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ABSTRACT  25 

Use of the Chemical Mass Balance (CMB) model for aerosol source apportionment requires the 26 

input of  source profiles of chemical constituents.  Such profiles derived from studies in North 27 

America are relatively abundant, but are very scarce from European studies.  In particular, there is a 28 

lack of data from European road vehicles.  This study reports results from a comparison of road 29 

traffic source profiles derived from (1) US dynamometer studies of individual vehicles with (2) a 30 

traffic profile derived from measurements in a road tunnel in France and (3) new data derived from 31 

a twin-site study in London in which concentrations at an urban background site are subtracted from 32 

those measured at a busy roadside to derive a traffic increment profile.  The dynamometer data are 33 

input as a diesel exhaust, gasoline exhaust and smoking engine profile, or alternatively as just a 34 

diesel exhaust and gasoline exhaust profile.  Running the CMB model with the various traffic 35 

profiles together with profiles for other sources of organic carbon gives variable estimates of the 36 

contribution of traffic to organic carbon and to PM2.5 concentrations.  These are tested in two ways.  37 

Firstly, unassigned organic carbon in the output from the CMB model, assumed to be secondary 38 

organic carbon, is compared to secondary organic carbon estimated independently using the 39 

elemental carbon tracer method.  Secondly, the estimated traffic contribution to organic carbon and 40 

PM2.5 is compared with an estimate derived simply from the measured elemental carbon 41 

concentrations, and the effect on aerosol mass closure is investigated.  In both cases the CMB 42 

model results correlate well with the independent measures, but there are marked differences 43 

according to the traffic source profile employed.  As a general observation, it appears that the use of 44 

dynamometer data with inclusion of a smoking engine profile has a tendency to over-estimate 45 

traffic emissions at some sites whereas the tunnel profile shows a tendency to under-estimate.  46 

Overall, the traffic profile derived from the twin-site study gives probably the best overall estimate, 47 

but the quality of fit with independent estimates of secondary organic carbon and traffic particle 48 

mass depends upon the site and dataset for which the test is conducted. 49 

Keywords: Receptor models; CMB; source profile; traffic emissions; particulate matter 50 
51 



3 
 

1. INTRODUCTION  52 
 53 
Road traffic is one of the key urban air pollution sources, and in the last few decades a significant 54 

amount of research has been undertaken in order to understand the emission characteristics as well 55 

as processes that govern vehicular emissions (Shi and Harrison, 1999;  Charron and Harrison, 2003; 56 

Lough et al., 2007; Phuleria et al., 2007; El Haddad et al., 2009;  Pant and Harrison, 2013). A good 57 

understanding of the relative contribution of traffic to ambient air pollutant concentrations, 58 

especially particulate matter (PM) is vital for policy action. Source apportionment techniques are 59 

used widely for quantitative estimation of the contribution of different sources to ambient PM 60 

concentrations and can be implemented in many different ways, receptor modelling being one of the 61 

methods. Watson and Chow (2007) describe receptor models as models that “interpret 62 

measurements of physical and chemical properties taken at different times and places to infer the 63 

possible or probable sources of excessive concentrations and to quantify the contributions from 64 

those sources” and this category of source apportionment techniques includes microscopic and 65 

chemical models (Pant and Harrison, 2012).  With the assumption that the concentrations of 66 

chemical species are preserved between sources and receptors, receptor models use the principle of 67 

mass conservation for apportionment of PM mass to different air pollution sources. Thus, the 68 

concentration of a species measured in a sample of particulate matter can be described as (Hopke, 69 

1991):  70 

 71 

where Xij is the species concentration of i in the sample j, gip is the fractional mass of species i  in 72 

source p and fpj is the mass contribution of source p to particulate matter in ambient air in sample j.  73 

There are several receptor models such as the Chemical Mass Balance (CMB) model, multivariate 74 

statistical models such as Principal Component Analysis (PCA) including factor analysis models 75 

such as  Positive Matrix Factorization (PMF), Multilinear Engine (ME), and UNMIX) and hybrid 76 
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models such as Constrained Physical Receptor Model (COPREM) (Watson et al., 2002; Viana et 77 

al., 2008). Different models use different approaches to solve equation 1, for e.g., the CMB model 78 

uses the effective-variance least squares method whereas UNMIX uses eigenvector analysis.  79 

 80 

1.1 CMB Model  81 

The CMB model uses the ambient measurement data for chemical species together with the 82 

associated uncertainty and source profiles for different sources as inputs, and the output consists of 83 

estimates of the contribution of each source to the total mass. The model has several assumptions 84 

including non-reactivity of the chemical species and non-co-linearity of the source profiles (Watson 85 

et al., 2002). In addition, the number of species should be greater than the number of sources in 86 

order to derive results from the model. This model has been used extensively for source 87 

apportionment of PM mass (Schauer et al., 1996; Bi et al., 2007; Sheesley et al., 2007; Chelani et 88 

al., 2008; Lambe et al., 2009; Stone et al., 2010; Yin et al., 2010; El Haddad et al., 2011; Hanedar et 89 

al., 2011; Rutter et al., 2011; Guo et al., 2012; Perrone et al., 2012). A large number of markers can 90 

be used for source apportionment including elemental carbon (EC), organic carbon (OC), trace 91 

metals and organic molecular markers. However, trace metals such as Fe, Cu, Zn and Ni are often 92 

emitted from several key sources, and in some cases, it is difficult to apportion PM mass to the 93 

sources based on the trace metals alone (Lin et al., 2010). In addition, with removal of species such 94 

as Br and Pb from fuels, such markers cannot be used conclusively for source apportionment 95 

analyses. With the idea that molecular marker compounds are emitted by specific sources and can 96 

be used to distinguish between PM sources, Schauer et al. (1996) proposed CMB modelling using 97 

organic molecular markers (hereafter referred to as CMB-MM). A number of source-specific 98 

organic molecular markers have since been proposed for use in CMB modelling. Key molecular 99 

markers include levoglucosan for wood burning, hopanes and steranes for vehicular emissions, 100 

higher n-alkanes for vegetative detritus, benzothiazoles for tyre wear and cholesterols and lactones 101 

for cooking (Rogge et al., 1993a,b; Schauer et al., 1996; Lough et al., 2007; Heo et al., 2013). A 102 
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detailed description of various organic markers for different sources has been compiled by Lin et al. 103 

(2010).  104 

 105 

1.2 Source Profiles  106 

Selection of appropriate source profiles is one of the critical steps towards obtaining a good fit with 107 

the CMB model. Source profiles are defined as “the mass abundances, i.e. fraction of total mass of 108 

chemical species in source emissions, and such profiles are generally representative of source 109 

categories rather than individual emitters” (Watson et al., 2002). Such profiles are created using 110 

emission samples from a range of emitters of a particular source category and conducting physical 111 

and chemical analyses to arrive at the contributions of each tracer element/compound (Watson et 112 

al., 2002). Source profiles are used for identification and quantification of contributions of different 113 

sources to PM using the CMB model as well as to compare and validate results obtained from factor 114 

analysis models (e.g. PMF) and to a large extent the model relies on the accuracy of the source  115 

profiles used as an input. However, in the absence of locally relevant source profiles, the Source 116 

Contribution Estimates (SCE) can be prone to erroneous results. In recent years, significant 117 

differences have been observed between laboratory-tested and real world mixed source traffic 118 

emissions (Gertler et al., 2002; Yan et al., 2009; Ancelet et al., 2011). While the typical components 119 

of any source profiles are found to be more-or-less similar, the relative mass abundances vary based 120 

on location and emitter characteristics. As a result, different combinations of source profiles can 121 

provide statistically valid yet completely different solutions (Robinson et al., 2006a).  122 

 123 

Traffic emission profiles can be generated using several different methods including lab-based 124 

dynamometer studies, tunnel studies and twin-site studies (Rogge et al., 1993a; Lough et al., 2007; 125 

He et al., 2008; El Haddad et al., 2009; Yan et al., 2009). Since the twin site/tunnel measurements 126 

are carried out in the ambient environment, and for a mixed fleet, they are seen to be more 127 

representative of real-world emissions. A number of papers have reported the estimation of the 128 
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contribution of traffic emissions to total PM or a component of PM using twin-site studies (Yan et 129 

al., 2009; Bukowiecki et al., 2010; Gietl et al., 2010; Oliveira et al., 2010; Pey et al., 2010). With 130 

the assumption that all sources other than traffic (including any local or regional sources) have the 131 

same impact at both roadside and a nearby background site, the increment at the roadside site 132 

obtained using the equation 2 is used as a local traffic increment estimate (Harrison, 2009; Yan et 133 

al., 2009; Wang et al., 2010).  134 

 135 

The aim of this paper is to assess the response of the CMB model to molecular marker profiles for 136 

traffic derived using different sampling approaches.  Tests of the model are summarised in Figure 1.  137 

Traffic source contribution estimates (SCEs) of PM2.5 OC as well as PM2.5 mass generated from 138 

CMB using different traffic profiles were compared with the traffic estimates obtained using 139 

elemental carbon as a tracer (Pio et al., 2011). The estimated Secondary Organic Carbon (SOC) 140 

derived from CMB was compared to SOC calculated using the method proposed by Castro et al. 141 

(1999).  142 

 143 

 144 
2. METHODS 145 
 146 
2.1 Air Sample Collection and Analysis 147 

PM2.5 samples were collected in Birmingham in 2007-2008 and in London (United Kingdom) in the 148 

years 2010 (summer) and 2011 (winter) respectively. The urban background site in Birmingham 149 

was located in an open field within the University of Birmingham campus. The site is about 3.5 km 150 

southwest of the centre of Birmingham and the nearest anthropogenic sources are a nearby railway 151 

and some moderately trafficked roads. The rural site is located about 20 kilometres west of 152 

Birmingham at a distance of about 200 metres from the A451, a moderate to heavily-trafficked 153 

road. The site is surrounded by unused land/grass. The urban background site in London was 154 

located in a residential area in West London at a distance of 10 metres from the road. The site is 155 
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located 7 kilometres to the west of central London and is located in a cabin within a school campus 156 

where equipment from the national Automatic Urban and Rural Network is also hosted. The 157 

roadside site was located on the kerbside of a heavily trafficked (ca. 80,000 vehicles per day) six 158 

lane highway (Marylebone Road) running through a street canyon in central London. The sampling 159 

station is located at a distance of 1 metre from the road at height of 3 metres.  The site is located 160 

opposite the Madame Tussauds Museum and is surrounded by residential and commercial 161 

buildings. Further site details for Birmingham and London are available in Yin et al. (2010) and 162 

Gietl et al. (2010) respectively. PM2.5 samples were collected on 150 mm quartz fibre filters using 163 

Digitel high volume samplers (DHA-80) in summer and winter seasons for a period of 24 hours in 164 

London.  In Birmingham, 24 hour PM2.5 samples were collected for the first 5 days of every month 165 

on 20 cm x 25 cm quartz fibre filters using a Tisch TE-6070 high volume sampler. In addition, 24 166 

hour PTFE filter samples (PM10 and PM2.5) were also collected at all sites using a collocated 167 

dichotomous Partisol sampler. OC and EC were measured using the Sunset Laboratory Thermal-168 

Optical Carbon Analyser, molecular markers including hopanes, straight-chain alkanes, PAHs and 169 

levoglucosan were measured using GC-MS (Agilent GC-6890N plus MSD5973N) and Al and Si 170 

were measured using WD-XRF (Philips® MAGIX-PRO automatic sequential wavelength dispersive 171 

X-ray Fluorescence spectrometer). Ions (SO4
2-, NO3

-, Cl-) were measured using ion chromatography 172 

(Dionex ICS-2000). The detailed sampling and chemical analysis methodology is presented in Yin 173 

et al. (2010) and Harrison and Yin (2010).  Only PM2.5 samples were used for this study.  174 

 175 

2.2 CMB Model 176 

The CMB 8.2 model from USEPA was used for the estimation of source contribution to PM2.5-OC. 177 

Six key sources were included in the model runs including vegetative detritus (Rogge et al., 1993b), 178 

wood smoke (Fine et al., 2004; Sheesley et al., 2007), natural gas (Rogge et al., 1993c), coal 179 

combustion (Zhang et al., 2008), road dust (Chow et al., 2003) and traffic.  Species used in the data 180 

analysis include elements (Al, Si), n-alkanes (C25-C35), hopanes (trisnorhopane, hopanes, 181 
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norhopane), PAHs (benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, picene, 182 

indeno[123-cd]pyrene, benzo[ghi]perylene) and levoglucosan.  183 

 184 

Winter samples from the roadside and urban background sites in London were used for preparation 185 

of the source profile while the samples from the Birmingham sites (n= 28 for each site) and the 186 

summer samples from the urban background site (n= 30) in London were used for the CMB 187 

analysis.  188 

 189 

Model outputs were evaluated using several different parameters. As a first step, goodness-of-fit 190 

parameters, r2 and chi2 values were checked and a chi-square value less than 4 and r2 value between 191 

0.8-1.0 were considered acceptable. T-stat values (ratio of the source contribution estimate and 192 

standard error) were used to determine the significance of a particular source and a value less than 2 193 

indicates that the source is at or below detection limit. Other parameters included the species’ C/M 194 

ratio (i.e. ratio between calculated and measured concentration) and R/U ratio (i.e. ratio of signed 195 

difference between calculated and measured concentration, i.e. residual divided by standard error, 196 

i.e. uncertainty) with acceptable values ranging between 0.75-1.5 and -2 to +2 respectively. Species 197 

that did not fit within the range were removed from subsequent runs but a base number of species 198 

were always included to ensure that the number of species is more than the number of sources. The 199 

MPIN (modified pseudo inverse normalized) matrix was used as a diagnostic tool to identify the 200 

influential species for each source type with influential species showing values between 0.5 to 1 201 

(Chow et al., 2007).  202 

 203 

 204 

 205 

 206 

2.3  Source Profiles  207 
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Profile derived from twin-site data 208 

To prepare a dimensionless profile for PM requires calculation of the ratio of each of the species 209 

with respect to PM concentration for the same location (Landis et al., 2007). In this study, a similar 210 

approach was used, and since we are assuming the difference between the roadside and background 211 

site to be the traffic increment (as in equation 2), the formula has been modified accordingly 212 

(equation 3).  213 

 214 

Table 1 presents the source profile that was prepared using this approach derived from 215 

measurements at the heavily-trafficked Marylebone street canyon site (Galatioto and Bell, 2013) 216 

and the typical urban background site of North Kensington (Bigi and Harrison, 2010).  The species 217 

mean value represents the species source profile value and standard deviation refers to the profile 218 

uncertainty. Daily winter campaign samples (n = 26) were averaged to obtain the profile and the 219 

average standard error was used as source profile uncertainty. A similar approach has been reported 220 

by Yan et al. (2009) for preparation of a traffic profile for Georgia, USA. The traffic mix on 221 

Marylebone Road is broadly representative of UK traffic (see Table S1 in Supplementary 222 

Information). It is important to note that this profile was generated based on a select group of 223 

organic markers, and the unique site characteristics at the roadside site (Marylebone Road) in 224 

London might have introduced some bias in the results.   225 

  226 

Uncertainty for the various organic species in the profile was observed to be much higher compared 227 

to other published real-world and lab-based profiles. Similar observations of high uncertainties in 228 

ambient data have been reported by Yan et al. (2009) and Peltier et al. (2011) and may reflect in 229 

part, different traffic mixes on different days as well as higher uncertainties associated with ambient 230 

sampling.  231 

Tunnel profile 232 
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This was derived from measurements in a road tunnel in France reported by El Haddad et al. 233 

(2009). The profile (Table 1) was prepared by normalizing the species concentration in PM2.5 234 

against OC concentration in PM2.5 to get concentration in terms of species/µg of organic carbon.  235 

 236 

Dynamometer profiles 237 

Separate source profiles for gasoline, diesel and smoking engines were taken from the work of 238 

Lough et al. (2007) derived from measurements of emission from US vehicles made using 239 

dynamometers. 240 

 241 

3. RESULTS AND DISCUSSION  242 
 243 
3.1  Comparison of Source Profile with other Published Profiles  244 
 245 
Concentrations of most of the organic markers are broadly similar across the ambient data profiles 246 

with the exception of PAHs for which the tunnel profile from France reported lower PAH 247 

concentrations than roadside profiles from the UK and USA (Figure 2).  This may be related to the 248 

very high uptake of diesels in France.  However, the freeway measurement of Phuleria et al. (2007) 249 

appear to suggest higher emissions from diesel vehicles. The dynamometer gasoline profile was 250 

observed to be very similar to the profiles derived from ambient data.  251 

 252 

Ambient concentration data for hopanes from London and Birmingham were compared with a wide 253 

range of traffic profiles using ratio-ratio plots. Such plots are defined as ‘scatter plots of ratios 254 

constructed with data from three species, i.e. two species (which are the target species) whose 255 

values are normalized using the third reference species’ (Robinson et al., 2006a). While the 256 

aggregation of the ambient data around a point signifies that CMB can produce a good result with a 257 

single source profile, distribution of data along a diagonal line indicates the need for at least two 258 

distinct profiles for good results. Plotting the source profiles with ratio-ratio plots using specific 259 

markers can be useful for determination of the most relevant source profiles and such plots have 260 
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been used previously for comparison of ambient data with source profiles (Subramanian et al., 261 

2006; Dutton et al., 2009; Gao et al., 2011).  262 

 263 

Ambient data for hopanes and EC from London and Birmingham were plotted together with source 264 

profiles derived from laboratory dynamometer studies, as well as real-world mixed traffic emissions 265 

collected from the literature (Schauer et al., 1999; Watson et al., 1998; Schauer et al., 2002; Lough 266 

et al., 2007; El Haddad et al., 2009; Yan et al., 2009) in Figure 3. The composite traffic profile was 267 

found to be significantly different from lab-generated source profiles for both the background and 268 

roadside sites, while the comparison with other ambient traffic profiles revealed a similarity 269 

between ambient measurement data and ambient profiles, although the uncertainty (expressed as 270 

standard deviation of daily data) is typically much higher for ambient profiles (Figure 3). The 271 

differences between the profiles were smaller in the case of homohopanes and bishomohopanes. 272 

Differences among the various profiles can be attributed to changes in vehicle technology over time 273 

and the dynamic fleet mix. Significant differences in the source profiles have been reported for 274 

different vehicle categories (Kim Oanh et al., 2010). Use of different sampling and analytical 275 

protocols may also have an influence. 276 

 277 

The ambient air data in the case of hopane-EC plots generally fit to a straight line, suggesting a 278 

variable mixture of two sources, presumably reflecting gasoline and diesel vehicles. However the 279 

huge difference in concentrations between the ambient air data and the majority of the 280 

dynamometer profiles is unexplained.  The diesel dynamometer profiles generally appear to be to 281 

the left of the gasoline profiles, but lie in a totally different region of the plot to the ambient air data.  282 

This may relate to the rapidly evolving technology of diesel vehicles, and the different vehicle types 283 

studied.  In particular, the reductions in smoke emissions, and hence EC, from diesels will have led 284 

to increased hopane/EC ratios in newer vehicles 285 

3.2  CMB Sensitivity Analysis  286 
  287 
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3.2.1 Estimation of traffic particle mass and mass closure 288 

Chemical profiles measured in London (2010 summer data) and Birmingham (2007 data) were 289 

analysed using the CMB model to calculate source contributions to PM2.5 OC with the aim of 290 

comparing the sensitivity of the model to different types of traffic profiles. Three different traffic 291 

profiles were tested, i.e. dynamometer profiles for diesel, gasoline and smoking engines (hereafter 292 

referred to as DYN) (Lough et al., 2007), a twin-site London profile (hereafter referred to as TWIN) 293 

and a France tunnel profile (hereafter referred to as TUN) (El Haddad et al., 2009). The smoking 294 

engine profile used in the analysis includes off-road engines and Lough and Schauer (2007) 295 

reported smoker profiles to impact the estimation of source contribution from gasoline, diesel and 296 

smoker vehicles. In order to understand the contribution from the smoking engine profile, two 297 

analyses were conducted for the DYN profile: gasoline and diesel engine only (DYN-GD) and 298 

gasoline, diesel and smoking engines (DYN-A). For comparison, the average data from each of the 299 

sites was also run with a traffic profile consisting of 80% of the concentrations of the chemical 300 

species measured at the roadside site in London (hereafter referred to as R80). For coal combustion, 301 

wood combustion and road dust, a number of source profiles were tested initially to choose the best 302 

profile for the ambient measurement data and the selected profiles were then used together with 303 

different traffic profiles to obtain final results. A number of different source profiles were run and 304 

the statistical outputs such as standard error and the ratio between calculated/measured values were 305 

assessed for each profile.  306 

 307 

Based on equation 4, “Other OC” was calculated which is the OC unaccounted for by primary 308 

sources, and taken to represent secondary OC (SOC) (Yin et al., 2010).  309 

 310 

Several other authors have also used the same approach and have also assumed the “Other OC” to 311 

be SOC (Subramanian et al., 2007; Docherty et al., 2008; Stone et al., 2009). Source contributions 312 
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to PM2.5 mass were then calculated using ratios of PM2.5 mass/PM2.5 OC for each source applied to 313 

the PM2.5-OC SCEs obtained using CMB modelling as detailed in Yin et al. (2010).  These were 314 

added to estimates of contributions from other sources (marine aerosol, sulphates, nitrates) using 315 

factors from the Pragmatic Mass Closure Model (Harrison et al., 2003) to test overall PM2.5 mass 316 

closure. 317 

 318 

In the CMB model, r2 and χ2 values were observed to be between 0.96-1.00 and 0.02- 2.70 319 

respectively. Only the species with C/M ratio (ratio between calculated and measured 320 

concentration) between 0.75-1.5 and R/U ratio (ratio of signed difference between calculated and 321 

measured concentration, i.e. residual divided by standard error, i.e. uncertainty) between -2- +2 322 

were used for the model runs. In addition, any profiles with a negative source contribution or a tstat 323 

<1 were removed from subsequent runs and markers for the different sources were monitored using 324 

the MPIN matrix available in the CMB model runs and were cross-validated with published marker 325 

data (Table S2, Supplementary Information).  326 

 327 

In the case of the daily data, although overall correspondence was observed between CMB runs 328 

using DYN and TWIN and TUN in terms of identification of sources and OC mass attribution, there 329 

were variations in certain cases with higher or lower attribution of a source. In some cases, 330 

however, while for one model, a source was deemed insignificant (t-stat value < 2), the other 331 

models showed it as a significant source. It is important to note that a tstat value >2 indicates 95% or 332 

more confidence in the estimates.  333 

 334 

Results for apportionment of OC appear in Figure 4.  Across all scenarios, the total traffic 335 

contribution to OC varied as DYN-A> TWIN> DYN-GD> TUN. The DYN-A profile attributed 336 

more OC to vehicles (including off-road engines) than the DYN-GD, TWIN and TUN profile. 337 

However, at both the urban background and rural sites in Birmingham, the results were comparable 338 
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between DYN-A and TWIN profiles and DYN-GD and TUN profiles. Interestingly, while the 339 

TWIN profile used benzo(ghi)perylene as the key marker for traffic, the TUN profile used EC as 340 

the key marker. In the case of DYN profiles, EC, hopanes and benzo(ghi)perylene were observed to 341 

be the key markers for diesel, smoking and gasoline engines respectively. In the case of the London 342 

data, the DYN-A scenario causes the primary sources in the model to account for > 100% of OC 343 

without any SOC, which is clearly implausible.  In the Birmingham data, the choice of profile does 344 

not impact greatly on the outcome. The R80 profile produced very similar results to the TWIN 345 

profile (Table 2;  Figure 4).  The traffic SCEs using TUN and DYN-A and DYN-GD were also 346 

compared against the traffic SCE using TWIN profile, and while good correlation was observed for 347 

urban background sites (r2>0.75), the correlation was much weaker in case of the rural site (r2~ 348 

0.25-0.35).  349 

 350 

When mass closure of PM2.5 is attempted including other major sources using the coefficients 351 

reported by Harrison et al. (2003), closure is generally good, especially for the Birmingham data 352 

(Figure 5).  The DYN-A attributes a larger PM2.5 mass to road traffic than the other profiles, 353 

especially in the London data. Predictably, as for OC results, the total PM2.5 mass apportioned to 354 

traffic varied as DYN-A> TWIN> DYN-GD> TUN. Overall mass closure is good for both urban 355 

and rural sites and winter and summer seasons (Table 2). Results for the R80 profile are not 356 

discussed for PM2.5 since very similar SCEs were observed for this profile compared to the TWIN 357 

profile  358 

 359 

The CMB/Pragmatic Mass Closure Model resolved the PM mass reasonably well with all profiles 360 

with 89.8- 129.7% of PM2.5 mass resolved across all data sets (Table 2, Figures 4 and 5) and the 361 

DYN-GD profile models the highest percentage mass across all sites. In general, all the CMB 362 

models (based on dynamometer profiles and the composite profiles) were able to apportion 363 

approximately similar OC mass, although dynamometer-based profiles apportioned a higher 364 
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percentage of OC mass to traffic. Subramanian et al. (2007) postulated that over-apportionment of 365 

OC mass can occur either due to missing primary sources or due to sampling artifacts. Between the 366 

three profiles, the lowest total OC mass was attributed by the TUN profile runs across all sites. In 367 

terms of resolution of the traffic source, CMB runs with dynamometer and composite profiles 368 

showed some differences. If only gasoline and diesel sources are considered (i.e. using DYN-GD), 369 

the TWIN profile had the maximum mass apportioned to the traffic source and the TUN profile had 370 

the minimum mass apportioned to traffic. However, with the inclusion of the smoking engine 371 

profile in DYN set of profiles, DYN-A apportioned the highest mass to the traffic source. Further, 372 

the tstat values for the DYN-A (tstat > 5 across all cases for diesel and smoking engine profiles) and 373 

TUN (tstat > 6 across all cases) profiles were consistently higher than the TWIN model (tstat between 374 

2-3 in most cases). The lowest standard error was recorded for the DYN profiles (A & GD) which 375 

correlates with the lower uncertainties associated with these profiles. Higher uncertainties in the 376 

case of TWIN and TUN profiles can be attributed to the errors associated with ambient 377 

measurements. Between the TWIN and TUN profiles, the standard error was lower in the case of 378 

the TUN profile. In some cases, the tstat for the traffic and gasoline had a value of less than 2 in the 379 

case of TWIN and DYN (A & GD) profiles respectively rendering the traffic source insignificant. 380 

No runs had tstat <2 for traffic in the case of the TUN profile. The R80 profile, run as a test yielded 381 

results very similar to the TWIN profile (Table 2;  Figure 4).  382 

 383 
The MPIN matrix data for runs was also analysed to assess and cross-compare the influential 384 

species (defined as species with a value >0.7 in the matrix) for the different traffic profiles. While in 385 

the case of DYN profiles (A & GD), the same markers (EC for diesel engine, hopanes for smoking 386 

engine and benzo(ghi)perylene for gasoline engine, value = 1 across all runs) were consistently 387 

found to be influential across all runs, different species were recorded as influential in the case of 388 

the TWIN and TUN profiles. Overall, the TWIN profile showed a value of 1 for benzo(ghi)perylene 389 

across the runs and the TUN profile showed a value of 1 for EC. In both cases, the other key sets of 390 
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markers, i.e. EC and hopanes were found to be influential across most runs. Similar results were 391 

reported by Chow et al. (2007). There were cases, however, where EC and/or trisnorhopane were 392 

over- or underestimated, and in those cases, the key marker varied. Benzo(ghi)perylene and hopane 393 

were estimated correctly in most cases. For the TUN profile, n-alkanes (A25 and 26) were also 394 

recorded as influential species in some cases. Interestingly, in the case of TUN profile runs, 395 

interference between the vegetative detritus and traffic profile was observed, and in many runs, the 396 

vegetative detritus SCE was insignificant or zero although positive SCEs were recorded using 397 

TWIN and DYN (A & GD) profiles. In a CMB sensitivity study, Sheesley et al. (2007) observed 398 

the biomass profile to impact the contribution estimate for traffic. Test runs were then conducted 399 

with the TUN profile excluding the n-alkane data, but the SCEs for traffic were found to be more or 400 

less similar to the original runs. The Other OC mass and the total mass apportioned, however, 401 

changed slightly as a result of positive SCEs for vegetative detritus. Lower percentages of mass 402 

were apportioned to traffic during the summer season by the model with both types of profile. 403 

Similar observations have been reported for the USA (Subramanian et al., 2007; Bullock et al., 404 

2008) and Europe (El Haddad et al., 2011) where SOC has been reported to be higher in the 405 

summer season due to increased photochemical activity. Also, a higher percentage of SOC was 406 

estimated for the rural site compared to the urban background sites, which is also reflected in the 407 

higher OC/EC ratio for the rural site. 408 

 409 
3.3.2  Comparison of CMB traffic estimates with an estimate based upon EC  410 

Assuming road traffic to be the dominant source of EC, traffic emission estimates were obtained for 411 

PM2.5-OC and PM2.5 mass using EC*0.35 and EC*1.35 respectively based on Pio et al. (2011).  The 412 

traffic SCE outputs for PM2.5-OC and PM2.5 from the CMB model with different traffic profiles 413 

were compared against the EC traffic emission estimates (Table 3). The most similar estimates for 414 

primary vehicular emissions were observed for DYN-GD with the estimates being highly correlated 415 

(r2 > 0.85) with the traffic estimates obtained using EC for the Birmingham sites. For DYN-A, the 416 
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dynamometer profiles produced a much higher estimate for the traffic contribution and this was due 417 

to a high SCE for the smoking engine profile. However, not all of that SCE is necessarily derived 418 

from road traffic as the source profile for the smoking engine includes off-road vehicles which are a 419 

significant contributor to PM2.5 in the UK (AQEG, 2012). Poor correlation was observed for all the 420 

profiles at the rural Birmingham site with correlation coefficients ranging between 0.26-0.41. The 421 

estimates obtained using the TWIN profiles showed similar correlation with the EC estimate 422 

compared to the estimates from the TUN profile.  423 

 424 
 425 
3.2.3  Comparison of estimates of SOC  426 

Organic carbon can be present in the atmosphere as primary organic carbon (POC) (directly 427 

emitted) or SOC (formed by atmospheric chemistry). Generation of SOC source profiles is rendered 428 

difficult due to the complex chemistry of secondary organic aerosol formation (Bullock et al., 2008) 429 

and diversity of composition.  As a result, while the CMB model works well for attribution of POC 430 

sources such as biomass combustion and traffic, it is not able to apportion SOC due to lack of 431 

availability of appropriate source profiles (Stone et al., 2009; Guo et al., 2012; Schauer and Sioutas, 432 

2012).   Consequently, as in Yin et al. (2010), the CMB model was run to account for known 433 

primary sources of OC, and the difference between the sum of POC and measured total OC was 434 

attributed to SOC. 435 

 436 

EC is released directly into the atmosphere and can be used to estimate relative amounts of primary 437 

and secondary OC. One of the simplest approaches involves use of the ratio between OC and EC. 438 

Higher OC/EC ratios are expected in the conditions where SOC is dominant and the highest OC/EC 439 

ratios are reported in rural and remote sites (Pio et al., 2011). The EC-tracer method involves the 440 

use of EC as a tracer for POC, allowing SOC to be calculated (Turpin and Huntzicker, 1995; Castro 441 

et al., 1999; Lee and Russell, 2007; Sheesley et al., 2007; Pio et al., 2011). Minimum ratios of 442 

OC/EC are taken as representative of primary OC (although they may be an over-estimate (Pio et 443 



18 
 

al., 2011)) and OC above that ratio is taken to be SOC.  The method as outlined by Castro et al. 444 

(1999) was used (equation 5) and estimates of daily SOC were made for each of the sites.  445 

 446 

The quality of fit between the estimates of SOC from the CMB model and the EC tracer method 447 

was evaluated by regression analysis (Table 4).  Given that the EC tracer method is liable to under-448 

estimate SOC (Pio et al., 2011), an excess of “Other OC” over SOC might be expected, but in most 449 

cases the “Other OC” is similar to, or less than the SOC.  In the Birmingham (urban background), 450 

London (urban background-summer) and Birmingham (rural) datasets, the three estimates are in 451 

broad agreement. 452 

 453 

4. CONCLUSIONS  454 
 455 
It is evident from Figure 2 that traffic profiles of molecular markers measured in the field show 456 

generally broad agreement. However, as Figure 3 shows, where plotted as normalised abundance 457 

(marker/EC), the field data can differ by orders of magnitude from dynamometer data, and the 458 

variation between dynamometer studies is typically greater than that between field measurements.  459 

Perhaps surprisingly, both, however, give broadly similar estimates of traffic PM2.5 mass.  Those 460 

from the composite profile (TWIN) are probably better, as judged from the estimates from the EC 461 

tracer method, and the mass closures. Correlations of the traffic estimates using the TWIN profile 462 

against those obtained using EC were broadly similar to those obtained using the DYN (A & GD) 463 

profiles. The estimates from TUN profile, however, were much more weakly correlated, 464 

particularly at the rural site. This could be due to the interference between the traffic and vegetative 465 

detritus sources for TUN model runs as explained in the previous section.  It is possible that other 466 

tunnel profiles more representative of the UK might perform better. It was also observed that 467 

selection of species for inclusion in the profile can determine the overall modelling output, both for 468 

estimation of the traffic source and the overall model output.  469 
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 470 

Based on the current analysis, it can be concluded that both the dynamometer and composite (twin-471 

site) profiles can provide reasonable estimates of the traffic contribution. In cases where 472 

dynamometer profiles are not available, composite profiles can be used to estimate traffic 473 

contribution to OC or PM mass. However, it is important to bear in mind that the high uncertainty 474 

associated with the composite traffic profile can impact upon CMB model output since the model 475 

takes into account both the profile uncertainty and the ambient data uncertainty. Further, traffic 476 

source profiles based on ambient data can cause mis-apportionment of other sources since similar 477 

compounds are often reported from different sources, for e.g. PAHs from different combustion 478 

sources. Thus, it is important to select species for the profile in such a way that interference with 479 

other sources would be minimal. Another consideration for the use of ambient data for preparation 480 

of source profiles is the impact of oxidation of marker species in the atmosphere (Robinson et al., 481 

2006b). This can also impact the model output as it is assumed that the species are chemically 482 

stable.   483 
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Table 1: Source composition profile for traffic based on twin sites from London (this study), 799 
tunnel site from France (El Haddad et al., 2009) and 80% of concentration data from the 800 
roadside site in London (this study) ( all values in µg/µg of OC)  801 

Compound TWIN (mean ± s.d.) TUN (mean ± s.d.) R80 (mean ± s.d.) 
EC 1.600±1.440 2.72±0.49 1.620±1.440 
Trisnorhopane  0.00005±0.00004 0.00010±0.00001 0.00007±0.00004 
Norhopane  0.000200±0.00017 0.00036±0.0005  
Hopane   0.00014±0.00012 0.00027±0.0005 0.00016±0.00010 
(S+R) Homohopanes  0.00020±0.00018 0.00028±0.00004 0.00026±0.00015 
(S+R) Bishomohopanes  0.00030±0.00025 0.00010±0.00002 0.00036±0.00021 
(S+R) Trishomohopanes   0.00028±0.00022 0.00008±0.00002 0.00029±0.00018 
Benzo(ghi)perylene  0.000080±0.000055 0.000003±0.0000002 0.00011±0.00006 
 802 
 803 



 
 

Table 2: Traffic mass estimate (µg/m3) and total percentage (%) explained using different traffic profiles for (a) OC and (b) PM2.5 

(a) OC  
 

Site (season) 
  

OC mass apportioned to traffic   Total % OC mass apportioned 
DYN-A DYN-GD TWIN TUN R80 DYN-A DYN-GD TWIN TUN R80 

Urban background site, London (Summer) 1.87 0.73 1.63 0.58 1.63 102 67.5 68.0 35.1 68.0 
Urban background site, Birmingham  1.63 0.80 1.29 0.64 1.29 73.2 43.2 63.2 39.5 63.1 
Urban background site, Birmingham (Summer)  1.43 0.69 1.15 0.58 1.15 61.4 37.5 53.5 34.6 53.5 
Urban background site, Birmingham (Winter)  1.91 0.89 1.93 0.74 1.93 90.6 50.1 94.1 46.1 94.1 
Rural site, Birmingham  1.33 0.55 1.21 0.48 1.01 77.1 46.3 75.6 42.3 67.7 
Rural site, Birmingham (Summer) 1.34 0.44 1.21 0.67 1.21 79.2 48.3 71.3 52.0 75.6 
Rural site, Birmingham (Winter)  1.26 0.66 1.10 0.48 1.10 76.2 48.1 70.5 39.4 70.5 
 

(b) PM2.5 
 
Site (season) 
  

PM2.5 mass apportioned to traffic   Total % PM2.5 mass apportioned 
DYN-A DYN-GD TWIN TUN R80 DYN-A DYN-GD TWIN TUN R80 

Urban background site, London (Summer) 2.98 1.61 2.69 0.96 2.69 123 130 119 122 119 
Urban background site, Birmingham  2.61 1.61 2.13 1.61 2.13 104 108 106 97.5 106 
Urban background site, Birmingham (Summer)  2.39 1.50 1.90 1.50 1.90 108 111 109 100 109 
Urban background site, Birmingham (Winter)  2.93 1.70 3.18 1.70 3.18 94.7 101 98.1 89.9 98.1 
Rural site, Birmingham  2.06 1.13 2.00 0.80 1.67 111 116 113 116 114 
Rural site, Birmingham (Summer) 1.97 0.89 2.00 2.00 2.00 119 113 122 124 121 
Rural site, Birmingham (Winter)  2.07 1.36 1.81 0.79 1.81 101 106 103 106 103 



 
 

 
Table 3:  Comparison of the traffic estimates from the CMB model with the traffic estimate 
obtained using EC 

Site (season) 

OC  PM2.5  

r2  r2  
Urban background, London (Summer)  
DYN-GD 0.99 y = 1.28x + 0.01 1.00 y = 0.75x + 0.01 
DYN-A 0.94 y = 1.45x + 1.04 0.98 y = 0.80x + 1.24 
TWIN  0.71 y = 1.55x + 0.37 0.71 y = 0.66x + 0.60 
 TUN 0.84 y = 0.61x + 0.29 0.84 y = 0.26x + 0.48 
Urban background, Birmingham (Summer)  
DYN-GD 0.87 y = 1.31x + 0.00 0.95 y = 0.76x - 0.03 
DYN-A 0.78 y = 2.37x + 0.33 0.89 y = 1.09x + 0.37 
TWIN  0.67 y = 1.93x + 0.14 0.67 y = 0.83x + 0.23 
 TUN 0.73 y = 0.79x + 0.14 0.73 y = 0.34x + 0.23 
Rural, Birmingham (Summer)  
DYN-GD 0.97 y = 1.21x - 0.00 0.92 y = 0.73x - 0.10 
DYN-A 0.41 y = 1.12x + 0.88 0.61 y = 0.71x + 0.91 
TWIN  0.26 y = 1.00x + 0.55 0.26 y = 0.43x + 0.91 
 TUN 0.16 y = 0.32x + 0.37 0.16 y = 0.14x + 0.62 
Note:  y = CMB model estimate;  x = estimate derived from EC concentration 

 
 

Table 4: Comparison of the Other OC estimate from the CMB model with the SOC estimate 
obtained using EC tracer method  

Site (season) r2 
 Urban background, London (Summer)   

DYN-A 0.81 y = 0.92x - 0.69 
TWIN  0.70 y = 0.83x + 0.07 
 TUN 0.73 y = 0.80x + 0.74 
Urban background, Birmingham (Summer)   
DYN-A 0.92 y = 0.86x - 0.52 
TWIN  0.91 y = 0.86x - 0.10 
 TUN 0.90 y = 0.90x + 0.49 
Rural, Birmingham (Summer)   
DYN-A 0.76 y = 0.79x - 1.22 
TWIN  0.69 y = 0.73x - 0.71 
 TUN 0.92 y = 0.88x - 0.67 
Note:  y = CMB model estimate;  x = estimate from EC tracer method 

 

 



 
 

 

 
Figure 1: Assessment of model performance using different metrics 
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Figure 2: Comparison of London profile with other traffic and dynamometer profiles  (TWIN- Our profile; TUN- El Haddad et al. (2009); 
TWIN US- S &W- Yan et al., 2009; DYN-D, G &S- Lough et al., 2007) 
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(a) Hopane-EC ratio-ratio plot 

 

(b) Hopane- hopane ratio-ratio plot  
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ο ambient data from current study;   other ambient profiles;  ◊ gasoline profile from dynamometer; ∆ diesel profile from dynamometer;  + smoking 
engine profile from dynamometer 
 

Figure 3: Comparison of source profiles derived from ambient air measurements and dynamometer studies using ratio-ratio plots 
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(a) London  
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(b) Birmingham  

 
1. Urban background  

 
 
 
2. Rural  
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Figure 4: Source contribution estimates for organic carbon at different sites 

(a) London  
 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

DYN-A DYN-GD TWIN  TUN  R80 DYN-A DYN-GD TWIN  TUN  R80 DYN-A DYN-GD TWIN  TUN  R80 

Summer  Winter  Annual  

M
ea

su
re

d 
O

C
 (µ

g/
m

3)
 

O
C

 c
on

tr
ib

ut
io

ns
 (µ

g/
m

3)
 

Vegetative Detritus   Wood Smoke  Natural Gas  Coal Combustion  Road Dust  Diesel  
Gasoline  Smoking Engine  Traffic- Mixed  Other OC  Measured OC  



7 
 

-2.0 

0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

16.0 

DYN-A DYN-GD TWIN  TUN 

So
ur

ce
 c

on
tr

ib
ut

io
ns

 to
 P

M
2.

5 (
µg

/m
3)

 

Vegetative Detritus   Wood Smoke  Natural Gas  Coal Combustion  Road Dust  Diesel  Gasoline  

Smoking Engine  Traffic- Mixed  Sea Salt  Ammonium Sulphate  Ammonium Nitrate SOC  Measured PM2.5 



8 
 

 
(b) Birmingham  

 
1. Urban background 
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2. Rural  
 

 
 
Figure 5: Source attribution of PM2.5 mass based on CMB results 
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