UNIVERSITYOF
 BIRMINGHAM

Search for heavy particles in the b-tagged dijet mass distribution with additional b-tagged jets in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS experiment ATLAS Collaboration; Newman, Paul

DOI:
10.1103/PhysRevD.105.012001

License:
Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
ATLAS Collaboration \& Newman, P 2022, 'Search for heavy particles in the b-tagged dijet mass distribution with additional b-tagged jets in proton-proton collisions at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS experiment', Physical Review D-Particles, Fields, Gravitation and Cosmology, vol. 105, no. 1, 012001.
https://doi.org/10.1103/PhysRevD.105.012001

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

> -Users may freely distribute the URL that is used to identify this publication.
> -Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
> -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
> -Users may not further distribute the material nor use it for the purposes of commercial gain.
> Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
> When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Search for heavy particles in the \boldsymbol{b}-tagged dijet mass distribution with additional b-tagged jets in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS experiment

G. Aad et al.*
(ATLAS Collaboration)

(Received 23 August 2021; accepted 11 November 2021; published 7 January 2022)

Abstract

A search optimized for new heavy particles decaying to two b-quarks and produced in association with additional b-quarks is reported. The sensitivity is improved by b-tagging at least one lower- p_{T} jet in addition to the two highest- p_{T} jets. The data used in this search correspond to an integrated luminosity of $103 \mathrm{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and $2018 \sqrt{s}=13 \mathrm{TeV}$ proton-proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the b-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed b-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of b-quarks are derived.

DOI: 10.1103/PhysRevD.105.012001

I. INTRODUCTION

New particles beyond the Standard Model with preferential couplings to third-generation quarks are predicted by many models [1-6] and have been extensively searched for by experiments at the Tevatron and the LHC. Searches for heavy particles in the dijet invariant mass spectrum of " b-tagged" jets, identified as containing b-hadrons, have probed this scenario [7-12]. Recent results from the LHCb and Belle experiments suggest deviations in lepton-flavor universality (LFU) from Standard Model (SM) expectations [13-17], referred to as LFU anomalies. The phenomenological work in Refs. [18,19] predicts new heavy vector bosons, a Z^{\prime} boson and W^{\prime} boson, mainly coupled to third-generation leptons and quarks. This model not only offers an explanation for the LFU anomalies, but also predicts Z^{\prime} boson production in association with thirdgeneration quarks via gluon splitting in the LHC experiments, due to the vanishingly small b-quark and top-quark parton distribution functions (PDFs) for protons at the TeV scale. The dominant Feynman diagram for this b-quark associated production is shown in Fig. 1.

The additional b-flavor jets, not coming from the heavyparticle decay, can be used to reduce the multijet background contribution since the additional jets in multijet

[^0]events most likely do not contain b-hadrons. Most previous searches for heavy particles in dijet final states did not require additional b-tagged jets beyond the leading two jets [7-10], i.e., the two jets with the highest transverse momentum $\left(p_{\mathrm{T}}\right)$. This article presents a search for heavy particles in final states where the two leading jets are b-tagged and either the third or fourth jet is also b-tagged. The b-tagging criterion for the third and fourth jets increases the sensitivity by $20 \%-50 \%$ at a mass scale of $1.3-3 \mathrm{TeV}$. This is the first search probing the mass region up to 3.6 TeV in this final state. Previous searches for a heavy Higgs boson [11,12] in a similar final state were optimized for masses up to 1.4 TeV . An advanced b-tagging algorithm with better performance at high p_{T} [20] is applied in this search compared to the one used in Ref. [11], enhancing the sensitivity in the high mass region. The model proposed in Refs. $[18,19]$ is compared with data for the first time.

II. ATLAS DETECTOR

The ATLAS detector [21] at the LHC covers nearly the entire solid angle around the collision point. ${ }^{1}$ It consists of

[^1]

FIG. 1. Representative Feynman diagram for the resonant production of a Z^{\prime} boson in association with additional b-quarks and its decay into a pair of b-quarks.
an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer. The inner-detector system is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the range $|\eta|<2.5$. The high-granularity silicon pixel detector covers the vertex region and typically provides four measurements per track, the first hit normally being in the insertable B-layer installed before Run 2 [22,23]. It is followed by the silicon microstrip tracker, which usually provides eight measurements per track. These silicon detectors are complemented by the transition radiation tracker, which enables radially extended track reconstruction up to $|\eta|=$ 2.0 and contributes to electron identification. The calorimeter system covers the pseudorapidity range $|\eta|<4.9$. Within the region $|\eta|<3.2$, electromagnetic calorimetry is provided by barrel and end cap high-granularity lead/ liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering $|\eta|<1.8$ to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within $|\eta|<1.7$, and two copper/LAr hadronic end cap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimized for electromagnetic and hadronic measurements, respectively. The outermost layers of ATLAS consist of a muon spectrometer within $|\eta|<2.7$, incorporating three large superconducting toroidal magnet systems. Interesting events are selected by the first-level trigger system implemented in custom hardware, followed by selections made by algorithms implemented in software in the high-level trigger computer farm $[24,25]$. The first-level trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz , which the highlevel trigger reduces in order to record events to disk at a rate of about 1 kHz . An extensive software suite [26] is used for real and simulated data reconstruction and analysis, for operation and in the trigger and data acquisition systems of the experiment.

III. SIMULATED EVENT SAMPLES

The theory model used in this search considers a Z^{\prime} boson exclusively coupled to the third generation of the left-handed SM fermions $[18,19]$. Events with a Z^{\prime} boson produced in association with up to two additional partons in the final state, with the coupling to the quark sector $\left(g_{b}\right)$ set to unity and the coupling to the lepton sector $\left(g_{\tau}\right)$ set to zero, were generated using MadGraph5_aMC@NLO 2.2.4 [27], considering all diagrams at the matrix-element level of the type $p p \rightarrow Z^{\prime}, p p \rightarrow Z^{\prime} j$ and $p p \rightarrow Z^{\prime} j j$, and the parton showering was done in PYTHIA 8.212 [28]. Both $Z^{\prime} \rightarrow t \bar{t}$ and $Z^{\prime} \rightarrow b \bar{b}$ are possible with g_{b} set to unity, but only the latter was included in the generation. The five-flavor scheme leading-order (LO) NNPDF3.0 PDF [29] and a set of tuned parameters called the A14 tune [30] were applied in the generation. CKKW-L k_{t}-merging [31] was used to match the multileg parton-level events with PYTHIA 8. The intrinsic width of the Z^{\prime} boson is roughly 4% of the Z^{\prime} boson mass. This model is referred to as the lepton-universality-violating (LUV) Z^{\prime} in this article.

Multijet events were generated with PYTHIA 8.186, using the LO NNPDF2.3 PDF [32] and the A14 tune. The background is estimated in a fully data-driven way and the simulated multijet event samples are only used to optimize the event selections.

The simulated multijet events were passed through a full ATLAS detector simulation [33] using GEANT4 [34]. The signal samples were passed through a fast simulation where the response in the calorimeters is provided by a parametrization [35] while GEANT4 is used elsewhere. The decay of b - and c-hadrons was performed using the EvtGen 1.2.0 decay package [36]. Additional proton-proton interactions (pileup) from the same and neighboring bunch crossings were taken into account by generating a number of inelastic $p p$ interactions with PYTHIA 8.186 using the LO NNPDF2.3 PDF set and the A3 tune [37]. These events were then overlaid with the hard-scattering events. All simulated events are weighted so that the distributions of the average number of collisions per bunch crossing match those in data.

IV. DATA SAMPLE AND EVENT SELECTION

The data used for this analysis were collected with the ATLAS detector from proton-proton ($p p$) collisions at the LHC with a center-of-mass energy of $\sqrt{s}=13 \mathrm{TeV}$ in 2017 and 2018, requiring that all detector systems were functional and recording high-quality data [38]. The dataset corresponds to an integrated luminosity of $103 \mathrm{fb}^{-1}$ [39], using the LUCID-2 detector [40] for the primary luminosity measurements. Data were collected using a newly developed trijet trigger with asymmetric thresholds, first deployed in 2017. This trigger required two jets to have transverse energy E_{T} greater than 250 GeV and a third jet to have E_{T} greater than 120 GeV . All three jets were
required to have $|\eta|<3.2$, with intermediate preselections at lower p_{T} requiring $|\eta|<2.4$. This trigger allows this search to reach an invariant mass (m_{ij}) of the two highestp_{T} jets about 100 GeV lower than a single-jet trigger would allow. The trigger efficiency exceeds 99.95% after applying the kinematic selections on jets described below.

Collision vertices are reconstructed from at least two tracks with $p_{\mathrm{T}}>0.5 \mathrm{GeV}$. The one with the highest $\sum p_{\mathrm{T}}^{2}$ of the associated tracks is considered to be the primary vertex. Jets are reconstructed using the anti- k_{t} algorithm [41-43] with a radius parameter of $R=0.4$ from noisesuppressed topological energy depositions [44]. A calibration sequence is applied to jet energies and directions as described in Ref. [45]. Jets with $p_{\mathrm{T}}>25 \mathrm{GeV}$ are removed if they are compatible with noise bursts, beam-induced background or cosmic rays with the "loose" criteria defined in Ref. [46].

A deep-learning neural network, DL1r, is applied to identify jets containing b-hadrons [20]. This algorithm utilizes the distinctive characteristics of b-hadron decays such as the large impact parameters of tracks and the displaced vertices reconstructed in the inner detector. Therefore it is only applied to jets with $|\eta|<2.5$. In addition, it includes the output from a recurrent neural network (RNNIP) [47], which exploits the correlations between tracks originating from the same b-hadron. Operating points (OP) are defined by a single cut-value on the discriminant output distribution and are chosen to yield a certain b-tagging efficiency in a simulated inclusive $t \bar{t}$ event sample. The 77% efficiency b-tagging OP is selected as it gives the best overall signal sensitivity across the m_{ij} range under consideration. In simulated multijet events, the efficiency drops from 77% on average for b-jets with $p_{\mathrm{T}}<250 \mathrm{GeV}$ to 10% for a p_{T} of 2 TeV . The corresponding mistag rate for charm-flavor (light-flavor) jets changes from $20 \%(<1 \%)$ to $2 \%(<1 \%)$.

The analysis considers events with at least four jets. The leading two jets must have $p_{\mathrm{T}}>250 \mathrm{GeV}$ and the third leading jet must have $p_{\mathrm{T}}>120 \mathrm{GeV}$. The leading three jets must be within $|\eta|<2.4$ to match the preselections applied in the trigger chain. The fourth leading jet must have $p_{\mathrm{T}}>25 \mathrm{GeV}$ and be within $|\eta|<4.5$. To suppress low $-p_{\mathrm{T}}$ jets from underlying events, a multivariate classification algorithm based on tracking information, the jet vertex tagger (JVT), is applied and jets within $|\eta|<2.5$ with $p_{\mathrm{T}}<60 \mathrm{GeV}$ must satisfy the "medium" OP [48]. Jet pairs from the decay of heavy particles are more central than those from multijet events, thus the rapidity separation of two leading jets, defined as $y^{*}=\left(y_{1}-y_{2}\right) / 2$, is a powerful discriminant. The optimal choice is found to be $\left|y^{*}\right|<0.8$. The m_{ij} is required to be greater than 730 GeV above which the spectrum starts to decrease continually. An event is preselected if it passes all the above requirements.

The signal region (SR) selection requires both the leading two jets and either the third or fourth jet to satisfy

FIG. 2. m_{jj} distributions of three benchmark LUV Z^{\prime} mass points, 1.3 TeV, 1.6 TeV, and 2.5 TeV after applying the full signal region selections, normalized to unity.
the $77 \% b$-tagging OP. The full selection is summarized in Table I. The acceptance of the benchmark signal is 1.9%, 2.4%, and 1.1% for an LUV Z^{\prime} mass of 1.3, 1.6 , and 2.5 TeV respectively, rising then falling due to increasing kinematic acceptance and decreasing b-tagging efficiency with jet p_{T}. The corresponding m_{jj} spectra after applying the full selection are shown in Fig. 2. The m_{ij} distributions are wide due to the significant low Z^{\prime} mass tails introduced by off-shell production, which occurs due to the steeply falling PDF of the two colliding partons at large values of Bjorken x. This feature is commonly referred to as a "parton-luminosity tail," and its size increases with the resonance mass. This effect is more significant for LUV Z' as the b-quark PDF has a larger proportion at low Bjorken x values than those of light quarks, c-quarks and gluons.

V. BACKGROUND ESTIMATION

The main background in this search originates from multijet events. A novel data-driven method is used to estimate the background contribution by performing a fit to the m_{jj} spectrum. The shape of this spectrum is impacted by the asymmetric thresholds of the trijet trigger used to collect the data. The empirical functional forms used in previous heavy-particle searches [9] are not able to model this effect adequately. The background is estimated with the "functional decomposition" (FD) method [49,50], which uses a truncated series. First it performs a powerlaw transformation on m_{ij}, as given by

$$
z \equiv\left(\frac{m_{\mathrm{jj}}-m_{\mathrm{jj}}^{0}}{\lambda}\right)^{\alpha}
$$

where m_{jj}^{0} is the start of the spectrum $(730 \mathrm{GeV}), \lambda$ is a positive scale factor and α is a positive exponent. The spectrum can then be modeled by

$$
\Omega(z)=\sum_{n=1}^{N} c_{n} E_{n}(z),
$$

where $E_{n}(z)$ is the nth member of an orthonormal basis constructed from exponential functions, c_{n} is the corresponding nth coefficient and N is the total number of terms used. Equation (1) shows the first three orthonormal functions.

$$
\begin{align*}
& E_{1}(z)=\sqrt{2} e^{-z} \\
& E_{2}(z)=6 e^{-2 z}-4 e^{-z}, \\
& E_{3}(z)=10 \sqrt{6} e^{-3 z}-12 \sqrt{6} e^{-2 z}+3 \sqrt{6} e^{-z} . \tag{1}
\end{align*}
$$

Each pair of (λ, α) defines a hyperspace of functions. For a given pair of (λ, α), the m_{jj} spectrum can be modeled precisely as $N \rightarrow \infty$. Since a falling m_{ij} spectrum can be described adequately using lower moments, while a localized structure in m_{ij} needs higher moments to model it well, truncating the series at a certain N allows the background to be modeled mostly independently of the presence of signal [49]. There exists an optimal set of (λ, α, N) that gives the most succinct representation of the data. It is identified by using two steps: dataset decomposition and parameter optimization. In the dataset decomposition step, the m_{jj} spectrum is converted to an unbinned dataset and the FD method creates a complete representation of this dataset in an initial hyperspace defined by $\left(\lambda_{0}, \alpha_{0}\right)$, considering 4096 moments as an approximation of $N \rightarrow \infty$. Values of c_{n} and the covariance matrix are calculated. The parameter optmization step performs a grid scan on the $\lambda-\alpha$ plane followed by a gradient-descent minimization starting from the best point obtained in the grid scan. The grid scan covers a large space, with α ranging from 0.6 to 1.3 and λ ranging from 50 to 750 . Each axis has 140 evenly distributed steps and there are 19600 points scanned in total. The starting point is $(0.6,50)$. The covariance matrix and c_{n} in another hyperspace can be obtained by a matrix transformation between the initial hyperspace and the new one [49], thus the dataset decomposition is only carried out once at the starting point. Only the first 128 moments are considered in the parameter optimization step as it is already well above the number of moments needed for the spectrum under consideration. Every combination of (λ, α) and N is considered and the quantity to minimize is [49]:

$$
\begin{equation*}
\mathcal{L}=D_{\mathrm{KL}}(\tilde{\mathbf{f}} \mid \tilde{\mathbf{c}})+D_{\mathrm{KL}}(\tilde{\mathbf{c}} \| \tilde{\mathbf{p}}), \tag{2}
\end{equation*}
$$

which contains two Kullback-Leibler divergences (D_{KL}) [51] and measures how a probability distribution differs from a reference probability distribution. The first term is the divergence of the estimate ($\tilde{\mathbf{c}})$ with respect to data $(\tilde{\mathbf{f}})$. A better description of the data results in a smaller divergence. The second term is the divergence of some prior background assumption ($\tilde{\mathbf{p}}$) with respect to the estimate ($\tilde{\mathbf{c}}$). It is a penalty term as $\tilde{\mathbf{p}}$ is constructed such that the divergence increases as the value of N increases [49]. As a consequence, the minimization prefers a smaller number of terms and the series is truncated. The truncated series, given by the optimized $(\lambda, \alpha), N$ and the corresponding coefficients $\left(c_{n}\right)$, determines the background estimate. Even though the penalty term in Eq. (2) prevents overfitting the data, the upper limit on N is fixed using background-only pseudodata samples introduced below. A lower limit on N is also identified using the same pseudodata samples to ensure the background estimate is adequate. In the application to data, the parameter optimization step only considers values of N within this fixed range while other parameters are not constrained by background-only pseudodata samples. The background estimate is converted to a histogram as the input to the statistical analysis, where the binning is determined by the m_{jj} resolution measured in Ref. [9].

Background-only pseudodata samples are generated by scaling the events passing the preselections listed in Table I with the expected event-level b-tagging selection efficiency of multijet events in data. The event-level b-tagging selection efficiency is defined as the probability, as a function of the m_{j}, of a preselected event to enter the signal region. The measured efficiency points are fitted by a third-order polynomial to smooth any features introduced by local fluctuations or by the presence of signal events. It is verified that a third-order polynomial is insensitive to possible signal contamination by artificially introducing different signal width and mass combinations. The eventlevel b-tagging selection efficiency for the target signal region is calculated using data to be 0.14% at 730 GeV and

TABLE I. Signal region event selection criteria. The superscripts refer to the ranking given by jet p_{T}.

	Preselection
Jet p_{T}	$p_{\mathrm{T}}^{1,2}>250 \mathrm{GeV}$
	$p_{\mathrm{T}}^{3}>120 \mathrm{GeV}$
Jet $\|\eta\|$	$p_{\mathrm{T}}^{4}>25 \mathrm{GeV}$
	$\left\|\eta^{1,2,3}\right\|<2.4$
JVT	$\left\|\eta^{4}\right\|<4.5$
$\left\|y^{*}\right\|$	"medium" OP
	$\quad<0.8$
DL1r	b-tagging Selection
	Leading two jets: 77\% OP
m_{jj}	Third or fourth jet: 77\% OP

decreases to 0.01% at 3 TeV . Pseudodata samples are generated by varying the fitted efficiency curve according to the uncertainties associated with the fit.

A background-enhanced control region with negligible signal contamination, where both the third and fourth jets are required to fail the b-tagging requirements, is constructed to validate this procedure for generating pseudodata samples. In this control region, the corresponding event-level b-tagging selection efficiency is the probability that an event fails to satisfy the b-tagging criteria for the third and fourth jets but has both the leading two jets b-tagged. The pseudodata samples generated by this procedure provide a good description of the target spectrum in this control region.

The background-only pseudodata samples approximating the signal region are used to check whether a given FD configuration models the background adequately by performing two sets of tests. A χ^{2} test is applied to check whether the estimate agrees well with the background. More than 90% of the pseudoexperiments are required to have a $\chi^{2} p$-value greater than 0.01 . In addition to the χ^{2} test, the BumpHunter algorithm $[52,53]$ described in Sec. VII is used to check whether the background estimate introduces strong biases in the statistical analysis. More than 90% of the pseudoexperiments must give a BumpHunter p-value greater than 0.01 when the background-only pseudodata samples are considered.

The lower and upper limits on N are determined by the above tests, starting without any constraints on N and gradually shrinking the allowed range. First the lower limit is optimized by increasing it until the above criteria are met. Once the lower limit is determined, the upper limit is decreased until the above criteria are no longer satisfied. The tests show that requiring N to be 2 or 3 is sufficient to obtain a good estimate of the background. Therefore, the minimization only considers these two options in the signal injection tests described below and in the final application to data.

Another set of tests is performed with signal events injected into the background-only pseudodata samples to evaluate the sensitivity to signal. The sensitivity to a given signal model is considered to be optimal if more than 90% of pseudoexperiments return a BumpHunter p-value less than 0.01 with a significant number of signal events injected. The number of events injected satisfies $N_{\mathcal{S}} / \sqrt{N_{\mathcal{B}}}=5$, in which $N_{\mathcal{S}}$ and $N_{\mathcal{B}}$ are the numbers of signal and background events, respectively, within a m_{ij} window corresponding to twice the signal width on each side of the signal mass point. A large set of Gaussian-like signal hypotheses across the entire m_{ij} region, with various widths, are tested; and they show that this search has optimal sensitivity above 1.3 TeV . The low m_{ij} region is sculpted more significantly by the trigger and kinematic selections. The truncated series determined by FD is too flexible and absorbs more of the signal in this region,
resulting in lower sensitivities. Therefore, the signal search is conducted only in the region $m_{\mathrm{jj}}>1.3 \mathrm{TeV}$ despite the whole region, $m_{\mathrm{ij}}>730 \mathrm{GeV}$, being considered in the FD. The lower m_{ij} region is used as a sideband.

VI. SYSTEMATIC UNCERTAINTIES

The main systematic uncertainties in the simulated signal samples consist of those associated with the modeling of the jet energy scale (JES), the jet energy resolution (JER) and the b-tagging efficiency. JES and JER variations are applied to the signals to obtain varied signal templates. They are estimated using jets in $\sqrt{s}=13 \mathrm{TeV}$ data and simulation in various methods [45]. The impact of these uncertainties on the expected number of signal events across the whole m_{ij} range is $24 \%-30 \%(35 \%-40 \%)$ from JES (JER) variations. The systematic uncertainty of the b-tagging efficiency is measured using data enriched in $t \bar{t}$ events for jet $p_{\mathrm{T}}<400 \mathrm{GeV}$ and extrapolated to higher p_{T} regions using a method similar to the one described in Ref. [54]. This uncertainty ranges from 12% to 20% depending on the reconstructed signal mass. A luminosity uncertainty of 2.4% [39] is applied to the normalization of the signal samples.

The background modeling uncertainties come from both the statistical uncertainty in the fit parameters, referred to as the fit parameter uncertainty, and the biases introduced by the fit model itself. The fit parameter uncertainty is evaluated by propagating the covariance matrix returned by the fit to each m_{jj} bin, giving an uncertainty ranging from 2% to 5% relative to the background estimate. The biases from the fit model are evaluated with pseudoexperiments using signal-injected pseudodata samples, quantifying how much the background estimate is biased by injected signal events in the spectrum that are not able to create significant excesses. The number of signal events injected corresponds to the mean of the expected limits obtained for each signal hypothesis when background-only pseudodata samples are considered. The background estimate is increased by 5% to 40% at the injected signal mass point compared to the nominal case. This is referred to as the fit bias uncertainty.

The fit model may not describe the background perfectly, so that signal-like features can arise in data relative to the fit even if there are no signal events in data, introducing spurious signals. A spurious-signal uncertainty is included to address this. It is evaluated using pseudoexperiments, for each of which a fixed background template, obtained from an FD fit to the background-only pseudodata sample, and the signal templates have their normalizations fitted to the background-only m_{ij} spectrum in the manner described in Sec. VII, and the obtained number of signal events is taken as the spurious signal. It is measured for each signal mass point and a smooth envelope is constructed following the method described in Ref. [50]. The size of this uncertainty
relative to the background estimate increases from 0.5% at 1.3 TeV to 14% at 3.0 TeV .

VII. RESULTS AND INTERPRETATION

The BumpHunter algorithm is adopted to quantify the statistical significance of any localized excess in the binned m_{jj} distribution. It calculates the significance of any excess found in continuous intervals in all possible locations. The search window has a width ranging from two bins up to half of the full m_{jj} distribution. In each window it evaluates the significance of the discrepancy between the data and the background yield. The most significant interval is the set of bins with the smallest probability of arising from background fluctuations. A p-value is reported by BumpHunter, corresponding to the probability of random fluctuations in the background-only hypothesis creating an excess at least as significant as the one observed anywhere in the spectrum. This is obtained by performing a series of pseudoexperiments constructed from the background estimate so that the look-elsewhere effect [55] is taken into account.

Three moments are used $(N=3)$ after applying the optimization procedure described in Sec. V. The corresponding fit describes the data very well across the entire m_{jj} region, obtaining $\chi^{2} / \mathrm{nDoF}=0.72$ and a $\chi^{2} p$-value of 0.89 [56]. BumpHunter reports a p-value of 0.55 after scanning the m_{jj} range starting at 1.3 TeV with the most significant interval found to be $[1.92,2.11] \mathrm{TeV}$, as shown in Fig. 3.

A binned likelihood is constructed with the signal templates obtained from simulation and the background template given by FD. The likelihood function, $\mathcal{L}(\mu, \vec{\theta})$, is a product of Poisson probability terms over all the m_{jj} bins, where the parameter of interest, μ, is defined as the cross section, $\sigma\left(p p \rightarrow b \bar{b} Z^{\prime}\right)$, times the branching ratio, $B\left(Z^{\prime} \rightarrow b \bar{b}\right)$, of the LUV Z^{\prime} boson, and a set of nuisance parameters (NPs), $\vec{\theta}$, is used to encode systematic uncertainties in the signal and background expectations. The background normalization and shape are estimated by FD prior to the likelihood fit, and corresponding uncertainties are included as NPs in the likelihood function. The NPs allow variations of the expectations for signal and background according to the systematic uncertainties, subject to Gaussian constraints in the likelihood fit. The maximumlikelihood fit to the observed m_{ij} spectrum is performed independently for each LUV Z^{\prime} boson mass hypothesis with the starting point of the m_{jj} spectrum set to 1 TeV so that the majority of signal events are included.

Since the observed data are consistent with the smoothly falling background expectation, upper limits on the production cross section of the LUV Z^{\prime} model are obtained at 95% confidence level (CL) using the CL_{s} [58-60] method. Various signal mass hypothesis tests and CL_{s} values are calculated using a frequentist framework, HistFitter [61],

FIG. 3. Background estimate from the FD method with $N=3$ and data in the SR. The solid squares show the m_{jj} spectrum in data and the solid curve is the background estimated by the FD method. The BumpHunter algorithm scans the m_{jj} region above 1.3 TeV as indicated by the vertical dashed line. The vertical solid lines refer to the boundaries of the most significant interval flagged by BumpHunter; this is found to be [1.92, 2.11] TeV for which the p-value is stated in the figure. Open squares (circles) are the signal distributions of the 1.6 (2.5) $\mathrm{TeV} \mathrm{LUV} Z^{\prime}$ boson on top of the data with the cross sections inflated by a factor of 20 (50). The lower panel shows the significance calculated using the background estimate and data. The significance is defined as $\left(d_{i}-b_{i}\right) / \delta$, where d_{i} refers to the data count while b_{i} refers to the background estimate, and δ is an uncertainty taking both the uncertainty on the data count and background estimate into account [57].
which is an interface to the RooFit package [62], with a profile likelihood ratio, $q_{\mu}=-2 \ln \left(\mathcal{L}\left(\mu, \vec{\theta}_{\mu}\right) / \mathcal{L}\left(\hat{\mu}, \hat{\vec{\theta}}_{\hat{\mu}}\right)\right)$, as the test statistic. The values of $\hat{\mu}$ and $\hat{\vec{\theta}}_{\hat{\mu}}$ maximize the likelihood function, while $\vec{\theta}_{\mu}$ maximizes the likelihood function for a given value of μ. For each signal mass hypothesis, a CL_{s} value is evaluated using the asymptotic formula [58]. The predicted LUV Z^{\prime} boson production cross sections times the branching ratio to $b \bar{b}$ are overlaid in Fig. 4. At 3 TeV , where the number of events is small, the results from pseudoexperiments are consistent with the ones using the asymptotic formula. The difference in the mean is at the few-percent level and that in the uncertainty band is about 10%. A coverage test using an ensemble of pseudodata samples is performed to validate the overall implementation of systematic uncertainties. When signal events are injected with a strength corresponding to the mean cross section excluded at 95% CL obtained by considering the background-only pseudodata samples,

FIG. 4. The observed (solid) and expected (dashed) 95\% CL upper limits on the production of $Z^{\prime} \rightarrow b \bar{b}$ in association with b-quarks. The bands surrounding the expected limit show the 68% and 95% confidence intervals. The predicted cross sections of the LUV Z^{\prime} model times the branching ratio to $b \bar{b}$, with g_{b} set to unity and g_{τ} set to zero, calculated at LO with MadGraph5_aMC@NLO, are also overlaid.
the probability of excluding the given signal is less than 5\% for a range of signal masses spanning $1.3-3 \mathrm{TeV}$. An additional cross-check is performed to validate the robustness of the complete analysis procedure against possible signal contamination. This cross-check, which considers two LUV Z^{\prime} masses (1.3 TeV and 3 TeV), is carried out by subtracting signal events corresponding to the expected limit from data, and creating a new set of pseudodata samples using the signal-subtracted data. The allowed range of N for FD and the uncertainties associated with FD, such as the fit parameter uncertainty, spurious signal uncertainty and the fit bias uncertainty, are rederived and then applied in the statistical analysis of the original data. The resulting limits on N are the same as the ones obtained in Sec. V and the expected and observed limits are shifted by less than 2% compared to the nominal result.

VIII. CONCLUSION

A search for new heavy particles in the final state with the two leading jets b-tagged and at least one additional b-tagged jet among the third and fourth jets is performed in a previously uncovered m_{jj} region using $103 \mathrm{fb}^{-1}$ of $p p$ collision data recorded at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector at the LHC during 2017 and 2018. The m_{ij} spectrum of the two leading b-tagged jets is analyzed with an innovative background estimation method, functional decomposition, utilizing a truncated series. The observed
data are compatible with the hypothesis of a smoothly falling background within the m_{jj} region from 1.3 to 3.6 TeV . Upper limits on the production of lepton-univer-sality-violating Z^{\prime} bosons times the branching ratio to $b \bar{b}$ are derived, and exclude such Z^{\prime} bosons with masses between 1.3 and 1.45 TeV at $95 \% \mathrm{CL}$.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [63].
[1] Y. G. Kim, K. Y. Lee, C. B. Park, and S. Shin, Secluded singlet fermionic dark matter driven by the Fermi gammaray excess, Phys. Rev. D 93, 075023 (2016).
[2] T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez, and A. Riotto, Complementarity of DM searches in a consistent simplified model: The case of Z', J. High Energy Phys. 10 (2016) 071; 01 (2019) 127(E).
[3] C. T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345, 483 (1995).
[4] C. Balázs, J. L. Diaz-Cruz, H.-J. He, T. Tait, and C.-P. Yuan, Probing Higgs bosons with large bottom Yukawa coupling at hadron colliders, Phys. Rev. D 59, 055016 (1999).
[5] L. Randall and R. Sundrum, Large Mass Hierarchy from a Small Extra Dimension, Phys. Rev. Lett. 83, 3370 (1999).
[6] M. R. Buckley, D. Feld, and D. Gonçalves, Scalar simplified models for dark matter, Phys. Rev. D 91, 015017 (2015).
[7] CMS Collaboration, Search for Narrow Resonances in the b-Tagged Dijet Mass Spectrum in Proton-Proton Collisions at $\sqrt{s}=8 \mathrm{TeV}$, Phys. Rev. Lett. 120, 201801 (2018).
[8] CMS Collaboration, Search for low-mass resonances decaying into bottom quark-antiquark pairs in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$, Phys. Rev. D 99, 012005 (2019).
[9] ATLAS Collaboration, Search for new resonances in mass distributions of jet pairs using $139 \mathrm{fb}^{-1}$ of $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, J. High Energy Phys. 03 (2020) 145.
[10] ATLAS Collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Lett. B 788, 316 (2019).
[11] ATLAS Collaboration, Search for heavy neutral Higgs bosons produced in association with b-quarks and decaying into b-quarks at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Phys. Rev. D 102, 032004 (2020).
[12] CMS Collaboration, Search for beyond the standard model Higgs bosons decaying into a $\mathrm{b} \bar{b}$ pair in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$, J. High Energy Phys. 08 (2018) 113.
[13] LHCb Collaboration, Measurement of the Ratio of the $B^{0} \rightarrow D^{*-} \tau^{+} \nu_{\tau}$ and $B^{0} \rightarrow D^{*-} \mu^{+} \nu_{\mu}$ Branching Fractions Using Three-Prong τ-Lepton Decays, Phys. Rev. Lett. 120, 171802 (2018).
[14] Belle Collaboration, Measurement of the τ lepton polarization and $R\left(D^{*}\right)$ in the decay $\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97, 012004 (2018).
[15] LHCb Collaboration, Test of lepton universality with $B^{0} \rightarrow$ $K^{* 0} \ell^{+} \ell^{-}$decays, J. High Energy Phys. 08 (2017) 055.
[16] LHCb Collaboration, Evidence for the decay $B_{S}^{0} \rightarrow$ $\bar{K}^{* 0} \mu^{+} \mu^{-}$, J. High Energy Phys. 07 (2018) 020.
[17] LHCb Collaboration, Test of lepton universality in beautyquark decays, arXiv:2103.11769.
[18] A. Greljo, G. Isidori, and D. Marzocca, On the breaking of lepton flavor universality in B decays, J. High Energy Phys. 07 (2015) 142.
[19] D. A. Faroughy, A. Greljo, and J. F. Kamenik, Confronting lepton flavor universality violation in B decays with high- p_{T} tau lepton searches at LHC, Phys. Lett. B 764, 126 (2017).
[20] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement with $t \bar{t}$ events in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$, Eur. Phys. J. C 79, 970 (2019).
[21] ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider, J. Instrum. 3, S08003 (2008).
[22] ATLAS Collaboration, ATLAS insertable B-layer technical design report, Technical Reports No. CERN-LHCC-2010013, No. ATLAS-TDR-19, 2010, https://cds.cern.ch/record/ 1291633.
[23] B. Abbott et al., Production and integration of the ATLAS insertable B-layer, J. Instrum. 13, T05008 (2018).
[24] ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017).
[25] ATLAS Collaboration, Operation of the ATLAS trigger system in Run 2, J. Instrum. 15, P10004 (2020).
[26] ATLAS Collaboration, The ATLAS Collaboration software and firmware, Report No. ATL-SOFT-PUB-2021-001, 2021, https://cds.cern.ch/record/2767187.
[27] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5: Going beyond, J. High Energy Phys. 06 (2011) 128.
[28] T. Sjöstrand, S. Mrenna, and P. Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852 (2008).
[29] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B867, 244 (2013).
[30] ATLAS Collaboration, ATLAS Pythia 8 tunes to 7 TeV data, Report No. ATL-PHYS-PUB-2014-021, 2014, https://cds .cern.ch/record/1966419.
[31] L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, J. High Energy Phys. 05 (2002) 046.
[32] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63, 189 (2009).
[33] ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70, 823 (2010).
[34] S. Agostinelli et al., Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[35] ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, Technical Report No. ATL-PHYS-PUB-2010-013, CERN, 2010, https://cds.cern.ch/record/1300517.
[36] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001); Proceedings of 7th Int. Conf. on B-Physics at Hadron Machines (BEAUTY2000), issn:0168-9002, https://www .sciencedirect.com/science/article/pii/S0168900201000894.
[37] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie-Landshoff diffractive model, Report No. ATL-PHYS-PUB-2016-017, 2016, https://cds.cern .ch/record/2206965.
[38] ATLAS Collaboration, ATLAS data quality operations and performance for 2015-2018 data-taking, J. Instrum. 15, P04003 (2020).
[39] ATLAS Collaboration, Luminosity determination in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$ using the ATLAS detector at the LHC, Report No. ATLAS-CONF-2019-021, 2019, https://cds.cern.ch/record/2677054.
[40] ATLAS Collaboration, The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS, J. Instrum. 13, P07017 (2018).
[41] M. Cacciari, G. P. Salam, and G. Soyez, The anti- k_{t} jet clustering algorithm, J. High Energy Phys. 04 (2008) 063.
[42] M. Cacciari, G. P. Salam, and G. Soyez, The catchment area of jets, J. High Energy Phys. 04 (2008) 005.
[43] M. Cacciari, G. P. Salam, and G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012).
[44] ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1, Eur. Phys. J. C 77, 490 (2017).
[45] ATLAS Collaboration, Jet energy scale and resolution measured in proton-proton collisions at $\sqrt{s}=13 \mathrm{TeV}$ with the ATLAS detector, Eur. Phys. J. C 81, 689 (2021).
[46] ATLAS Collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector, Technical Report No. ATLAS-CONF-2015-029, CERN, 2015, https://cds.cern.ch/record/2037702.
[47] ATLAS Collaboration, Identification of Jets Containing b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment, Technical Report No. ATL-PHYS-PUB-2017003, CERN, 2017, https://cds.cern.ch/record/2255226.
[48] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ using the ATLAS detector, Eur. Phys. J. C 76, 581 (2016).
[49] R. Edgar, D. Amidei, C. Grud, and K. Sekhon, Functional decomposition: A new method for search and limit setting, arXiv:1805.04536.
[50] ATLAS Collaboration, Recommendations for the modeling of smooth backgrounds, Report No. ATL-PHYSPUB-2020028, 2020, https://cds.cern.ch/record/2743717.
[51] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat. 22, 79 (1951).
[52] CDF Collaboration, Global search for new physics with $2.0 \mathrm{fb}^{-1}$ at CDF, Phys. Rev. D 79, 011101 (2009).
[53] G. Choudalakis, On hypothesis testing, trials factor, hypertests and the BumpHunter, arXiv:1101.0390.
[54] ATLAS Collaboration, Simulation-based extrapolation of b-tagging calibrations towards high transverse momenta in the ATLAS experiment, Report No. ATL-PHYS-PUB-2021-003, 2021, https://cds.cern.ch/record/2753444.
[55] E. Gross and O. Vitells, Trial factors for the look elsewhere effect in high energy physics, Eur. Phys. J. C 70, 525 (2010).
[56] K. Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, The London, Edinburgh, and Dublin Phil. Mag. J. Sci. 50, 157 (1900).
[57] G. Choudalakis and D. Casadei, Plotting the differences between data and expectation, Eur. Phys. J. Plus 127, 25 (2012).
[58] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011); 73, 2501(E) (2013).
[59] A. L. Read, Presentation of search results: The CLs technique, J. Phys. G 28, 2693 (2002).
[60] T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).
[61] M. Baak, G. J. Besjes, D. Côté, A. Koutsman, J. Lorenz, and D. Short, HistFitter software framework for statistical data analysis, Eur. Phys. J. C 75, 153 (2015).
[62] W. Verkerke and D. P. Kirkby, The RooFit Toolkit for Data Modeling, edited by L. Lyons and M. Karagoz (2003), arXiv:physics/0306116.
[63] ATLAS Collaboration, ATLAS computing acknowledgements, Report No. ATL-SOFT-PUB-2021-003, https://cds .cern.ch/record/2776662.
G. Aad,,99 B. Abbott,,124 D. C. Abbott,,${ }^{100}$ A. Abed Abud, ${ }^{34}$ K. Abeling, ${ }^{51}$ D. K. Abhayasinghe, ${ }^{91}$ S. H. Abidi, ${ }^{27}$ H. Abramowicz, ${ }^{157}$ H. Abreu, ${ }^{156}$ Y. Abulaiti, ${ }^{5}$ A. C. Abusleme Hoffman, ${ }^{142 \mathrm{a}}$ B. S. Acharya, ${ }^{64 a, 64 \mathrm{~b}, \mathrm{~b}}$ B. Achkar, ${ }^{51}$ L. Adam, ${ }^{97}$ C. Adam Bourdarios, ${ }^{4}$ L. Adamczyk, ${ }^{81 a}$ L. Adamek, ${ }^{162}$ J. Adelman, ${ }^{117}$ A. Adiguzel, ${ }^{11 \mathrm{c}, \mathrm{c}}$ S. Adorni, ${ }^{52}$ T. Adye, ${ }^{139}$ A. A. Affolder, ${ }^{141}$ Y. Afik, ${ }^{156}$ C. Agapopoulou, ${ }^{62}$ M. N. Agaras, ${ }^{12}$ J. Agarwala, ${ }^{68 a, 68 \mathrm{~b}}$ A. Aggarwal, ${ }^{115}$ C. Agheorghiesei, ${ }^{25 \mathrm{c}}$ J. A. Aguilar-Saavedra, ${ }^{135 f, 135 a, d}$ A. Ahmad, ${ }^{34}$ F. Ahmadov, ${ }^{77}$ W. S. Ahmed, ${ }^{101}$ X. Ai ${ }^{44}$ G. Aielli, ${ }^{71 a, 71 b}$ S. Akatsuka, ${ }^{83}$ M. Akbiyik, ${ }^{97}$ T. P. A. Åkesson, ${ }^{94}$ A. V. Akimov, ${ }^{108}$ K. Al Khoury, ${ }^{37}$ G. L. Alberghi, ${ }^{21 b}$ J. Albert, ${ }^{171}$ M. J. Alconada Verzini, ${ }^{86}$ S. Alderweireldt, ${ }^{48}$ M. Aleksa, ${ }^{34}$ I. N. Aleksandrov, ${ }^{77}$ C. Alexa, ${ }^{25 b}$ T. Alexopoulos, ${ }^{9}$ A. Alfonsi, ${ }^{116}$ F. Alfonsi, ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$ M. Alhroob, ${ }^{124}$ B. Ali, ${ }^{137}$ S. Ali, ${ }^{154}$ M. Aliev, ${ }^{161}$ G. Alimonti, ${ }^{66 \mathrm{a}}$ C. Allaire, ${ }^{34}$ B. M. M. Allbrooke, ${ }^{152}$ P. P. Allport, ${ }^{19}$ A. Aloisio, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ F. Alonso, ${ }^{86}$ C. Alpigiani, ${ }^{144}$ E. Alunno Camelia, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ M. Alvarez Estevez, ${ }^{96}$ M. G. Alviggi, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ Y. Amaral Coutinho, ${ }^{78 \mathrm{~b}}$ A. Ambler, ${ }^{101}$ L. Ambroz, ${ }^{130}$ C. Amelung, ${ }^{34}$ D. Amidei, ${ }^{103}$ S. P. Amor Dos Santos, ${ }^{135 \mathrm{a}}$ S. Amoroso, ${ }^{44}$ C. S. Amrouche, ${ }^{52}$ C. Anastopoulos, ${ }^{145}$ N. Andari, ${ }^{140}$ T. Andeen, ${ }^{10}$ J. K. Anders, ${ }^{18}$ S. Y. Andrean, ${ }^{43 a, 43 b}$ A. Andreazza, ${ }^{66 a, 66 b}$ V. Andrei, ${ }^{59 a}$ S. Angelidakis, ${ }^{8}$ A. Angerami, ${ }^{37}$ A. V. Anisenkov, ${ }^{118 b, 118 a}$ A. Annovi, ${ }^{69 \mathrm{a}} \mathrm{C}$. Antel, ${ }^{52}$ M. T. Anthony, ${ }^{145}$ E. Antipov, ${ }^{125}$ M. Antonelli, ${ }^{49}$ D. J. A. Antrim, ${ }^{16}$ F. Anulli, ${ }^{70 \mathrm{a}}$ M. Aoki, ${ }^{79}$ J. A. Aparisi Pozo, ${ }^{169}$ M. A. Aparo, ${ }^{152}$ L. Aperio Bella, ${ }^{44}$ N. Aranzabal, ${ }^{34}$ V. Araujo Ferraz, ${ }^{78 a}$ C. Arcangeletti, ${ }^{49}$ A. T. H. Arce, ${ }^{47}$ E. Arena, ${ }^{88}$ J-F. Arguin, ${ }^{107}$ S. Argyropoulos, ${ }^{50}$ J.-H. Arling, ${ }^{44}$ A. J. Armbruster, ${ }^{34}$ A. Armstrong, ${ }^{166}$ O. Arnaez, ${ }^{162}$ H. Arnold, ${ }^{34}$ Z. P. Arrubarrena Tame, ${ }^{111}$ G. Artoni, ${ }^{130}$ H. Asada, ${ }^{113}$ K. Asai, ${ }^{122}$ S. Asai, ${ }^{159}$ N. A. Asbah, ${ }^{57}$ E. M. Asimakopoulou, ${ }^{167}$ L. Asquith, ${ }^{152}$ J. Assahsah,,${ }^{33 \mathrm{~d}}$ K. Assamagan, ${ }^{27}$ R. Astalos, ${ }^{26 a}$ R. J. Atkin, ${ }^{31 a}$ M. Atkinson, ${ }^{168}$ N. B. Atlay, ${ }^{17}$ H. Atmani, ${ }^{58 \mathrm{~b}}$ P. A. Atmasiddha, ${ }^{103}$ K. Augsten, ${ }^{137}$ S. Auricchio, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ V. A. Austrup, ${ }^{177}$ G. Avner, ${ }^{156}$ G. Avolio, ${ }^{34}$ M. K. Ayoub, ${ }^{13 \mathrm{c}}$ G. Azuelos, ${ }^{107, \mathrm{e}}$ D. Babal, ${ }^{26 \mathrm{a}}$ H. Bachacou, ${ }^{140}$ K. Bachas, ${ }^{158}$ F. Backman, ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$ A. Badea, ${ }^{57}$
P. Bagnaia, ${ }^{70 a, 70 b}$ H. Bahrasemani, ${ }^{148}$ A. J. Bailey, ${ }^{169}$ V. R. Bailey, ${ }^{168}$ J. T. Baines, ${ }^{139}$ C. Bakalis, ${ }^{9}$ O. K. Baker, ${ }^{178}$ P. J. Bakker, ${ }^{116}$ E. Bakos, ${ }^{14}$ D. Bakshi Gupta, ${ }^{7}$ S. Balaji, ${ }^{153}$ R. Balasubramanian, ${ }^{116}$ E. M. Baldin, ${ }^{118 b, 118 a}$ P. Balek, ${ }^{138}$ E. Ballabene, ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$ F. Balli, ${ }^{140}$ W. K. Balunas, ${ }^{130}$ J. Balz, ${ }^{97}$ E. Banas, ${ }^{82}$ M. Bandieramonte, ${ }^{134}$ A. Bandyopadhyay, ${ }^{17}$
L. Barak, ${ }^{157}$ E. L. Barberio, ${ }^{102}$ D. Barberis, ${ }^{53 b, 53 \mathrm{a}}$ M. Barbero, ${ }^{99}$ G. Barbour, ${ }^{92}$ K. N. Barends, ${ }^{31 \mathrm{a}}$ T. Barillari, ${ }^{112}$ M-S. Barisits, ${ }^{34}$ J. Barkeloo, ${ }^{127}$ T. Barklow, ${ }^{149}$ B. M. Barnett, ${ }^{139}$ R. M. Barnett, ${ }^{16}$ A. Baroncelli, ${ }^{58 \mathrm{a}}$ G. Barone, ${ }^{27}$ A. J. Barr, ${ }^{130}$ L. Barranco Navarro, ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$ F. Barreiro, ${ }^{96}$ J. Barreiro Guimarães da Costa, ${ }^{13 \mathrm{a}}$ U. Barron, ${ }^{157}$ S. Barsov, ${ }^{133}$ F. Bartels, ${ }^{59 a}$ R. Bartoldus, ${ }^{149}$ G. Bartolini, ${ }^{99}$ A. E. Barton, ${ }^{87}$ P. Bartos, ${ }^{26 a}$ A. Basalaev, ${ }^{44}$ A. Basan, ${ }^{97}$ I. Bashta, ${ }^{72 a, 72 b}$ A. Bassalat, ${ }^{62}$ M. J. Basso, ${ }^{162}$ C. R. Basson, ${ }^{98}$ R. L. Bates, ${ }^{55}$ S. Batlamous, ${ }^{33 \mathrm{e}}$ J. R. Batley, ${ }^{30}$ B. Batool, ${ }^{147}$ M. Battaglia, ${ }^{141}$ M. Bauce, ${ }^{70 a, 70 b}$ F. Bauer, ${ }^{140, a}$ P. Bauer, ${ }^{22}$ H. S. Bawa, ${ }^{29}$ A. Bayirli, ${ }^{11 \mathrm{c}}$ J. B. Beacham, ${ }^{47}$ T. Beau, ${ }^{131}$ P. H. Beauchemin, ${ }^{165}$ F. Becherer, ${ }^{50}$ P. Bechtle,,${ }^{22}$ H. P. Beck, ${ }^{18, f}$ K. Becker, ${ }^{173}$ C. Becot, ${ }^{44}$ A. J. Beddall, ${ }^{11 \mathrm{a}}$ V. A. Bednyakov, ${ }^{77}$ C. P. Bee, ${ }^{151}$ T. A. Beermann, ${ }^{177}$ M. Begalli, ${ }^{78 b}$ M. Begel, ${ }^{27}$ A. Behera, ${ }^{151}$ J. K. Behr, ${ }^{44}$ C. Beirao Da Cruz E Silva, ${ }^{34}$ J. F. Beirer,${ }^{51,34}$ F. Beisiegel, ${ }^{22}$ M. Belfkir, ${ }^{4}$ G. Bella, ${ }^{157}$ L. Bellagamba, ${ }^{21 \mathrm{~b}}$ A. Bellerive, ${ }^{32}$ P. Bellos, ${ }^{19}$ K. Beloborodov, ${ }^{118 b, 118 a}$ K. Belotskiy, ${ }^{109}$ N. L. Belyaev, ${ }^{109}$ D. Benchekroun, ${ }^{33 a}$ Y. Benhammou, ${ }^{157}$ D. P. Benjamin, ${ }^{27}$ M. Benoit,,${ }^{27}$ J. R. Bensinger, ${ }^{24}$ S. Bentvelsen, ${ }^{116}$ L. Beresford, ${ }^{34}$ M. Beretta, ${ }^{49}$ D. Berge, ${ }^{17}$ E. Bergeaas Kuutmann, ${ }^{167}$ N. Berger, ${ }^{4}$ B. Bergmann, ${ }^{137}$ L. J. Bergsten, ${ }^{24}$ J. Beringer, ${ }^{16}$ S. Berlendis, ${ }^{6}$ G. Bernardi, ${ }^{131}$ C. Bernius, ${ }^{149}$ F. U. Bernlochner, ${ }^{22}$ T. Berry, ${ }^{91}$ P. Berta, ${ }^{44}$ A. Berthold, ${ }^{46}$ I. A. Bertram, ${ }^{87}$ O. Bessidskaia Bylund, ${ }^{177}$ S. Bethke, ${ }^{112}$ A. Betti, ${ }^{40}$ A. J. Bevan, ${ }^{90}$ S. Bhatta, ${ }^{151}$ D. S. Bhattacharya, ${ }^{172}$ P. Bhattarai, ${ }^{24}$ V. S. Bhopatkar, ${ }^{5}$ R. Bi, ${ }^{134}$ R. M. Bianchi, ${ }^{134}$ O. Biebel, ${ }^{111}$ R. Bielski, ${ }^{34}$ N. V. Biesuz,${ }^{69 a} 69 \mathrm{~b}$ M. Biglietti, ${ }^{72 \mathrm{a}}$
T. R. V. Billoud, ${ }^{137}$ M. Bindi, ${ }^{51}$ A. Bingul, ${ }^{11 \mathrm{~d}}$ C. Bini, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ S. Biondi, ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$ C. J. Birch-sykes, ${ }^{98}$ G. A. Bird, ${ }^{19,139}$ M. Birman, ${ }^{175}$ T. Bisanz, ${ }^{34}$ J. P. Biswal, ${ }^{2}$ D. Biswas, ${ }^{176, g}$ A. Bitadze, ${ }^{98}$ C. Bittrich, ${ }^{46}$ K. Bjørke, ${ }^{129}$ I. Bloch, ${ }^{44}$ C. Blocker, ${ }^{24}$ A. Blue, ${ }^{55}$ U. Blumenschein, ${ }^{90}$ J. Blumenthal, ${ }^{97}$ G. J. Bobbink, ${ }^{116}$ V. S. Bobrovnikov, ${ }^{118 b, 118 \mathrm{a}}{ }^{\text {D }}$ D. Bogavac, ${ }^{12}$ A. G. Bogdanchikov, ${ }^{118 b, 118 \mathrm{a}}$ C. Bohm, ${ }^{43 \mathrm{a}}$ V. Boisvert, ${ }^{91}$ P. Bokan, ${ }^{44}$ T. Bold, ${ }^{81 a}$ M. Bomben, ${ }^{131}$ M. Bona, ${ }^{90}$ M. Boonekamp, ${ }^{140}$ C. D. Booth, ${ }^{91}$ A. G. Borbély, ${ }^{55}$ H. M. Borecka-Bielska, ${ }^{107}$ L. S. Borgna, ${ }^{92}$ G. Borissov, ${ }^{87}$ D. Bortoletto, ${ }^{130}$ D. Boscherini, ${ }^{21 b}$ M. Bosman, ${ }^{12}$ J. D. Bossio Sola, ${ }^{101}$ K. Bouaouda, ${ }^{33 \mathrm{a}}$ J. Boudreau, ${ }^{134}$ E. V. Bouhova-Thacker, ${ }^{87}$ D. Boumediene, ${ }^{36}$ R. Bouquet, ${ }^{131}$ A. Boveia, ${ }^{123}$ J. Boyd, ${ }^{34}$ D. Boye, ${ }^{27}$ I. R. Boyko, ${ }^{77}$ A. J. Bozson, ${ }^{91}$ J. Bracinik, ${ }^{19}$ N. Brahimi, ${ }^{58 \mathrm{~d}, 58 \mathrm{c}}$ G. Brandt, ${ }^{177}$ O. Brandt, ${ }^{30}$ F. Braren, ${ }^{44}$ B. Brau, ${ }^{100}$ J. E. Brau, ${ }^{127}$ W. D. Breaden Madden, ${ }^{55}$ K. Brendlinger, ${ }^{44}$ R. Brener, ${ }^{175}$ L. Brenner, ${ }^{34}$ R. Brenner, ${ }^{167}$ S. Bressler, ${ }^{175}$ B. Brickwedde, ${ }^{97}$ D. L. Briglin, ${ }^{19}$ D. Britton, ${ }^{55}$ D. Britzger, ${ }^{112}$ I. Brock, ${ }^{22}$ R. Brock,,${ }^{104}$ G. Brooijmans, ${ }^{37}$ W. K. Brooks, ${ }^{142 f}$ E. Brost, ${ }^{27}$ P. A. Bruckman de Renstrom, ${ }^{82}$ B. Brüers, ${ }^{44}$ D. Bruncko, ${ }^{26 b}$ A. Bruni, ${ }^{21 b}$ G. Bruni, ${ }^{21 b}$ M. Bruschi, ${ }^{21 b}$ N. Bruscino, ${ }^{70 a, 70 b}$ L. Bryngemark, ${ }^{149}$ T. Buanes, ${ }^{15}$ Q. Buat, ${ }^{151}$ P. Buchholz, ${ }^{147}$ A. G. Buckley, ${ }^{55}$ I. A. Budagov, ${ }^{77}$ M. K. Bugge, ${ }^{129}$ O. Bulekov, ${ }^{109}$ B. A. Bullard, ${ }^{57}$ T. J. Burch, ${ }^{117}$ S. Burdin, ${ }^{88}$ C. D. Burgard, ${ }^{44}$ A. M. Burger, ${ }^{125}$ B. Burghgrave, ${ }^{7}$ J. T. P. Burr, ${ }^{44}$ C. D. Burton, ${ }^{10}$ J. C. Burzynski, ${ }^{100}$ V. Büscher, ${ }^{97}$ P. J. Bussey, ${ }^{55}$ J. M. Butler, ${ }^{23}$ C. M. Buttar, ${ }^{55}$ J. M. Butterworth, ${ }^{92}$ W. Buttinger, ${ }^{139}$ C. J. Buxo Vazquez, ${ }^{104}$ A. R. Buzykaev, ${ }^{118 b, 118 a}$ G. Cabras, ${ }^{21 b}$ S. Cabrera Urbán, ${ }^{169}$ D. Caforio, ${ }^{54}$ H. Cai, ${ }^{134}$ V. M. M. Cairo, ${ }^{149}$ O. Cakir, ${ }^{3 a}$ N. Calace, ${ }^{34}$ P. Calafiura, ${ }^{16}$ G. Calderini, ${ }^{131}$ P. Calfayan,,${ }^{63}$ G. Callea, ${ }^{55}$ L. P. Caloba, ${ }^{78 b}$ A. Caltabiano, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ S. Calvente Lopez, ${ }^{96}$ D. Calvet, ${ }^{36}$ S. Calvet, ${ }^{36}$ T. P. Calvet, ${ }^{99}$ M. Calvetti, ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$ R. Camacho Toro, ${ }^{131}$ S. Camarda, ${ }^{34}$ D. Camarero Munoz, ${ }^{96}$ P. Camarri, ${ }^{71 a, 71 \mathrm{~b}}$ M. T. Camerlingo, ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$ D. Cameron, ${ }^{129}$ C. Camincher, ${ }^{171}$ M. Campanelli, ${ }^{92}$ A. Camplani, ${ }^{38}$ V. Canale, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ A. Canesse, ${ }^{101}$ M. Cano Bret, ${ }^{75}$ J. Cantero, ${ }^{125}$ Y. Cao, ${ }^{168}$ M. Capua, ${ }^{39 \mathrm{~b}, 39 \mathrm{a}}$ A. Carbone, ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$ R. Cardarelli, ${ }^{71 \mathrm{a}}$ F. Cardillo, ${ }^{169}$ G. Carducci, ${ }^{39 \mathrm{~b}, 39 \mathrm{a}}$ T. Carli, ${ }^{34}$ G. Carlino, ${ }^{67 \mathrm{a}}$ B. T. Carlson, ${ }^{134}$ E. M. Carlson, ${ }^{171,163 \mathrm{a}}$ L. Carminati, ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$ M. Carnesale, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ R. M. D. Carney, ${ }^{149}$ S. Caron,,${ }^{115}$ E. Carquin, ${ }^{142 \mathrm{f}}$ S. Carrá, ${ }^{44}$ G. Carratta, ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$ J. W. S. Carter, ${ }^{162}$ T. M. Carter, ${ }^{48}$ D. Casadei, ${ }^{31 \mathrm{c}}$ M. P. Casado,,$^{12, h}$ A. F. Casha, ${ }^{162}$ E. G. Castiglia, ${ }^{178}$ F. L. Castillo, ${ }^{59 \mathrm{a}}$ L. Castillo Garcia, ${ }^{12}$ V. Castillo Gimenez, ${ }^{169}$ N. F. Castro, ${ }^{135 \mathrm{a}, 135 \mathrm{e}}$ A. Catinaccio, ${ }^{34}$ J. R. Catmore, ${ }^{129}$ A. Cattai, ${ }^{34}$ V. Cavaliere, ${ }^{27}$ N. Cavalli, ${ }^{21 \mathrm{~b}, 21 \mathrm{a}}$ V. Cavasinni, ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$ E. Celebi, ${ }^{11 \mathrm{~b}}$ F. Celli, ${ }^{130}$ K. Cerny, ${ }^{126}$ A. S. Cerqueira, ${ }^{78 \mathrm{a}}$ A. Cerri, ${ }^{152}$ L. Cerrito, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ F. Cerutti, ${ }^{16}$ A. Cervelli, ${ }^{21 \mathrm{~b}}$ S. A. Cetin, ${ }^{11 \mathrm{~b}}$ Z. Chadi, ${ }^{33 \mathrm{a}}$ D. Chakraborty, ${ }^{117}$ M. Chala, ${ }^{135 f}$ J. Chan, ${ }^{176}$ W. S. Chan, ${ }^{116}$ W. Y. Chan, ${ }^{88}$ J. D. Chapman, ${ }^{30}$ B. Chargeishvili, ${ }^{155 b}$ D. G. Charlton, ${ }^{19}$ T. P. Charman, ${ }^{90}$ M. Chatterjee, ${ }^{18}$ C. C. Chau, ${ }^{32}$ S. Chekanov, ${ }^{5}$ S. V. Chekulaev, ${ }^{163 a}$ G. A. Chelkov, ${ }^{77, i}$ A. Chen, ${ }^{103}$ B. Chen, ${ }^{157}$ C. Chen, ${ }^{58 a}$ C. H. Chen, ${ }^{76}$ H. Chen, ${ }^{13 \mathrm{c}}$ H. Chen, ${ }^{27}$ J. Chen, ${ }^{58 \mathrm{a}}$ J. Chen, ${ }^{37}$ J. Chen, ${ }^{24}$ S. Chen, ${ }^{132}$ S. J. Chen, ${ }^{13 \mathrm{c}}$ X. Chen, ${ }^{58 \mathrm{c}}$ X. Chen, ${ }^{13 \mathrm{~b}}$ Y. Chen, ${ }^{58 \mathrm{a}}$ Y-H. Chen, ${ }^{44}$ C. L. Cheng, ${ }^{176}$ H. C. Cheng, ${ }^{60 \mathrm{a}}$ H. J. Cheng, ${ }^{13 \mathrm{a}}$ A. Cheplakov, ${ }^{77}$ E. Cheremushkina, ${ }^{44}$
R. Cherkaoui El Moursli, ${ }^{33 \mathrm{e}}$ E. Cheu, ${ }^{6}$ K. Cheung, ${ }^{61}$ L. Chevalier, ${ }^{140}$ V. Chiarella, ${ }^{49}$ G. Chiarelli, ${ }^{69 \mathrm{a}}$ G. Chiodini, ${ }^{65 a}$ A. S. Chisholm, ${ }^{19}$ A. Chitan, ${ }^{25 \mathrm{~b}}$ I. Chiu, ${ }^{159}$ Y. H. Chiu, ${ }^{171}$ M. V. Chizhov, ${ }^{77, j}$ K. Choi, ${ }^{10}$ A. R. Chomont, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ Y. Chou, ${ }^{100}$ Y. S. Chow, ${ }^{116}$ L. D. Christopher, ${ }^{31 \mathrm{f}}$ M. C. Chu, ${ }^{60 \mathrm{a}}$ X. Chu, ${ }^{13 \mathrm{a}, 13 \mathrm{~d}}$ J. Chudoba, ${ }^{136}$ J. J. Chwastowski, ${ }^{82}$ D. Cieri, ${ }^{112}$
K. M. Ciesla, ${ }^{82}$ V. Cindro, ${ }^{89}$ I. A. Cioară, ${ }^{25 b}$ A. Ciocio, ${ }^{16}$ F. Cirotto, ${ }^{67,67 \mathrm{~b}}$ Z. H. Citron, ${ }^{175, k}$ M. Citterio, ${ }^{66 \mathrm{a}}$ D. A. Ciubotaru, ${ }^{25 b}$ B. M. Ciungu, ${ }^{162}$ A. Clark, ${ }^{52}$ P. J. Clark, ${ }^{48}$ J. M. Clavijo Columbie, ${ }^{44}$ S. E. Clawson, ${ }^{98}$ C. Clement, ${ }^{43 a, 43 \mathrm{~b}}$ L. Clissa, ${ }^{21 b, 21 a}$ Y. Coadou, ${ }^{99}$ M. Cobal, ${ }^{64 a, 64 \mathrm{c}}$ A. Coccaro, ${ }^{53 \mathrm{~b}}$ J. Cochran, ${ }^{76}$ R. F. Coelho Barrue, ${ }^{135 \mathrm{a}}$ R. Coelho Lopes De Sa, ${ }^{100}$ S. Coelli, ${ }^{66 \mathrm{a}}$
H. Cohen, ${ }^{157}$ A. E. C. Coimbra, ${ }^{34}$ B. Cole, ${ }^{37}$ J. Collot, ${ }^{56}$ P. Conde Muiño, ${ }^{135 a, 135 \mathrm{~h}}$ S. H. Connell, ${ }^{31 \mathrm{c}}$ I. A. Connelly,${ }^{55}$
E. I. Conroy, ${ }^{130}$ F. Conventi, ${ }^{67,1}$ H. G. Cooke, ${ }^{19}$ A. M. Cooper-Sarkar, ${ }^{130}$ F. Cormier, ${ }^{170}$ L. D. Corpe, ${ }^{34}$ M. Corradi, ${ }^{70 a, 70 b}$ E. E. Corrigan, ${ }^{94}$ F. Corriveau, ${ }^{101, m}$ M. J. Costa, ${ }^{169}$ F. Costanza, ${ }^{4}$ D. Costanzo, ${ }^{145}$ B. M. Cote, ${ }^{123}$ G. Cowan,,${ }^{91}$ J. W. Cowley, ${ }^{30}$ J. Crane, ${ }^{98}$ K. Cranmer, ${ }^{121}$ R. A. Creager, ${ }^{132}$ S. Crépé-Renaudin, ${ }^{56}$ F. Crescioli, ${ }^{131}$ M. Cristinziani, ${ }^{147}$ M. Cristoforetti, ${ }^{73 a, 73 b, n}$ V. Croft, ${ }^{165}$ G. Crosetti,,${ }^{39 b, 39 a}$ A. Cueto, ${ }^{4}$ T. Cuhadar Donszelmann, ${ }^{166}$ H. Cui, ${ }^{13 a, 13 d}$ A. R. Cukierman, ${ }^{149}$
W. R. Cunningham, ${ }^{55}$ S. Czekierda, ${ }^{82}$ P. Czodrowski, ${ }^{34}$ M. M. Czurylo, ${ }^{59 b}$ M. J. Da Cunha Sargedas De Sousa, ${ }^{58 a}$ J. V. Da Fonseca Pinto, ${ }^{78 \mathrm{~b}}$ C. Da Via, ${ }^{98}$ W. Dabrowski, ${ }^{8 l a}$ T. Dado, ${ }^{45}$ S. Dahbi,,${ }^{31 f}$ T. Dai, ${ }^{103}$ C. Dallapiccola, ${ }^{100}$ M. Dam, ${ }^{38}$ G. D'amen, ${ }^{27}$ V. D'Amico, ${ }^{72 a, 72 b}$ J. Damp, ${ }^{97}$ J. R. Dandoy, ${ }^{132}$ M. F. Daneri, ${ }^{28}$ M. Danninger, ${ }^{148}$ V. Dao, ${ }^{34}$ G. Darbo, ${ }^{53 b}$ S. Darmora, ${ }^{5}$ A. Dattagupta, ${ }^{127}$ S. D'Auria, ${ }^{66 a, 66 b}$ C. David, ${ }^{163 \mathrm{~b}}$ T. Davidek, ${ }^{138}$ D. R. Davis, ${ }^{47}$ B. Davis-Purcell,,${ }^{32}$ I. Dawson, ${ }^{90}$ K. De, ${ }^{7}$ R. De Asmundis, ${ }^{67 a}$ M. De Beurs, ${ }^{116}$ S. De Castro, ${ }^{21 b, 21 a}$ N. De Groot, ${ }^{115}$ P. de Jong, ${ }^{116}$ H. De la Torre, ${ }^{104}$ A. De Maria, ${ }^{13 \mathrm{c}}$ D. De Pedis, ${ }^{70 \mathrm{a}}$ A. De Salvo, ${ }^{70 \mathrm{a}}$ U. De Sanctis, ${ }^{71 a, 71 \mathrm{~b}}$ M. De Santis, ${ }^{71 a, 71 \mathrm{~b}}$ A. De Santo, ${ }^{152}$ J. B. De Vivie De Regie, ${ }^{56}$ D. V. Dedovich, ${ }^{77}$ J. Degens, ${ }^{116}$ A. M. Deiana, ${ }^{40}$ J. Del Peso, ${ }^{96}$ Y. Delabat Diaz, ${ }^{44}$ F. Deliot, ${ }^{140}$ C. M. Delitzsch, ${ }^{6}$ M. Della Pietra, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ D. Della Volpe, ${ }^{52}$ A. Dell' Acqua, ${ }^{34}$ L. Dell'Asta, ${ }^{66 a, 66 \mathrm{~b}}$ M. Delmastro, ${ }^{4}$ P. A. Delsart, ${ }^{56}$ S. Demers,,${ }^{178}$ M. Demichev, ${ }^{77}$ S. P. Denisov, ${ }^{119}$ L. D'Eramo, ${ }^{117}$ D. Derendarz, ${ }^{82}$ J. E. Derkaoui, ${ }^{33 d}$ F. Derue, ${ }^{131}$ P. Dervan, ${ }^{88}$ K. Desch, ${ }^{22}$ K. Dette, ${ }^{162}$ C. Deutsch, ${ }^{22}$ P. O. Deviveiros, ${ }^{34}$ F. A. Di Bello, ${ }^{70 a}, 70 \mathrm{~b}$ A. Di Ciaccio, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$
L. Di Ciaccio, ${ }^{4}$ C. Di Donato, ${ }^{67 a, 67 b}$ A. Di Girolamo, ${ }^{34}$ G. Di Gregorio, ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$ A. Di Luca, ${ }^{7 \mathrm{aa}, 73 \mathrm{~b}}$ B. Di Micco, ${ }^{72 a, 72 b}$ R. Di Nardo, ${ }^{72 a, 72 b}$ C. Diaconu, ${ }^{99}$ F. A. Dias, ${ }^{116}$ T. Dias Do Vale, ${ }^{135 a}$ M. A. Diaz, ${ }^{142 a}$ F. G. Diaz Capriles, ${ }^{22}$ J. Dickinson, ${ }^{16}$ M. Didenko, ${ }^{169}$ E. B. Diehl,,${ }^{103}$ J. Dietrich, ${ }^{17}$ S. Díez Cornell, ${ }^{44}$ C. Diez Pardos, ${ }^{147}$ A. Dimitrievska, ${ }^{16}$ W. Ding, ${ }^{13 b}$ J. Dingfelder, ${ }^{22}$ I-M. Dinu, ${ }^{25 b}$ S. J. Dittmeier, ${ }^{59 b}$ F. Dittus, ${ }^{34}$ F. Djama, ${ }^{99}$ T. Djobava, ${ }^{155 b}$ J. I. Djuvsland, ${ }^{15}$ M. A. B. Do Vale,,143 D. Dodsworth,,${ }^{24}$ C. Doglioni, ${ }^{94}$ J. Dolejsi, ${ }^{138}$ Z. Dolezal, ${ }^{138}$ M. Donadelli, ${ }^{78 \mathrm{c}}$ B. Dong, ${ }^{58 \mathrm{c}} \mathrm{J}$. Donini, ${ }^{36}$ A. D'onofrio, ${ }^{13 \mathrm{c}}$ M. D'Onofrio, ${ }^{88}$ J. Dopke, ${ }^{139}$ A. Doria, ${ }^{67 a}$ M. T. Dova, ${ }^{86}$ A. T. Doyle, ${ }^{55}$ E. Drechsler, ${ }^{148}$ E. Dreyer, ${ }^{148}$ T. Dreyer, ${ }^{51}$ A. S. Drobac, ${ }^{165}$ D. Du, ${ }^{58 b}$ T. A. du Pree,,${ }^{116}$ F. Dubinin,,${ }^{108}$ M. Dubovsky, ${ }^{26 a}$ A. Dubreuil, ${ }^{52}$ E. Duchovni, ${ }^{175}$ G. Duckeck, ${ }^{111}$ O. A. Ducu, ${ }^{34,25 b}$ D. Duda, ${ }^{112}$ A. Dudarev, ${ }^{34}$ M. D'uffizi, ${ }^{98}$ L. Duflot, ${ }^{62}$ M. Dührssen, ${ }^{34}$ C. Dülsen, ${ }^{177}$ A. E. Dumitriu, ${ }^{25 b}$ M. Dunford, ${ }^{59 \mathrm{a}}$ S. Dungs, ${ }^{45}$ A. Duperrin, ${ }^{99}$ H. Duran Yildiz, ${ }^{3 a}$ M. Düren, ${ }^{54}$ A. Durglishvili, ${ }^{155 b}$ B. Dutta, ${ }^{44}$ D. Duvnjak, ${ }^{1}$ G. I. Dyckes, ${ }^{132}$ M. Dyndal, ${ }^{81 a}$ S. Dysch, ${ }^{98}$ B. S. Dziedzic, ${ }^{82}$ B. Eckerova, ${ }^{26 a}$ M. G. Eggleston, ${ }^{47}$
E. Egidio Purcino De Souza, ${ }^{78 b}$ L. F. Ehrke, ${ }^{52}$ T. Eifert, ${ }^{7}$ G. Eigen, ${ }^{15}$ K. Einsweiler, ${ }^{16}$ T. Ekelof, ${ }^{167}$ Y. El Ghazali, ${ }^{33 b}$ H. El Jarrari,,$^{33 \mathrm{e}}$ A. El Moussaouy, ${ }^{33 \mathrm{a}}$ V. Ellajosyula, ${ }^{167}$ M. Ellert, ${ }^{167}$ F. Ellinghaus, ${ }^{177}$ A. A. Elliot, ${ }^{90}$ N. Ellis, ${ }^{34}$ J. Elmsheuser, ${ }^{27}$ M. Elsing, ${ }^{34}$ D. Emeliyanov, ${ }^{139}$ A. Emerman, ${ }^{37}$ Y. Enari, ${ }^{159}$ J. Erdmann, ${ }^{45}$ A. Ereditato, ${ }^{18}$ P. A. Erland, ${ }^{82}$ M. Errenst, ${ }^{177}$ M. Escalier, ${ }^{62}$ C. Escobar, ${ }^{169}$ O. Estrada Pastor, ${ }^{169}$ E. Etzion, ${ }^{157}$ G. Evans, ${ }^{135 a}$ H. Evans, ${ }^{63}$ M. O. Evans, ${ }^{152}$ A. Ezhiloo, ${ }^{133}$ F. Fabbri, ${ }^{55}$ L. Fabbri,,${ }^{21 b, 21 a}$ V. Fabiani, ${ }^{115}$ G. Facini, ${ }^{173}$ V. Fadeyev, ${ }^{141}$ R. M. Fakhrutdinov, ${ }^{119}$ S. Falciano, ${ }^{70 a}$
P. J. Falke, ${ }^{22}$ S. Falke, ${ }^{34}$ J. Faltova, ${ }^{138}$ Y. Fan, ${ }^{13 a}$ Y. Fang, ${ }^{13 a}$ Y. Fang, ${ }^{13 a}$ G. Fanourakis, ${ }^{42}$ M. Fanti, ${ }^{66 a, 66 b}$ M. Faraj, ${ }^{58 \mathrm{c}}$ A. Farbin, ${ }^{7}$ A. Farilla, ${ }^{72 a}$ E. M. Farina, ${ }^{68 a, 68 b}$ T. Farooque, ${ }^{104}$ S. M. Farrington, ${ }^{48}$ P. Farthouat, ${ }^{34}$ F. Fassi, ${ }^{33 e}$ D. Fassouliotis, ${ }^{8}$ M. Faucci Giannelli, ${ }^{71 a, 71 b}$ W. J. Fawcett, ${ }^{30}$ L. Fayard, ${ }^{62}$ O. L. Fedin, ${ }^{133,0}$ M. Feickert, ${ }^{168}$ L. Feligioni, ${ }^{99}$ A. Fell,,${ }^{145}$ C. Feng, ${ }^{58 b}$ M. Feng, ${ }^{13 b}$ M. J. Fenton, ${ }^{166}$ A. B. Fenyuk, ${ }^{119}$ S. W. Ferguson, ${ }^{41}$ J. Ferrando, ${ }^{44}$ A. Ferrari, ${ }^{167}$ P. Ferrari, ${ }^{116}$ R. Ferrari, ${ }^{68 a}$ D. Ferrere, ${ }^{52}$ C. Ferretti, ${ }^{103}$ F. Fiedler, ${ }^{97}$ A. Filipčič, ${ }^{89}$ F. Filthaut, ${ }^{115}$ M. C. N. Fiolhais, ${ }^{135 a, 135 c, p}$ L. Fiorini, ${ }^{169}$ F. Fischer, ${ }^{147}$ W. C. Fisher, ${ }^{104}$ T. Fitschen, ${ }^{19}$ I. Fleck, ${ }^{147}$ P. Fleischmann, ${ }^{103}$ T. Flick, ${ }^{177}$ B. M. Flier,,${ }^{111}$ L. Flores, ${ }^{132}$ L. R. Flores Castillo, ${ }^{60 a}$ F. M. Follega, ${ }^{73 a, 73 b}$ N. Fomin, ${ }^{15}$ J. H. Foo, ${ }^{162}$ G. T. Forcolin, ${ }^{73 a, 73 b}$ B. C. Forland, ${ }^{63}$ A. Formica, ${ }^{140}$ F. A. Förster, ${ }^{12}$ A. C. Forti, ${ }^{98}$ E. Fortin, ${ }^{99}$ M. G. Foti, ${ }^{130}$ D. Fournier, ${ }^{62}$ H. Fox, ${ }^{87}$ P. Francavilla, ${ }^{69 a, 69 b}$ S. Francescato, ${ }^{70 a, 70 b}$ M. Franchini,,${ }^{21 b, 21 a}$ S. Franchino, ${ }^{59 \mathrm{a}}$ D. Francis, ${ }^{34}$ L. Franco, ${ }^{4}$ L. Franconi, ${ }^{18}$ M. Franklin, ${ }^{57}$ G. Frattari, ${ }^{70,70 b}$ A. C. Freegard,,90 P. M. Freeman, ${ }^{19}$ B. Freund, ${ }^{107}$ W. S. Freund, ${ }^{78 b}$ E. M. Freundlich, ${ }^{45}$ D. Froidevaux,,${ }^{34}$ J. A. Frost, ${ }^{130}$ Y. Fu, ${ }^{58 \mathrm{a}}$ M. Fujimoto, ${ }^{122}$ E. Fullana Torregrosa, ${ }^{169}$ J. Fuster, ${ }^{169}$ A. Gabrielli,, 21b,2la A. Gabrielli, ${ }^{34}$ P. Gadow, ${ }^{44}$ G. Gagliardi, ${ }^{53 b, 53 a}$ L. G. Gagnon, ${ }^{16}$ G. E. Gallardo, ${ }^{130}$ E. J. Gallas, ${ }^{130}$ B. J. Gallop, ${ }^{139}$ R. Gamboa Goni, ${ }^{90}$ K. K. Gan, ${ }^{123}$ S. Ganguly, ${ }^{175}$ J. Gao, ${ }^{58 a}$ Y. Gao, ${ }^{48}$ Y. S. Gao, ${ }^{29, q}$ F. M. Garay Walls, ${ }^{142 a}$ C. García, ${ }^{169}$ J. E. García Navarro, ${ }^{169}$ J. A. García Pascual,,$^{13 a}$ M. Garcia-Sciveres, ${ }^{16}$ R. W. Gardner, ${ }^{35}$ D. Garg, ${ }^{75}$ S. Gargiulo, ${ }^{50}$ C. A. Garner, ${ }^{162}$ V. Garonne, ${ }^{129}$ S. J. Gasiorowski, ${ }^{144}$ P. Gaspar, ${ }^{78 b}$ G. Gaudio, ${ }^{68 a}$ P. Gauzzi, ${ }^{70 a, 70 b}$ I. L. Gavrilenko, ${ }^{108}$ A. Gavrilyuk, ${ }^{120}$ C. Gay, ${ }^{170}$ G. Gaycken, ${ }^{44}$ E. N. Gazis, ${ }^{9}$ A. A. Geanta, ${ }^{25 b}$ C. M. Gee, ${ }^{141}$ C. N. P. Gee, ${ }^{139}$ J. Geisen, ${ }^{94}$ M. Geisen, ${ }^{97}$ C. Gemme, ${ }^{53 b}$
M. H. Genest, ${ }^{56}$ S. Gentile, ${ }^{70 a, 70 b}$ S. George, ${ }^{91}$ T. Geralis, ${ }^{42}$ L. O. Gerlach,,${ }^{51}$ P. Gessinger-Befurt, ${ }^{97}$ M. Ghasemi Bostanabad, ${ }^{171}$ M. Ghneimat, ${ }^{147}$ A. Ghosh, ${ }^{166}$ A. Ghosh, ${ }^{75}$ B. Giacobbe, ${ }^{21 b}$ S. Giagu, ${ }^{70 a, 70 \mathrm{~b}}$ N. Giangiacomi, ${ }^{162}$ P. Giannetti, ${ }^{69 \mathrm{a}}$ A. Giannini, ${ }^{67 a, 67 b}$ S. M. Gibson, ${ }^{91}$ M. Gignac, ${ }^{141}$ D. T. Gil, ${ }^{81 \mathrm{~b}}$ B. J. Gilbert, ${ }^{37}$ D. Gillberg, ${ }^{32}$ G. Gilles, ${ }^{116}$ N.E. K. Gillwald, ${ }^{44}$ D. M. Gingrich, ${ }^{2, e}$ M. P. Giordani, ${ }^{64 a, 64 c}$ P.F. Giraud, ${ }^{140}$ G. Giugliarelli, ${ }^{64 a, 64 c}$ D. Giugni, ${ }^{66 a}$ F. Giuli, ${ }^{71 a, 71 \mathrm{~b}}$ I. Gkialas, ${ }^{8, r}$ E. L. Gkougkousis, ${ }^{12}$ P. Gkountoumis, ${ }^{9}$ L. K. Gladilin, ${ }^{110}$ C. Glasman, ${ }^{96}$ G. R. Gledhill, ${ }^{127}$ M. Glisic, ${ }^{127}$ I. Gnesi, ${ }^{39 b, s}$ M. Goblirsch-Kolb,,${ }^{24}$ D. Godin, ${ }^{107}$ S. Goldfarb, ${ }^{102}$ T. Golling, ${ }^{52}$ D. Golubkov, ${ }^{119}$ J. P. Gombas, ${ }^{104}$ A. Gomes, ${ }^{135 a, 135 b}$ R. Goncalves Gama, ${ }^{51}$ R. Gonçalo, ${ }^{135 a, 135 \mathrm{c}}$ G. Gonella, ${ }^{127}$ L. Gonella, ${ }^{19}$ A. Gongadze, ${ }^{77}$ F. Gonnella, ${ }^{19}$ J. L. Gonski, ${ }^{37}$ S. González de la Hoz, ${ }^{169}$ S. Gonzalez Fernandez, ${ }^{12}$ R. Gonzalez Lopez, ${ }^{88}$ C. Gonzalez Renteria, ${ }^{16}$ R. Gonzalez Suarez, ${ }^{167}$ S. Gonzalez-Sevilla, ${ }^{52}$ G. R. Gonzalvo Rodriguez, ${ }^{169}$ R. Y. González Andana, ${ }^{142 a}$ L. Goossens, ${ }^{34}$ N. A. Gorasia, ${ }^{19}$ P. A. Gorbounov, ${ }^{120}$ H. A. Gordon ${ }^{27}$ B. Gorini, ${ }^{34}$ E. Gorini,,${ }^{65 a, 65 b}$ A. Gorišek, ${ }^{89}$ A. T. Goshaw, ${ }^{47}$ M. I. Gostkin, ${ }^{77}$ C. A. Gottardo, ${ }^{115}$ M. Gouighri, ${ }^{33 b}$ V. Goumarre, ${ }^{44}$ A. G. Goussiou, ${ }^{144}$ N. Govender, ${ }^{31 \mathrm{c}}$ C. Goy, ${ }^{4}$ I. Grabowska-Bold, ${ }^{812}$ K. Graham, ${ }^{32}$ E. Gramstad, ${ }^{129}$ S. Grancagnolo, ${ }^{17}$ M. Grandi, ${ }^{152}$ V. Gratchev,,${ }^{133}$ P. M. Gravila, ${ }^{25 f}$ F. G. Gravili, ${ }^{65 a, 65 b}$ H. M. Gray, ${ }^{16}$ C. Grefe, ${ }^{22}$ I. M. Gregor, ${ }^{44}$ P. Grenier, ${ }^{149}$ K. Grevtsov,,${ }^{44}$ C. Grieco, ${ }^{12}$ N. A. Grieser, ${ }^{124}$ A. A. Grillo, ${ }^{141}$ K. Grimm, ${ }^{29, t}$ S. Grinstein, ${ }^{12, u}$ J.-F. Grivaz, ${ }^{62}$ S. Groh, ${ }^{97}$ E. Gross, ${ }^{175}$ J. Grosse-Knetter, ${ }^{51}$ Z. J. Grout, ${ }^{92}$ C. Grud, ${ }^{103}$ A. Grummer, ${ }^{114}$ J. C. Grundy,${ }^{130}$ L. Guan, ${ }^{103}$ W. Guan, ${ }^{176}$ C. Gubbels, ${ }^{170}$ J. Guenther, ${ }^{34}$ J. G. R. Guerrero Rojas, ${ }^{169}$ F. Guescini, ${ }^{112}$ D. Guest, ${ }^{17}$ R. Gugel, ${ }^{97}$ A. Guida, ${ }^{44}$ T. Guillemin, ${ }^{4}$ S. Guindon, ${ }^{34}$ J. Guo, ${ }^{58 c}$ L. Guo, ${ }^{62}$ Y. Guo, ${ }^{103}$ R. Gupta, ${ }^{44}$ S. Gurbuz, ${ }^{22}$ G. Gustavino, ${ }^{124}$ M. Guth, ${ }^{50}$ P. Gutierrez, ${ }^{124}$ L. F. Gutierrez Zagazeta, ${ }^{132}$ C. Gutschow,,${ }^{92}$ C. Guyot, ${ }^{140}$ C. Gwenlan, ${ }^{130}$ C. B. Gwilliam, ${ }^{88}$ E. S. Haaland, ${ }^{129}$ A. Haas, ${ }^{121}$ M. Habedank, ${ }^{17}$ C. Haber, ${ }^{16}$ H. K. Hadavand, ${ }^{7}$ A. Hadef, ${ }^{97}$ M. Haleem, ${ }^{172}$ J. Haley, ${ }^{125}$ J. J. Hall, ${ }^{145}$ G. Halladjian, ${ }^{104}$ G. D. Hallewell, ${ }^{99}$ L. Halser, ${ }^{18}$ K. Hamano, ${ }^{171}$ H. Hamdaoui, ${ }^{33 c}$ M. Hamer, ${ }^{22}$ G. N. Hamity, ${ }^{48}$ K. Han, ${ }^{58 a}$ L. Han, ${ }^{13 c}$ L. Han, ${ }^{58 a}$ S. Han, ${ }^{16}$ Y. F. Han, ${ }^{162}$ K. Hanagaki, ${ }^{79, v}$ M. Hance,,141 M. D. Hank, ${ }^{35}$ R. Hankache, ${ }^{98}$ E. Hansen, ${ }^{94}$ J. B. Hansen,,${ }^{38}$ J. D. Hansen, ${ }^{38}$ M. C. Hansen, ${ }^{22}$ P. H. Hansen, ${ }^{38}$ K. Hara, ${ }^{164}$ T. Harenberg, ${ }^{177}$ S. Harkusha, ${ }^{105}$ Y. T. Harris, ${ }^{130}$ P. F. Harrison, ${ }^{173}$ N. M. Hartman, ${ }^{149}$ N. M. Hartmann, ${ }^{111}$ Y. Hasegawa, ${ }^{146}$ A. Hasib, ${ }^{48}$ S. Hassani, ${ }^{140}$ S. Haug, ${ }^{18}$ R. Hauser, ${ }^{104}$ M. Havranek, ${ }^{137}$ C. M. Hawkes, ${ }^{19}$ R. J. Hawkings, ${ }^{34}$ S. Hayashida, ${ }^{113}$ D. Hayden, ${ }^{104}$ C. Hayes, ${ }^{103}$ R. L. Hayes, ${ }^{170}$ C. P. Hays, ${ }^{130}$ J. M. Hays, ${ }^{90}$ H. S. Hayward, ${ }^{88}$ S. J. Haywood, ${ }^{139}$ F. He, ${ }^{58 a}$ Y. He, ${ }^{160}$ Y. He, ${ }^{131}$ M. P. Heath, ${ }^{48}$ V. Hedberg, ${ }^{94}$ A. L. Heggelund, ${ }^{129}$ N. D. Hehir, ${ }^{90}$ C. Heidegger,,50 K. K. Heidegger, ${ }^{50}$ W. D. Heidorn, ${ }^{76}$ J. Heilman, ${ }^{32}$ S. Heim, ${ }^{44}$ T. Heim, ${ }^{16}$ B. Heinemann, ${ }^{44, w}$ J. G. Heinlein, ${ }^{132}$ J. J. Heinrich,,${ }^{127}$ L. Heinrich, ${ }^{34}$ J. Hejbal, ${ }^{136}$ L. Helary, ${ }^{44}$ A. Held, ${ }^{121}$ S. Hellesund, ${ }^{129}$ C. M. Helling, ${ }^{141}$ S. Hellman, ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$ C. Helsens, ${ }^{34}$ R. C. W. Henderson, ${ }^{87}$ L. Henkelmann, ${ }^{30}$ A. M. Henriques Correia, ${ }^{34}$ H. Herde, ${ }^{149}$ Y. Hernández Jiménez, ${ }^{151}$ H. Herr, ${ }^{97}$ M. G. Herrmann, ${ }^{111}$ T. Herrmann, ${ }^{46}$ G. Herten, ${ }^{50}$ R. Hertenberger, ${ }^{111}$ L. Hervas, ${ }^{34}$ N. P. Hessey, ${ }^{163 a}$ H. Hibi, ${ }^{80}$ S. Higashino, ${ }^{79}$ E. Higón-Rodriguez, ${ }^{169}$ K. K. Hill, ${ }^{27}$ K. H. Hiller, ${ }^{44}$ S. J. Hillier, ${ }^{19}$ M. Hils, ${ }^{46}$ I. Hinchliffe, ${ }^{16}$ F. Hinterkeuser, ${ }^{22}$ M. Hirose, ${ }^{128}$ S. Hirose, ${ }^{164}$ D. Hirschbuehl, ${ }^{177}$ B. Hiti, ${ }^{89}$ O. Hladik, ${ }^{136}$ J. Hobbs,,${ }^{151}$ R. Hobincu, ${ }^{25 e}$ N. Hod, ${ }^{175}$ M. C. Hodgkinson, ${ }^{145}$ B. H. Hodkinson, ${ }^{30}$ A. Hoecker, ${ }^{34}$ J. Hofer,,${ }^{44}$ D. Hohn, ${ }^{50}$ T. Holm, ${ }^{22}$ T. R. Holmes, ${ }^{35}$ M. Holzbock,,${ }^{112}$ L. B. A. H. Hommels, ${ }^{30}$ B. P. Honan,,${ }^{98}$ J. Hong, ${ }^{58 c}$ T. M. Hong, ${ }^{134}$ J. C. Honig, ${ }^{50}$ A. Hönle, ${ }^{112}$ B. H. Hooberman, ${ }^{168}$ W. H. Hopkins, ${ }^{5}$ Y. Horii, ${ }^{113}$ P. Horn, ${ }^{46}$ L. A. Horyn, ${ }^{35}$ S. Hou, ${ }^{154}$ J. Howarth, ${ }^{55}$ J. Hoya, ${ }^{86}$ M. Hrabovsky, ${ }^{126}$ A. Hrynevich, ${ }^{106}$ T. Hryn'ova, ${ }^{4}$ P. J. Hsu, ${ }^{61}$ S.-C. Hsu, ${ }^{144}$ Q. Hu, ${ }^{37}$ S. Hu, ${ }^{58 c}$ Y. F. Hu, ${ }^{13 a, 13 d, x}$ D. P. Huang, ${ }^{92}$ X. Huang, ${ }^{13 c}$ Y. Huang, ${ }^{58 a}$ Y. Huang, ${ }^{13 a}$ Z. Hubacek, ${ }^{137}$ F. Hubaut, ${ }^{99}$ M. Huebner, ${ }^{22}$ F. Huegging, ${ }^{22}$ T. B. Huffman, ${ }^{130}$ M. Huhtinen, ${ }^{34}$ R. Hulsken, ${ }^{56}$ N. Huseynov, ${ }^{77, y}$ J. Huston, ${ }^{104}$ J. Huth, ${ }^{57}$ R. Hyneman, ${ }^{149}$ S. Hyrych, ${ }^{26 a}$ G. Iacobucci, ${ }^{52}$ G. Iakovidis, ${ }^{27}$ I. Ibragimov, ${ }^{147}$ L. Iconomidou-Fayard, ${ }^{62}$ P. Iengo, ${ }^{34}$ R. Ignazzi, ${ }^{38}$ R. Iguchi, ${ }^{159}$ T. Iizawa, ${ }^{52}$ Y. Ikegami, ${ }^{79}$ A. Ilg, ${ }^{18} \mathrm{~N}$. Ilic, ${ }^{162,162}$ H. Imam, ${ }^{33 \mathrm{a}} \mathrm{T}$. Ingebretsen Carlson, ${ }^{43,43 \mathrm{~b}} \mathrm{G}$. Introzzi, ${ }^{68,68 b}$ M. Iodice, ${ }^{72 \mathrm{a}} \mathrm{V}$. Ippolito, ${ }^{70 a, 70 b}$ M. Ishino, ${ }^{159}$ W. Islam, ${ }^{125}$ C. Issever,,${ }^{17,44}$ S. Istin, ${ }^{11 \mathrm{c}, \mathrm{z}} \mathrm{J}$. M. Iturbe Ponce, ${ }^{60 \mathrm{a}} \mathrm{R}$. Iuppa, ${ }^{73 \mathrm{a}, 73 \mathrm{~b}} \mathrm{~A}$. Ivina, ${ }^{175}$ J. M. Izen, ${ }^{41}$ V. Izzo, ${ }^{67 a}$ P. Jacka, ${ }^{136}$ P. Jackson, ${ }^{1}$ R. M. Jacobs,,${ }^{44}$ B. P. Jaeger, ${ }^{148}$ C. S. Jagfeld, ${ }^{111}$ G. Jäkel, ${ }^{177}$ K. B. Jakobi, ${ }^{97}$ K. Jakobs, ${ }^{50}$ T. Jakoubek, ${ }^{175}$ J. Jamieson, ${ }^{55}$ K. W. Janas, ${ }^{81 a}$ G. Jarlskog, ${ }^{94}$ A. E. Jaspan, ${ }^{88}$ N. Javadov, ${ }^{77, y}$ T. Javůrek, ${ }^{34}$ M. Javurkova, ${ }^{100}$ F. Jeanneau, ${ }^{140}$ L. Jeanty, ${ }^{127}$ J. Jejelava, ${ }^{155 a, a a}$ P. Jenni, ${ }^{50, b b}$ S. Jézéquel, ${ }^{4}$ J. Jia, ${ }^{151}$ Z. Jia, ${ }^{13 c}$ Y. Jiang, ${ }^{58 \mathrm{a}}$ S. Jiggins, ${ }^{50}$ J. Jimenez Pena, ${ }^{112}$ S. Jin, ${ }^{13 \mathrm{c}}$ A. Jinaru, ${ }^{25 b}$ O. Jinnouchi, ${ }^{160}$ H. Jivan, ${ }^{31 f}$ P. Johansson, ${ }^{145}$ K. A. Johns, ${ }^{6}$ C. A. Johnson, ${ }^{63}$ D. M. Jones, ${ }^{30}$ E. Jones, ${ }^{173}$ R. W. L. Jones, ${ }^{87}$ T. J. Jones, ${ }^{88}$ J. Jovicevic, ${ }^{51}$ X. Ju, ${ }^{16}$ J. J. Junggeburth, ${ }^{34}$ A. Juste Rozas,,${ }^{12, u}$ A. Kaczmarska, ${ }^{82}$ M. Kado, ${ }^{70 a, 70 b}$ H. Kagan, ${ }^{123}$ M. Kagan, ${ }^{149}$ A. Kahn, ${ }^{37}$ C. Kahra, ${ }^{97}$ T. Kaji, ${ }^{174}$ E. Kajomovitz, ${ }^{156}$ C. W. Kalderon, ${ }^{27}$ A. Kaluza, ${ }^{97}$ A. Kamenshchikov, ${ }^{119}$ M. Kaneda, ${ }^{159}$ N. J. Kang, ${ }^{141}$ S. Kang, ${ }^{76}$ Y. Kano, ${ }^{113}$ J. Kanzaki, ${ }^{79}$ D. Kar, ${ }^{31 f}$ K. Karava, ${ }^{130}$ M. J. Kareem, ${ }^{163 b}$ I. Karkanias, ${ }^{158}$ S. N. Karpov, ${ }^{77}$ Z. M. Karpova, ${ }^{77}$ V. Kartvelishvili, ${ }^{87}$ A. N. Karyukhin, ${ }^{119}$ E. Kasimi, ${ }^{158}$ C. Kato, ${ }^{58 \mathrm{~d}}$ J. Katzy, ${ }^{44}$ K. Kawade, ${ }^{146}$ K. Kawagoe, ${ }^{85}$ T. Kawaguchi, ${ }^{113}$ T. Kawamoto, ${ }^{140}$
G. Kawamura, ${ }^{51}$ E. F. Kay, ${ }^{171}$ F. I. Kaya, ${ }^{165}$ S. Kazakos, ${ }^{12}$ V. F. Kazanin, ${ }^{118 b, 118 a}$ Y. Ke, ${ }^{151}$ J. M. Keaveney, ${ }^{31 a}$ R. Keeler, ${ }^{171}$ J. S. Keller, ${ }^{32}$ D. Kelsey, ${ }^{152}$ J. J. Kempster, ${ }^{19}$ J. Kendrick, ${ }^{19}$ K. E. Kennedy, ${ }^{37}$ O. Kepka, ${ }^{136}$ S. Kersten, ${ }^{177}$ B. P. Kerševan, ${ }^{89}$ S. Ketabchi Haghighat, ${ }^{162}$ M. Khandoga, ${ }^{131}$ A. Khanov, ${ }^{125}$ A. G. Kharlamov, ${ }^{118 \mathrm{~b}, 118 \mathrm{a}}$ T. Kharlamova, ${ }^{118 \mathrm{~b}, 118 \mathrm{a}}$ E. E. Khoda, ${ }^{170}$ T. J. Khoo, ${ }^{17}$ G. Khoriauli, ${ }^{172}$ E. Khramov, ${ }^{77}$ J. Khubua, ${ }^{155 b}$ S. Kido, ${ }^{80}$ M. Kiehn, ${ }^{34}$ A. Kilgallon, ${ }^{127}$ E. Kim, ${ }^{160}$ Y. K. Kim, ${ }^{35}$ N. Kimura, ${ }^{92}$ A. Kirchhoff, ${ }^{51}$ D. Kirchmeier, ${ }^{46}$ J. Kirk, ${ }^{139}$ A. E. Kiryunin, ${ }^{112}$ T. Kishimoto, ${ }^{159}$ D. P. Kisliuk, ${ }^{162}$ V. Kitali, ${ }^{44}$ C. Kitsaki, ${ }^{9}$ O. Kivernyk, ${ }^{22}$ T. Klapdor-Kleingrothaus, ${ }^{50}$ M. Klassen, ${ }^{59 \mathrm{a}}$ C. Klein, ${ }^{32}$ L. Klein, ${ }^{172}$ M. H. Klein, ${ }^{103}$ M. Klein, ${ }^{88}$ U. Klein, ${ }^{88}$ P. Klimek, ${ }^{34}$ A. Klimentov, ${ }^{27}$ F. Klimpel, ${ }^{34}$ T. Klingl, ${ }^{22}$ T. Klioutchnikova, ${ }^{34}$ F. F. Klitzner, ${ }^{111}$ P. Kluit, ${ }^{116}$ S. Kluth, ${ }^{112}$ E. Kneringer, ${ }^{74}$ T. M. Knight, ${ }^{162}$ A. Knue, ${ }^{50}$ D. Kobayashi, ${ }^{85}$ M. Kobel, ${ }^{46}$ M. Kocian, ${ }^{149}$ T. Kodama, ${ }^{159}$ P. Kodys, ${ }^{138}$ D. M. Koeck, ${ }^{152}$ P. T. Koenig, ${ }^{22}$ T. Koffas, ${ }^{32}$ N. M. Köhler, ${ }^{34}$ M. Kolb, ${ }^{140}$ I. Koletsou, ${ }^{4}$ T. Komarek, ${ }^{126}$ K. Köneke, ${ }^{50}$ A. X. Y. Kong, ${ }^{1}$ T. Kono, ${ }^{122}$ V. Konstantinides, ${ }^{92}$ N. Konstantinidis, ${ }^{92}$ B. Konya, ${ }^{94}$ R. Kopeliansky, ${ }^{63}$ S. Koperny, ${ }^{81 \mathrm{a}}$ K. Korcyl, ${ }^{82}$ K. Kordas, ${ }^{158}$ G. Koren, ${ }^{157}$ A. Korn, ${ }^{92}$ S. Korn, ${ }^{51}$ I. Korolkov, ${ }^{12}$ E. V. Korolkova, ${ }^{145}$ N. Korotkova, ${ }^{110}$ B. Kortman, ${ }^{116}$ O. Kortner, ${ }^{112}$ S. Kortner, ${ }^{112}$ V. V. Kostyukhin, ${ }^{145,161}$ A. Kotsokechagia, ${ }^{62}$ A. Kotwal, ${ }^{47}$ A. Koulouris, ${ }^{34}$ A. Kourkoumeli-Charalampidi, ${ }^{68 a, 68 b}$ C. Kourkoumelis, ${ }^{8}$ E. Kourlitis, ${ }^{5}$ O. Kovanda, ${ }^{152}$ R. Kowalewski, ${ }^{171}$ W. Kozanecki, ${ }^{140}$ A. S. Kozhin, ${ }^{119}$ V. A. Kramarenko, ${ }^{110}$ G. Kramberger, ${ }^{89}$ D. Krasnopevtsev, ${ }^{58 a}$ M. W. Krasny, ${ }^{131}$ A. Krasznahorkay, ${ }^{34}$ J. A. Kremer, ${ }^{97}$ J. Kretzschmar, ${ }^{88}$ K. Kreul, ${ }^{17}$ P. Krieger, ${ }^{162}$ F. Krieter, ${ }^{111}$ S. Krishnamurthy, ${ }^{100}$ A. Krishnan, ${ }^{59 b}$ M. Krivos, ${ }^{138}$ K. Krizka, ${ }^{16}$ K. Kroeninger, ${ }^{45}$ H. Kroha, ${ }^{112}$ J. Kroll, ${ }^{136}$ J. Kroll, ${ }^{132}$ K. S. Krowpman, ${ }^{104}$ U. Kruchonak, ${ }^{77}$ H. Krüger, ${ }^{22}$ N. Krumnack, ${ }^{76}$ M. C. Kruse, ${ }^{47}$ J. A. Krzysiak, ${ }^{82}$ A. Kubota, ${ }^{160}$ O. Kuchinskaia, ${ }^{161}$ S. Kuday, ${ }^{3 b}$ D. Kuechler, ${ }^{44}$ J. T. Kuechler, ${ }^{44}$ S. Kuehn, ${ }^{34}$ T. Kuhl, ${ }^{44}$ V. Kukhtin, ${ }^{77}$ Y. Kulchitsky, ${ }^{105, c c}$ S. Kuleshov, ${ }^{142 d}$ M. Kumar, ${ }^{31 f}$ N. Kumari, ${ }^{99}$ M. Kuna, ${ }^{56}$ A. Kupco, ${ }^{136}$ T. Kupfer, ${ }^{45}$ O. Kuprash, ${ }^{50}$ H. Kurashige, ${ }^{80}$ L. L. Kurchaninov, ${ }^{163 a}$ Y. A. Kurochkin, ${ }^{105}$ A. Kurova, ${ }^{109}$ M. G. Kurth, ${ }^{13 a, 13 d}$ E. S. Kuwertz, ${ }^{34}$ M. Kuze, ${ }^{160}$ A. K. Kvam, ${ }^{144}$ J. Kvita, ${ }^{126}$ T. Kwan, ${ }^{101}$ C. Lacasta, ${ }^{169}$ F. Lacava, ${ }^{70 a, 70 b}$ H. Lacker, ${ }^{17}$ D. Lacour, ${ }^{131}$ N. N. Lad, ${ }^{92}$ E. Ladygin, ${ }^{77}$ R. Lafaye, ${ }^{4}$ B. Laforge, ${ }^{131}$ T. Lagouri, ${ }^{142 e}$ S. Lai, ${ }^{51}$ I. K. Lakomiec, ${ }^{81 \mathrm{a}}$ N. Lalloue, ${ }^{56}$ J. E. Lambert, ${ }^{124}$ S. Lammers, ${ }^{63}$ W. Lampl, ${ }^{6}$ C. Lampoudis, ${ }^{158}$ E. Lançon,,27 U. Landgraf, ${ }^{50}$ M. P. J. Landon, ${ }^{90}$ V. S. Lang, ${ }^{50}$ J. C. Lange, ${ }^{51}$ R. J. Langenberg, ${ }^{100}$ A. J. Lankford, ${ }^{166}$ F. Lanni, ${ }^{27}$ K. Lantzsch, ${ }^{22}$ A. Lanza, ${ }^{68 a}$ A. Lapertosa, ${ }^{53 b, 53 a}$ J. F. Laporte, ${ }^{140}$ T. Lari, ${ }^{66 a}$ F. Lasagni Manghi, ${ }^{21 b}$ M. Lassnig, ${ }^{34}$ V. Latonova, ${ }^{136}$ T. S. Lau, ${ }^{60 \mathrm{a}}$ A. Laudrain, ${ }^{97}$ A. Laurier, ${ }^{32}$ M. Lavorgna, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ S. D. Lawlor, ${ }^{91}$ M. Lazzaroni, ${ }^{66 a, 66 \mathrm{~b}}$ B. Le, ${ }^{98}$ B. Leban, ${ }^{89}$ A. Lebedev, ${ }^{76}$ M. LeBlanc, ${ }^{34}$ T. LeCompte, ${ }^{5}$ F. Ledroit-Guillon, ${ }^{56}$ A. C. A. Lee, ${ }^{92}$ C. A. Lee, ${ }^{27}$ G. R. Lee, ${ }^{15}$ L. Lee, ${ }^{57}$ S. C. Lee, ${ }^{154}$ S. Lee, ${ }^{76}$ L. L. Leeuw, ${ }^{31 \mathrm{c}}$ B. Lefebvre, ${ }^{163 \mathrm{a}}$ H. P. Lefebvre, ${ }^{91}$ M. Lefebvre, ${ }^{171}$ C. Leggett, ${ }^{16}$ K. Lehmann, ${ }^{148}$ N. Lehmann, ${ }^{18}$ G. Lehmann Miotto, ${ }^{34}$ W. A. Leight, ${ }^{44}$ A. Leisos, ${ }^{158, d d}$ M. A. L. Leite, ${ }^{78 \mathrm{c}}$ C. E. Leitgeb, ${ }^{44}$ R. Leitner, ${ }^{138}$ K. J. C. Leney, ${ }^{40}$ T. Lenz, ${ }^{22}$ S. Leone, ${ }^{69 \mathrm{a}}$ C. Leonidopoulos, ${ }^{48}$ A. Leopold, ${ }^{131}$ C. Leroy, ${ }^{107}$ R. Les, ${ }^{104}$ C. G. Lester, ${ }^{30}$ M. Levchenko, ${ }^{133}$ J. Levêque, ${ }^{4}$ D. Levin, ${ }^{103}$ L. J. Levinson, ${ }^{175}$ D. J. Lewis, ${ }^{19}$ B. Li, ${ }^{13 \mathrm{~b}}{ }^{5} \mathrm{~B} . \mathrm{Li},{ }^{58 \mathrm{~b}} \mathrm{C} . \mathrm{Li},{ }^{58 \mathrm{a}}$ C-Q. Li, ${ }^{58 \mathrm{c}, 58 \mathrm{~d}} \mathrm{H} . \mathrm{Li},{ }^{58 \mathrm{a}} \mathrm{H} . \mathrm{Li},{ }^{58 \mathrm{~b}} \mathrm{~J} . \mathrm{Li},{ }^{58 \mathrm{c}} \mathrm{K} . \mathrm{Li},{ }^{144} \mathrm{~L} . \mathrm{Li},{ }^{58 \mathrm{c}} \mathrm{M} . \mathrm{Li},{ }^{13 \mathrm{a}, 13 \mathrm{~d}} \mathrm{Q} . \mathrm{Y} . \mathrm{Li},{ }^{58 \mathrm{a}} \mathrm{S} . \mathrm{Li},{ }^{58 \mathrm{~d}, 58 \mathrm{c}, \text { ee }} \mathrm{X} . \mathrm{Li},{ }^{44} \mathrm{Y} . \mathrm{Li},{ }^{44} \mathrm{Z} . \mathrm{Li},{ }^{58 \mathrm{~b}}$ Z. Li, ${ }^{130}$ Z. Li, ${ }^{101} \mathrm{Z} . \operatorname{Li},{ }^{88}$ Z. Liang, ${ }^{13 \mathrm{a}}$ M. Liberatore, ${ }^{44}$ B. Liberti, ${ }^{71 \mathrm{a}}$ K. Lie, ${ }^{60 \mathrm{c}}$ K. Lin, ${ }^{104}$ R. A. Linck, ${ }^{63}$ R. E. Lindley, ${ }^{6}$ J. H. Lindon, ${ }^{2}$ A. Linss ${ }^{44}$ A. L. Lionti, ${ }^{52}$ E. Lipeles, ${ }^{132}$ A. Lipniacka, ${ }^{15}$ T. M. Liss, ${ }^{168, f f}$ A. Lister, ${ }^{170}$ J. D. Little, ${ }^{7}$ B. Liu, ${ }^{13 a}$ B. X. Liu, ${ }^{148}$ J. B. Liu, ${ }^{58 \mathrm{a}}$ J. K. K. Liu, ${ }^{35}$ K. Liu, ${ }^{58 d, 58 \mathrm{c}}$ M. Liu, ${ }^{58 a}$ M. Y. Liu, ${ }^{58 a}$ P. Liu, ${ }^{13 \mathrm{a}}$ X. Liu, ${ }^{58 \mathrm{a}}$ Y. Liu, ${ }^{44}$ Y. Liu, ${ }^{13 c, 13 d}$ Y. L. Liu, ${ }^{103}$ Y. W. Liu, ${ }^{58 \mathrm{a}}$ M. Livan, ${ }^{68 a, 68 b}$ A. Lleres, ${ }^{56}$ J. Llorente Merino, ${ }^{148}$ S. L. Lloyd, ${ }^{90}$ E. M. Lobodzinska, ${ }^{44}$ P. Loch, ${ }^{6}$ S. Loffredo, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ T. Lohse, ${ }^{17}$ K. Lohwasser, ${ }^{145}$ M. Lokajicek, ${ }^{136}$ J. D. Long, ${ }^{168}$ R. E. Long, ${ }^{87}$ I. Longarini, ${ }^{70 \mathrm{a}, 70 \mathrm{~b}}$ L. Longo, ${ }^{34}$ R. Longo, ${ }^{168}$ I. Lopez Paz, ${ }^{12}$ A. Lopez Solis, ${ }^{44}$ J. Lorenz, ${ }^{111}$ N. Lorenzo Martinez, ${ }^{4}$ A. M. Lory, ${ }^{111}$ A. Lösle, ${ }^{50}$ X. Lou, ${ }^{43 a, 43 b}$ X. Lou, ${ }^{13 \mathrm{a}}$ A. Lounis, ${ }^{62}$ J. Love, ${ }^{5}$ P. A. Love, ${ }^{87}$ J. J. Lozano Bahilo, ${ }^{169}$ G. Lu, ${ }^{13 \mathrm{a}}$ M. Lu, ${ }^{58 \mathrm{a}} \mathrm{S} . \mathrm{Lu},{ }^{132}$ Y. J. Lu, ${ }^{61}$ H. J. Lubatti, ${ }^{144}$ C. Luci, ${ }^{70 a, 70 b}$ F. L. Lucio Alves, ${ }^{13 \mathrm{c}}$ A. Lucotte, ${ }^{56}$ F. Luehring, ${ }^{63}$ I. Luise, ${ }^{151}$ L. Luminari, ${ }^{70 \mathrm{a}}$ B. Lund-Jensen, ${ }^{150}$ N. A. Luongo, ${ }^{127}$ M. S. Lutz, ${ }^{157}$ D. Lynn,,${ }^{27}$ H. Lyons, ${ }^{88}$ R. Lysak, ${ }^{136}$ E. Lytken, ${ }^{94}$ F. Lyu, ${ }^{13 a}$ V. Lyubushkin, ${ }^{77}$
T. Lyubushkina, ${ }^{77}$ H. Ma, ${ }^{27}$ L. L. Ma, ${ }^{58 b}$ Y. Ma, ${ }^{92}$ D. M. Mac Donell, ${ }^{171}$ G. Maccarrone, ${ }^{49}$ C. M. Macdonald, ${ }^{145}$ J. C. MacDonald, ${ }^{145}$ R. Madar, ${ }^{36}$ W. F. Mader, ${ }^{46}$ M. Madugoda Ralalage Don, ${ }^{125}$ N. Madysa, ${ }^{46}$ J. Maeda, ${ }^{80}$ T. Maeno, ${ }^{27}$ M. Maerker, ${ }^{46}$ V. Magerl, ${ }^{50}$ J. Magro, ${ }^{64 a, 64 \mathrm{c}}$ D. J. Mahon, ${ }^{37}$ C. Maidantchik, ${ }^{78 \mathrm{~b}}$ A. Maio, ${ }^{135 \mathrm{a}, 135 \mathrm{~b}, 135 \mathrm{~d}}$ K. Maj, ${ }^{81 \mathrm{a}}$ O. Majersky, ${ }^{26 \mathrm{a}}$ S. Majewski, ${ }^{127}$ N. Makovec, ${ }^{62}$ B. Malaescu, ${ }^{131}$ Pa. Malecki, ${ }^{82}$ V. P. Maleev, ${ }^{133}$ F. Malek, ${ }^{56}$ D. Malito, ${ }^{39 b, 39 \mathrm{a}}$ U. Mallik, ${ }^{75}$ C. Malone, ${ }^{30}$ S. Maltezos, ${ }^{9}$ S. Malyukov, ${ }^{77}$ J. Mamuzic, ${ }^{169}$ G. Mancini, ${ }^{49}$ J. P. Mandalia, ${ }^{90}$ I. Mandić, ${ }^{89}$ L. Manhaes de Andrade Filho, ${ }^{78 a}$ I. M. Maniatis, ${ }^{158}$ M. Manisha, ${ }^{140}$ J. Manjarres Ramos, ${ }^{46}$ K. H. Mankinen, ${ }^{94}$ A. Mann, ${ }^{111}$ A. Manousos, ${ }^{74}$ B. Mansoulie, ${ }^{140}$ I. Manthos, ${ }^{158}$ S. Manzoni, ${ }^{116}$ A. Marantis, ${ }^{158, d d}$ L. Marchese, ${ }^{130}$ G. Marchiori, ${ }^{131}$ M. Marcisovsky, ${ }^{136}$ L. Marcoccia, ${ }^{71 \mathrm{a}, 71 \mathrm{~b}}$ C. Marcon, ${ }^{94}$ M. Marjanovic, ${ }^{124}$ Z. Marshall, ${ }^{16}$ S. Marti-Garcia, ${ }^{169}$ T. A. Martin, ${ }^{173}$ V. J. Martin, ${ }^{48}$ B. Martin dit Latour, ${ }^{15}$ L. Martinelli, ${ }^{70 a, 70 b}$ M. Martinez, ${ }^{12, u}$ P. Martinez Agullo, ${ }^{169}$
V. I. Martinez Outschoorn, ${ }^{100}$ S. Martin-Haugh, ${ }^{139}$ V. S. Martoiu, ${ }^{25 b}$ A. C. Martyniuk, ${ }^{92}$ A. Marzin, ${ }^{34}$ S. R. Maschek, ${ }^{112}$ L. Masetti, ${ }^{97}$ T. Mashimo, ${ }^{159}$ J. Masik, ${ }^{98}$ A. L. Maslennikov, ${ }^{118 \mathrm{~b}, 118 \mathrm{a}}$ L. Massa, ${ }^{21 \mathrm{~b}}$ P. Massarotti, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ P. Mastrandrea, ${ }^{69 \mathrm{a}, 69 \mathrm{~b}}$ A. Mastroberardino, ${ }^{39 b, 39 a}$ T. Masubuchi, ${ }^{159}$ D. Matakias, ${ }^{27}$ T. Mathisen, ${ }^{167}$ A. Matic, ${ }^{111}$ N. Matsuzawa, ${ }^{159}$ J. Maurer, ${ }^{25 b}$ B. Maček, ${ }^{89}$ D. A. Maximov, ${ }^{118 b, 118 a}$ R. Mazini, ${ }^{154}$ I. Maznas, ${ }^{158}$ S. M. Mazza, ${ }^{141}$ C. Mc Ginn, ${ }^{27}$ J. P. Mc Gowan, ${ }^{101}$ S. P. Mc Kee,,103 T. G. McCarthy, ${ }^{112}$ W. P. McCormack, ${ }^{16}$ E. F. McDonald, ${ }^{102}$ A. E. McDougall, ${ }^{116}$ J. A. Mcfayden, ${ }^{152}$ G. Mchedlidze, ${ }^{155 b}$ M. A. McKay, ${ }^{40}$ K. D. McLean, ${ }^{171}$ S. J. McMahon, ${ }^{139}$ P. C. McNamara, ${ }^{102}$ R. A. McPherson, ${ }^{171, m}$ J. E. Mdhluli, ${ }^{31 f}$ Z. A. Meadows, ${ }^{100}$ S. Meehan, ${ }^{34}$ T. Megy, ${ }^{36}$ S. Mehlhase, ${ }^{111}$ A. Mehta, ${ }^{88}$ B. Meirose, ${ }^{41}$ D. Melini, ${ }^{156}$ B. R. Mellado Garcia, ${ }^{31 \mathrm{f}}$ F. Meloni, ${ }^{44}$ A. Melzer, ${ }^{22}$ E. D. Mendes Gouveia, ${ }^{135 \mathrm{a}}$ A. M. Mendes Jacques Da Costa, ${ }^{19}$ H. Y. Meng, ${ }^{162}$ L. Meng, ${ }^{34}$ S. Menke, ${ }^{112}$ M. Mentink, ${ }^{34}$ E. Meoni, ${ }^{39 b, 39 a}$ S. A. M. Merkt, ${ }^{134}$ C. Merlassino, ${ }^{130}$ P. Mermod, ${ }^{52, a}$ L. Merola, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ C. Meroni, ${ }^{66 \mathrm{a}}$ G. Merz, ${ }^{103}$ O. Meshkov, ${ }^{110,108}$ J. K. R. Meshreki, ${ }^{147}$ J. Metcalfe, ${ }^{5}$ A. S. Mete, ${ }^{5}$ C. Meyer, ${ }^{63}$ J-P. Meyer, ${ }^{140}$ M. Michetti, ${ }^{17}$ R. P. Middleton, ${ }^{139}$ L. Mijović, ${ }^{48}$ G. Mikenberg, ${ }^{175}$ M. Mikestikova, ${ }^{136}$ M. Mikuž, ${ }^{89}$
H. Mildner, ${ }^{145}$ A. Milic,,162 C. D. Milke, ${ }^{40}$ D. W. Miller, ${ }^{35}$ L. S. Miller, ${ }^{32}$ A. Milov, ${ }^{175}$ D. A. Milstead, ${ }^{43,43 b}$
A. A. Minaenko, ${ }^{119}$ I. A. Minashvili, ${ }^{155 b}$ L. Mince, ${ }^{55}$ A. I. Mincer, ${ }^{121}$ B. Mindur, ${ }^{81 a}$ M. Mineev, ${ }^{77}$ Y. Minegishi, ${ }^{159}$ Y. Mino, ${ }^{83}$ L. M. Mir, ${ }^{12}$ M. Miralles Lopez, ${ }^{169}$ M. Mironova, ${ }^{130}$ T. Mitani, ${ }^{174}$ V. A. Mitsou, ${ }^{169}$ M. Mittal, ${ }^{58 \mathrm{c}}$ O. Miu, ${ }^{162}$ P. S. Miyagawa, ${ }^{90}$ Y. Miyazaki, ${ }^{85}$ A. Mizukami, ${ }^{79}$ J. U. Mjörnmark, ${ }^{94}$ T. Mkrtchyan, ${ }^{59 \mathrm{a}}$ M. Mlynarikova, ${ }^{117}$ T. Moa, ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$ S. Mobius, ${ }^{51}$ K. Mochizuki, ${ }^{107}$ P. Moder, ${ }^{44}$ P. Mogg, ${ }^{111}$ A. F. Mohammed, ${ }^{13 a}$ S. Mohapatra, ${ }^{37}$ G. Mokgatitswane, ${ }^{31 f}$ B. Mondal, ${ }^{147}$ S. Mondal, ${ }^{137}$ K. Mönig, ${ }^{44}$ E. Monnier, ${ }^{99}$ A. Montalbano, ${ }^{148}$ J. Montejo Berlingen, ${ }^{34}$ M. Montella, ${ }^{123}$ F. Monticelli, ${ }^{86}$ N. Morange, ${ }^{62}$ A. L. Moreira De Carvalho, ${ }^{135 \mathrm{a}}$ M. Moreno Llácer, ${ }^{169}$ C. Moreno Martinez, ${ }^{12}$ P. Morettini, ${ }^{53 b}$ M. Morgenstern, ${ }^{156}$ S. Morgenstern, ${ }^{173}$ D. Mori, ${ }^{148}$ M. Morii, ${ }^{57}$ M. Morinaga, ${ }^{159}$ V. Morisbak, ${ }^{129}$ A. K. Morley, ${ }^{34}$ A. P. Morris, ${ }^{92}$ L. Morvaj, ${ }^{34}$ P. Moschovakos, ${ }^{34}$ B. Moser, ${ }^{116}$ M. Mosidze, ${ }^{155 b}$ T. Moskalets, ${ }^{50}$ P. Moskvitina, ${ }^{115}$ J. Moss, ${ }^{29, g g}$ E. J. W. Moyse, ${ }^{100}$ S. Muanza, ${ }^{99}$ J. Mueller, ${ }^{134}$ R. Mueller, ${ }^{18}$ D. Muenstermann, ${ }^{87}$ G. A. Mullier, ${ }^{94}$ J. J. Mullin, ${ }^{132}$ D. P. Mungo, ${ }^{66 \mathrm{a}, 66 \mathrm{~b}}$ J. L. Munoz Martinez, ${ }^{12}$ F. J. Munoz Sanchez, ${ }^{98}$ M. Murin, ${ }^{98}$ P. Murin, ${ }^{26 \mathrm{~b}}$ W. J. Murray, ${ }^{173,139}$ A. Murrone, ${ }^{66 a, 66 b}$ J. M. Muse, ${ }^{124}$ M. Muškinja, ${ }^{16}$ C. Mwewa, ${ }^{27}$ A. G. Myagkov, ${ }^{119, i}$ A. A. Myers, ${ }^{134}$ G. Myers, ${ }^{63}$ M. Myska, ${ }^{137}$ B. P. Nachman, ${ }^{16}$ O. Nackenhorst, ${ }^{45}$ A. Nag Nag, ${ }^{46}$ K. Nagai, ${ }^{130}$ K. Nagano, ${ }^{79}$ J. L. Nagle, ${ }^{27}$ E. Nagy, ${ }^{99}$ A. M. Nairz, ${ }^{34}$ Y. Nakahama, ${ }^{113}$ K. Nakamura, ${ }^{79}$ H. Nanjo, ${ }^{128}$ F. Napolitano, ${ }^{59 \mathrm{a}}$ R. Narayan, ${ }^{40}$ I. Naryshkin, ${ }^{133}$ M. Naseri, ${ }^{32}$ C. Nass, ${ }^{22}$ T. Naumann, ${ }^{44}$ G. Navarro, ${ }^{20 a}$ J. Navarro-Gonzalez, ${ }^{169}$ P. Y. Nechaeva, ${ }^{108}$ F. Nechansky, ${ }^{44}$ T. J. Neep, ${ }^{19}$ A. Negri, ${ }^{68 a, 68 b}$ M. Negrini, ${ }^{21 b}$ C. Nellist, ${ }^{115}$ C. Nelson, ${ }^{101}$ K. Nelson, ${ }^{103}$ M. E. Nelson, ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$ S. Nemecek, ${ }^{136}$ M. Nessi, ${ }^{34, \text { hh }}$ M. S. Neubauer, ${ }^{168}$ F. Neuhaus, ${ }^{97}$ J. Neundorf, ${ }^{44}$ R. Newhouse, ${ }^{170}$ P. R. Newman, ${ }^{19}$ C. W. Ng, ${ }^{134}$ Y. S. Ng, ${ }^{17}$ Y. W. Y. Ng, ${ }^{166}$ B. Ngair, ${ }^{33 e}$ H. D. N. Nguyen, ${ }^{99}$ T. Nguyen Manh, ${ }^{107}$ R. B. Nickerson, ${ }^{130}$ R. Nicolaidou, ${ }^{140}$ D. S. Nielsen, ${ }^{38}$ J. Nielsen, ${ }^{141}$ M. Niemeyer, ${ }^{51}$ N. Nikiforou, ${ }^{10}$ V. Nikolaenko, ${ }^{119, i}$ I. Nikolic-Audit, ${ }^{131}$ K. Nikolopoulos, ${ }^{19}$ P. Nilsson, ${ }^{27}$ H. R. Nindhito, ${ }^{52}$ A. Nisati, ${ }^{70 a}$ N. Nishu, ${ }^{2}$ R. Nisius, ${ }^{112}$ T. Nitta, ${ }^{174}$ T. Nobe, ${ }^{159}$ D. L. Noel, ${ }^{30}$ Y. Noguchi, ${ }^{83}$ I. Nomidis, ${ }^{131}$ M. A. Nomura, ${ }^{27}$ M. B. Norfolk, ${ }^{145}$ R. R. B. Norisam, ${ }^{92}$ J. Novak, ${ }^{89}$ T. Novak, ${ }^{44}$ O. Novgorodova, ${ }^{46}$ L. Novotny, ${ }^{137}$ R. Novotny, ${ }^{114}$ L. Nozka, ${ }^{126}$ K. Ntekas, ${ }^{166}$ E. Nurse, ${ }^{92}$ F. G. Oakham, ${ }^{32, \mathrm{e}}$ J. Ocariz, ${ }^{131}$ A. Ochi, ${ }^{80}$ I. Ochoa, ${ }^{135 a}$ J. P. Ochoa-Ricoux, ${ }^{142 \mathrm{a}}$ K. O’Connor, ${ }^{24}$ S. Oda, ${ }^{85}$ S. Odaka, ${ }^{79}$ S. Oerdek, ${ }^{167}$ A. Ogrodnik, ${ }^{81 a}$ A. Oh, ${ }^{98}$ C. C. Ohm, ${ }^{150}$ H. Oide, ${ }^{160}$ R. Oishi, ${ }^{159}$ M. L. Ojeda, ${ }^{162}$ Y. Okazaki, ${ }^{83}$ M. W. O'Keefe, ${ }^{88}$ Y. Okumura, ${ }^{159}$ A. Olariu, ${ }^{25 \mathrm{~b}}$ L. F. Oleiro Seabra, ${ }^{135 \mathrm{a}}$ S. A. Olivares Pino, ${ }^{142 \mathrm{e}}$ D. Oliveira Damazio, ${ }^{27}$ D. Oliveira Goncalves, ${ }^{78 a}$ J. L. Oliver, ${ }^{166}$ M. J. R. Olsson, ${ }^{166}$ A. Olszewski, ${ }^{82}$ J. Olszowska, ${ }^{82}$ Ö. O. Öncel, ${ }^{22}$ D. C. O'Neil, ${ }^{148}$ A. P. O'neill, ${ }^{130}$ A. Onofre, ${ }^{135 \mathrm{a}, 135 \mathrm{e}}$ P. U. E. Onyisi, ${ }^{10}$ H. Oppen, ${ }^{129}$ R. G. Oreamuno Madriz, ${ }^{117}$ M. J. Oreglia, ${ }^{35}$ G. E. Orellana, ${ }^{86}$ D. Orestano, ${ }^{72 a, 72 b}$ N. Orlando, ${ }^{12}$ R. S. Orr, ${ }^{162}$ V. O'Shea, ${ }^{55}$ R. Ospanov, ${ }^{58 \mathrm{a}}$ G. Otero y Garzon, ${ }^{28}$ H. Otono, ${ }^{85}$ P. S. Ott, ${ }^{59 \mathrm{a}}$ G. J. Ottino, ${ }^{16}$ M. Ouchrif, ${ }^{33 \mathrm{~d}}$ J. Ouellette, ${ }^{27}$ F. Ould-Saada, ${ }^{129}$ A. Ouraou, ${ }^{140, \mathrm{a}}$ Q. Ouyang, ${ }^{13 \mathrm{a}}$ M. Owen, ${ }^{55}$ R. E. Owen, ${ }^{139}$ V. E. Ozcan, ${ }^{11 \mathrm{c}}$ N. Ozturk, ${ }^{7}$ S. Ozturk, ${ }^{11 \mathrm{c}}$ J. Pacalt, ${ }^{126}$
H. A. Pacey, ${ }^{30}$ K. Pachal, ${ }^{47}$ A. Pacheco Pages, ${ }^{12}$ C. Padilla Aranda, ${ }^{12}$ S. Pagan Griso, ${ }^{16}$ G. Palacino, ${ }^{63}$ S. Palazzo, ${ }^{48}$ S. Palestini, ${ }^{34}$ M. Palka, ${ }^{81 b}$ P. Palni, ${ }^{81 \mathrm{a}}$ D. K. Panchal, ${ }^{10}$ C. E. Pandini, ${ }^{52}$ J. G. Panduro Vazquez,,${ }^{91}$ P. Pani, ${ }^{44}$ G. Panizzo, ${ }^{64 \mathrm{a}, 64 \mathrm{c}}$ L. Paolozzi, ${ }^{52}$ C. Papadatos, ${ }^{107}$ S. Parajuli, ${ }^{40}$ A. Paramonov, ${ }^{5}$ C. Paraskevopoulos, ${ }^{9}$ D. Paredes Hernandez, ${ }^{60 b}$ S. R. Paredes Saenz, ${ }^{130}$ B. Parida, ${ }^{175}$ T. H. Park, ${ }^{162}$ A. J. Parker, ${ }^{29}$ M. A. Parker, ${ }^{30}$ F. Parodi, ${ }^{53 b, 53 a}$ E. W. Parrish, ${ }^{117}$ J. A. Parsons, ${ }^{37}$ U. Parzefall, ${ }^{50}$ L. Pascual Dominguez, ${ }^{157}$ V. R. Pascuzzi, ${ }^{16}$ F. Pasquali, ${ }^{116}$ E. Pasqualucci, ${ }^{70 \mathrm{a}}$ S. Passaggio, ${ }^{53 \mathrm{~b}}$ F. Pastore, ${ }^{91}$ P. Pasuwan, ${ }^{43 \mathrm{a}, 43 \mathrm{~b}}$ J. R. Pater, ${ }^{98}$ A. Pathak, ${ }^{176}$ J. Patton, ${ }^{88}$ T. Pauly, ${ }^{34}$ J. Pearkes, ${ }^{149}$ M. Pedersen, ${ }^{129}$ L. Pedraza Diaz, ${ }^{115}$ R. Pedro, ${ }^{135 a}$ T. Peiffer, ${ }^{51}$ S. V. Peleganchuk, ${ }^{118 b, 118 a}$ O. Penc, ${ }^{136}$ C. Peng, ${ }^{60 b}$ H. Peng, ${ }^{58 a}$ M. Penzin, ${ }^{161}$ B. S. Peralva, ${ }^{78 a}$ M. M. Perego, ${ }^{62}$ A. P. Pereira Peixoto, ${ }^{135 a}$ L. Pereira Sanchez, ${ }^{43 a, 43 b}$ D. V. Perepelitsa, ${ }^{27}$ E. Perez Codina, ${ }^{163 a}$ M. Perganti, ${ }^{9}$ L. Perini, ${ }^{66 a, 66 b}$ H. Pernegger, ${ }^{34}$ S. Perrella, ${ }^{34}$ A. Perrevoort, ${ }^{116}$ K. Peters, ${ }^{44}$ R. F. Y. Peters, ${ }^{98}$ B. A. Petersen, ${ }^{34}$
T. C. Petersen, ${ }^{38}$ E. Petit, ${ }^{99}$ V. Petousis, ${ }^{137}$ C. Petridou, ${ }^{158}$ P. Petroff, ${ }^{62}$ F. Petrucci, ${ }^{72 a, 72 b}$ M. Pettee, ${ }^{178}$ N. E. Pettersson, ${ }^{34}$ K. Petukhova, ${ }^{138}$ A. Peyaud, ${ }^{140}$ R. Pezoa, ${ }^{142 f}$ L. Pezzotti, ${ }^{68 a, 68 b}$ G. Pezzullo, ${ }^{178}$ T. Pham, ${ }^{102}$ P. W. Phillips, ${ }^{139}$ M. W. Phipps,,${ }^{168}$ G. Piacquadio, ${ }^{151}$ E. Pianori, ${ }^{16}$ F. Piazza, ${ }^{66 a, 66 \mathrm{~b}}$ A. Picazio, ${ }^{100}$ R. Piegaia, ${ }^{28}$ D. Pietreanu, ${ }^{25 b}$ J. E. Pilcher,,${ }^{35}$ A. D. Pilkington, ${ }^{98}$ M. Pinamonti, ${ }^{64,64 \mathrm{c}}$ J. L. Pinfold, ${ }^{2}$ C. Pitman Donaldson, ${ }^{92}$ D. A. Pizzi, ${ }^{32}$ L. Pizzimento, ${ }^{71 a, 71 b}$ A. Pizzini, ${ }^{116}$ M.-A. Pleier, ${ }^{27}$
V. Plesanovs, ${ }^{50}$ V. Pleskot, ${ }^{138}$ E. Plotnikova, ${ }^{77}$ P. Podberezko, ${ }^{188 b, 118 a}$ R. Poettgen, ${ }^{94}$ R. Poggi, ${ }^{52}$ L. Poggioli, ${ }^{131}$ I. Pogrebnyak, ${ }^{104}$ D. Pohl, ${ }^{22}$ I. Pokharel, ${ }^{51}$ G. Polesello, ${ }^{68 a}$ A. Poley, ${ }^{148,163 a}$ A. Policicchio, ${ }^{70,70 b}$ R. Polifka, ${ }^{138}$ A. Polini, ${ }^{21 b}$ C. S. Pollard, ${ }^{44}$ Z. B. Pollock, ${ }^{123}$ V. Polychronakos, ${ }^{27}$ D. Ponomarenko, ${ }^{109}$ L. Pontecorvo, ${ }^{34}$ S. Popa, ${ }^{25 a}$ G. A. Popeneciu, ${ }^{25 d}$ L. Portales, ${ }^{4}$ D. M. Portillo Quintero, ${ }^{56}$ S. Pospisil, ${ }^{137}$ P. Postolache, ${ }^{25 c}$ K. Potamianos, ${ }^{130}$ I. N. Potrap, ${ }^{77}$ C. J. Potter, ${ }^{30}$ H. Potti, ${ }^{1}$ T. Poulsen, ${ }^{44}$ J. Poveda, ${ }^{169}$ T. D. Powell, ${ }^{145}$ G. Pownall, ${ }^{44}$ M. E. Pozo Astigarraga, ${ }^{34}$ A. Prades Ibanez, ${ }^{169}$ P. Pralavorio, ${ }^{99}$ M. M. Prapa, ${ }^{42}$ S. Prell, ${ }^{76}$ D. Price, ${ }^{98}$ M. Primavera, ${ }^{65 a}$ M. A. Principe Martin, ${ }^{96}$ M. L. Proffitt, ${ }^{144}$ N. Proklova, ${ }^{109}$ K. Prokofiev, ${ }^{60 \mathrm{c}}$ F. Prokoshin, ${ }^{77}$ S. Protopopescu, ${ }^{27}$ J. Proudfoot, ${ }^{5}$ M. Przybycien,,${ }^{81 a}$ D. Pudzha, ${ }^{133}$ P. Puzo, ${ }^{62}$ D. Pyatiizbyantseva, ${ }^{109}$ J. Qian, ${ }^{103}$ Y. Qin, ${ }^{98}$ A. Quadt, ${ }^{51}$ M. Queitsch-Maitland, ${ }^{34}$ G. Rabanal Bolanos, ${ }^{57}$ F. Ragusa, ${ }^{66 a, 66 b}$ G. Rahal, ${ }^{95}$ J. A. Raine, ${ }^{52}$ S. Rajagopalan, ${ }^{27}$ K. Ran, ${ }^{13 \mathrm{a}, 13 \mathrm{~d}}$ D. F. Rassloff, ${ }^{59 \mathrm{a}}$ D. M. Rauch, ${ }^{44}$ S. Rave,,${ }^{97}$ B. Ravina, ${ }^{55}$ I. Ravinovich, ${ }^{175}$ M. Raymond,,${ }^{34}$ A. L. Read, ${ }^{129}$ N. P. Readioff, ${ }^{145}$ D. M. Rebuzzi, ${ }^{68 \mathrm{a}, 68 \mathrm{~b}}$ G. Redlinger, ${ }^{27}$ K. Reeves, ${ }^{41}$ D. Reikher,,157 A. Reiss, ${ }^{97}$ A. Rej, ${ }^{147}$ C. Rembser, ${ }^{34}$ A. Renardi, ${ }^{44}$ M. Renda, ${ }^{25 b}$ M. B. Rendel, ${ }^{112}$ A. G. Rennie, ${ }^{55}$ S. Resconi, ${ }^{66 a}$ E. D. Resseguie, ${ }^{16}$ S. Rettie, ${ }^{92}$ B. Reynolds, ${ }^{123}$ E. Reynolds, ${ }^{19}$ M. Rezaei Estabragh, ${ }^{177}$ O. L. Rezanova, ${ }^{118 b, 118 \mathrm{a}}$ P. Reznicek, ${ }^{138}$ E. Ricci,,$^{73 \mathrm{a}, 73 \mathrm{~b}}$ R. Richter, ${ }^{112}$ S. Richter, ${ }^{44}$ E. Richter-Was, ${ }^{81 \mathrm{~b}}$ M. Ridel, ${ }^{131}$ P. Rieck,,${ }^{112}$ P. Riedler, ${ }^{34}$ O. Rifki, ${ }^{44}$ M. Rijssenbeek, ${ }^{151}$ A. Rimoldi, ${ }^{68 a, 88 b}$ M. Rimoldi, ${ }^{44}$ L. Rinaldi, ${ }^{2 l b, 21 a}$ T. T. Rinn, ${ }^{168}$ M. P. Rinnagel,,${ }^{111}$ G. Ripellino, ${ }^{150}$ I. Riu, ${ }^{12}$ P. Rivadeneira, ${ }^{44}$ J. C. Rivera Vergara, ${ }^{171}$ F. Rizatdinova, ${ }^{125}$ E. Rizvi, ${ }^{90}$ C. Rizzi, ${ }^{52}$ B. A. Roberts, ${ }^{173}$ S. H. Robertson, ${ }^{101, \mathrm{~m}}$ M. Robin, ${ }^{44}$ D. Robinson, ${ }^{30}$ C. M. Robles Gajardo, ${ }^{142 \mathrm{f}}$
M. Robles Manzano, ${ }^{97}$ A. Robson, ${ }^{55}$ A. Rocchi, ${ }^{7 \mathrm{a}, 71 \mathrm{~b}}$ C. Roda, ${ }^{69,69 b}$ S. Rodriguez Bosca, ${ }^{59 \mathrm{a}}$ A. Rodriguez Rodriguez, ${ }^{50}$ A. M. Rodríguez Vera, ${ }^{163 b}$ S. Roe, ${ }^{34}$ J. Roggel, ${ }^{177}$ O. Røhne, ${ }^{129}$ R. A. Rojas, ${ }^{1424}$ B. Roland, ${ }^{50}$ C. P. A. Roland, ${ }^{63}$ J. Roloff, ${ }^{27}$ A. Romaniouk, ${ }^{109}$ M. Romano, ${ }^{21 b}$ A. C. Romero Hernandez, ${ }^{168}$ N. Rompotis, ${ }^{88}$ M. Ronzani, ${ }^{121}$ L. Roos, ${ }^{131}$ S. Rosati, ${ }^{70 a}$ G. Rosin, ${ }^{100}$ B. J. Rosser, ${ }^{132}$ E. Rossi, ${ }^{162}$ E. Rossi, ${ }^{4}$ E. Rossi, ${ }^{67 \mathrm{a}, 67 \mathrm{~b}}$ L. P. Rossi, ${ }^{53 \mathrm{~b}}$ L. Rossini, ${ }^{44}$ R. Rosten, ${ }^{123}$ M. Rotaru, ${ }^{25 b}$ B. Rottler,,50 D. Rousseau, ${ }^{62}$ D. Rousso, ${ }^{30}$ G. Rovelli,,${ }^{68 a, 68 b}$ A. Roy, ${ }^{10}$ A. Rozanov,,${ }^{99}$ Y. Rozen, ${ }^{156}$ X. Ruan, ${ }^{31 f}$ A. J. Ruby, ${ }^{88}$ T. A. Ruggeri, ${ }^{1}$ F. Rühr, ${ }^{50}$ A. Ruiz-Martinez, ${ }^{169}$ A. Rummler, ${ }^{34}$ Z. Rurikova, ${ }^{50}$ N. A. Rusakovich, ${ }^{77}$ H. L. Russell,,${ }^{34}$ L. Rustige, ${ }^{36}$ J. P. Rutherfoord, ${ }^{6}$ E. M. Rüttinger, ${ }^{145}$ M. Rybar, ${ }^{138}$ E. B. Rye, ${ }^{129}$ A. Ryzhov, ${ }^{119}$ J. A. Sabater Iglesias, ${ }^{44}$ P. Sabatini, ${ }^{169}$ L. Sabetta, ${ }^{70 a, 70 b}$ H. F-W. Sadrozinski, ${ }^{141}$ R. Sadykov, ${ }^{77}$ F. Safai Tehrani, ${ }^{70 a}$ B. Safarzadeh Samani, ${ }^{152}$ M. Safdari, ${ }^{149}$ P. Saha,,${ }^{117}$ S. Saha, ${ }^{101}$ M. Sahinsoy, ${ }^{112}$ A. Sahu, ${ }^{177}$ M. Saimpert, ${ }^{140}$ M. Saito, ${ }^{159}$ T. Saito, ${ }^{159}$ D. Salamani, ${ }^{52}$ G. Salamanna, ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$ A. Salnikov, ${ }^{149}$ J. Salt, ${ }^{169}$ A. Salvador Salas, ${ }^{12}$ D. Salvatore, ${ }^{39 b, 39 \mathrm{a}}$ F. Salvatore, ${ }^{152}$ A. Salzburger, ${ }^{34}$ D. Sammel, ${ }^{50}$ D. Sampsonidis, ${ }^{158}$ D. Sampsonidou, ${ }^{58 d, 58 c}$ J. Sánchez, ${ }^{169}$ A. Sanchez Pineda, ${ }^{4}$ V. Sanchez Sebastian, ${ }^{169}$ H. Sandaker, ${ }^{129}$ C. O. Sander, ${ }^{44}$ I. G. Sanderswood, ${ }^{87}$ J. A. Sandesara, ${ }^{100}$ M. Sandhoff, ${ }^{177}$ C. Sandoval, ${ }^{20 b}$ D. P. C. Sankey,,${ }^{139}$ M. Sannino, ${ }^{53 b, 53 a}$ Y. Sano, ${ }^{113}$ A. Sansoni, ${ }^{49}$ C. Santoni, ${ }^{36}$ H. Santos, ${ }^{135 a, 135 b}$ S. N. Santpur, ${ }^{16}$ A. Santra, ${ }^{175}$ K. A. Saoucha, ${ }^{145}$ A. Sapronov, ${ }^{77}$ J. G. Saraiva, ${ }^{135 a, 135 d}$ J. Sardain, ${ }^{99}$ O. Sasaki, ${ }^{79}$ K. Sato, ${ }^{164}$ C. Sauer, ${ }^{59 b}$ F. Sauerburger, ${ }^{50}$ E. Sauvan, ${ }^{4}$ P. Savard, ${ }^{162, e}$ R. Sawada ${ }^{159}$ C. Sawyer, ${ }^{139}$ L. Sawyer,,${ }^{93}$ I. Sayago Galvan, ${ }^{169}$ C. Sbarra, ${ }^{21 b}$ A. Sbrizzi, ${ }^{64 a, 64 c}$ T. Scanlon, ${ }^{92}$
J. Schaarschmidt,,${ }^{144}$ P. Schacht, ${ }^{112}$ D. Schaefer, ${ }^{35}$ L. Schaefer, ${ }^{132}$ U. Schäfer,,${ }^{97}$ A. C. Schaffer, ${ }^{62}$ D. Schaile, ${ }^{111}$ R. D. Schamberger, ${ }^{151}$ E. Schanet, ${ }^{111}$ C. Scharf, ${ }^{17}$ N. Scharmberg, ${ }^{98}$ V. A. Schegelsky, ${ }^{133}$ D. Scheirich, ${ }^{138}$ F. Schenck, ${ }^{17}$ M. Schernau, ${ }^{166}$ C. Schiavi, ${ }^{53 b, 53 a}$ L. K. Schildgen, ${ }^{22}$ Z. M. Schillaci, ${ }^{24}$ E. J. Schioppa, ${ }^{65 a, 65 b}$ M. Schioppa, ${ }^{39 b, 39 a}$ B. Schlag, ${ }^{97}$ K. E. Schleicher, ${ }^{50}$ S. Schlenker, ${ }^{34}$ K. Schmieden,,${ }^{97}$ C. Schmitt, ${ }^{97}$ S. Schmitt, ${ }^{44}$ L. Schoeffel, ${ }^{140}$ A. Schoening, ${ }^{59 b}$ P. G. Scholer,,${ }^{50}$ E. Schopf, ${ }^{130}$ M. Schott, ${ }^{97}$ J. Schovancova, ${ }^{34}$ S. Schramm, ${ }^{52}$ F. Schroeder, ${ }^{177}$ H-C. Schultz-Coulon, ${ }^{59 a}$
M. Schumacher,,${ }^{50}$ B. A. Schumm, ${ }^{141}$ Ph. Schune, ${ }^{140}$ A. Schwartzman, ${ }^{149}$ T. A. Schwarz, ${ }^{103}$ Ph. Schwemling, ${ }^{140}$ R. Schwienhorst, ${ }^{104}$ A. Sciandra,,${ }^{141}$ G. Sciolla, ${ }^{24}$ F. Scuri, ${ }^{69 \mathrm{a}}$ F. Scutti, ${ }^{102}$ C. D. Sebastiani, ${ }^{88}$ K. Sedlaczek, ${ }^{45}$ P. Seema, ${ }^{17}$ S. C. Seidel,,${ }^{114}$ A. Seiden, ${ }^{141}$ B. D. Seidlitz,,${ }^{27}$ T. Seiss, ${ }^{35}$ C. Seitz, ${ }^{44}$ J. M. Seixas, ${ }^{78 b}$ G. Sekhniaidze, ${ }^{67 \mathrm{a}}$ S. J. Sekula, ${ }^{40}$ L. P. Selem, ${ }^{4}$ N. Semprini-Cesari, ${ }^{21 b, 21 a}$ S. Sen, ${ }^{47}$ C. Serfon, ${ }^{27}$ L. Serin, ${ }^{62}$ L. Serkin, ${ }^{64 a, 64 b}$ M. Sessa, ${ }^{58 a}$ H. Severini, ${ }^{124}$ S. Sevova, ${ }^{149}$ F. Sforza, ${ }^{53 b, 53 a}$ A. Sfyrla, ${ }^{52}$ E. Shabalina, ${ }^{51}$ R. Shaheen, ${ }^{150}$ J. D. Shahinian, ${ }^{132}$ N. W. Shaikh, ${ }^{43 a, 43 b}$ D. Shaked Renous, ${ }^{175}$ L. Y. Shan, ${ }^{13 a}$ M. Shapiro, ${ }^{16}$ A. Sharma, ${ }^{34}$ A. S. Sharma, ${ }^{1}$ S. Sharma, ${ }^{44}$ P. B. Shatalov, ${ }^{120}$ K. Shaw, ${ }^{152}$ S. M. Shaw, ${ }^{98}$ P. Sherwood,,${ }^{92}$ L. Shi, ${ }^{92}$ C. O. Shimmin, ${ }^{178}$ Y. Shimogama, ${ }^{174}$ J. D. Shinner, ${ }^{91}$ I. P. J. Shipsey, ${ }^{130}$ S. Shirabe, ${ }^{52}$ M. Shiyakova, ${ }^{77}$ J. Shlomi, ${ }^{175}$ M. J. Shochet, ${ }^{35}$ J. Shojaii, ${ }^{102}$ D. R. Shope, ${ }^{150}$ S. Shrestha, ${ }^{123}$ E. M. Shrif, ${ }^{317}$ M. J. Shroff, ${ }^{171}$ E. Shulga, ${ }^{175}$ P. Sicho, ${ }^{136}$ A. M. Sickles,,${ }^{168}$ E. Sideras Haddad, ${ }^{317}$ O. Sidiropoulou, ${ }^{34}$ A. Sidoti, ${ }^{21 b}$ F. Siegert, ${ }^{46}$ Dj. Sijacki, ${ }^{14}$
M. V. Silva Oliveira, ${ }^{34}$ S. B. Silverstein, ${ }^{43 \mathrm{a}}$ S. Simion, ${ }^{62}$ R. Simoniello, ${ }^{34}$ S. Simsek, ${ }^{11 \mathrm{~b}}$ P. Sinervo, ${ }^{162}$ V. Sinetckii, ${ }^{110}$ S. Singh, ${ }^{148}$ S. Sinha, ${ }^{44}$ S. Sinha, ${ }^{31 f}$ M. Sioli, ${ }^{21 b, 21 a}$ I. Siral, ${ }^{127}$ S. Yu. Sivoklokov, ${ }^{110}$ J. Sjölin, ${ }^{43 a, 43 b}$ A. Skaf,,${ }^{51}$ E. Skorda, ${ }^{94}$ P. Skubic, ${ }^{124}$ M. Slawinska, ${ }^{82}$ K. Sliwa, ${ }^{165}$ V. Smakhtin, ${ }^{175}$ B. H. Smart, ${ }^{139}$ J. Smiesko, ${ }^{138}$ S. Yu. Smirnov, ${ }^{109}$ Y. Smirnov, ${ }^{109}$ L. N. Smirnova, ${ }^{110, i i}$ O. Smirnova, ${ }^{94}$ E. A. Smith, ${ }^{35}$ H. A. Smith, ${ }^{130}$ M. Smizanska, ${ }^{87}$ K. Smolek, ${ }^{137}$ A. Smykiewicz, ${ }^{82}$
A. A. Snesarev, ${ }^{108}$ H. L. Snoek,,116 S. Snyder, ${ }^{27}$ R. Sobie, ${ }^{171, \mathrm{~m}}$ A. Soffer, ${ }^{157}$ F. Sohns, ${ }^{51}$ C. A. Solans Sanchez, ${ }^{34}$ E. Yu. Soldatov, ${ }^{109}$ U. Soldevila, ${ }^{169}$ A. A. Solodkov, ${ }^{119}$ S. Solomon, ${ }^{50}$ A. Soloshenko, ${ }^{77}$ O. V. Solovyanov, ${ }^{119}$ V. Solovyev, ${ }^{133}$ P. Sommer, ${ }^{145}$ H. Son, ${ }^{165}$ A. Sonay, ${ }^{12}$ W. Y. Song, ${ }^{163 b}$ A. Sopczak, ${ }^{137}$ A. L. Sopio, ${ }^{92}$ F. Sopkova, ${ }^{26 b}$ S. Sottocornola, ${ }^{68 a, 68 b}$ R. Soualah, ${ }^{64 a, 64 \mathrm{c}}$ A. M. Soukharev, ${ }^{118 b, 118 \mathrm{a}}$ Z. Soumaimi, ${ }^{33 \mathrm{e}}$ D. South, ${ }^{44}$ S. Spagnolo, ${ }^{65 \mathrm{a}, 65 \mathrm{~b}}$ M. Spalla, ${ }^{112}$ M. Spangenberg, ${ }^{173}$ F. Spanò, ${ }^{91}$ D. Sperlich, ${ }^{50}$ T. M. Spieker, ${ }^{59 a}$ G. Spigo, ${ }^{34}$ M. Spina, ${ }^{152}$ D. P. Spiteri, ${ }^{55}$ M. Spousta, ${ }^{138}$ A. Stabile, ${ }^{66 a, 66 b}$ B. L. Stamas, ${ }^{117}$ R. Stamen,,${ }^{59 \mathrm{a}}$ M. Stamenkovic, ${ }^{116}$ A. Stampekis, ${ }^{19}$ M. Standke, ${ }^{22}$ E. Stanecka, ${ }^{82}$ B. Stanislaus, ${ }^{34}$ M. M. Stanitzki, ${ }^{44}$ M. Stankaityte, ${ }^{130}$ B. Stapf, ${ }^{44}$ E. A. Starchenko, ${ }^{119}$ G. H. Stark, ${ }^{141}$ J. Stark, ${ }^{99}$ D. M. Starko, ${ }^{163 b}$ P. Staroba, ${ }^{136}$ P. Starovoitov, ${ }^{59 a}$ S. Stärz, ${ }^{101}$ R. Staszewski, ${ }^{82}$ G. Stavropoulos, ${ }^{42}$ P. Steinberg, ${ }^{27}$ A. L. Steinhebel, ${ }^{127}$ B. Stelzer, ${ }^{148,163 a}$ H. J. Stelzer, ${ }^{134}$ O. Stelzer-Chilton, ${ }^{163 a}$ H. Stenzel, ${ }^{54}$ T. J. Stevenson, ${ }^{152}$ G. A. Stewart, ${ }^{34}$ M. C. Stockton, ${ }^{34}$ G. Stoicea, ${ }^{25 b}$ M. Stolarski, ${ }^{135 a}$ S. Stonjek, ${ }^{112}$ A. Straessner, ${ }^{46}$ J. Strandberg, ${ }^{150}$ S. Strandberg,,${ }^{43 a, 43 b}$ M. Strauss, ${ }^{124}$ T. Strebler, ${ }^{99}$ P. Strizenec, ${ }^{26 b}$ R. Ströhmer, ${ }^{172}$ D. M. Strom, ${ }^{127}$ L. R. Strom, ${ }^{44}$ R. Stroynowski, ${ }^{40}$ A. Strubig, ${ }^{43 a, 43 b}$ S. A. Stucci, ${ }^{27}$ B. Stugu, ${ }^{15}$ J. Stupak,,${ }^{124}$ N. A. Styles, ${ }^{44}$ D. Su, ${ }^{149}$ S. Su, ${ }^{58 a}$ W. Su, ${ }^{58 d, 144,58 c}$ X. Su, ${ }^{58 a}$ N. B. Suarez, ${ }^{134}$ K. Sugizaki, ${ }^{159}$ V. V. Sulin, ${ }^{108}$ M. J. Sullivan,,${ }^{88}$ D. M. S. Sultan, ${ }^{52}$ S. Sultansoy, ${ }^{3 c}$ T. Sumida, ${ }^{83}$ S. Sun, ${ }^{103}$ S. Sun, ${ }^{176}$ X. Sun, ${ }^{98}$ O. Sunneborn Gudnadottir, ${ }^{167}$ C. J. E. Suster, ${ }^{153}$ M. R. Sutton, ${ }^{152}$ M. Svatos, ${ }^{136}$ M. Swiatlowski, ${ }^{163 a}$ T. Swirski, ${ }^{172}$ I. Sykora, ${ }^{26 a}$ M. Sykora, ${ }^{138}$ T. Sykora, ${ }^{138}$ D. Ta, ${ }^{97}$ K. Tackmann, ${ }^{44, \mathrm{jj}}$ A. Taffard, ${ }^{166}$ R. Tafirout, ${ }^{163 \mathrm{a}}$ E. Tagiev,,${ }^{119}$ R. H. M. Taibah, ${ }^{131}$ R. Takashima, ${ }^{84}$ K. Takeda, ${ }^{80}$ T. Takeshita, ${ }^{146}$ E. P. Takeva, ${ }^{48}$ Y. Takubo, ${ }^{79}$ M. Talby,${ }^{99}$ A. A. Talyshev,,${ }^{118 b, 118 \mathrm{a}}$ K. C. Tam, ${ }^{60 b}$ N. M. Tamir, ${ }^{157}$ A. Tanaka, ${ }^{159}$ J. Tanaka, ${ }^{159}$ R. Tanaka, ${ }^{62}$ Z. Tao, ${ }^{170}$ S. Tapia Araya, ${ }^{76}$ S. Tapprogge, ${ }^{97}$ A. Tarek Abouelfadl Mohamed, ${ }^{104}$ S. Tarem, ${ }^{156}$ K. Tariq, ${ }^{58 b}$ G. Tarna, ${ }^{25 b, k k}$ G. F. Tartarelli, ${ }^{66 \mathrm{a}}$ P. Tas, ${ }^{138}$ M. Tasevsky, ${ }^{136}$ E. Tassi, ${ }^{39 b, 39 \mathrm{a}}$ G. Tateno, ${ }^{159}$ Y. Tayalati, ${ }^{33 \mathrm{e}}$ G. N. Taylor, ${ }^{102}$ W. Taylor, ${ }^{163 \mathrm{~b}}$ H. Teagle, ${ }^{88}$ A.S. Tee, ${ }^{176}$ R. Teixeira De Lima, ${ }^{149}$ P. Teixeira-Dias, ${ }^{91}$ H. Ten Kate, ${ }^{34}$ J. J. Teoh, ${ }^{116}$ K. Terashi, ${ }^{159}$ J. Terron, ${ }^{96}$ S. Terzo, ${ }^{12}$ M. Testa, ${ }^{49}$ R. J. Teuscher, ${ }^{162, \mathrm{~m}}$ N. Themistokleous, ${ }^{48}$ T. Theveneaux-Pelzer, ${ }^{17}$ O. Thielmann, ${ }^{177}$ D. W. Thomas, ${ }^{91}$ J. P. Thomas, ${ }^{19}$ E. A. Thompson, ${ }^{44}$ P. D. Thompson, ${ }^{19}$ E. Thomson, ${ }^{132}$ E. J. Thorpe, ${ }^{90}$ Y. Tian, ${ }^{51}$ V. O. Tikhomirov, ${ }^{108,11}$ Yu. A. Tikhonov, ${ }^{118 b, 118 a}$ S. Timoshenko, ${ }^{109}$ P. Tipton, ${ }^{178}$ S. Tisserant, ${ }^{99}$ S. H. Tlou, ${ }^{31 f}$ A. Tnourji, ${ }^{36} \mathrm{~K}$. Todome,,${ }^{21 b, 21 a}$ S. Todorova-Nova, ${ }^{138}$ S. Todt, ${ }^{46}$ M. Togawa, ${ }^{79}$ J. Tojo, ${ }^{85}$ S. Tokár, ${ }^{26 a}$ K. Tokushuku, ${ }^{79}$ E. Tolley, ${ }^{123}$ R. Tombs, ${ }^{30}$ M. Tomoto, ${ }^{79,113}$ L. Tompkins, ${ }^{149}$ P. Tornambe, ${ }^{100}$ E. Torrence, ${ }^{127}$ H. Torres, ${ }^{46}$ E. Torró Pastor, ${ }^{169}$ M. Toscani, ${ }^{28}$ C. Tosciri, ${ }^{35}$ J. Toth, ${ }^{99, \mathrm{~mm}}$ D. R. Tovey, ${ }^{145}$ A. Traeet, ${ }^{15}$ C. J. Treado, ${ }^{121}$ T. Trefzger, ${ }^{172}$ A. Tricoli, ${ }^{27}$ I. M. Trigger, ${ }^{163 \mathrm{a}}$ S. Trincaz-Duvoid, ${ }^{131}$ D. A. Trischuk, ${ }^{170}$ W. Trischuk, ${ }^{162}$ B. Trocmé, ${ }^{56}$ A. Trofymov, ${ }^{62}$ C. Troncon, ${ }^{66 a}$ F. Trovato, ${ }^{152}$ L. Truong, ${ }^{31 \mathrm{c}}$ M. Trzebinski, ${ }^{82}$ A. Trzupek, ${ }^{82}$ F. Tsai, ${ }^{151}$ A. Tsiamis, ${ }^{158}$ P. V. Tsiareshka, ${ }^{105, c c}$ A. Tsirigotis, ${ }^{158, d d}$ V. Tsiskaridze, ${ }^{151}$ E. G. Tskhadadze, ${ }^{155 a}$ M. Tsopoulou, ${ }^{158}$ I. I. Tsukerman, ${ }^{120}$ V. Tsulaia, ${ }^{16}$ S. Tsuno, ${ }^{79}$ O. Tsur, ${ }^{156}$ D. Tsybychev, ${ }^{151} \mathrm{Y}$. Tu, ${ }^{60 \mathrm{~b}}$ A. Tudorache, ${ }^{25 b}$ V. Tudorache, ${ }^{25 b}$ A. N. Tuna, ${ }^{34}$ S. Turchikhin, ${ }^{77}$ D. Turgeman, ${ }^{175}$ I. Turk Cakir, ${ }^{3 b, n n}$ R. J. Turner, ${ }^{19}$ R. Turra, ${ }^{66 a}$ P. M. Tuts, ${ }^{37}$ S. Tzamarias, ${ }^{158}$ P. Tzanis, ${ }^{9}$ E. Tzovara, ${ }^{97}$ K. Uchida, ${ }^{159}$ F. Ukegawa, ${ }^{164}$ G. Unal, ${ }^{34}$ M. Unal, ${ }^{10}$ A. Undrus, ${ }^{27}$ G. Unel,,${ }^{166}$ F. C. Ungaro, ${ }^{102}$ K. Uno, ${ }^{159}$ J. Urban, ${ }^{266}$ P. Urquijo, ${ }^{102}$ G. Usai, ${ }^{7}$ R. Ushioda, ${ }^{160}$ M. Usman, ${ }^{107}$ Z. Uysal, ${ }^{11 d}$ V. Vacek, ${ }^{137}$ B. Vachon, ${ }^{101}$ K. O. H. Vadla, ${ }^{129}$ T. Vafeiadis, ${ }^{34}$ C. Valderanis, ${ }^{111}$ E. Valdes Santurio, ${ }^{43 a, 43 \mathrm{~b}}$ M. Valente, ${ }^{163 \mathrm{a}}$ S. Valentinetti, ${ }^{2 \mathrm{lb}, 21 \mathrm{a}}$ A. Valero, ${ }^{169}$ L. Valéry, ${ }^{44}$ R. A. Vallance, ${ }^{19}$ A. Vallier, ${ }^{99}$ J. A. Valls Ferrer, ${ }^{169}$ T. R. Van Daalen, ${ }^{12}$ P. Van Gemmeren, ${ }^{5}$ S. Van Stroud, ${ }^{92}$ I. Van Vulpen, ${ }^{116}$ M. Vanadia, ${ }^{7 \mathrm{a} a, 7 \mathrm{lb}} \mathrm{W}$. Vandelli, ${ }^{34}$ M. Vandenbroucke, ${ }^{140}$ E. R. Vandewall, ${ }^{125}$ D. Vannicola, ${ }^{70 a, 70 b}$ L. Vannoli, ${ }^{53 b, 53 a}$ R. Vari, ${ }^{70 a}$ E. W. Varnes, ${ }^{6}$ C. Varni, ${ }^{53 b, 53 a}$ T. Varol ${ }^{154}$ D. Varouchas, ${ }^{62}$ K. E. Varvell, ${ }^{153}$ M. E. Vasile, ${ }^{25 b}$ L. Vaslin, ${ }^{36}$ G. A. Vasquez, ${ }^{171}$ F. Vazeille, ${ }^{36}$ D. Vazquez Furelos, ${ }^{12}$ T. Vazquez Schroeder, ${ }^{34}$ J. Veatch,,${ }^{51}$ V. Vecchio, ${ }^{98}$ M. J. Veen, ${ }^{116}$ I. Veliscek, ${ }^{130}$ L. M. Veloce,,${ }^{162}$ F. Veloso, ${ }^{135 a, 135 c}$ S. Veneziano, ${ }^{70 a}$ A. Ventura, ${ }^{65 a, 65 b}$ A. Verbytskyi, ${ }^{112}$ M. Verducci, ${ }^{69 a, 69 b}$ C. Vergis, ${ }^{22}$ M. Verissimo De Araujo, ${ }^{78 b}$ W. Verkerke, ${ }^{116}$ A. T. Vermeulen, ${ }^{116}$ J. C. Vermeulen, ${ }^{116}$ C. Vernieri, ${ }^{149}$ P. J. Verschuuren, ${ }^{91}$ M. L. Vesterbacka, ${ }^{121}$ M. C. Vetterli, ${ }^{148, e}$ N. Viaux Maira, ${ }^{142 \mathrm{f}}$ T. Vickey, ${ }^{145}$ O. E. Vickey Boeriu, ${ }^{145}$ G. H. A. Viehhauser, ${ }^{130}$ L. Vigani, ${ }^{59 b}$ M. Villa, ${ }^{211,21 a}$ M. Villaplana Perez, ${ }^{169}$ E. M. Villhauer, ${ }^{48}$ E. Vilucchi, ${ }^{49}$ M. G. Vincter, ${ }^{32}$ G. S. Virdee, ${ }^{19}$ A. Vishwakarma, ${ }^{48}$ C. Vittori, ${ }^{21 b, 21 a}$ I. Vivarelli, ${ }^{152}$ V. Vladimirov, ${ }^{173}$ E. Voevodina, ${ }^{112}$ M. Vogel,,${ }^{177}$ P. Vokac, ${ }^{137}$ J. Von Ahnen, ${ }^{44}$ S. E. von Buddenbrock, ${ }^{31 f}$ E. Von Toerne, ${ }^{22}$ V. Vorobel, ${ }^{138}$ K. Vorobev, ${ }^{109}$ M. Vos, ${ }^{169}$ J. H. Vossebeld, ${ }^{88}$ M. Vozak, ${ }^{98}$ L. Vozdecky, ${ }^{90}$ N. Vranjes, ${ }^{14}$ M. Vranjes Milosavljevic, ${ }^{14}$ V. Vrba, ${ }^{137, a}$ M. Vreeswijk, ${ }^{116}$ N. K. Vu, ${ }^{99}$ R. Vuillermet, ${ }^{34}$
I. Vukotic, ${ }^{35}$ S. Wada, ${ }^{164}$ C. Wagner,,${ }^{100}$ P. Wagner, ${ }^{22}$ W. Wagner, ${ }^{177}$ S. Wahdan, ${ }^{177}$ H. Wahlberg, ${ }^{86}$ R. Wakasa, ${ }^{164}$ M. Wakida, ${ }^{113}$ V. M. Walbrecht, ${ }^{112}$ J. Walder, ${ }^{139}$ R. Walker, ${ }^{111}$ S. D. Walker, ${ }^{91}$ W. Walkowiak, ${ }^{147}$ A. M. Wang, ${ }^{57}$
A. Z. Wang, ${ }^{176}$ C. Wang, ${ }^{58 a}$ C. Wang, ${ }^{58 \mathrm{c}}$ H. Wang, ${ }^{16}$ J. Wang, ${ }^{60 \mathrm{a}}$ P. Wang, ${ }^{40}$ R.-J. Wang, ${ }^{97}$ R. Wang, ${ }^{57}$ R. Wang, ${ }^{117}$ S. M. Wang, ${ }^{154}$ S. Wang, ${ }^{58 b}$ T. Wang, ${ }^{58 a}$ W. T. Wang, ${ }^{58 a}$ W. X. Wang, ${ }^{58 \mathrm{a}} \mathrm{X}$. Wang, ${ }^{13 \mathrm{c}} \mathrm{X}$. Wang, ${ }^{168}$ Y. Wang, ${ }^{58 \mathrm{a}} \mathrm{Z}$. Wang, ${ }^{103}$ C. Wanotayaroj, ${ }^{34}$ A. Warburton, ${ }^{101}$ C. P. Ward, ${ }^{30}$ R. J. Ward, ${ }^{19}$ N. Warrack, ${ }^{55}$ A. T. Watson, ${ }^{19}$ M. F. Watson, ${ }^{19}$ G. Watts,,${ }^{144}$ B. M. Waugh, ${ }^{92}$ A. F. Webb, ${ }^{10}$ C. Weber, ${ }^{27}$ M. S. Weber, ${ }^{18}$ S. A. Weber, ${ }^{32}$ S. M. Weber, ${ }^{59 a}$ C. Wei, ${ }^{58 a}$ Y. Wei, ${ }^{130}$ A. R. Weidberg, ${ }^{130}$ J. Weingarten, ${ }^{45}$ M. Weirich, ${ }^{97}$ C. Weiser, ${ }^{50}$ T. Wenaus, ${ }^{27}$ B. Wendland, ${ }^{45}$ T. Wengler, ${ }^{34}$ S. Wenig, ${ }^{34}$ N. Wermes, ${ }^{22}$ M. Wessels, ${ }^{59 a}$ K. Whalen, ${ }^{127}$ A. M. Wharton, ${ }^{87}$ A. S. White, ${ }^{57}$ A. White, ${ }^{7}$ M. J. White, ${ }^{1}$ D. Whiteson, ${ }^{166}$ W. Wiedenmann, ${ }^{176}$ C. Wiel, ${ }^{46}$ M. Wielers, ${ }^{139}$ N. Wieseotte, ${ }^{97}$ C. Wiglesworth, ${ }^{38}$ L. A. M. Wiik-Fuchs, ${ }^{50}$ D. J. Wilbern, ${ }^{124}$ H. G. Wilkens, ${ }^{34}$ L. J. Wilkins, ${ }^{91}$ D. M. Williams, ${ }^{37}$ H. H. Williams, ${ }^{132}$ S. Williams, ${ }^{30}$ S. Willocq, ${ }^{100}$ P. J. Windischhofer, ${ }^{130}$ I. Wingerter-Seez, ${ }^{4}$ F. Winklmeier, ${ }^{127}$ B. T. Winter, ${ }^{50}$ M. Wittgen, ${ }^{149}$ M. Wobisch, ${ }^{93}$ A. Wolf, ${ }^{97}$ R. Wölker, ${ }^{130}$ J. Wollrath,,${ }^{166}$ M. W. Wolter, ${ }^{82}$ H. Wolters, ${ }^{135 a, 135 \mathrm{c}}$ V. W. S. Wong, ${ }^{170}$ A. F. Wongel, ${ }^{44}$ S. D. Worm, ${ }^{44}$ B. K. Wosiek, ${ }^{82}$ K. W. Woźniak, ${ }^{82}$ K. Wraight,,55 J. Wu, ${ }^{13 a, 13 \mathrm{~d}}$ S. L. Wu, ${ }^{176}$ X. Wu, ${ }^{52} \mathrm{Y}$. Wu, ${ }^{58 \mathrm{a}} \mathrm{Z}$. Wu, ${ }^{140,58 \mathrm{a}} \mathrm{J}$. Wuerzinger, ${ }^{130}$ T. R. Wyatt, ${ }^{98}$ B. M. Wynne, ${ }^{48}$ S. Xella, ${ }^{38}$ J. Xiang, ${ }^{60 c}$ X. Xiao, ${ }^{103}$ X. Xie, ${ }^{58 \mathrm{a}}$ I. Xiotidis, ${ }^{152}$ D. Xu, ${ }^{13 \mathrm{a}} \mathrm{H} . \mathrm{Xu},{ }^{58 \mathrm{a}} \mathrm{H}$. Xu, ${ }^{58 \mathrm{a}} \mathrm{L} . \mathrm{Xu}^{58 \mathrm{a}},{ }^{5}$ R. Xu, ${ }^{132}$ W. Xu, ${ }^{103}$ $\mathrm{Y} . \mathrm{Xu},{ }^{13 \mathrm{~b}} \mathrm{Z} . \mathrm{Xu},{ }^{58 \mathrm{~b}} \mathrm{Z} . \mathrm{Xu},{ }^{149}$ B. Yabsley,${ }^{153}$ S. Yacoob, ${ }^{31 \mathrm{a}} \mathrm{N}$. Yamaguchi, ${ }^{85}$ Y. Yamaguchi, ${ }^{160}$ M. Yamatani, ${ }^{159}$ H. Yamauchi, ${ }^{164}$ T. Yamazaki, ${ }^{16}$ Y. Yamazaki, ${ }^{80}$ J. Yan, ${ }^{58 c}$ S. Yan, ${ }^{130}$ Z. Yan, ${ }^{23}$ H. J. Yang, ${ }^{58 c, 58 d}$ H. T. Yang, ${ }^{16}$ S. Yang, ${ }^{58 a}$ T. Yang, ${ }^{60 \mathrm{c}} \mathrm{X}$. Yang, ${ }^{58 \mathrm{a}} \mathrm{X}$. Yang, ${ }^{13 a}$ Y. Yang, ${ }^{159}$ Z. Yang, ${ }^{103,58 a}$ W-M. Yao, ${ }^{16}$ Y. C. Yap, ${ }^{44} \mathrm{H} . \mathrm{Ye},{ }^{13 \mathrm{c}} \mathrm{J}$. Ye, ${ }^{40}$ S. Ye, ${ }^{27}$ I. Yeletskikh, ${ }^{77}$ M. R. Yexley, ${ }^{87}$ P. Yin, ${ }^{37}$ K. Yorita, ${ }^{174}$ K. Yoshihara, ${ }^{76}$ C. J. S. Young, ${ }^{34}$ C. Young, ${ }^{149}$ R. Yuan, ${ }^{58 b, o o}$ X. Yue, ${ }^{59 a}$ M. Zaazoua, ${ }^{33 e}$ B. Zabinski, ${ }^{82}$ G. Zacharis, ${ }^{9}$ E. Zaffaroni, ${ }^{52}$ A. M. Zaitsev, ${ }^{119, i}{ }^{3}$ T. Zakareishvili, ${ }^{155 b}$ N. Zakharchuk, ${ }^{32}$ S. Zambito, ${ }^{34}$ D. Zanzi, ${ }^{50}$ S. V. Zeißner, ${ }^{45}$ C. Zeitnitz, ${ }^{177}$ G. Zemaityte, ${ }^{130}$ J. C. Zeng, ${ }^{168}$ O. Zenin, ${ }^{119}$ T. Ženiš, ${ }^{26 a}$ S. Zenz, ${ }^{90}$ S. Zerradi, ${ }^{33 \mathrm{a}}$ D. Zerwas, ${ }^{62}$ M. Zgubič, ${ }^{130}$ B. Zhang, ${ }^{13 \mathrm{c}}$ D. F. Zhang, ${ }^{13 \mathrm{~b}}$ G. Zhang, ${ }^{13 \mathrm{~b}}$ J. Zhang, ${ }^{5}$ K. Zhang, ${ }^{13 \mathrm{a}}$ L. Zhang, ${ }^{13 \mathrm{c}}$ M. Zhang, ${ }^{168}$ R. Zhang, ${ }^{176}$ S. Zhang, ${ }^{103}$ X. Zhang, ${ }^{58 \mathrm{c}}$ X. Zhang, ${ }^{58 \mathrm{~b}}$ Z. Zhang, ${ }^{62}$ P. Zhao, ${ }^{47}$ Y. Zhao, ${ }^{141}$ Z. Zhao, ${ }^{58 a}$ A. Zhemchugov, ${ }^{77}$ Z. Zheng, ${ }^{149}$ D. Zhong, ${ }^{168}$ B. Zhou, ${ }^{103}$ C. Zhou, ${ }^{176}$ H. Zhou, ${ }^{6}$ N. Zhou, ${ }^{58 c}$ Y. Zhou, ${ }^{6}$ C. G. Zhu, ${ }^{58 b}$ C. Zhu, ${ }^{13 a, 13 d}$ H. L. Zhu, ${ }^{58 a}$ H. Zhu, ${ }^{13 a}$ J. Zhu, ${ }^{103}$ Y. Zhu, ${ }^{58 a}$ X. Zhuang, ${ }^{13 a}$ K. Zhukov, ${ }^{108}$ V. Zhulanov, ${ }^{18 b, 118 \mathrm{a}}$ D. Zieminska, ${ }^{63}$ N. I. Zimine, ${ }^{77}$ S. Zimmermann, ${ }^{50, \mathrm{a}}$ M. Ziolkowski, ${ }^{147}$ L. Živković, ${ }^{14}$ A. Zoccoli, ${ }^{21 \mathrm{lb}, 21 \mathrm{a}}$ K. Zoch, ${ }^{52}$ T. G. Zorbas, ${ }^{145}$ O. Zormpa, ${ }^{42}$ W. Zou, ${ }^{37}$ and L. Zwalinski ${ }^{34}$

(ATLAS Collaboration)

${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Department of Physics, University of Alberta, Edmonton AB, Canada
${ }^{3 a}$ Department of Physics, Ankara University, Ankara, Turkey
${ }^{3 \mathrm{~b}}$ Istanbul Aydin University, Application and Research Center for Advanced Studies, Istanbul, Turkey
${ }^{3 \mathrm{c}}$ Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
${ }^{4}$ LAPP, University Savoie Mont Blanc, CNRS/IN2P3, Annecy, France
${ }^{5}$ High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
${ }^{6}$ Department of Physics, University of Arizona, Tucson, Arizona, USA ${ }^{7}$ Department of Physics, University of Texas at Arlington, Arlington, Texas, USA
${ }^{8}$ Physics Department, National and Kapodistrian University of Athens, Athens, Greece
${ }^{9}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{10}$ Department of Physics, University of Texas at Austin, Austin, Texas, USA
${ }^{11 \mathrm{a}}$ Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
${ }^{11 \mathrm{~b}}$ Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
${ }^{11 \mathrm{c}}$ Department of Physics, Bogazici University, Istanbul, Turkey
${ }^{11 \mathrm{~d}}$ Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
${ }^{11 \mathrm{e}}$ Department of Physics, Istanbul University, Istanbul, Turkey
${ }^{11 f}$ Istinye University, Sariyer, Istanbul, Turkey
${ }^{12}$ Institut de Física d'Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
${ }^{13 a}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
${ }^{13 b}$ Physics Department, Tsinghua University, Beijing, China
${ }^{13 \mathrm{c}}$ Department of Physics, Nanjing University, Nanjing, China
${ }^{13 \mathrm{~d}}$ University of Chinese Academy of Science (UCAS), Beijing, China
${ }^{14}$ Institute of Physics, University of Belgrade, Belgrade, Serbia

${ }^{15}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{16}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
${ }^{17}$ Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
${ }^{18}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{19}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
${ }^{20 a}$ Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Nariño, Bogotá, Colombia
${ }^{20 \mathrm{~b}}$ Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
${ }^{21 a}$ Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna, Italy
${ }^{21 \mathrm{~b}}$ INFN Sezione di Bologna, Italy
${ }^{22}$ Physikalisches Institut, Universität Bonn, Bonn, Germany
${ }^{23}$ Department of Physics, Boston University, Boston, Massachusetts, USA
${ }^{24}$ Department of Physics, Brandeis University, Waltham, Massachusetts, USA
${ }^{25 a}$ Transilvania University of Brasov, Brasov, Romania
${ }^{25 b}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
${ }^{25 \mathrm{c}}$ Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
${ }^{25 \mathrm{~d}}$ National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
${ }^{25 e}$ University Politehnica Bucharest, Bucharest, Romania
${ }^{25 f}$ West University in Timisoara, Timisoara, Romania
${ }^{26 a}$ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
${ }^{26 \mathrm{~b}}$ Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
${ }^{27}$ Physics Department, Brookhaven National Laboratory, Upton, New York, USA
${ }^{28}$ Departamento de Física (FCEN) and IFIBA, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
${ }^{29}$ California State University, California, USA
${ }^{30}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{31 \mathrm{a}}$ Department of Physics, University of Cape Town, Cape Town, South Africa
${ }^{31 \mathrm{~b}}$ iThemba Labs, Western Cape, South Africa
${ }^{31 \mathrm{c}}$ Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
${ }^{31 \mathrm{~d}}$ National Institute of Physics, University of the Philippines Diliman (Philippines), Philippines
${ }^{31 \mathrm{l}}$ University of South Africa, Department of Physics, Pretoria, South Africa
${ }^{31 \mathrm{f}}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
${ }^{32}$ Department of Physics, Carleton University, Ottawa, Ontario, Canada
${ }^{33 a}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes EnergiesUniversité Hassan II, Casablanca, Morocco
${ }^{33 \mathrm{~b}}$ Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
${ }^{33 \mathrm{c}}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
${ }^{33 \mathrm{~d}}$ LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda, Morocco
${ }^{33 \mathrm{e}}$ Faculté des sciences, Université Mohammed V, Rabat, Morocco
${ }^{33 \mathrm{f}}$ Mohammed VI Polytechnic University, Ben Guerir, Morocco
${ }^{34}$ CERN, Geneva, Switzerland
${ }^{35}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
${ }^{36}$ LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
${ }^{37}$ Nevis Laboratory, Columbia University, Irvington, New York, USA
${ }^{38}$ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
${ }^{39 \mathrm{a}}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
${ }^{39 b}$ INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
${ }^{40}$ Physics Department, Southern Methodist University, Dallas, Texas, USA
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson, Texas, USA
${ }^{42}$ National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
${ }^{43 a}$ Department of Physics, Stockholm University, Sweden
${ }^{43 \mathrm{~b}}$ Oskar Klein Centre, Stockholm, Sweden
${ }^{44}$ Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
${ }^{45}$ Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{46}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{47}$ Department of Physics, Duke University, Durham, North Carolina, USA

[^2]${ }^{81 \mathrm{~b}}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{82}$ Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
${ }^{83}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{84}$ Kyoto University of Education, Kyoto, Japan
${ }^{85}$ Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{86}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{87}$ Physics Department, Lancaster University, Lancaster, United Kingdom
${ }^{88}$ Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
${ }^{89}$ Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
${ }^{90}$ School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
${ }^{91}$ Department of Physics, Royal Holloway University of London, Egham, United Kingdom
${ }^{92}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{93}$ Louisiana Tech University, Ruston, Los Angeles, USA
${ }^{94}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{95}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{96}$ Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
${ }^{97}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{98}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{99}$ CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
${ }^{100}$ Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
${ }^{101}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{102}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{103}$ Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
${ }^{104}$ Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
${ }^{105}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
${ }^{106}$ Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
${ }^{107}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{108}$ P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
${ }^{109}$ National Research Nuclear University MEPhI, Moscow, Russia
${ }^{110}$ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
${ }^{111}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{112}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{113}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
${ }^{114}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
${ }^{115}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef,
Nijmegen, Netherlands
${ }^{116}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
${ }^{117}$ Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
${ }^{118 \mathrm{Ba}}$ Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia
${ }^{118 b}$ Novosibirsk State University Novosibirsk, Russia
${ }^{119}$ Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia
${ }^{120}$ Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow, Russia
${ }^{121}$ Department of Physics, New York University, New York, New York, USA
${ }^{122}$ Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
${ }^{123}$ Ohio State University, Columbus, Ohio, USA
${ }^{124}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
${ }^{125}$ Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
${ }^{126}$ Palacký University, Joint Laboratory of Optics, Olomouc, Czech Republic
${ }^{127}$ Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA
${ }^{128}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{129}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{130}$ Department of Physics, Oxford University, Oxford, United Kingdom
${ }^{131}$ LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France
${ }^{132}$ Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA

[^3]${ }^{174}$ Waseda University, Tokyo, Japan
${ }^{175}$ Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel
${ }^{176}$ Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
${ }^{177}$ Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{178}$ Department of Physics, Yale University, New Haven, Connecticut, USA

${ }^{a}$ Deceased.
${ }^{\mathrm{b}}$ Also at Department of Physics, King's College London, London, United Kingdom.
${ }^{\text {c Also at Istanbul University, Department of Physics, Istanbul, Turkey. }}$
${ }^{\mathrm{d}}$ Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain.
${ }^{\mathrm{e}}$ Also at TRIUMF, Vancouver BC, Canada.
${ }^{\mathrm{f}}$ Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.
${ }^{\mathrm{g}}$ Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.
${ }^{\text {h }}$ Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.
${ }^{i}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.
${ }^{j}$ Also at Faculty of Physics, Sofia University, 'St. Kliment Ohridski', Sofia, Bulgaria.
${ }^{k}$ Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.
${ }^{1}$ Also at Universita di Napoli Parthenope, Napoli, Italy.
${ }^{\mathrm{m}}$ Also at Institute of Particle Physics (IPP), Canada.
${ }^{\mathrm{n}}$ Also at Bruno Kessler Foundation, Trento, Italy.
${ }^{\circ}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.
${ }^{\mathrm{p}}$ Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.
${ }^{q}$ Also at Department of Physics, California State University, Fresno, USA.
${ }^{r}$ Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.
${ }^{\mathrm{s}}$ Also at Centro Studi e Ricerche Enrico Fermi, Italy.
${ }^{\text {t}}$ Also at Department of Physics, California State University, East Bay, USA.
${ }^{\text {u }}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
${ }^{v}$ Also at Graduate School of Science, Osaka University, Osaka, Japan.
${ }^{w}$ Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
${ }^{x}$ Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.
${ }^{y}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
${ }^{\mathrm{z}}$ Also at Yeditepe University, Physics Department, Istanbul, Turkey.
${ }^{\text {aa }}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.
${ }^{\mathrm{bb}}$ Also at CERN, Geneva, Switzerland.
${ }^{\text {cc }}$ Also at Joint Institute for Nuclear Research, Dubna, Russia.
${ }^{d d}$ Also at Hellenic Open University, Patras, Greece.
${ }^{\text {ee }}$ Also at Center for High Energy Physics, Peking University, China.
${ }^{\text {ff }}$ Also at The City College of New York, New York, New York, USA.
${ }^{\text {gg }}$ Also at Department of Physics, California State University, Sacramento, USA.
${ }^{\text {hh }}$ Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.
${ }^{\text {ii }}$ Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.
${ }^{\mathrm{jj}}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
${ }^{\mathrm{kk}}$ Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.
${ }^{11}$ Also at National Research Nuclear University MEPhI, Moscow, Russia.
${ }^{m m}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.
${ }^{n n}$ Also at Giresun University, Faculty of Engineering, Giresun, Turkey.
${ }^{00}$ Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.

[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP ${ }^{3}$.

[^1]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln [\tan (\theta / 2)]$. The rapidity is defined as $y=(1 / 2) \ln \left[\left(E+p_{z}\right) /\left(E-p_{z}\right)\right]$, where E is the energy and p_{z} is the momentum in the z direction. Transverse energy is defined as $E_{\mathrm{T}}=E \sin \theta$.

[^2]: ${ }^{48}$ SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom ${ }^{49}$ INFN e Laboratori Nazionali di Frascati, Frascati, Italy
 ${ }^{50}$ Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
 ${ }^{51}$ II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
 ${ }^{52}$ Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
 ${ }^{53 a}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
 ${ }^{53 \mathrm{~b}}$ INFN Sezione di Genova, Italy
 ${ }^{54}$ II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
 ${ }^{55}$ SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
 ${ }^{56}$ LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
 ${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
 ${ }^{58 a}$ Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
 ${ }^{58 \mathrm{~b}}$ Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
 ${ }^{58 \mathrm{c}}$ School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai, China
 ${ }^{58 \mathrm{~d}}$ Tsung-Dao Lee Institute, Shanghai, China
 ${ }^{59 \mathrm{a}}$ Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{59 \mathrm{~b}}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{60 \mathrm{a}}$ Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
 ${ }^{60 \mathrm{~b}}$ Department of Physics, University of Hong Kong, Hong Kong, China
 ${ }^{60 \mathrm{c}}$ Department of Physics and Institute for Advanced Study, Hong Kong University of Science and
 Technology, Clear Water Bay, Kowloon, Hong Kong, China
 ${ }^{61}$ Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
 ${ }^{62}$ IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
 ${ }^{63}$ Department of Physics, Indiana University, Bloomington, Indiana, USA
 ${ }^{64 \mathrm{a}}$ INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
 ${ }^{64 \mathrm{~b}}$ ICTP, Trieste, Italy
 ${ }^{64 \mathrm{c}}$ Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
 ${ }^{65 \mathrm{a}}$ INFN Sezione di Lecce, Italy
 ${ }^{65 \mathrm{~b}}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
 ${ }^{66 a}$ INFN Sezione di Milano, Italy
 ${ }^{66 \mathrm{~b}}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
 ${ }^{67 a}$ INFN Sezione di Napoli, Italy
 ${ }^{67 \mathrm{~b}}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
 ${ }^{68 \mathrm{a}}$ INFN Sezione di Pavia, Italy
 ${ }^{68 b}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
 ${ }^{69}$ INFN Sezione di Pisa, Italy
 ${ }^{69 \mathrm{~b}}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
 ${ }^{70 \mathrm{a}}$ INFN Sezione di Roma, Italy
 ${ }^{70 \mathrm{~b}}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
 ${ }^{71}{ }^{71}$ INFN Sezione di Roma Tor Vergata, Italy
 ${ }^{71 \mathrm{~b}}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
 ${ }^{72 \mathrm{a}}$ INFN Sezione di Roma Tre, Italy
 ${ }^{72 \mathrm{~b}}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
 ${ }^{73 a}$ INFN-TIFPA, Italy
 ${ }^{73 b}$ Università degli Studi di Trento, Trento, Italy
 ${ }^{74}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
 ${ }^{75}$ University of Iowa, Iowa City, Iowa, USA
 ${ }^{76}$ Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
 ${ }^{77}$ Joint Institute for Nuclear Research, Dubna, Russia
 ${ }^{78 \text { a }}$ Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
 ${ }^{78 \mathrm{~b}}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
 ${ }^{78 \mathrm{c}}$ Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
 ${ }^{79}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
 ${ }^{80}$ Graduate School of Science, Kobe University, Kobe, Japan
 ${ }^{81}$ AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

[^3]: ${ }^{133}$ Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg, Russia
 ${ }^{134}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
 ${ }^{135 a}$ Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisboa, Portugal
 ${ }^{135 b}$ Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
 ${ }^{135 \mathrm{c}}$ Departamento de Física, Universidade de Coimbra, Coimbra, Portugal
 ${ }^{135 d}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
 ${ }^{135 \mathrm{e}}$ Departamento de Física, Universidade do Minho, Braga, Portugal
 ${ }^{135 \mathrm{f}}$ Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain
 ${ }^{135 \mathrm{~g}}$ Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
 ${ }^{135 \mathrm{~h}}$ Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
 ${ }^{136}$ Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
 ${ }^{137}$ Czech Technical University in Prague, Prague, Czech Republic
 ${ }^{138}$ Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
 ${ }^{139}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
 ${ }^{140}$ IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
 ${ }^{141}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
 ${ }^{142 \mathrm{a}}$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
 ${ }^{142 b}$ Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago, Chile
 ${ }^{142 \mathrm{c}}$ Universidad de la Serena, La Serena, Chile
 ${ }^{142 \mathrm{~d}}$ Universidad Andres Bello, Department of Physics, Santiago, Chile
 ${ }^{142 \mathrm{e}}$ Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
 ${ }^{142 \mathrm{f}}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
 ${ }^{143}$ Universidade Federal de São João del Rei (UFSJ), São João del Rei, Brazil
 ${ }^{144}$ Department of Physics, University of Washington, Seattle, Washington, USA
 ${ }^{145}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
 ${ }^{146}$ Department of Physics, Shinshu University, Nagano, Japan
 ${ }^{147}$ Department Physik, Universität Siegen, Siegen, Germany
 ${ }^{148}$ Department of Physics, Simon Fraser University, Burnaby BC, Canada
 ${ }^{149}$ SLAC National Accelerator Laboratory, Stanford, California, USA
 ${ }^{150}$ Department of Physics, Royal Institute of Technology, Stockholm, Sweden
 ${ }^{151}$ Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
 ${ }^{152}$ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
 ${ }^{153}$ School of Physics, University of Sydney, Sydney, Australia
 ${ }^{154}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
 ${ }^{155 a}$ E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
 ${ }^{155 b}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
 ${ }^{156}$ Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
 ${ }^{157}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
 ${ }^{158}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
 ${ }^{159}$ International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
 ${ }^{160}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
 ${ }^{161}$ Tomsk State University, Tomsk, Russia
 ${ }^{162}$ Department of Physics, University of Toronto, Toronto, Ontario, Canada
 ${ }^{163 a}$ TRIUMF, Vancouver BC, Canada
 ${ }^{163 \mathrm{~b}}$ Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
 ${ }^{164}$ Division of Physics and Tomonaga Center for the History of the Universe,
 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
 ${ }^{165}$ Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
 ${ }^{166}$ Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
 ${ }^{167}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
 ${ }^{168}$ Department of Physics, University of Illinois, Urbana, Illinois, USA
 ${ }^{169}$ Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia-CSIC, Valencia, Spain
 ${ }^{170}$ Department of Physics, University of British Columbia, Vancouver BC, Canada
 ${ }^{171}$ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
 ${ }^{172}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
 ${ }^{173}$ Department of Physics, University of Warwick, Coventry, United Kingdom

