is the total reputation RT'
of participating miners in a Pareto front’s solution, which
in turns maximizes the trustworthiness of the blockchain
network. It is worth mentioning that the level of trust of
a Pareto front’s solution does not follow the number of
miners. However, the highest trust of a blockchain-based
system can achieve when all miners are participating in
mining processes. There are some Pareto front’s solutions
that show a lower level of trust with a high number of
miners compared with other solutions that have a low
number of miners.

Maximize: RT =) X; x RM; (8)

i=1

4.2.5 Fitness Functions Constraints

Equations (2), (4), (5), and (8) share same constraints, as
follows:

HC<TL%ZXZ- x h; — H.

i=1

in >1
i=1

X; € {1,0}

where h; is the hashrate for a miner ¢ in the blockchain
network, H,. is the hashrate for a current miner that will
be compared to other miners” hashrate, and T'L is the per-
centage tolerance level that must be identified by a decision-
maker for the system. The decision-maker can determine the
TL to be 50% or less.

These constraints ensure that a miner’s hashrate should
be less than the T'L, such as 50% or 30%, of the total hashrate
for all other miners in the individual solution. When a
malicious miner has a total hashing power above 50% or
30% of the whole network’s hashing powers, a double-
spending attack or a selfish mining attack can be launched
[39], [40]. Therefore, this constraint ensures avoiding such
a vulnerability. Also, they ensure that more than one miner
should participate in the mining process to prevent central-
ization.

We use the above objectives to form four fitness func-
tions: energy versus reputation, energy versus carbon ver-
sus reputation, energy versus decentralization versus rep-
utation, and energy versus carbon versus decentralization
versus reputation. In each fitness function, we have at least
one pair of a conflicting objective.

5 EXPERIMENT DESIGN
5.1 Research Questions

In this paper, our proposed model aims to improve the
environmental sustainability of blockchain-based systems
by using evolutionary algorithms for finding a set of miners.
The study endeavors to answer four research questions:
RQ1: To what extent can our optimization model reduce the
energy consumption of a blockchain-based system?

RQ2: To what extent can our optimization model reduce the
carbon emission of a blockchain-based system?

RQ3: Are the selected evolutionary algorithms effective to
solve our blockchain miner selection problem compared
with Random Search (RS)?

RQ4: Among the used algorithms, which algorithm can
achieve the best performance?

5.2 Evaluation Procedure

Now, we present the evaluation procedure used to answer
our research questions.

5.2.1 Energy Consumption and Carbon Emission

To answer RQ1 and RQ2, we compare each algorithm's best
solution in terms of energy use and carbon emission, and the
degradation in the conflicting objective(s) compared to the
original solution. The original solution is the complete set of
miners within a blockchain-based system.

5.2.2 Performance Metrics

To compare algorithms’ performance, we use the hyper-
volume metric, which computes the d-dimensional volume
of the dominated portion of the objective space by the
non-dominated solutions from a reference point [41]. In
other words, the performance metric in this paper means
the algorithm’s ability to evolve non-dominated solutions
that cover as much as possible of the solution space. The
reference point that we use is the worst possible value for
each objective (i.e., zero for maximization and max double
for minimization problems). We use this metric since it
compares algorithms in terms of diversity and convergence.
This metric is widely used in the literature for the evaluation
of algorithms’ performance and for the solution selection
procedures [42]. The higher the hypervolume value of an
algorithm, the better the performance.

To answer RQ3, we compare the selected algorithms’
hypervolume with the hypervolume of RS’s non-dominated
set. The comparison includes showing statistical differ-
ences between RS and other algorithms using the right-
tailed Wilcoxon rank-sum test [43]. This conservative non-
parametric test makes no assumptions about the datasets’
distribution. The null hypothesis states that the hypervol-
ume values of algorithm X are greater than RS’s hypervol-
ume values. We use the Wilcoxon test because most of the
resulting datasets have non-normal distributions. The sta-
tistical technique used to determine whether an algorithm’s
hypervolume values come from a normal distribution is the
Shapiro-Wilk test [44].

We then use the Vargha and Delaney A, effect size
to measure the approximate differences between the RS
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performance and the selected algorithms. Ay, is a non-
parametric measure and calculates the proportional differ-
ence between two datasets [45]. For interpreting the effect
size, this approach measures the quantity of the difference
in four ranges: no difference (0.5), a negligible difference
(up to 0.56), a small effect (up to 0.64), a medium difference
(up to 0.71), a large difference (larger than 0.71). This ap-
proach calculates the expected probability that algorithm 1
performs better than algorithm 2. For instance, if Au =0.8,
then algorithm 1 is expected to outperform algorithm 2, 80%
of the time.

To answer RQ4, we conduct a pairwise comparison be-
tween every pair of the selected algorithms using Wilcoxon
rank-sum test and A, effect size.

5.3 Selected Evolutionary Algorithms

As we introduce a new optimization problem (blockchain
miner selection problem), we integrate our proposed fitness
functions into five EAs that each have different mechanisms
to preserve solution diversity. For example, Non-dominated
Sorting Genetic Algorithm II (NSGA-II) creates niches by
computing a crowding distance for each solution and uses
the crowding distance in its selection operator to promote
diversity [46]. To diversify solutions, Strength Pareto Evolu-
tionary Algorithm 2 (SPEA2) [47] uses an external archive
to store the non-dominated solutions. For each solution, it
calculates how many solutions dominate it and the num-
ber of solutions it dominates. SPEA2 also uses a nearest
neighbor density estimation technique to guide the search
efficiently. Similarly to SPEA2, Pareto Archived Evolution
Strategy (PAES) [48], which is a mutation-only algorithm,
uses a d-dimensional archive (d = the number of objectives)
as a reference set when it creates new solutions. To promote
diversity, PAES divides the objective space into grids and
places each solution in a certain grid according to the so-
lution’s objective values. A crowding measure is computed
using the density of solutions in each grid. The crowding
measure is used in ranking the non-dominated solutions in
a way that prefers non-dominated solutions belonging to
the least crowded regions.

One of the main performance indicators is the hyper-
volume, which computes the dominated proportion of the
search space by the found solutions [41]. The greater the
hypervolume is, the better performing the algorithm is.
Indicator-based Evolutionary Algorithm (IBEA) [49] uses
the hypervolume indicator to rank solutions. It calculates
how much volume each solution contributes to the overall
Pareto front’s hypervolume. Solutions with higher hyper-
volume values are preferred. As a result, this process maxi-
mizes the final Pareto front domination of the search space.

We also use Non-dominated Sorting Genetic Algorithm
III (NSGA-III) which is an improved version of NSGA-
II for many-objective problems [50]. To preserve diversity,
the NSGA-III algorithm uses a set of well-spread reference
points that represents interesting directions in the fitness
landscape and virtually represents the Pareto front. As the
search process progresses, the algorithm updates the set, as
well as niches created around these reference points. The use
of predefined points divides the search space into multiple
targeted searches for the algorithm instead of one massive

TABLE 2
Implementation Details

Variable Value

Number of Miners 160

Network Total Block Number 4073

Bitcoin Network Hashrate 107,611,000.0 TH/s
Bitcoin Reward 6.25 BTC
Bitcoin Fee 0.00028188 BTC
Bitcoin Average Transaction Size 250 Byte
Mining Device Hashrate 110 TH/s
Mining Device Power 3,250 Watt
Miner Running Time 24 Hours
Percentage of Tolerance Level 50%

search space. This alleviates the problem of computing a
diversity score for every solution by selecting solutions
from different niches instead of computing the crowding
distance. In addition, it reduces the massive number of non-
dominated solutions in many-objective problems, as each
optimal solution corresponds to a targeted search segment.

We use the algorithms discussed above as they have dif-
ferent mechanisms for preserving solution diversity, which
helps to navigate the search space efficiently [51]. We focus
on the native algorithms that are implemented within the
MOEA Framework and that support all functionality pro-
vided by the MOEA Framework. The selected algorithms
are well-suited for solving similar problems to ours [52],
[53], [54], [55], [56]. These algorithms can be used with
binary-coded solutions. In this paper, the solution encoding
is Boolean (Binary-coded).

5.4

The details of the implementation used to run our experi-
ments are presented in the sections below. A summary of
the implementation details is presented in Table 2.

Implementation Details

5.4.1 Bitcoin Simulator Settings

Simulation methods are used in multiple fields of science.
The simulations enable us to obtain insight into a system’s
behavior and simplify the deployment and implementation
of protocols. Simulations allow the investigation of large-
scale systems with a large number of nodes using one ma-
chine and also to get findings in a reasonable time. Within
large-scale blockchain networks, there are difficulties in
procuring information related to the entire network, except
where nodes offer information regarding themselves. Also,
it is not usually possible for the actual behavior within a
large-scale network to be observed. For this reason, it is
neither feasible and practical to undertake experimentation
within large-scale blockchain networks. Although the case
study and evaluation were conducted in a controlled and
simulated environment, the evaluation was careful to emu-
late those dynamics that can stress systems at scale.

Here, we use a blockchain simulation framework called
Bitcoin-Simulator [8] that uses real and artificial data, such
as the distribution of miners’ hashrates and locations. It is
a widely used simulator for the blockchain environment.
Bitcoin-Simulator simulates the working of blockchain-
based systems that use the PoW consensus algorithm and
their network layers. Thousands of nodes and events can
be tracked by the simulator. It replicates the PoW process
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TABLE 3
The Distribution of Miners’ Locations and their Hashrates Percentages.
Country Hashrate Country Hashrate
Percentage Percentage
Canada 0.8% Kazakhstan 6.2%
China 65.1% Malaysia 4.3%
France 0.2% Norway 0.5%
Germany 0.6% Paraguay 0.3%
Iceland 0.4% Russia 6.9%
India 0.1% Thailand 0.3%
Iran 3.8% United States 7.4%
Italy 0.3% Venezuela 0.4%

for miners within a blockchain network by assigning each
miner a particular mining hashrate and location. We utilize
the simulator to collect data that are used to implement our
optimization model. The data collection involves running
the simulator to mine 4073 blocks which is equivalent to one
month of mining. There are 160 miners in the simulation. We
have set the percentage tolerance level in the blockchain-
based system to be 50% to prevent miners from performing
a double-spending attack.

To replicate a real-world scenario of a blockchain-based
system, we use the basic properties of Bitcoin’s network,
such as the hashrate, rewards, and fees as shown in Table 2 3.
We use Bitcoin as it is the most widely known blockchain-
based system [57]. We determine the distribution of miners’
locations and their hashrate percentages based on informa-
tion retrieved from CBECI published in [6]. Table 3 shows
the distribution of miners” locations and their hashrates
percentages of Bitcoin’s network hashrate that are divided
into 16 countries where each country has ten miners.

5.4.2 MOO Model Assumptions

In blockchain networks, we cannot estimate accurately how
much electricity is used for mining operations, as it’s im-
possible to determine how many mining machines are in a
network or which machines are active at any given time [58],
[59]. In order to determine the number of mining devices
in a blockchain network, we first assume that all miners
use the most efficient mining device and that as a miner’s
hashrate increases, their number of devices increases. We
base our assumption on the fact that using inefficient de-
vices leads to leaving the network as a consequence of
not receiving profits from successful mining [58], [59]. In
addition, we do not assume that a miner would have a
high number of traditional devices that use CPUs and
GPUs due to their inefficiencies compared to the current
state-of-art Application-Specific Integrated Circuit (ASIC).
Consequently, the number of devices for each miner is found
by dividing the hashrate for each miner by the hashrate for
the selected mining device type. The power of this device is
also used to calculate the energy consumption of each miner.
We use the hashrate of Antminer 519 produced by Bitmain
Technology Holding Company (Bitmain) *. Its hashrate can
reach 110 T H/s, and its mining power is 3,250 watt.
Moreover, we assume that miners try to mine blocks
for 24 hours because they want to gain profit following

3. Information was retrieved from https:/ /blockchair.com /bitcoin on
November 30, 2020.
4. https:/ /www.bitmain.com

the same assumption published in [59], [60]. For calculating
the carbon emission, we first use the distribution of miners’
locations retrieved from CBECI and set into the simulator.
Then, we use miners’ locations to calculate the carbon
emission produced by each miner using emissions factors
published for miners’ countries in [61].

5.4.3 Experiment Settings

We integrated our proposed fitness models discussed in
Section 4.2 with five evolutionary algorithms. We use the
Random Search (RS) as a baseline for our comparison. For
the algorithm implementations, we used a Java-based Multi-
Objective Evolution Algorithm framework (MOEA Frame-
work) °. For each algorithm, we leave all variation opera-
tors and variation probabilities at their default values (see
Table 6 and 7 for these values °. Each algorithm is run
with 40,000 fitness evaluations. To account for the stochastic
nature in the algorithms used, we run each algorithm 100
times. All experiments were performed on a Windows 10
machine with 24GB memory and Intel i7-6700 CPU clocked
at 3.4GHz.

6 RESULTS AND DISCUSSION

In this section, we present the results of our experiments.
First, we group our experiments based on the proposed
fitness functions presented in Section 4.2. Then, we present
our results and a discussion of RQs1-4.

To investigate the performance of the algorithms on the
real-world blockchain miners selection problem, we need to
compute the true Pareto front. Similarly to [62], [63], we
compute the Pareto front by combining the outcomes of
500 independent runs of the algorithms for each proposed
fitness function.

6.1 Objectives Space Resulits
6.1.1 Energy and Reputation Objective Space

Figure 1 shows the approximated Pareto front found by each
algorithm during the 100 runs in blue and the Pareto front in
black. The x-axis shows the energy consumption, and the y-
axis presents the reputation score calculated by Equation 7.
As can be seen, NSGA-II, SPEA2, IBEA, and NSGA-III
consistently find better non-dominated solutions from the
Pareto fronts. Clearly, PAES’s non-dominated solutions are
distant from the Pareto front, which shows that having only
a mutation operator promotes exploitation over exploration.
This is because mutation operators exploit the neighboring
areas of the current solution whereas crossover operators
create jumps in the search space to better explore it [64]. RS
is the worst performing algorithm when minimizing the en-
ergy use and maximizing the reputation. NSGA-II, SPEA2,
and NSGA-III obtain a better spread than IBEA. This is
because the IBEA algorithm uses the hypervolume indicator
in its selection operator. The majority of its non-dominated
solutions (85+%) occupy the regions of the search space
where the hypervolume is maximized. This behavior of
IBEA has also been observed in the rest of the experiments.

5.MOEA  Framework version 2.13 available at
/ /moeaframework.org, accessed on December 10, 2020.
6. Available in the online supplemental material (see Appendix C)

http:
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Fig. 1. The results of trading-off energy with reputation using Five

algorithms. The Pareto front is shown in black.

6.1.2 Energy, Carbon, and Reputation Objective Space

Figure 2 shows the approximated Pareto front found by each
algorithm in the 100 runs and the computed Pareto front.
The results are color-coded by the carbon objective values
calculated by Equation 4, The energy use and the reputation
score are represented by the x and y-axes, respectively. As
can be seen, the non-dominated solutions created by NSGA-
IT and SPEAZ2 cover larger portions of the computed Pareto
front compared to other algorithms. Interestingly, NSGA-
III's non-dominated solutions are slightly distant from the
Pareto front, and they are more scattered than those of
NSGA-II, SPEA2, and IBEA on the energy and reputation
dimensions. In addition, since the IBEA algorithm uses the
hypervolume indicator in its selection operator, the majority
of its non-dominated solutions (85+%) occupy the regions
of the search space where the hypervolume is maximized.
Similarly to the results of energy versus reputation experi-
ments, PAES and RS performed poorly compared to other
algorithms in terms of covering the Pareto front.

6.1.3 Energy, Decentralization, and Reputation Objective
Space

Figure 3 presents the results of minimizing the energy use
while maximizing the decentralization and the reputation
of the set of miners. The x-axis and y-axis represent the
energy use and reputation score while the color scale of each
point represents the decentralization score calculated by
Equation 5. The overall results of the algorithms are similar
to those in Figure 2, except that the NSGA-III algorithm
covers fewer regions of the Pareto front. In addition, it can
be observed that its solutions at the end of the spectrum,
where the reputation score is maximized, are slightly distant
from the Pareto front compared to NSGA-II, SPEA2, and
IBEA.
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6.1.4 Energy, Carbon, Decentralization, and Reputation
Objective Space

Figure 4 shows the many-objective optimization experiment
results. The x-axis, y-axis, and z-axis represent the energy
use, reputation, and decentralization scores, respectively.
The results are color-coded by carbon values. As can be
seen, the NSGA-II and SPEA2 non-dominated sets include
more solutions of the Pareto front. However, as the problem
dimensionality increases, their ability to consistently find
Pareto front’s solutions degrades (i.e., they have more dis-
tant solutions from the Pareto front than IBEA and NSGA-
III). On the other hand, IBEA non-dominated solutions are
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Fig. 4. The results of trading-off energy with carbon, decentralization,
and reputation using five algorithms. The Pareto front is shown using
dot marker.

less diverse (in terms of objective values), but they reside on
the Pareto front. The NSGA-III non-dominated set covers
slightly more regions of the Pareto front than IBEA’s non-
dominated solutions. The PAES and RS algorithms found
the lowest number of Pareto front’s solutions. The former is
a mutation-based algorithm which effectively explores the
neighbors of the promising solutions. However, as the prob-
lem dimensionality increases, the algorithm’s effectiveness
decreases.

6.2 Research Questions Answers
6.2.1 Energy Consumption and Carbon Emission

To answer RQ1 and RQ2, we compare the original solu-
tion’s objective value (i.e., all miners included) to the objec-
tive values of the solutions found using EAs. The reported
results are the ratio of the objective score of a solution to the
objective score of the original solution. Overall, using the
proposed fitness functions helps the optimizers to explore
the search space and find optimal solutions concerning
energy consumption and carbon emissions (i.e., efficient
solutions for energy consumption and carbon emissions). In-
deed, energy savings and low carbon emissions are achieved
with some degradation in the conflicting objective(s). It is
worth mentioning that Pareto-based algorithms are used to
produce non-dominated solutions to the decision-makers.
In regards to energy savings, using the first fitness
function (i.e., energy vs. reputation) to explore the search
space, IBEA’s best solution in terms of energy consumption
improves the energy efficiency by 88% at the cost of only
40% of overall reputation. The other algorithms substan-
tially reduce energy use; however, the reputation decrease
by more than 95%. It is worth noting that other algorithms
(except RS) managed to find solutions with similar energy
efficiency to IBEA’s best solution. We notice that IBEA’s
non-dominated set is very limited compared to those of
other MOEAs. Although the degradation in the conflicting
objectives (i.e., reputation and decentralization) with energy
use is considerable, solutions with such objective values can
be used in private or consortium blockchain-based systems.

This is because miners are already known to organizations
employing such kinds of blockchains.

In our model, we intend to reduce carbon emission by
balancing with other conflicting objectives. Although the
carbon emission rate produced by miners seems to strictly
follow the increase of energy consumption at the same rate
in figures 2 and 4, this does not mean that miners that
consume high energy will produce high carbon emissions
compared with other miners that consume low energy. In
some cases, we can have a miner that consumes a low
amount of energy but is located in a country with a high
carbon intensity that leads the miner to produce high carbon
emissions and vice versa. As a result, energy consumption
and carbon emission can be considered as conflicting objec-
tives. Having the carbon emission results in figures 2 and
4 that follow the energy increase shows that the optimizer
has favorably selected miners from the same regions with
the same carbon intensity.

Using our optimization model can reduce the amount
of carbon emission in some solutions by more than 90%
compared to the traditional blockchain-based systems that
use PoW. For example, using the second fitness function
(i.e., energy vs. carbon vs. reputation) to explore the search
space, IBEA’s best solution in terms of carbon emission
reduces the amount of carbon emission by 92% at the cost
of only 40% of overall reputation with energy consumption
equal to 12% compared to the original solution. Although
the other algorithms substantially reduce carbon emission,
the reputation decreases by more than 95% except for PAES
that decreases the reputation by 52%. Similarly to energy
savings, the solutions that substantially reduce the overall
reputation can be used in private or consortium blockchain-
based systems.

6.2.2 Performance Analysis

For answering RQ3, we compare the hypervolume of
the non-dominated set of each algorithm with the RS’s
non-dominated set’s hypervolume. We use the two-tailed
Wilcoxon rank-sum test with a threshold of p < 0.05 to con-
duct the comparisons. The null hypothesis is algorithm X’s
hypervolume is significantly greater than the hypervolume
produced by the RS algorithm. To compute the difference,
we use Vargha and Delaney effect size. In addition, we
conducted a comparison between every pair of algorithms
(pairwise comparison) to answer RQ4.

Figure 5 presents the results of the statistical test and
the effect size for each algorithm’s performance using the
four proposed fitness functions. In each cell, the label S
denotes a significant difference, whereas label I indicates
a non-significant difference. The cell color shows the effect
size.

As can be seen in Figure 5, across all fitness functions,
each algorithm’s hypervolume is significantly greater than
that of RS (see the first column of every heatmap). In
addition, the difference between RS performance and that
of other algorithms, is large. This is consistent with the
visual representation of the algorithms’ non-dominated set
in Figures 1, 2 and 3.

Now, we answer RQ4. In fitness function 1 (i.e., energy
vs. reputation) and fitness function 3 (i.e., energy vs. de-
centralization vs. reputation), NSGA-II's performance is the
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Fig. 5. Algorithms effect sizes and P-values. The letter S indicates
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best among all algorithms which indicates that it produced
the most diverse, non-dominated set that covers the largest
portion of the search space among other non-dominated
sets. PEAS has the second-worst performance, this due to
its mechanism in exploring the search space. Among all
algorithms used, IBEA’s performance is the best in exploring
the search space using the fitness function 2 (i.e., energy
vs. carbon vs. reputation). We have investigated its non-
dominated solutions, and we have found that they are cen-
tered in the region where the hypervolume is maximized.
This is due to the algorithm selection preference among
solutions which prefers a larger hypervolume. However, as
can be seen in Figure 3, such a mechanism restricted the
solution diversity in the fitness landscape.

Interestingly, SPEA2 has the best performance among
other algorithms in exploring the solution space using fit-
ness function 4 (energy vs. carbon vs. decentralization vs.
reputation). However, it is worth noting that in terms of
run-time, SPEA2 has the second-worst run-time after the
PAES algorithms. Our results indicate that the expensive
mechanism in determining the strength of solutions enables
SPEA2 to outperform other algorithms in our proposed
many-objective problem.

Although NSGA-III is designed for many-objective prob-
lems, it does not perform well in our many-objective prob-
lem. We conjecture that the NSGA-III light-weight nicheing
mechanism, which is based on reference points, is not
as effective as other algorithms’ (i.e., SPEA2, NSGA-II,
and IBEA) expensive diversity-preservation mechanisms.
It mainly depends on reference points being created to
virtually represent how the Pareto front would look in the
objective space. The quality of the created niches dramat-
ically influences the performance of the algorithm. It is
worth mentioning that the performance of NSGA-III has
been shown to be worse than NSGA-II and SPEA2 in [65].

7 CONCLUSION

Blockchain technology is widely considered as one of the
most important of recent developments. However, it has a
critical weakness: the mining network’s use of resources and
excessive energy consumption. This will have a significant
environmental effect and could prevent the widespread
adoption of this technology. Building an optimal balance
between the multiple criteria involved is an important prob-
lem.

In this paper, we have reformulated this problem as a
multi-objective optimization problem. We attempt to min-
imize energy consumption while considering the trade-off
between decentralization and reputation of miners within
blockchain-based systems. To solve the problem, we have
proposed four different fitness functions. Our results show
that energy usage was reduced by up to 88% with a
40% reduction in reputation (a non-functional property).
Moreover, using private blockchain-based systems, where
miners are known, can save energy by more than 90%. For
evaluating our proposed model, we have compared five
different evolutionary algorithms with different diversity-
preservation mechanisms. The comparisons revealed that
there is no one algorithm that is consistently superior using
its default settings.

Current research work seeks to reduce the energy con-
sumption of blockchain-based systems using different meth-
ods. However, most of these methods focus on proposing al-
ternative consensus algorithms, such as PoS and PoT. These
methods are limited because they do not assist decision-
makers in choosing the best solution for their preferred
criteria. They instead guess what potential solutions might
be interesting.

As with every model, our proposed model has some
limitations. For instance, the current model is static, and we
used it in an off-line optimization scenario (i.e., optimize
first, then deploy). However, our model can be used in
dynamic optimization scenarios, where the environment
changes overtime. In addition, for measuring energy con-
sumption, we have used an estimation model which ab-
stracts away systems’ interactions that can affect energy
estimations. Besides, we have assumed that all miners have
the same device properties when competing to add blocks.
It has been shown in SBSE that different hardware plat-
forms and software systems’ interactions can affect energy
measurements [66]. However, such models can still produce
accurate results [25].

In future work, we plan to combine evolutionary al-
gorithms with learning algorithms to create self-adaptive
approaches that deal with scenarios where miners or mining
policies would change over the lifetime of the blockchain-
based system operation. Also, we plan to investigate how a
dynamic optimization model could provide better efficiency
than static optimization taking into consideration scalability
and mining process overhead. Besides, We will explore
Nakamoto’s coefficient and other metrics, such as the Gini
coefficient, for measuring the degree of decentralization
as an objective of our dynamic optimization model. In
addition, we intend to conduct a sensitivity analysis on
evolutionary algorithms’ parameters that can impact the
quality of the produced results.
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APPENDIX A

Appendix A provides a table that summarizes each study discussed in the Related Work Section. Table 4, shows the
reference number of the study, the problem solved, the optimization technique used, and its area.

TABLE 4
A Summary of Related Work

Reference  Problem Considered Optimization Technique Area

[9] Energy consumption New consensus algorithm Blockchain technology

[10] Energy consumption New consensus algorithm Blockchain technology

[11] Energy consumption New consensus algorithm Blockchain technology

[12] Energy consumption New consensus algorithm Blockchain technology

[13] Energy consumption New consensus algorithm Blockchain technology

[14] Energy consumption Scheduling with multi-objective optimization = Heterogeneous computing

[15] Energy consumption Scheduling with multi-objective optimization = Cloud computing

[16] Energy consumption Scheduling with multi-objective optimization =~ Wireless sensor network

[17] Energy consumption Scheduling with multi-objective optimization = Multi-core processors system

[18] Energy consumption Offloading with a meta-heuristic algorithm Cloud computing

[19] Energy consumption Offloading with stochastic optimization Mobile edge computing

[20] Energy consumption Clustering with Meta-heuristic algorithms Cloud computing

[21] Energy consumption Clustering with multi-objective optimization =~ Wireless sensor networks

[22] Bitcoin network’s influencers ~ Multi-objective optimization Blockchain technology

[23] Bitcoin utility Multi-objective optimization Blockchain technology

[24] Energy consumption Genetic Improvement Applications

[25] Energy consumption Genetic Improvement Mobile application

[26] Energy consumption Multi-objective optimization Mobile application

[27] Energy consumption Multi-objective optimization Mobile application

[28] Execution time Deep parameter optimization Face detection

[29] Performance Loop perforation Applications
APPENDIX B

Appendix B provides a table that lists all notations used in this paper. A list of notations used and their description are
presented in Table 5.

TABLE 5
A List of Notations

Notation  Description

EM The energy consumption for each miner (kilowatt — hour)

P The amount of power used by a mining device (watt)

T The hours of participating in the blockchain network per day (hours)

mD The number of mining devices

ET The total energy consumption of all participating miners in a Pareto front’s solution (kilowatt — hour)
m The number of miners that compose the network of a blockchain-based system

X The value of each gene in a Pareto front’s solution representation (X € {1,0})

CM The greenhouse gas emissions produced by a miner (gram)

EF the emission factor of electricity in the miner’s location (¢CO2eq/kW h)

cT The total carbon emission generated by all participating miners in a Pareto front’s solution (9COzeq/kW h)
D The degree of decentralization

FH The fraction of the hashrate of a miner in a solution

h The hashrate of a miner

hi The total hashrate of all participating miners in a Pareto front’s solution.

RM The reputation value for a miner

B The total number of mined blocks in the blockchain

b The number of blocks mined by a miner

s The total of fees and rewards a miner has

RT The total reputation of all participating miners in a Pareto front’s solution

H, The hashrate for a miner that will be compared to other miners” hashrate in a solution

TL The percentage of tolerance level in a blockchain-based system
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APPENDIX C

Appendix C provides two tables related to the parameters for the chosen algorithms in this paper. Table 6 and Table 7
present the parameters notation related to each of the used algorithms and the value of these parameters for each algorithm,
respectively. The notations and the values are retrieved from the MOEA framework manual [67]

TABLE 6

A List of Notations for Evolutionary Algorithms Parameters
Parameter Description
populationSize The size of the population
sbx.rate The crossover rate for simulated binary crossover
sbx.distributionIndex  The distribution index for simulated binary crossover
pm.rate The mutation rate for polynomial mutation
pm.distributionIndex  The distribution index for polynomial mutation
offspringSize The number of offspring generated every iteration
k Crowding is based on the distance to the k-th nearest neighbor
archiveSize The size of the archive
bisections The number of bisections in the adaptive grid archive
indicator The indicator function (e.g., hypervolume, epsilon, crowding)
divisions The number of divisions
epsilon The € values used by the e-dominance archive, which can either be

a single value or a comma-separated array (this parameter is optional)

TABLE 7
The values of the Parameters for the Used Algorithms

Parameter Random NSGA-II SPEA2 PAES IBEA NSGA-III
populationSize 160 160 160 - 160 160
sbx.rate - 1.0 1.0 - 1.0 1.0
sbx.distributionIndex - 15.0 15.0 - 15.0 15.0
pm.rate - 1/N 1/N 1/N 1/N 1/N
pm.distributionIndex - 20.0 20.0 20.0 20.0 20.0
offspringSize - - 100 - - -

k - - 1 - - -
archiveSize - - - 100 - -
bisections - - - 8 - -
indicator - - - - hypervolume -
divisions - - - -

epsilon Problem dependent - - - - -




