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ABSTRACT 

Size-resolved composition of particulate matter (PM) sampled in the industrial town of Port Talbot 

(PT), UK was determined in comparison to a typical urban background site in Birmingham (EROS). 

A Micro-Orifice Uniform Deposit Impactor (MOUDI) sampler was deployed for two separate 

sampling campaigns with the addition of a Grimm optical spectrometer at the PT site. MOUDI 

samples were analysed for water-soluble anions (Cl-, NO3
- and SO4

2-) and cations (Na+, NH4
+, K+, 

Mg2+ and Ca2+) and trace metals (Al, V, Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). The PM mass 

distribution showed a predominance of fine particle (PM2.5) mass at EROS whereas the PT samples 

were dominated by the coarse fraction (PM2.5-10). SO4
2-, Cl-, NH4

+, Na+, NO3
-, and Ca2+ were the 

predominant ionic species at both sites while Al and Fe were the metals with highest concentrations 

at both sites. Mean concentrations of Cl-, Na+, K+, Ca2+, Mg2+, Cr, Mn, Fe and Zn were higher at PT 

than EROS due to industrial and marine influences. The contribution of regional pollution by 

sulphate, ammonium and nitrate was greater at EROS relative to PT. The traffic signatures of Cu, 

Sb, Ba and Pb were particularly prominent at EROS. Overall, PM at EROS was dominated by 

secondary aerosol and traffic-related particles while PT was heavily influenced by industrial 

activities and marine aerosol.  Profound influences of wind direction are seen in the 72-hour data, 

especially in relation to the PT local sources.  Measurements of particle number in 14 separate size 

bins plotted as a function of wind direction and speed are highly indicative of contributing sources, 

with local traffic dominant below 0.5 µm, steelworks emissions from 0.5-15 µm, and marine 

aerosol above 15 µm. 

Keywords:  Particle size distribution;  chemical composition;  urban background;  steelworks;  

impactor 
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1. INTRODUCTION 

Particulate matter is commonly classified in three modes namely ultrafine (nucleation and Aitken 

mode, diameter less than 0.1 µm), fine (mainly accumulation mode, aerodynamic diameter between 

0-2.5 µm) and coarse (aerodynamic diameter between 2.5 and 10 µm). Generally, fine and ultrafine 

PM are formed from high temperature processes such as vehicular exhaust, oil and coal combustion, 

biomass burning, industrial processes, and chemical reactions in the atmosphere (Harrison et al., 

2003a; Samara et al., 2003). Coarse particles are generally evolved from attrition processes 

including mechanical abrasion of crustal material and re-suspension of road and soil dusts, sea 

spray, volcanic eruptions and brake and tyre wear from vehicles (Allen et al., 2001).  

 
Atmospheric PM is made up of diverse chemical substances including water soluble ions, trace 

metals and organic compounds. Water-soluble ions constitute a significant portion of PM mass (Yin 

and Harrison, 2008), and therefore play an important role in aerosol chemistry. Sulphate and nitrate 

are formed mainly from oxidation of SO2 and NOx. Sodium, magnesium and chloride are the main 

components of sea spray;  potassium arises from biomass burning or soil and Ca from construction, 

soil and steelworks emissions (Oravisjavi et al., 2003; Pandolfi et al., 2011). A number of 

anthropogenic, geogenic and biogenic activities are responsible for emissions of trace metals into 

the atmospheric environment and hence play important roles in determining size distributions 

(Allen et al., 2001).  Each has a characteristic size distribution reflective of its source.  

 
The Micro-Orifice Uniform Deposit Impactor (MOUDI) has been widely used for particle size 

measurement in both indoor and outdoor pollution studies. These studies have reported PM size 

distributions for water soluble and trace metal components (Allen et al., 2001; Cabada et al., 2004; 

Harrison et al, 2003a; Chang et al., 2008; Dall’Osto et al., 2008; Liu et al., 2008; Zhao and Gao, 

2008; Gietl et al., 2010; Ny and Lee, 2011). Na, Cl, Ca and Al typically show modes in the coarse 

fraction while Cd, Zn, Mn, Ni and Cu have modes in the fine fraction (Ny and Lee, 2011). Allen et 
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al. (2001) reported MOUDI data for trace metals from three urban background sites in the UK. 

Dall’Osto et al. (2008) employed a MOUDI for particle size-resolved measurements at a steel 

industry site in the UK. Water-soluble ions in particulate matter, from nanoparticles to the coarse 

mode have been determined with a MOUDI and nano-MOUDI in Taiwan by Chang et al. (2008). In 

London, particle size-segregated aerosol has been measured at roadside and background sites by 

Gietl et al. (2010). PM size-segregation and associated metallic elements in an industrialized city in 

Korea have been reported (Ny and Lee, 2011). None of these studies have compared the size 

distribution of PM and its components collected at urban background and industrial (especially 

steelworks) locations for both water soluble ions and trace metals. In this study, particle size 

distributions of both ionic species and trace metals at typical background and industrial sites were 

studied, offering an opportunity for identifying source signatures of components contributing to PM 

in the atmosphere of the two study areas. The results add to a relatively small international database 

of mass size distributions for specific chemical components, and highlight the very different sources 

of particulate matter at the two sites.  Additionally, particle number spectra from 0.3 µm to > 15 µm 

are reported and analysed according to wind speed and direction. 

 

2. MATERIALS AND METHODS 

2.1 The study Areas 

2.1.1 Port Talbot (PT) 

PT is a coastal industrial town with a population of approximately 35,000 and located on the M4 

corridor in South Wales (51° 34' N and 3° 46' W). The Tata steel complex located in Port Talbot 

town is the main industry in the study area and a major source of PM emissions (AQEG, 2011). The 

site covers approximately 28 km2, comprises of ~50 km of roads, 100 km of railway, and 25,000 

vehicle movements per day. The production capacity is around 5 m tonnes per year with the main 

processes in the steelworks being iron-making (sintering, blast furnace and raw materials), steel-

making (basic oxygen steel-making (BOS) and coking) and rolling mills (hot and cold mills) 
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(Moreno et al., 2004; Dall’Osto et al., 2008).  The location of the sampling site (Fire Station) is 

shown in Figure 1.  

 

2.1.2 Elms Road Observatory Site (EROS) 

EROS (1.93oW; 52.46oN) is a typical suburban background site located in an open field within the 

University of Birmingham campus. The site is about 3.5 km southwest of the centre of Birmingham 

(population of over one million and part of a conurbation of 2.5 million population (Yin et al., 

2010).  The EROS study site is shown in Figure 2.  The nearest roads are lightly trafficked and the 

nearby railway line carries mainly electric trains. 

 

2.2 Particulate Matter Sampling  

Size-fractionated particle sampling was carried out with 8-stage MOUDI TM (Model 100) having cut 

points of 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32 and 0.18 µm, and a nominal flow of rate 30 L/min. As a 

flow rate of 21.5 L/min was achieved throughout the sampling periods at both sites, a correction 

factor was applied using the formula:  Dp x √ (F1/F2) where Dp is the MOUDI stage nominal cut-

point, F1 is the design flow rate of the MOUDI (30 L/min) while F2 is the achieved flow rate 

during the campaign (21.5 L/min). Polytetrafluoroethylene (PTFE) filters (Whatman, diameter 47 

mm and pore size 1.0 µm) were used for particle collection on all the impaction stages while quartz 

filters (Whatman, diameter 37 mm) were used as backups. At EROS, a total of four MOUDI 72 

hour-samples were generated during the sampling period between March 30 and April 11. At the PT 

sampling site, ten MOUDI samples of 72 hours each were collected during a one month sampling 

campaign that started on the April 17 and ended on May 16, 2012. The tenth sample was collected 

for just 36 hours.  Prior to sampling and after sampling, all filters were weighed with a Sartorius 

microbalance (Model MC 5;  1 µg sensitivity) equipped with a Polonium-210 anti-static source 

having been subjected to at least 24 hours pre-conditioning (20 ± 5ºC and 50 ± 10% R.H.) in our 

clean weighing  room.   
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2.3 Meteorological Conditions 

Average wind speed and temperature at the Birmingham (Tyburn) and Port Talbot (Fire Station) 

Automatic Urban Rural Network (AURN) sites were calculated (http://uk-

air.defra.gov.uk/networks/aurn-site-info). The AURN station at Birmingham, Tyburn was used to 

represent the EROS site. During the period of sampling at EROS (March 30 – April 11), the 

average wind speed and temperature were 4.3±1.8 m s-1 and 6.7±1.4 oC respectively. At PT where 

the sampling campaign took place between April 17 and May 16, the values were 6.3±2.3 m s-1 and 

8.6±1.4 oC.  

 

2.4 Sample Digestion and Analysis 

Exposed filters were cut into two equal halves. One half was analysed for water-soluble ions (Na+, 

Mg2+, Ca2+, K+, NH4
+, Cl-, NO3

-, SO4
2-) while the second half was analysed for trace metals (Al, V, 

Cr, Mn, Fe, Cu, Zn, Sb, Ba and Pb). Blank filters were also analysed and subtracted from the 

exposed filter data. 

 

Filter samples for ionic species analysis were extracted with 7.5 ml distilled de-ionized water 

(DDW, conductivity of 18.2 MΩ) with agitation on a mechanical shaker (Model IKA Labortechnik 

KS 250 basic) set at 240 rpm for a period of 40 minutes. Prior to addition of DDW and shaking, 

PTFE filters were first treated with 0.3 mL propan-2-ol to wet the surface. The extracts were 

analysed with a Dionex DX 500 and ICS-2000 Ion Chromatography (IC) system for cations and 

anions respectively. Eluants used were methane sulphonic acid (MSA) and KOH for cation and 

anion IC instruments, respectively. Detailed procedures for the Dionex analysis have been described 

by Yin et al. (2010).  

 
The second half of the exposed filters was extracted with dilute reverse aqua regia (2.23 M HCl and 

1.03 M HNO3) following the procedure of Harrison et al. (2003b). The mixed acid extractant (2 
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mL) was added to the filters placed inside 4 mL narrow neck bottles and heated at 100oC for 30 

minutes in a water bath and then placed in a ultrasonic bath at 50oC for another 30 minutes. This 

cycle was repeated and the resulting digests transferred into 15 mL narrow neck bottles and rinsed 

with 10 mL distilled deionised water. The extracts were then analysed by Inductively Coupled 

Plasma Mass Spectrometry (ICPMS, Agilent 7500 Ce). Mixed standards (from stock 1000 mg/L 

VWR standard solutions) were prepared in the series 0, 1, 5, 10, 20, 50 and 100 ppb. Internal 

standards employed by the ICPMS instrument were Sc, Ge, Y, In and Bi. 

 

In earlier work, this procedure has been evaluated by analysis of NIST SRM 1684a (Allen et al., 

2001) and more recent trials have shown high efficiency (< 85%) for all elements analysed except 

Al (ca 50% efficiency, also by comparison with XRF) and Cr (ca 50% efficiency).  Since extraction 

efficiency may vary according to particle size, this may introduce bias into the size distributions 

reported for these elements. 

 

2.5 Number Size Distributions 

Particle number size spectra in the range 0.3 to 20 µm were measured at the Port Talbot site using a 

Grimm model #1.108 optical particle spectrometer which measures the intensity of light scattered at 

90ºC to a beam produced by a laser diode.  Particles are classified into 14 size fractions between the 

smallest (0.3-0.4) and largest (15-20 µm) bins. 

 

3. RESULTS AND DISCUSSION 

3.1 MOUDI Particle Size Distributions 

3.1.1 Port Talbot 

Figure S1 represents the temporal variations of MOUDI data for mass and ionic components from 

the industrially influenced PT site. Bimodal peaks (0.5 and 2-6 µm) were observed for mass 

distribution for each MOUDI sample during the campaign with highest mass concentration 



8 
 

observed on April 23-26 which coincided with the start of a PM10 episode on April 26th reaching 

hourly concentrations in excess of 100 µg m-3. Most of the water soluble components displayed two 

distinct modal peaks in the fine mode except Cl- (other than the May 11-14 sample which showed 

two modal peaks), NH4
+ and Ca2+. Common fine modal peaks of 0.5 µm and coarse modal peaks of 

2-6 µm were observed for most of the ionic species except for K+ which showed diverse modal 

peaks in various sampling periods, suggesting multiple sources of K+ in Port Talbot. However, the 

common peak at 0.5 µm shown by K+ in all the samples indicated a common emission source for 

which biomass combustion or steelworks activities are the major suspects. An episode of Ca2+, Cl-, 

and NO3
- was observed between May 2-5 all showing higher concentrations at 3.0 µm. This was 

also observed for ammonium and sulphate with a peak at 0.5 µm. Elevated Ca2+ observed during 

this episode might have sources either from construction activities or steelworks emissions. In the 

blast furnace of the steelworks, limestone (CaCO3) and dolomite (CaMg(CO3)2) are used as fluxing 

agents while in the basic oxygen furnace (BOF) section, lime (CaO) and fluorspar (CaF2) are 

fluxing raw materials (Machemer, 2004). The MOUDI sample of April 20-23 showed higher 

concentrations of Cl-, Na+ and Mg2+ all peaking in the particle size range 3-5 µm. This typifies a sea 

spray episode.  

 

Figure S2 shows the trace metal size distribution of MOUDI samples during the one-month 

campaign. The concentration of Fe was the highest, followed by Al (may be underestimated as 

mentione dabove) and Zn. All the metal data show two or more modal peaks covering the fine and 

coarse particle ranges except Pb and Zn which have their modes in the fine fraction only (0.5 and 1-

2 µm). Mn and Fe showed similar modes throughout the sampling periods suggesting common 

emission sources.  In the fine mode, most of the trace metals peak at 0.5 µm except for the April 26-

29 sample which showed exceptional elevated peaks for Cr and Cu at 0.2-0.3 µm. Combustion of 

copper chrome arsenate (CCA) treated wood could explain the unusual peaks of these trace metals 

on these days.  CCA was used as a wood preservative before its ban in the UK in 2007 (Wood 
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Protection Association, 2010). However, CCA treated wood may still remain in many structures. 

Despite the fact that Cu is often a good marker for traffic (brake dust), its appearance at 0.2-0.3 µm 

is not consistent with traffic as other traffic markers such as Sb and Ba were peaking at a different 

diameter (0.5 µm). Additionally, in the size range 1-2 µm significant amounts of Al and V appeared 

in the April 26-29 MOUDI sample. Apart from this date, V peaked at 0.5 µm throughout; but Al 

showed different fine modal peaks at 0.2-0.3, 0.5 and 1-2 µm. Al in the fine mode could arise from 

vehicular, coal combustion and metallurgical activities (Kleeman et al., 2000; Xia and Gao, 2010) 

while fine V normally arises from fuel/oil combustion and shipping emissions (Figueroa et al., 

2006; Pandolfi et al., 2011). The appearance of irregular peaks on April 26-29 implies that Al and V 

could arise from the same sources that emitted Cu and Cr into the atmosphere.  The wind rose for 

that sampling interval (see Figure S5 in Supplementary Information) indicates that the source is 

unlikely to be associated with the steelworks. 

 
3.1.2 EROS 

Individual 72-h MOUDI size segregated mass and water soluble ion distributions from the EROS 

site are represented in Figure S3. The gravimetric mass showed modal peaks in the fine and coarse 

PM ranges at 0.5 µm and 2-4 µm. Among the water soluble ions, Cl-, Na+, Mg2+ and Ca2+ depicted 

a unimodal peak at 3-6 µm. Ammonium exhibited a single peak in the fine mode (0.5 µm). Other 

ionic species showed bimodal behaviour generally peaking at 0.5 and 3 µm except in the April 8-11 

sample where NO3
- peaked at a single mode of 1-2 µm. A sulphate coarse mode occurred at around 

5.0 µm. Among the ionic components of PM, sulphate constituted the highest concentration while 

K+<Mg2+<Ca2+ were the ionic species of lowest abundance. 

 
 
MOUDI trace metal size distributions at the EROS sampling site are shown in Figure S4. Unlike 

water soluble ions where the highest concentrations were observed in the March 30-April 2 sample, 

metal concentrations were higher on April 5-8. All of the metals displayed at least two peaks 

covering fine and coarse PM fractions except Pb, Zn, Sb where the two modes were both in the fine 



10 
 

fraction, other than in the sample collected on April 8-11 which displayed a coarse mode peak at 2-

3 µm for Sb. Multiple modes were observed for Al, V and Cr (0.5, 1-2, 3 and 10 µm). On March 

30-April 2, V, Cr, Cu, Zn, Sb and Pb all showed similar peaks at fine modes of 0.5 and 1-2 µm 

indicating possible emissions from traffic and industrial combustion processes (Zanobetti et al., 

2009). Zn measured on April 5-8 showed a coarse modal peak which might be linked with traffic 

emissions of brake or tyre dust (Harrison et al., 2012a). Different peaks exhibited by the measured 

metals during different sampling periods suggested diverse emission sources.   

 

3.2 Comparison of Average MOUDI Size Distributions from EROS and PT 

A summary of the source assignments and modes in the size distributions appears in Table 1. 

 

Figure 3 shows the average size distribution data for mass, water soluble ions and trace metal 

concentrations at EROS and PT sites. Different patterns were observed for these particle 

constituents. At both sites, mass concentrations, Na+, K+, Fe, Cu and Ba exhibited two modal peaks 

generally occurring at 0.5-0.6 µm and at 2-6 µm. Average mass concentrations showed a slight 

elevation of fine particle mass at EROS while an elevated concentration of coarse particles was 

evident at PT relative to the other sites. Meteorological conditions, especially wind speed and 

temperature are known to influence particle concentration and size distributions (Charron and 

Harrison, 2005;  Jones et al., 2010). During dry and windy conditions, elevated amounts of coarse 

particles could be favoured due to re-suspension of soil, road and industrial dusts.  

 

Generally, the modes in the size distributions were similar at the two sites (Figure 3).  Notable 

differences in the modes were as follows: 

• calcium showed a fine mode at PT which was not evident at EROS.  This may be an 

emission from the steel industry. 
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• aluminium showed a pronounced mode > 10 µm at EROS which has no parallel at PT, and 

probably arises from resuspension of road dust (Harrison et al., 2012a).   

• chromium shows multi-modal behaviour at both sites, but the smallest mode at PT is at 

around 0.2 µm, whereas at EROS it is close to 0.5 µm.  Either steelworks emissions or 

combustion of wood treated with copper chrome arsenate (CCA) preservative may be the 

source. 

• manganese, for which PT shows a very pronounced coarse particle mode at ca 5 µm, while 

at EROS, the mode is much broader, peaking at 1-2 µm. 

• iron, for which both sites show a bimodal distribution.  The most obvious difference is the 

coarse mode, which centres on 5 µm at PT and 2 µm at EROS, and parallels the behaviour 

of manganese.  The mode at 2 µm seems likely due to brake dust, as that for Cu and Ba at 

EROS are at a similar size, close to that reported by Gietl et al. (2010) from a site in central 

London.  The large peak at ca 5 µm for both Fe and Mn is most probably associated with 

emissions from the steelworks, based upon the much elevated concentrations observed at the 

PT site (see Figure 3). 

 

Components showing similar size modes, but different relative abundances were: 

• particle mass, for which the fine mode was very similar at both sites, but the coarse mode 

was much more prominent at PT due largely to increased marine aerosol (Cl-, Na+, Mg2+) 

and metallic elements, most notably Fe and Mn. 

• coarse Cl- and Na+ from marine aerosol reflecting the proximity of the PT site to the sea. 

• SO4
2- and NH4

+ which showed a greater abundance at the EROS site and are primarily 

associated with regional transport of secondary ammonium sulphate. 

• NO3
- is markedly coarser than ammonium at both sites, and a little finer than Cl- and Na+, 

consistent with an association with aged marine aerosol (Ottley and Harrison, 1992).  

Concentrations are higher at EROS, probably reflecting the east to west gradient in 
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secondary nitrate and sulphate observed across the UK (AQEG, 2012), although the 

relatively short duration of sampling is insufficient to establish this beyond doubt. 

• K+, which shows similar modes, but significantly higher concentrations at PT.  Woodsmoke 

is usually the main source of fine K, while the coarse K may in part reflect marine aerosol, 

with also a likely contribution from steelworks emissions. 

• coarse Ca2+ is also highly elevated at PT, probably reflecting emissions from steelworks 

processes and stockpiles. 

• Al and V show elevated relative concentrations at EROS, probably reflective of soil/road 

dust as a source of Al (although the fine mode is hard to explain) and fuel oil combustion for 

V. 

• Mn and Fe both show a much enhanced coarse mode at similar sizes at PT, consistent with a 

common steelworks source. 

• Cu, Sb and Ba are all elements associated with brake wear emissions (Gietl et al., 2010).  All 

appear to show a brake dust component at both sites – the mode at 3 µm is characteristic 

(Gietl et al., 2010).  In all cases, the data from EROS show higher concentrations.  Published 

studies have reported Cu/Sb values of 4.6 and 5.3 for brake wear emissions (Sternbeck et al., 

2002; Hjortenkrans et al., 2007). Studies on major roads have measured higher Cu/Sb values 

of 8.7-12 for fine and 10.5-13 for coarse particles (Song and Gao, 2011); and 9.1 (Gietl et 

al., 2010). In this study, these ratios were calculated to be 2.3, 7.2 and 3.7 (fine, coarse and 

PM10) at EROS and 4.3, 5.4 and 4.9, respectively at PT. In the coarse mode the Cu/Sb ratio 

obtained at EROS was closer to Song and Gao (2011) and Gietl et al. (2010) consistent with 

a traffic influence. Cu, Sb, Pb and Zn all show a marked peak at 0.4-0.5 µm, probably 

associated with a higher temperature source, in the case of Cu, Sb and Pb most prominent at 

EROS. 
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• Zn shows modes at 0.4 µm and 2 µm which are more abundant at PT, especially the coarser 

mode.  This is an element which as previously been associated with steelworks emissions 

(Dall’Osto et al., 2008). 

 

Comparing the results of this study with the past work on MOUDI size distributions at PT reported 

by Dall’Osto et al. (2008), similarities were observed only for Fe, Pb and Zn, peaking at similar 

diameter. But unlike that study where Zn showed two peaks in the accumulation mode, only one 

peak was observed. Most of the elements reported in this study were not measured by Dall’Osto et 

al. (2008) besides a dissimilar modal peak measured for Cl-. As for the EROS site, MOUDI size 

distributions for ionic and trace metal species have not previously been published. However, the 

work in the urban background (Regents College) in London by Gietl et al. (2010) could be expected 

to provide data comparable with EROS. Elements reported by Gietl et al. (2010) were Ba, Cu, Fe 

and Sb which are notable traffic markers. Except for Cu which exhibited two modal peaks, the 

EROS data were very similar to London for the other metals.   

 

Braga et al. (2005) working in south Brazil found high enrichment factor values for Zn, Mn, Fe and 

Cr; and attributed the origin to steelworks. Pandolfi et al. (2011) has applied Positive Matrix 

Factorization (PMF) to source apportionment of particle samples from Gibraltar (Iberian Peninsula) 

and adopted Zn, Mn, Fe, Cr as markers for the metallurgical industry. Mn, Fe and Zn emissions in 

Rahee (Finland) have been attributed to steel smelting by Oravisjavi et al. (2003). Elevated coarse 

mode Ca at PT could have been emitted from steel production activities (Oravisjavi et al., 2003). Ca 

can also emanate from construction processes especially in the coarse PM mode (Machemer, 2004; 

Ahn and Lee, 2006). The influence of soil dust and construction on the Ca emission has been 

assessed by Wang et al. (2005) using the Ca/Al ratio. A low value is indicative of soil dust while 

higher values indicate construction activities. The average Ca/Al ratios of 0.2±0.3 and 8.1±6.8 were 

obtained across MOUDI data (PM10) at EROS and PT respectively. In the fine mode the values 



14 
 

were 0.1±0.1 (EROS) and 3.8±3.3 (PT); while in the coarse mode the ratios were 0.4±0.1 (EROS) 

and 13.5±7.2 (PT). The far higher ratios of Ca/Al at PT are most likely attributable to an emission 

from the steelworks (see previous section), as the only major local construction activity related to 

earthworks associated with road building, particularly the Port Talbot Peripheral Distribution Road, 

which would be expected to cause an elevation in both elements. 

 
Calculation of chloride depletion adopting the formula given by Zhao and Gao (2008) as % Cl = 

(1.81 x [Na]-[Cl])/(1.81 x [Na]) x 100 for PM at EROS and PT gave 60 and 70 % respectively. This 

Cl depletion value obtained at the PT site was similar to the study of Zhao and Gao (2008) who 

reported a Cl depletion value of 65 % at a coastal site in the eastern US. Reaction of sea salt with 

atmospheric strong acids (HNO3 and H2SO4) is the likely cause.  The ratios again show a strong 

excess of coarse mode Ca at the PT site.   

 
SO4

2+ and NH4
+ appearing in the fine mode at 0.5-0.6 µm suggests formation of (NH4)2SO4 or 

NH4HSO4 in the droplet mode. The droplet phase reaction involving oxidation of SO2 to sulphate is 

very important in the atmosphere (Khoder, 2002). The modal peaks of 0.5 µm and a small mode 

between 1-2 µm observed for SO4
2- at PT coinciding with those of Zn and Pb suggested internal 

mixing between SO4
2- and Pb, and Zn. Formation of PbSO4 and ZnSO4 from the reactions involving 

Pb, Zn and SO4 at the two modal sizes might have evolved from separate emission sources, which 

might be linked to the steel works units or other anthropogenic activities. Previous studies at the 

steelworks have identified Pb and Zn as major emissions from the sinter and basic oxygen steel 

making sectors (Oravisjavi et al., 2003; Dall’Osto et al., 2008).  

 
At the PT site, Dall’Osto et al. (2008) found two peaks of Pb occurring at fine modes of 0.4-0.5 µm 

and 1-2 µm, which is similar to the modal peaks of Pb obtained in this study.  Also, Dall’Osto et al. 

(2008) reported Zn to have a lone peak occurring at 1-2 µm relating to that obtained in this present 
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study. However, another larger mode was found for Zn at 0.5 µm in this study. A small peak of 

SO4
2- concentration in the coarse mode at 5.0 µm is suggestive of a reaction with mineral dust 

forming CaSO4. The coarse mode Ca extended between 3 and 6 µm indicating internal mixing with 

coarse SO4
2-.  This may be an emission from the sinter process.  Dall’Osto et al. (2008) reported 

different coarse modes for Fe dependent on the emission source.  Such behaviour is also reflected in 

the size distributions for Fe seen in Figure S4. 

 
3.3 Data from Specific Sampling Periods 

3.3.1 Influence of wind conditions upon size distributions 

Wind roses for the respective periods appear in Figure S5. 

 

3.3.1.1 Port Talbot 

The periods showing the greatest mass concentrations in the coarse fraction (Figure S3) are April 

23-26, May 8-11 and May 5-8.  All of these show a significant component to the wind rose in the 

southerly to westerly sector consistent with atmospheric transport from the steelworks.  These 

periods also correspond to a major elevation in the concentrations of iron and manganese (Figure 

S4).  The period April 23-26 was also associated with high concentrations of zinc, barium, coarse 

vanadium, coarse calcium and coarse potassium, all of which have potential sources within the 

steelworks.  The periods with the highest concentrations of coarse sodium and chloride was April 

20-23 consistent with strong winds in the westerly sector transporting marine aerosol. The period 

with the greatest association with the easterly wind sector were April 26-29, April 29-May 2 and 

May 2-5. The latter period was associated with high concentrations of nitrate, sulphate and 

ammonium, the secondary constituents whose concentrations are typically elevated in easterly air 

masses in the UK. Also elevated in this sample were concentrations of calcium and chloride with a 

mode at around 3 µm consistent with that of nitrate.  This would appear to be due to transport of 

crustal calcareous material from the land masses to the east of Port Talbot which had collected 
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nitrate and chloride from the vapour phase during their transport.  Concentrations of iron and 

manganese were very low in these easterly samples.   

 

Coarse particle modes for barium, antimony and copper, all constituents associated with automotive 

brake wear were notably elevated in the sample of April 17-20 consistent with a major automotive 

contribution on winds from the north-west. This sample was also elevated in fine potassium 

suggesting a possible wood burning source also within this sector.  

 

3.3.1.2 EROS site 

The largest mass concentration in both the coarse and fine fractions was in the March 30-April 2nd  

sample which had the largest easterly wind component and intermediate wind speeds. The major 

ionic components exhibited their highest concentrations in this sample with ammonium and 

sulphate dominating the sub-micrometre fraction and chloride, nitrate and sodium, the coarse 

particle fraction. Concentrations of potassium, magnesium and calcium were also elevated in the 

coarse fraction in this sample.  However, concentrations of the trace element constituents were in 

most cases relatively low in the sample of March 30-April 2 which is perhaps surprising given that 

the sample appears to contain a substantial continental component.  The sample collected on April 

5-8 stands out as having the highest concentrations of vanadium, manganese, copper, antimony and 

lead in the fine mode and of iron, manganese, barium and zinc in the coarse mode.  The wind 

directions associated with the sample were predominantly in the sector from north-west to north-

east corresponding to the Birmingham city centre and these constituents appear to be associated 

largely with non-tailpipe emissions from road traffic.  The sample collected on April 8-11 

associated with a predominant westerly wind component showed the lowest concentrations of 

nitrate, sulphate, ammonium, potassium and calcium suggesting relatively clean marine air on this 

westerly sector, although concentrations of the marine indicator elements chloride and sodium were 

not particularly elevated.  An interesting feature of the EROS dataset is that the ranking of 
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concentrations between the samples for fine fraction potassium was the same as that for sulphate.  

Since the latter is well known as a pollutant subject to regional transport, this suggests that fine 

potassium, whose main source is believed to be woodsmoke (Harrison et al., 2012b), is also subject 

to long-range transport in a broadly similar manner.  Other constituents which showed identical or 

similar rankings of concentration to one another (but not to sulphate and potassium) were 

vanadium, manganese, iron, antimony, barium and lead suggesting a common source for most 

elements, most probably in non-tailpipe emissions from road traffic. 

 

3.4 Coarse Particle Increment at Port Talbot 

The measured data are insufficient to conduct a mass closure on the aerosol composition, but it is 

nonetheless instructive to examine the differences in coarse particle mass and composition between 

PT and EROS (see Table S1).  The difference in coarse particle (PM2.5-10) mass between the sites is 

6.1 µg m-3.  Marine aerosol (taken as Na+, Cl- and Mg2+) accounts for just 1.0 µg m-3 of this.  

Elements thought to be associated with steelworks (Fe and Ca2+) together amount to 1.6 µg m-3, 

which may approximately double to 3.2 µg m-3 when associated elements are added (e.g. Fe2O3 and 

CaCO3).  This suggests that under the conditions sampled, steelworks-related emissions account for 

at least half of the elevation in PM2.5-10. The mass unaccounted for of ca 2 µg m-3 may be 

attributable to carbonaceous emissions, for example from the coke ovens, but data were not 

collected allowing this to be tested. 

 

3.5 Analysis of Particle Size Spectra Collected with the Grimm Optical Spectrometer 

The Grimm instrument has a response time of seconds, and in order to obtain statistically significant 

counts, the data were averaged over hourly periods and were then plotted as polar plots as a 

function of wind direction and wind speed.  The data are collected in 14 separate size bins and polar 

plots for each size bin appear in Figure S6 in the Supplementary Information.  Figure 4 shows the 
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polar plots for four of the size classes which give a good representation of the overall behaviour 

observed.   

 

In the case of PM0.4-0.5 (see Figure 4) the highest concentrations are associated with all wind sectors 

and very low wind speeds (the red area in the centre of the plot). This is indicative of a local 

ground-level source with maximum concentrations under low wind speed conditions. This we 

attribute to local road traffic. This behaviour is also seen for PM0.3-0.4 and to a lesser extent for the 

PM0.5-0.65 plot.  For sizes between PM0.5-0.65 and PM5.0-7.5, the behaviour is very similar for each size 

fraction and is exemplified by the plot for PM2.0-3.0 in Figure 4. This indicates a source area on a 

sector between 200º and 250º and intermediate wind speeds of 5-10 m s-1, extending to the highest 

observed wind speeds of >10 m s-1 for particle sizes of PM2.0-3.0 and below to PM0.5-0.65. The 

association with the highest wind speeds becomes much less strong and the plot for PM7.5-10 (Figure 

4) shows a strong association with the intermediate wind speeds.  The directional association of this 

peak clearly links it with sources within the steelworks and the association with intermediate wind 

speeds strongly suggests an elevated source. A ground-level emission source would most likely 

give peak concentrations at lower wind speeds (as for road traffic) and a resuspension source would 

be associated primarily with the highest wind speeds.  Consequently, the data for particle sizes 

between the PM0.5-0.65 and PM2.0-3.0 plots appear to be a combination of both the elevated source and 

the ground-level resuspension source while the plots from PM3.0-4.0 to PM10-15 are indicative of an 

influence predominantly from the elevated sources. 

 

The plot for PM7.5-10 gives a very clear indication of a predominant emission at intermediate wind 

speeds on the south-westerly sector (i.e. centred on 225º) which is the direction associated with the 

sinter plant and blast furnace within the steelworks.  For the highest particle size bin (PM15-20) the 

polar plot (Figure 4) has changed to one focussed heavily on the strongest wind speeds and also 

covering a wider range of wind sectors strongly suggestive of a marine source (O’Dowd and 
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Leeuw, 2007), possibly supplemented by resuspension from within the steelworks as indicated by 

the highest concentrations on the south-westerly sector. 

 

It would be useful to look for associations between the modes in the MOUDI size distributions and 

the peaks in the polar plots for different particle sizes.  This is, however, made difficult by the lack 

of a clear relationship between optical diameters measured by the Grimm spectrometer and 

aerodynamic diameters measured by the MOUDI.  The elements showing far the greatest elevation 

at PT over EROS are Fe and Mn (Figure 3) with a mode at around 5 µm, extending from ca 2-10 

µm aerodynamic diameter.  This appears to be associated with the major peak in the polar plots at 

around 225º appearing for particles in size ranges from 0.3-3.0 µm to 10-15 µm (Figure S7).  The 

two datasets therefore appear broadly consistent. 

 

The daily variations of particle number concentrations (PNC) are shown in Figure 5.  Notable 

episodes were observed for all the particle size bins on April 26, May 3-4, 8 and 11.  These peaks 

correspond to episodes of PM10 pollution observed by the Partisol and FDMS instruments. On April 

26 and May 11, both measuring instruments recorded PM10 mass concentrations greater than the 

European Union 24-hr limit of 50 µg m-3 while on May 8, the values of PM10 mass were greater 

than 40 µg m-3. Particles between 0.3-0.5 µm revealed elevated concentrations on May 4 in which a 

sharp decline was observed for other particle bins except PM0.5-0.65. For particles in size bins from 

0.65 to 7.5 µm, similar emission patterns were observed with highest peak shown on April 26. 

Significant peaks were also shown on May 2-3, 8, 11 and 15.  To some extent, levels of agreement 

were seen in the daily emission trends of particles with diameter 10-15 µm and 0.65-7.5 µm while 

particles between 15-20 µm revealed different emission patterns. As discussed earlier, PM0.3-0.5 are 

dominated by vehicular emissions; PM0.8 to PM10 was more influenced by the steelworks while 

PM15-20 is strongly affected by marine particles.   
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It is instructive to examine the sources of PNC in response to meteorology on the days of episodes 

shown as April 26, May 4,  8 and 11 (Figure S6). On April 26, between 12 pm and 2 am, the 

prevailing wind was between 200o and ca 300o where the ironmaking section of the steelworks was 

located. At the windspeed of 8 m s-1, it appeared that PNC of all the particle size bins are favoured 

by the elevated windspeed due to effective transport from the point source (the steelworks) to 

receptor site. As the windspeed increases to about 10 m s-1, there was a drastic reduction in particle 

number concentrations due to a dilution effect (Charron and Harrison, 2005). There was an increase  

in concentration of PM0.3-0.4 when the windspeed reduced at around 6 am. Over this period, the 

prevailing wind direction has shifted to the south-easterly where the M4 road linking South Wales 

to London was  located. Elevated particle concentrations of size bins 0.3 to 0.5 µm at 6 am may 

therefore be linked to traffic emission favoured by low windspeed and/or low dispersion.  

 

On May 4, the major particle increment was in the smaller size bins and probably due to an 

elevation in secondary particle concentrations.  Elevated particle numbers were favoured at a 

moderate windspeed 4-5 m s-1.  When the windspeed began to increase, PNC also reduced with a 

change of wind direction. The situation on May 8 and 11 looks similar to that of April 26, with the 

elevated values of PNC (sizes >0.65 µm) from the steelworks under a moderate windspeed. 

However, with a change of wind direction and speed; particles < 0.65 µm increased between 6 and 

10 am probably due to traffic emissions.   

 

4. CONCLUSIONS 

This study has revealed distribution patterns of size-segregated particles at a typical urban 

background (EROS) and an industrial setting (Port Talbot). Individual sample and average MOUDI 

data presented were diverse and varied between the two sites. EROS was dominated by fine 

particles while PT showed an elevated coarse particle concentration reflected in a higher ratio of 
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PM2.5/PM10 obtained at EROS. The influence of secondary aerosol was more evident at the urban 

background than the industrial site. Port Talbot showed elevated concentrations of marine (Na+, 

Mg2+ and Cl-) and steelworks emissions (Fe, Mn and Ca). Higher concentrations of trace metals 

such as V, Al and Pb were observed at EROS. Strong similarities in mass size distributions were 

observed between Mn and Fe at PT (this was not so at EROS) suggesting a common emission 

source from the steel industry. Trace metals associated with brake wear (Cu, Sb, Ba) were clearly 

observed at both sites. 

 

The analysis  of size distributions from individual 72-hour sampling intervals confirmed the 

inferences derived from the average data, but allowed some appreciation of the episodicity of 

contributions both from the steelworks and secondary particles. Both showed the expected 

associations with, in the former case local winds from the direction of the steelworks, and easterly 

sector winds associated with regional transport in the latter. Although containing no chemical 

information, the polar plots of particle number size spectra revealed much source-related 

information. Local emissions, probably from road traffic dominated the smaller size bins (0.3-0.5 

µm), while steelworks emissions dominated the range 0.5-15 µm, and for particles > 15 µm marine 

aerosol appeared dominant. Although there appeared to be contributions from more than a single 

source within the steelworks, the wind direction-dependence suggested the sinter plant and/or blast 

furnaces as the major contributor. 
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TABLE LEGEND 
 
Table 1:   Sources and modes of the constituents analysed at the Port Talbot (PT) and EROS sites. 

 
 
FIGURE LEGENDS 
 
Figure 1:  Port Talbot sampling station and the steel works processing units. 
 
Figure 2:   The map of EROS located within the University of Birmingham campus, Birmingham,  
 UK. 
 
Figure 3:  Average MOUDI size distributions at the EROS and PT sites. 
 
Figure 4:  Polar plots of particle number count in selected size bins as a function of wind direction 
  and speed. 
 
Figure 5:  Diurnal variations of PM and size ranges as PNC (particle number concentration). 
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Table 1:  Sources and modes of the constituents analysed at the Port Talbot (PT) and EROS 
sites. 
Component Modes Major/Minor Sources Site 
Cl- C 

F 
sea salt (major) 
NH4Cl (minor) 

PT, EROS 
PT 

NO3
- C 

F 
sodium nitrate (major) 
NH4NO3 (minor) 

PT, EROS 
PT, EROS 

SO4
2- F 

C (1,2) 
(NH4)2SO4 (major) 
sea salt (minor) 

PT, EROS 
PT, EROS 

Na+ C 
F 

sea salt (major) PT, EROS 
PT 

NH4
+ F (NH4)2SO4; NH4NO3 (major)  PT, EROS 

K+ F 
C(1) 
C(2) 

woodsmoke (major) 
sea salt, soil (minor) 
steelworks (minor) 

PT, EROS 
PT, EROS 
PT 

Mg2+ C 
F 

sea salt (major) 
steelworks (minor) 

PT, EROS 
PT 

Ca2+ C 
F 

crustal, steelworks (major) 
steelworks (minor) 

PT, EROS 
PT 

Al F 
C 

 
crustal/soil 

PT, EROS 
PT, EROS 

V F 
C 

fuel oil (major) PT, EROS 
PT, EROS 

Cr F, C steelworks and other PT, EROS 
Mn C 

F 
steelworks (major) 
steelworks (minor) 

PT, EROS 
PT, EROS 

Fe C 
F 

steelworks (major), brake wear (major) 
steelworks (minor) 

PT, EROS 
PT, EROS 

Cu C 
F 

brake wear (major) 
steelworks (minor) 

PT, EROS 
PT, EROS 

Zn C 
F 

tyre wear, steelworks 
tyre wear, steelworks 

PT, EROS 
PT, EROS 

Sb C 
F 

brake wear 
brake wear 

PT, EROS 
PT, EROS 

Ba C 
F 

brake wear 
brake wear 

PT, EROS 
EROS 

Pb F 
C 

steelworks  PT, EROS 
PT, EROS 

Note:  C = coarse;  F = fine 

Attribution of a mode to the steelworks applies to the PT site only 
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