UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Corrigendum to "Heterogeneous reaction of N_2O_5 with airborne TiO₂ particles and its implication for stratospheric particle injection" published in Atmos. Chem. Phys., 14, 6035–6048, 2014

Tang, M. J.; Telford, P. J.; Pope, F. D.; Rkiouak, L.; Abraham, N. L.; Archibald, A. T.; Braesicke, P.; Pyle, J. A.; McGregor, J.; Watson, I. M.; Cox, R. A.; Kalberer, M.

DOI: 10.5194/acp-14-8233-2014

License: Creative Commons: Attribution (CC BY)

Document Version Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Tang, MJ, Telford, PJ, Pope, FD, Rkiouak, L, Abraham, NL, Archibald, AT, Braesicke, P, Pyle, JA, McGregor, J, Watson, IM, Cox, RA & Kalberer, M 2014, 'Corrigendum to "Heterogeneous reaction of N O with airborne TiO particles and its implication for stratospheric particle injection" published in Atmos. Chem.²Pflys., 14, 6035–6048, 2014', *Atmospheric Chemistry and Physics*, vol. 14, no. 16, pp. 8233-8234. https://doi.org/10.5194/acp-14-8233-2014

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Corrigendum to

"Heterogeneous reaction of N_2O_5 with airborne TiO₂ particles and its implication for stratospheric particle injection" published in Atmos. Chem. Phys., 14, 6035–6048, 2014

M. J. Tang^{1,2}, P. J. Telford^{1,4}, F. D. Pope³, L. Rkiouak^{1,5}, N. L. Abraham^{1,4}, A. T. Archibald^{1,4}, P. Braesicke^{1,4,*}, J. A. Pyle^{1,4}, J. McGregor⁶, I. M. Watson², R. A. Cox¹, and M. Kalberer¹

¹Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK

²School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK

³School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK ⁴National Centre for Atmospheric Science, NCAS, UK

⁵Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK

⁶Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK

^{*}now at: IMK-ASF, Karlsruhe Institute of Technology, Karlsruhe, Germany

Correspondence to: M. Kalberer (markus.kalberer@atm.ch.cam.ac.uk)

In the original paper "Heterogeneous reaction of N_2O_5 with airborne TiO₂ particles and its implication for stratospheric particle injection" (published in Atmos. Chem. Phys., 14, 6035–6048, 2014), an error was made in calculating the heterogeneous loss rates of N_2O_5 on TiO₂ aerosol particles and therefore the uptake coefficients of N_2O_5 onto TiO₂ particles. This error was due to a mistake when we calculated the reaction times in the flow tube. The correct reaction times are all a factor of 1.5 smaller than those used in the original paper, and thus the correct heterogeneous loss rates and uptake coefficients of N_2O_5 are a factor of 1.5 larger than those reported in the original paper. The fourth sentence in the abstract should be changed to "The uptake coefficient of N₂O₅ onto TiO₂, γ (N₂O₅), was determined to be ~1.5 × 10⁻³ at low RH, increasing to ~4.5 × 10⁻³ at 60 % RH." The updated Table 1 with corrected values is provided in this corrigendum.

This error does not influence the main discussion and conclusions in the original paper, especially also not the modelling part of the paper where we consider two scenarios with two different $\gamma(N_2O_5)$ (i.e., 1.0×10^{-3} and 5.0×10^{-3}), which cover all values reported in Table 1.

RH (%)	$k_a (\times 10^{-2} \mathrm{s}^{-1})$	$(\times 10^{-3} \text{ cm}^2 \text{ cm}^{-3})$	$\begin{array}{l} \gamma(\mathrm{N_2O_5}) \\ (\times 10^{-3}) \end{array}$	Average $\gamma(N_2O_5)$ (× 10 ⁻³)
5±1	4.53 ± 2.43	4.39 ± 0.26	1.73 ± 0.93	1.83 ± 0.32
	3.96 ± 0.87	3.79 ± 0.06	1.74 ± 0.39	
	3.66 ± 1.67	3.02 ± 0.10	2.03 ± 0.92	
12 ± 2	3.59 ± 0.60	2.75 ± 0.16	2.18 ± 0.36	2.01 ± 0.27
	4.29 ± 0.54	3.80 ± 0.52	1.89 ± 0.24	
	3.98 ± 0.33	2.89 ± 0.33	2.30 ± 0.20	
	2.76 ± 0.36	2.70 ± 0.14	1.71 ± 0.23	
23 ± 2	9.39 ± 0.30	1.75 ± 0.17	0.90 ± 0.29	1.02 ± 0.20
	3.41 ± 0.42	4.89 ± 0.21	1.16 ± 0.02	
33 ± 2	1.50 ± 0.56	2.27 ± 0.16	1.10 ± 0.41	
	1.91 ± 0.45	2.01 ± 0.12	1.59 ± 0.38	1.29 ± 0.26
	1.61 ± 0.39	2.23 ± 0.09	1.20 ± 0.30	
45 ± 3	1.94 ± 0.39	1.59 ± 0.33	2.04 ± 0.41	2.28 ± 0.51
	3.80 ± 0.90	3.00 ± 0.05	2.12 ± 0.47	
	4.37 ± 0.84	2.86 ± 0.05	2.55 ± 0.50	
	3.99 ± 0.87	2.75 ± 0.02	2.43 ± 0.53	
60 ± 3	7.83 ± 2.10	2.86 ± 0.06	4.62 ± 1.23	4.47 ± 2.04
	5.76 ± 1.56	2.24 ± 0.09	4.34 ± 1.17	

Table 1. Loss rate of N₂O₅ on TiO₂ (k_a), total surface area of TiO₂ particles in the flow tube (S_a) and uptake coefficients of N₂O₅ onto TiO₂ aerosols, γ (N₂O₅) at different relative humidities. All the errors shown here are 1 σ statistically.